2011届高三数学上册10月月考测试题1

合集下载

2011届高三数学上册10月月考试卷3

2011届高三数学上册10月月考试卷3

湖北省黄州区一中2011届高三10月月考(数学理)一、选择题(本题共有10个小题,每小题5分,共50分).1.若集合2{|540}A x x x =-+<,{|||1}B x x a =-<,则“(23)a ∈,”是“B A ⊆”的( )A. 充分但不必要条件B. 必要但不充分条件C. 充要条件D. 既不充分又不必要条件 A .32 B .1 C .-1 D .-32 2.已知函数xx f 2)(=的反函数)(1x f -满足4)()(11=+--b f a f ,则ba 11+的最小值为 A .1B .31 C .21 D .413.若函数()(01)x x f x ka a a a -=->≠且在(-∞,+∞)上既是奇函数又是增函数,则函数()log ()a g x x k =+的图象是( )4.函数()cos f x x x =的导函数()f x '在区间[],ππ-上的图像大致是A. B. C. D.5.定义在R 上的函数()f x 的图象关于点3(,0)4-成中心对称,对任意的实数x 都有3()()2f x f x =-+,且(1)1,f -=(0)2f =-,则(1)(2)(3)f f f f +++鬃?……+f(2008)的值为A .-2B .-1C .0D .16.等差数列{}n a 的前n 项和为n S ,若2415a a a ++的值为常数,则下列各数中也是常数的是( )A.7SB.8SC.13SD.15S7.若数列{a n }满足a 1=5,a n+1=nn a a 212++2n a (n ∈N +),则其前10项和为( )A 、 50B 、100C 、 150D 、2008.在各项均不为零的等差数列{}n a 中,若2110(2)n n n a a a n +--+=≥,则214n S n --=( ) A.2- B.0 C.1 D.29.已知数列{}n a 、{}n b 都是公差为1的等差数列,其首项分别为1a 、1b ,且11a +b =5,11a >b ,++11a b N (n N )、∈∈,则数列nb{a }前10项的和等于A.55B.70C.85D.100 10.设{a n }为各项均是正数的等比数列,S n 为{a n }的前n 项和,则( ) A.6644S a S a =B.6644S a S a >C.6644S a S a <D.6644S a S a≤ 二、填空题(本题共有5个小题,每小题5分,共25分).11.若关于x 的不等式2124x x a a +--<-有实数解,则实数a 的取值范围是 12.设()f x 是定义在R 上的奇函数,在(,0)-∞上有0)()(<+'x f x f x 且(2)0f -=,则不等式0)(<x xf 的解集为 .13.已知数列{a n }的前n 项和122-+=n n S n ,则25531a a a a ++++ =14.已知等比数列{n a }的各项均为不等于1的正数,数列}{n b 满,18,ln 3==b a b n n 126=b ,则数列}{n b 前n 项和的最大值为______________.15.对于大于或等于2的自然数m 的n 次幂进行如图方式的“分裂”.仿此,52的“分裂”中最大的数是_______,若m 3的“分裂”中最小的数是211,则m 的值为_______.三、解答题(共75分)16.(12分)已知函数y=f(x)= 21ax bx c++(a,b,c ∈R,a>0,b>0)是奇函数,当x>0时,f(x)有最小值2,其中b ∈N ,且f(1)<52(1)试求函数f(x)的解析式;(2)问函数f(x)图象上是否存在关于点(1,0)对称的两点,若存在,求出点的坐标;若不存在,说明理由。

2011年高三上册数学理科第二次月考题

2011年高三上册数学理科第二次月考题

高三数学理科月考二试题一、选择题(本大题共10小题,每小题5分,满分50分.) 1.若)12(log 1)(21+=x x f ,则)(x f 定义域为 ( )A .)0,21(-B . ),0(+∞C .),21(+∞-D .]0,21(- 2.幂函数()a f x x =的图象过点(2,4),那么函数()f x 的单调递增区间是 ( )A .(-2,+∞)B .[1,)-+∞C .[0,)+∞D .(-∞,-2)3.已知定义域是实数集R 上的函数y=f(x)不恒为0,同时满足f(x+y)=f(x)f(y),且当x>0时,f(x)>1,那么当x<0时,一定有( ) A.f(x)<-1 B. -1<f(x)<0 C . f(x)>1 D. 0<f(x)<14.5.以下有关命题的说法错误的是 ( )A .命题“若0232=+-x x 则x=1”的逆否命题为“若023,12≠+-≠x x x 则”B .“1=x ”是“0232=+-x x ”的充分不必要条件C .对于命题01,:,01,:22≥++∈∀⌝<++∈∃x x R x p x x R x p 均有则使得D .若q p ∧为假命题,则p 、q 均为假命题6、若函数)1(-=x f y 是偶函数,则)2(x f y -=的对称轴是( )A 、12x =B 、1x =C 、0x =D 、2x = 7.已知函数f(x)是R 上的偶函数,g(x)是R 上的奇函数,且g(x)=f(x-1),若f(2)=2,则f(2012) 的值为( )A .2 B. -2 C.±2 D. 0()的解集是25|12|≥+-x x ())21,)((),31)[(),73)[(),21[-∞+∞+∞+∞D C B A8.函数3()1f x x x x =+=在点处的切线方程为( ) A .420x y -+= B .420x y --=C .420x y ++=D .420x y +-=9.设0<b <a <1,则下列不等式成立的是 ( )A .ab <b 2<1B .2b <2a <2C .21log b <21log a <0D .a 2<ab <110.定义函数D x x f y ∈=),(,若存在常数C ,对任意的D x ∈1,存在唯一的D x ∈2,使得C x f x f =+2)()(21,则称函数)(x f 在D 上的均值为C 。

2011届高三数学月考、联考、模拟试题汇编 直线和圆

2011届高三数学月考、联考、模拟试题汇编 直线和圆

直线和圆题组一一、选择题1.(北京龙门育才学校2011届高三上学期第三次月考)直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是( ) A .相切 B .直线过圆心 C .直线不过圆心但与圆相交 D .相离 答案 B.2.(北京五中2011届高三上学期期中考试试题理)若过定点)0,1(-M 且斜率为k 的直线与圆05422=-++y x x 在第一象限内的部分有交点,则k 的取值范围是( ))(A 50<<k )(B 05<<-k )(C 130<<k )(D 50<<k答案 A.3、(福建省三明一中2011届高三上学期第三次月考理)两圆042222=-+++a ax y x 和0414222=+--+b by y x 恰有三条公切线,若R b R a ∈∈,,且0≠ab ,则2211b a +的最小值为 ( )A .91B .94C .1D .3答案 C.3.(福建省厦门双十中学2011届高三12月月考题理)已知点P 是曲线C:321y x x =++上的一点,过点P 与此曲线相切的直线l 平行于直线23y x =-,则切线l 的方程是( ) A .12+=x y B .y=121+-xC .2y x =D .21y x =+或2y x =答案 A.4. (福建省厦门双十中学2011届高三12月月考题理)设斜率为1的直线l 与椭圆124:22=+y x C 相交于不同的两点A 、B ,则使||AB 为整数的直线l 共有( ) A .4条 B .5条 C .6条 D .7条 答案 C.5.(福建省厦门外国语学校2011届高三11月月考理) 已知圆22670x y x +--=与抛物线22(0)y px p =>的准线相切,则p = ( ▲ )A 、1B 、2C 、3D 、4答案 B.6.(甘肃省天水一中2011届高三上学期第三次月考试题理)过点M(1,5)-作圆22(1)(2)4x y -+-=的切线,则切线方程为( ) A .1x =-B .512550x y +-=C .1512550x x y =-+-=或D .15550x x y =-+-=或12答案 C.7.(甘肃省天水一中2011届高三上学期第三次月考试题理)已知圆222410x y x y ++-+=关于直线220ax by -+=41(0,0),a b a b>>+对称则的最小值是( )A .4B .6C .8D .9答案 D.8.(广东省惠州三中2011届高三上学期第三次考试理)已知直线x y a +=与圆224x y +=交于A 、B 两点,O 是坐标原点,向量OA 、OB满足||||OA OB OA OB +=-,则实数a 的值是( )(A )2 (B )2- (C 或 (D )2或2- 答案 D.9. (广东省清远市清城区2011届高三第一次模拟考试理)曲线321y x x x =-=-在处的切线方程为( A .20x y -+= B .20x y +-= C . 20x y ++= D .20x y --=答案 C.10.(贵州省遵义四中2011届高三第四次月考理)若直线02=+-c y x 按向量)1,1(-=a 平移后与圆522=+y x 相切,则c 的值为( )A .8或-2B .6或-4C .4或-6D .2或-8邪恶少女漫画/wuyiniao/ 奀莒哂答案 A.11.(黑龙江大庆实验中学2011届高三上学期期中考试理) 若直线y x =是曲线322y x x ax =-+的切线,则a =( ).1A .2B .1C - .1D 或2 答案 D.邪恶少女漫画/wuyiniao/ 奀莒哂12.(黑龙江哈九中2011届高三12月月考理)“3=a ”是“直线012=--y ax ”与“直线046=+-c y x 平行”的 ( )A .充分不必要条件 C .必要不充分条件D .充要条件D .既不充分也不必要条件答案 B.13.(湖北省南漳县一中2010年高三第四次月考文)已知α∥β,a ⊂α,B ∈β,则在β内过点B 的所有直线中A .不一定存在与a 平行的直线B .只有两条与a 平行的直线C .存在无数条与a 平行的直线D .存在唯一一条与a 平行的直线 答案 D.14.(重庆市南开中学2011届高三12月月考文)已知圆C 与直线040x y x y -=--=及都相切,圆心在直线0x y +=上,则圆C 的方程为( )A .22(1)(1)2x y ++-=B .22(1)(1)2x y -++=C .22(1)(1)2x y -+-=D .22(1)(1)2x y +++=答案 B. 二、填空题14.(湖北省南漳县一中2010年高三第四次月考文)已知两点(4,9)(2,3)P Q --,,则直线PQ 与y 轴的交点分有向线段PQ的比为 .答案 2.15. (福建省厦门外国语学校2011届高三11月月考理)已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点的直线交椭圆于A 、B 两点,)1,3(-=+与共线,求椭圆的离心率▲▲.答案 36=e . 16.(甘肃省天水一中2011届高三上学期第三次月考试题理)设直线30ax y -+=与圆22(1)(2)4x y -+-=相交于A 、B 两点,且弦AB 的长为a = 答案 0.17. (广东省中山市桂山中学2011届高三第二次模拟考试文) 在极坐标中,圆4cos ρθ=的圆心C 到直线sin()4πρθ+=的距离为 .18.(河南省郑州市四十七中2011届高三第三次月考文)如下图,直线PC 与圆O 相切于点C ,割线PAB 经过圆心O ,弦CD ⊥AB 于点E , 4PC =,8PB =,则CE = .答案12519.(黑龙江省哈尔滨市第162中学2011届高三第三次模拟理)已知函数()x f 的图象关于直线2=x 和4=x 都对称,且当10≤≤x 时,()x x f =.求()5.19f =_____________。

数学丨辽宁省辽宁省实验中学2025届高三10月月考暨第一次阶段测试数学试卷及答案

数学丨辽宁省辽宁省实验中学2025届高三10月月考暨第一次阶段测试数学试卷及答案

辽宁省实验中学高三年级10月份月考数学试卷满分:150分时间:120分钟一、单项选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.若,则是的()条件A.充分不必要B.必要不充分C.充要D.既不充分也不必要2.若,则()A. B. C. D.3.已知函数在上单调递增,则的取值范围是()A. B. C. D.4.在中,角,,的对边分别为,,,若为非零实数),则下列结论错误的是()A.当时,是直角三角形B.当时,是锐角三角形C.当时,是钝角三角形D.当时,是钝角三角形5.耳机的降噪效果成为衡量一个耳机好坏的标准之一,降噪的工作原理就是通过麦克风采集周围环境的噪音,通过数字化分析,以反向声波进行处理,实现声波间的抵消,使噪音降为0,完成降噪(如图所示),已知噪音的声波曲线是,通过主动降噪芯片生成的反向声波曲线是(其中,,),则().A. B. C.π D.6.已知函数是定义在上的偶函数,且在区间单调递减,若,且满足,则的取值范围是()A. B. C. D.7.已知正数,满足,则下列说法不正确的是()A. B.C D.8.设函数在上至少有两个不同零点,则实数取值范围是()A. B. C. D.二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求。

全部选对得6分,选对但不全的得部分分,有选错的得0分。

9.下列函数在其定义域上既是奇函数又是增函数的是()A. B.C. D.10.函数,(,)部分图象如图所示,下列说法正确的是()A.函数解析式为B.函数的单调增区间为C.函数的图象关于点对称D.为了得到函数的图象,只需将函数向右平移个单位长度11.已知函数,若有6个不同的零点分别为,且,则下列说法正确的是()A.当时,B.的取值范围为C.当时,取值范围为D.当时,的取值范围为三、填空题:本大题共3小题,每小题5分,共15分.12.已知,则用表示为______.13.已知,则的最小值为______.14.在锐角中,角的对边分别为,的面积为,满足,若,则的最小值为______.四、解答题:本大题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤.15.为了研究学生的性别和是否喜欢跳绳的关联性,随机调查了某中学的100名学生,整理得到如下列联表:男学生女学生合计喜欢跳绳353570不喜欢跳绳102030合计4555100(1)依据的独立性检验,能否认为学生的性别和是否喜欢跳绳有关联?(2)已知该校学生每分钟的跳绳个数,该校学生经过训练后,跳绳个数都有明显进步.假设经过训练后每人每分钟的跳绳个数都增加10,该校有1000名学生,预估经过训练后该校每分钟的跳绳个数在内的人数(结果精确到整数).附:,其中.0.10.050.012.7063.841 6.635若,则,16.已知函数.(1)若在R上单调递减,求a的取值范围;(2)若,判断是否有最大值,若有,求出最大值;若没有,请说明理由.17.已知数列的前n项和为,数列满足,.(1)证明等差数列;(2)是否存在常数a、b,使得对一切正整数n都有成立.若存在,求出a、b的值;若不存在,说明理由.18.在中,设角A,B,C所对的边分别是a,b,c,且满足.(1)求角B;(2)若,求面积的最大值;(3)求的取值范围.19.已知集合是具有下列性质的函数的全体,存在有序实数对,使对定义域内任意实数都成立.(1)判断函数,是否属于集合,并说明理由;(2)若函数(,、为常数)具有反函数,且存在实数对使,求实数、满足的关系式;(3)若定义域为的函数,存在满足条件的实数对和,当时,值域为,求当时函数的值域.辽宁省实验中学高三年级10月份月考数学试卷满分:150分时间:120分钟一、单项选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.若,则是的()条件A.充分不必要B.必要不充分C.充要D.既不充分也不必要【答案】A【解析】【分析】根据指、对数函数单调性解不等式,再根据包含关系分析充分、必要条件.【详解】对于,则,解得;对于,则,解得;因为是的真子集,所以是的充分不必要条件.故选:A.2.若,则()A. B. C. D.【答案】C【解析】【分析】先由条件得到,化弦为切,代入求出答案.【详解】因为,所以,所以.故选:C3.已知函数在上单调递增,则的取值范围是()A. B. C. D.【答案】B【解析】【分析】根据在上恒大于0,且单调递增,可求的取值范围.【详解】因为函数在上单调递增,所以在上单调递增,所以.且在恒大于0,所以或.综上可知:.故选:B4.在中,角,,的对边分别为,,,若为非零实数),则下列结论错误的是()A.当时,是直角三角形B.当时,是锐角三角形C.当时,是钝角三角形D.当时,是钝角三角形【答案】D【解析】【分析】由正弦定理化简已知可得,利用余弦定理,勾股定理,三角形两边之和大于第三边等知识逐一分析各个选项即可得解.【详解】对于选项,当时,,根据正弦定理不妨设,,,显然是直角三角形,故命题正确;对于选项,当时,,根据正弦定理不妨设,,,显然是等腰三角形,,说明为锐角,故是锐角三角形,故命题正确;对于选项,当时,,根据正弦定理不妨设,,,可得,说明为钝角,故是钝角三角形,故命题正确;对于选项,当时,,根据正弦定理不妨设,,,此时,不等构成三角形,故命题错误.故选:D.5.耳机的降噪效果成为衡量一个耳机好坏的标准之一,降噪的工作原理就是通过麦克风采集周围环境的噪音,通过数字化分析,以反向声波进行处理,实现声波间的抵消,使噪音降为0,完成降噪(如图所示),已知噪音的声波曲线是,通过主动降噪芯片生成的反向声波曲线是(其中,,),则().A. B. C.π D.【答案】D【解析】【分析】根据题意,结合余弦型函数的性质进行求解即可.【详解】由于抵消噪音,所以振幅没有改变,即,所以,要想抵消噪音,需要主动降噪芯片生成的声波曲线是,即,因为,所以令,即,故选:D.6.已知函数是定义在上的偶函数,且在区间单调递减,若,且满足,则的取值范围是()A. B. C. D.【答案】D【解析】【分析】根据函数的奇偶性、单调性、对数运算等知识列不等式,由此求得的取值范围.【详解】依题意,是偶函数,且在区间单调递减,由得,所以,所以或,所以或,所以的取值范围是.故选:D7.已知正数,满足,则下列说法不正确的是()A. B.C. D.【答案】C【解析】【分析】令,则,对于A,直接代入利用对数的运算性质计算判断,对于B,结合对数函数的单调性分析判断,对于C,利用作差法分析判断,对于D,对化简变形,结合幂的运算性质及不等式的性质分析判断.【详解】令,则,对于A,,所以A正确,对于B,因为在上递增,且,所以,即,即,所以,所以B正确,对于C,因为,所以,所以C错误,对于D,,因为,所以,所以,所以,因为,所以,所以,所以,所以,所以D正确,故选:C8.设函数在上至少有两个不同零点,则实数取值范围是()A. B. C. D.【答案】A【解析】【分析】先令得,并得到,从小到大将的正根写出,因为,所以,从而分情况,得到不等式,求出答案.【详解】令得,因为,所以,令,解得或,从小到大将的正根写出如下:,,,,,……,因为,所以,当,即时,,解得,此时无解,当,即时,,解得,此时无解,当,即时,,解得,故,当,即时,,解得,故,当时,,此时在上至少有两个不同零点,综上,的取值范围是.故选:A【点睛】方法点睛:在三角函数图象与性质中,对整个图象性质影响最大,因为可改变函数的单调区间,极值个数和零点个数,求解的取值范围是经常考察的内容,综合性较强,除掌握三角函数图象和性质,还要准确发掘题干中的隐含条件,找到切入点,数形结合求出相关性质,如最小正周期,零点个数,极值点个数等,此部分题目还常常和导函数,去绝对值等相结合考查综合能力.二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求。

2011级高三数学 10月月考试卷 文 新人教版

2011级高三数学 10月月考试卷 文 新人教版

2011届高三10月数学(文)一、选择题:(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确选项的代号涂在机读卡的相应位置上.) 1.已条件甲“50<<x ”是条件乙“3|2|<-x 的( ) A 、充分不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分也不必要条件2知集合U =R ,集合M ={y|y =2|x|,x ∈R},集合N ={x |y =lg (3-x )},则M ∩N=( )A .{t | t <3}B .{t | t ≥ 1}C .{t | 1 ≤ t < 3}D .∅3、{}n a 为等差数列,若{}n n a s a a 是,1264=+的前n 项和,则9s =( )A 、48B 、54C 、60D 、66 4已知向量a =(x ,-1)与向量b =(1,x1),则不等式a·b ≤0的解集为( ) A .{x | x ≤-1或x ≥ 1}B .{x | -1 ≤ x < 0或x ≥ 1}C .{x | x ≤-1或0 ≤ x ≤ 1}D .{x | x ≤-1或0 < x ≤ 1}5.若函数()f x 的反函数为12()2(0)f x x x -=+<,则3(log 27)f =( )A .1B .-1C .1或-1D .116.若递增等比数列{}n a 满足:12312371,864a a a a a a ++=⋅⋅=,则此数列的公比q =( ) A .12B .12或2 C .2 D .32或27.已知函数()f x 的部分图象如图所示,则()f x 的解析式可能为( )A .f (x )=2sin (62π-x ); B .f (x )=⎪⎭⎫ ⎝⎛+44cos 2πx C .f (x )=2cos (32π-x ); D .f (x )=2sin ⎪⎭⎫ ⎝⎛+64πx 8.已知,αβ表示平面,,m n 表示直线,下列命题中正确的是( ) A .若αβ,,m n αβ⊆⊆,则m n B .若αβ⊥,,m n αβ⊆⊆,则m n ⊥C .若m α⊥, n β⊥,m n ,则αβD .若,,m n m n αβ⊥则αβ⊥9.函数21log 8x y -=的图像可由函数2log y x =的图像经过下列的哪种平移而得到( )A .先向左平移1个单位长度,再向下平移3个单位长度B .先向右平移1个单位长度,再向上平移3个单位长度C .按向量a =(1,-3)平移D .按向量a =(-1,3)平移 10,在数列{}n a 中,12a =, 11ln(1)n n a a n+=++,则n a =( )A .2ln n +B .2(1)ln n n +-C .2ln n n +D .1ln n n ++11.如图,设地球半径为R ,点A 、B 在赤道上,O 为地心,点C 在北纬30°的纬线(O ′为其圆心)上,且点A 、C 、D 、O′、O 共面,点D 、O ′、O 共线,若∠AOB =90°,则异面直线AB 与CD 所成角的余弦值为( )A .46 B .-46 C .426+ D .426-12. 12.已知2{|230}A x x x =--≤,2{|}B x x px q =++<0满足A B ={|1}x x -≤<2,则p 与q 的关系为( )(A )0p q -= (B )0p q += (C )5p q +=- (D )24p q +=-第Ⅱ卷 (非选择题,共90分)二、填空题:(本大题共4小题,每小题4分,共16分)把答案填在题中横线上。

黑龙江省牡丹江市第一高级中学2024-2025学年高三上学期10月月考数学试题

黑龙江省牡丹江市第一高级中学2024-2025学年高三上学期10月月考数学试题

黑龙江省牡丹江市第一高级中学2024-2025学年高三上学期10月月考数学试题一、单选题1.已知集合{}2,3,5,7,8,9A =,{}31,B x x k k ==-∈Z ,则A B =I ( ) A .{}5,8B .{}7C .{}2,5,8D .{}3,5,7,92.等差数列{}()*n a n ∈N 中,274110,2a a a a =-=,则7a =( )A .40B .30C .20D .103.已知函数()e e 2x xa f x x -+=为偶函数,则a =( )A .2B .1C .0D .1-4.已知α是第二象限的角,(,8)P x 为其终边上的一点,且4sin 5α=,则x =( ) A .6-B .6±C .323±D .323-5.已知()311sin ,25tan tan αβαβ+=-+=,则sin sin αβ=( ) A .310-B .15C .15-D .3106.已知数列{}n a 的前n 项和为n S .若125n n a a n ++=+,11a =,则8S =( ) A .48B .50C .52D .547.正整数1,2,3,,n L 的倒数的和111123n++++L 已经被研究了几百年,但是迄今为止仍然没有得到它的求和公式,只是得到了它的近似公式,当n 很大时,1111ln 23n nγ++++≈+L .其中γ称为欧拉-马歇罗尼常数,0.577215664901γ≈L ,至今为止都不确定γ是有理数还是无理数.设[]x 表示不超过x 的最大整数,用上式计算1111232024⎡⎤++++⎢⎥⎣⎦L 的值为( ) (参考数据:ln 20.69≈,ln3 1.10≈,ln10 2.30≈) A .10B .9C .8D .78.数列 a n 的前n 项和为n S ,满足{}111,3,2n n n a a d a +-=∈=,则10S 可能的不同取值的个数为( ) A .45B .46C .90D .91二、多选题9.已知函数π()2sin 26f x x ⎛⎫=+ ⎪⎝⎭,则下列结论成立的是( )A .()f x 的最小正周期为πB .曲线()y f x =关于直线π2x =对称C .点π,012⎛⎫- ⎪⎝⎭是曲线()y f x =的对称中心 D .()f x 在(0,π)上单调递增10.下列命题正确的( )A .ABC V 中, 角,,ABC 的对边分别为,,a b c ,若cos =c b A ,则ABC V 一定是直角三角形B .在ABC V 中, 角,,A B C 的对边分别为,,a b c ,4,30a c A ===︒时,有两解 C .命题“()00,x ∞∃∈+,00ln 1x x =-”的否定是“()0,,ln 1x x x ∞∀∉+=-”D .设函数()()()24f x x a x =--定义域为R ,若关于x 的不等式()0f x ≥的解集为{|4x x ≥或1}x =,则点()2,2-是曲线y =f x 的对称中心11.如图,某旅游部门计划在湖中心Q 处建一游览亭,打造一条三角形DEQ 游览路线.已知,AB BC 是湖岸上的两条甬路,120,0.3km,0.5km,60ABC BD BE DQE ∠=︒==∠=︒(观光亭Q 视为一点,游览路线、甬路的宽度忽略不计),则( )A .0.7km DE =B .当45DEQ ∠=︒时,DQ =C .DEQ V 2D .游览路线DQ QE +最长为1.4km三、填空题12.已知函数()ln f x x x =,角θ为函数()f x 在点(e,(e))f 处的切线的倾斜角,则sin 2cos sin cos θθθθ+=-.13.等差数列{}n a 的前n 项和记为n S ,已知14733a a a ++=,25827a a a ++=,若存在正数k ,使得对任意N*n ∈,都有n k S S ≤恒成立,则k 的值为. 14.设a b c ,,是正实数, 且abc a c b ++=,则222111111a b c -++++的最大值为.四、解答题15.在ABC V 中,内角,,A B C 所对的边分别为cos π,,,2sin cos 6A a b c C B ⎛⎫=- ⎪⎝⎭. (1)求B ;(2)若ABC VAC 边上的高为1,求ABC V 的周长.16.已知数列{}n a ,{}n b 中,14a =,12b =-,{}n a 是公差为1的等差数列,数列{}n n a b +是公比为2的等比数列. (1)求数列{}n b 的通项公式; (2)求数列{}n b 的前n 项和n T .17.已知函数()2cos 2cos 1f x x x x =-+. (1)若π2π,123x ⎡⎤∈-⎢⎥⎣⎦,求()f x 的值域;(2)若关于x 的方程()0f x a -=有三个连续的实数根1x ,2x ,3x ,且123x x x<<,31223x x x +=,求a 的值.18.已知函数()sin ln(1),R f x x x ax a =++-∈.(1)当0a =时, 求()f x 在区间()1,π-内极值点的个数; (2)若 ()0f x ≤恒成立,求a 的值; (3)求证:2*1121sin2ln ln 2,N 11ni n n n i n =+-<-∈--∑. 19.对于数列{}n a ,若存在常数T ,*00)(,N n T n ∈,使得对任意的正整数0n n ≥,恒有n T na a +=成立,则称数列{}n a 是从第0n 项起的周期为T 的周期数列.当01n =时,称数列{}n a 为纯周期数列;当02n ≥时,称数列{}n a 为混周期数列.记[]x 为不超过x 的最大整数,设各项均为正整数的数列{}n a 满足:[]21log ,212,2n nnn a n n a a a a a +⎧⎪⎪=⎨-⎪+⎪⎩为偶数为奇数. (1)若对任意正整数n 都有1n a ≠,请写出三个满足条件的1a 的值; (2)若数列{}n a 是常数列,请写出满足条件的1a 的表达式,并说明理由; (3)证明:不论1a 为何值,总存在*,N ∈m n 使得21m n a =-.。

浙江省杭州外国语学校2011届高三11月月考试题(数学理)

浙江省杭州外国语学校2011届高三11月月考试题(数学理)

资料全免费,无限资料无限下载----------------欢迎你访问嘉兴数学教学网浙江省杭州外国语学校2011届高三11月月考试题(数学理)注意事项:1.本试卷满分150分,考试时间120分钟;2.整场考试不准使用计算器一、 选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中, 有一项是符合题目要求的.1. 已知全集U R =,{|21}x A y y ==+,{|ln 0}B x x =<,则()U C A B = ( ) A .φ B .1{|1}2x x <≤C .{|1}x x <D .{|01}x x <<2、函数y =( )A .[1,2]B .[1,2)C .1(,1]2D .1[,1]23、命题“存在00,20x x R ∈≤”的否定是( )A .不存在00,20x x R ∈> B .存在00,20x x R ∈≥C .对任意的,20x x R ∈≤D .对任意的,20x x R ∈> 4、设平面向量(1,2),(2,)a b y ==- ,若a ∥b ,则|3|a b +等于( )A.B.CD5、将函数sin 2y x =的图象向左平移4π个单位,再将图象上各点的横坐标变为原来的2倍,纵坐标不变,则所得图象对应的函数解析式是 ( )A.cos 4y x =B.cos y x =C.sin()4y x π=+ D.sin y x =6、函数()-2-ln f x x x =在定义域内零点的个数为( )A .0B .1C .2D .37、设数列{}n a 为等差数列,其前n 项和为n S ,已知14799a a a ++=,25893a a a ++=,若对任意*n N ∈,都有n k S S ≤成立,则k 的值为 ( ) A.22 B.21 C. 20 D.198、已知不等式组02,20,20x x y kx y ≤≤⎧⎪+-≥⎨⎪-+≥⎩所表示的平面区域的面积为4,则k 的值为 ( )A .1B .3-C .1或3-D .09、1)(2-+=ax ax x f 在R 上恒满足0)(<x f ,则a 的取值范围是 ( ) A .0≤aB .4-<aC .04<<-aD .04≤<-a10、给定集合{1,2,3,...,}n A n =,映射:n n f A A →满足:①当,,n i j A i j ∈≠时,()()f i f j ≠;②任取,n m A ∈资料全免费,无限资料无限下载----------------欢迎你访问嘉兴数学教学网若2m≥,则有m{(1),(2),..,()}f f f m∈.则称映射f:n nA A→是一个“优映射”.例如表1表示的映射f:33A A→是一个“优映射”.若映射f:1010A A→是“优映射”,且方程()f i i=的解恰有6个,则这样的“优映射”的个数是()A.21 B.42 C.63 D.84二、填空题:本大题共7小题,每小题4分,共28分.11、过点)3,1(-且垂直于直线032=+-yx的直线方程的一般式方程.....为_____________12、在抛物线22y px=上,横坐标为4的点到焦点的距离为5,则p的值为___________13、等差数列}{na中,nS是前n项和,20091-=a,22005200720052007=-SS,则2009S的值为_ ___ 14、在各项都为正数的等比数列}{na中,首项13a=,前三项和为21,则345a a a++=_____.15、如图,已知12,F F是椭圆2222:1x yCa b+=(0)a b>>的左、右焦点,点P椭圆C上,线段2P F与圆222x y b+=相切于点Q,且点Q为线段2P F的中点,则椭圆C的离心率为 .16、已知函数()y f x=和()y g x=在[2,2]-的图象如右所示:则方程[()]0f g x=有且仅有____个根;方程[()]0f f x=有且仅有___个根.17、已知数列{}na满足:11a=,2a x=(x N*∈),21n n na a a++=-,若前2010项中恰好含有666项为0,则x的取值是________三、解答题:本大题共5题,共72分。

四川省成都市第七中学2024-2025学年高三上学期10月月考数学试题(含答案)

四川省成都市第七中学2024-2025学年高三上学期10月月考数学试题(含答案)

2024-2025学年度高三上期数学10月阶段性测试(考试时间:120分钟;满分150分)第Ⅰ卷(选择题,共58分)一、单项选择题:本题共8小题,每小题5分,共40分.1.已知集合,则( )A .B .C .D .2.已知复数满足,则( )A .B .C .D .3.已知向量满足,且,则( )A .B .C .D .4.如图为函数在上的图象,则的解析式只可能是( )A .B .C .D .5.已知为奇函数,则曲线在点处的切线方程为( )A .B .C .D .6.在体积为12的三棱锥中,,平面平面,若点都在球的表面上,则球的表面积为( )A .B .C .D .7.若,则的最大值为( )ABCD8.设,则( ){{},21x A x y B y y ====+A B = (]0,1(]1,2[]1,2[]0,2z 23i z z +=+3iz+=12i+12i-2i+2i-,a b 222a b a b -=-= 1b = a b ⋅=1414-1212-()y f x =[]6,6-()f x ())ln cos f x x x=+())lnsin f x x x=+())ln cos f x x x=-())ln sin f x x x=-()()cos f x x a x =+()y f x =()()π,πf ππ0x y +-=ππ0x y -+=π0x y -+=0x y +=A BCD -,AC AD BC BD ⊥⊥ACD ⊥ππ,,34BCD ACD BCD ∠=∠=,,,A B C D O O 12π16π32π48π()()sin cos2sin αβααβ+=-()tan αβ+202420230.2024log 2023,log 2022,log 0.2023a b c ===A .B .C .D .二、多项选择题:本题共3小题,每小题6分,共18分.9.设等比数列的公比为,其前项和为,前项积为,并满足条件:,下列结论正确的是( )A .B .C .是数列中的最大值D .数列无最大值10.透明的盒子中装有大小和质地都相同的编号分别为的4个小球,从中任意摸出两个球.设事件“摸出的两个球的编号之和小于5”,事件“摸出的两个球的编号都大于2”,事件“摸出的两个球中有编号为3的球”,则( )A .事件与事件是互斥事件B .事件与事件是对立事件C .事件与事件是相互独立事件D .事件与事件是互斥事件11.已知,其中,则的取值可以是( )A .eB .C .D .第Ⅱ卷(非选择题,共92分)三、填空题:本题共3小题,每小题5分,共15分,第14题第一个空3分,第二个空2分.12.若,则______.13.设是数列的前n 项和,点在直线上,则数列的前项和为______.14.已知点是轴上的动点,且满足的外心在轴上的射影为,则点的轨迹方程为______,的最小值为______.四、解答题:本题共5小题,共77分.15.(13分)设的内角的对边分别为,且,边上的两条中线相交于点.c a b <<b c a <<b a c <<a b c<<{}n a q n n S n n T 2024120242025202511,1,01a a a a a ->><-20242025S S <202420261a a <2024T {}n T {}n T 1,2,3,41A =2A =3A =1A 2A 1A 3A 1A 3A 23A A 13A A 6ln ,6e n m m a n a =+=+e nm ≠e nm +2e23e24e1sin 3α=-()cos π2α-=n S {}n a ()()*,n n a n ∈N 2y x =1n S ⎧⎫⎨⎬⎩⎭n ()()2,0,1,4,A B M N 、y 4,MN AMN =△P y Q P PQ PB +ABC △,,A B C ,,a b c ()()()sin sin sin sin b a ABC BAC c ABC C +∠-∠=∠-,BC AC ,AD BE P(1)求;(2)若,求的面积.16.(15分)如图,在三棱锥中,是以为斜边的等腰直角三角形,是边长为2的正三角形,为的中点,为上一点,且平面平面.(1)求证:平面;(2)若平面平面,求平面与平面夹角的余弦值.17.(15分)为研究“眼睛近视是否与长时间看电子产品有关”的问题,对某班同学的近视情况和看电子产品的时间进行了统计,得到如下的列联表:每天看电子产品的时间近视情况超过一小时一小时内合计近视10人5人15人不近视10人25人35人合计20人30人50人附表:0.10.050.010.0050.0012.7063.8416.6357.87910.828.(1)根据小概率值的独立性检验,判断眼睛近视是否与长时间看电子产品有关;(2)在该班近视的同学中随机抽取3人,则至少有两人每天看电子产品超过一小时的概率是多少?(3)以频率估计概率,在该班所在学校随机抽取2人,记其中近视的人数为,每天看电子产品超过一小时的人数为,求的值.BAC ∠2,cos AD BE DPE ==∠=ABC △D ABC -ABC △AB ABD △E AD F DC BEF ⊥ABD AD ⊥BEF ABC ⊥ABD BEF BCD αx α()()()()22()n ad bc a b c d a c b d χ-=++++0.05α=2χX Y ()P X Y =18.(17分)已知函数.(1)求曲线在处的切线方程;(2)讨论函数的单调性;(3)设函数.证明:存在实数,使得曲线关于直线对称.19.(17分)已知椭圆的对称中心在坐标原点,以坐标轴为对称轴,且经过点和.(1)求椭圆的标准方程;(2)过点作不与坐标轴平行的直线交曲线于两点,过点分别向轴作垂线,垂足分别为点,,直线与直线相交于点.①求证:点在定直线上;②求面积的最大值.2024-2025学年度高三上期数学10月阶段性测试(参考答案)一、单项选择题:BAACDDDC8.【解】由对数函数的性质知,,所以;当时,,所以,取,则,所以,即,综上,.二、多项选择题:ABC ACD CD .11.【解】令,则,()()ln 1f x x =+()y f x =3x =()()()F x ax f x a =-∈R ()()1111g x x f f x x ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭m ()y g x =x m =C )⎛- ⎝C ()2,0M l C ,A B ,A B xDE AE BD P P PAB △0.20240.2024log 0.2023log 0.20241c =>=2024202420242023202320230log 1log 2023log 20241,0log 1log 2022log 20231=<<==<<=1,01,01c a b ><<<<2n >()()ln 1ln ln 10n n n +>>->()()()()222ln 1ln 1ln 1ln 1(ln )(ln )2n n n n n n ++-⎡⎤+⋅--<-⎢⎥⎣⎦()()()2222222222ln 1ln 11ln (ln )(ln )(ln )(ln )(ln )0222n n n n n n n n n ⎡⎤-+-⎡⎤⎛⎫=-=-<-=-=⎢⎥ ⎪⎢⎢⎥⎝⎭⎣⎦⎣⎦2023n =2lg2022lg2024(lg2023)0⋅-<220232024lg2022lg2023lg2022lg2024(lg2023)log 2022log 20230lg2023lg2024lg2023lg2024b a ⋅--=-=-=<⋅b a <b ac <<()6ln f x x x =-()661xf x x x-=-='故当时,单调递增,当时,单调递减,,又,不妨设,解法一:记,设,则在上恒成立,所以在上单调递减,所以,则,又因为,且在上单调递减,所以,则,所以.解法二:由,两式相减,可得,令,则;令,则,令,则在上恒成立,所以在上单调递增,因为在上恒成立,所以在上单调递增,则,即,所以.解法三:,两式相减得,,可得,三、填空题: ;3()0,6x ∈()()0,f x f x '>()6,x ∈+∞()()0,f x f x '<()()6ln ,66lne e ,e n n n m m a n a f m f =+==+∴= e n m ≠06e n m <<<12,e nx m x ==()()()()12,0,6g x f x f x x =--∈()()()()2662(6)1201212x x x g x f x f x x x x x ---=---=-=<--'''()0,6()g x ()0,6()()()()()1260,0,6g x f x f x g x =-->=∈()()()11212f x f x f x ->=()1212,6,x x -∈+∞()f x ()6,+∞1212x x -<1212x x +>e 12n m +>6ln ,66lne e nnm m a n a =+==+e 6ln e n nm m =-e (1)n t t m=>()()61ln 6ln 6ln 6ln 1,,e ,e 111n n t t t t tt m t m mt m t t t +=-===∴+=---()()()1ln 21,1g t t t t t =+-->()11ln 2ln 1t g t t t t t+=+-=+-'1ln 1(1)y t t t =+->221110t y t t t-=-=>'()1,+∞()g t '()1,+∞()()10g t g ''>=()1,+∞()g t ()1,+∞()()10g t g >=()1ln 21t t t +>-()61ln e 121n t tm t ++=>-6ln ,66lne e nnm m a n a =+==+ e 6lne ln n n mm-=-212121ln ln 2x x x xx x -+<<-e 12n m +>79-1n n +24y x =14.【解】设点,则根据点是的外心,,而,则,所以从而得到点的轨迹为,焦点为由抛物线的定义可知,因为,即,当点在线段上时等号成立.四、解答题:15.【解】(1)因为,所以由正弦定理得,由余弦定理得,又,所以.(2)因为是边上的两条中线与的交点,所以点是的重心.又,所以在中,由余弦定理,所以,又,所以,所以,所以的面积为.()0,M t ()0,4)N t -P AMN V (),2P x t -22||PM PA =2224(2)(2)x x t +=-+-2(2),24t x y t -==-P 24y x =()1,0F 1PF PQ =+4,14PF PB BF PF PB PQ PB +≥=+=++≥3PQ PB +≥P BF ()()()sin sin sin sin b a ABC BAC c ABC C +∠-∠=∠-222b c a bc +-=2221cos 22b c a BAC bc +-∠==0πBAC <∠<π3BAC ∠=P ,BC AC AD BE P ABC △2,AD BE APB DPE ==∠=∠ABP △22222cos c AB PA PB PA PB APB==+-⋅∠22442433⎛⎫=+-⨯= ⎪⎝⎭2c =π2,3BE BAC =∠=2AE BE ==24b AE ==ABC △1π42sin 23⨯⨯⨯=16.【解】(1)是边长为的正三角形,为的中点,则.且平面平面,平面平面平面,则平面.(2)由于底面为等腰直角三角形,是边长为2正三角形,可取中点,连接,则.且平面平面,且平面平面,则平面.因此两两垂直,可以建立空间直角坐标系.是边长为2的正三角形,则可求得高.底面为等腰直角三角形,求得.可以得到关键点的坐标由第(1)问知道平面的法向量可取.设平面的法向量为,且,则,则,解得.则.则平面与平面17.【解】(1)零假设为:学生患近视与长时间使用电子产品无关.计算可得,,根据小概率值的独立性检验,推断不成立,即患近视与长时间使用电子产品的习惯有关.(2)每天看电子产品超过一小时的人数为,ABD △2E AD BE AD ⊥BEF ⊥ABD BEF ,ABD BE AD =⊂ABD AD ⊥BEF ABC △ABD △AB O OD ,OD AB OC AB ⊥⊥ABC ⊥ABD ABC ABD AB =OD ⊥ABC ,,OC OA OD O xyz -ABD △OD =ABC △1OC OA OB ===()()()(0,1,0,0,1,0,1,0,0,A B C D -BEF (0,AD =-BCD (),,m x y z = ()(1,1,0,BC CD ==- 0m BC m CD ⎧⋅=⎪⎨⋅=⎪⎩x y x +=⎧⎪⎨-+=⎪⎩)m = cos ,m AD m AD m AD ⋅〈〉===⋅ BEF BCD 0H 220.0550(1025105)4006.349 3.8411535203063x χ⨯⨯-⨯==≈>=⨯⨯⨯0.05α=2χ0H ξ则,所以在该班近视的同学中随机抽取3人,则至少有两人每天看电子产品超过一小时的概率是.(3)依题意,,事件包含两种情况:①其中一人每天看电子产品超过一小时且近视,另一人既不近视,每天看电子产品也没超过一小时;②其中一人每天看电子产品超过一小时且不近视,另一人近视且每天看电子产品没超过一小时,于是,所以.18.【解】(1)切点为.因为,所以切线的斜率为,所以曲线在处的切线方程为,化简得;(2)由题意可知,则的定义域为,当时,,则在上单调递减;当时,令,即,解得,若;若,则在上单调递减,在上单调递增.综上所述,当时,在上单调递减;当时,在上单调递减,在上单调递增;()()()21310510331515C C C 45512069223C C 45591P P P ξξξ⨯+≥==+==+==6991()()1111110,22245525P X Y P X Y ===⨯====⨯=1X Y ==()1122111161C C 2551025P X Y ===⨯⨯+⨯⨯=()()()()1165301242525100P X Y P X Y P X Y P X Y ====+==+===++=()3,ln4()11f x x '=+()134k f ='=()y f x =3x =()1ln434y x -=-48ln230x y -+-=()()ln 1F x ax x =-+()F x ()1,-+∞()()11,1,,11ax a F x a x x x +-=-=∈-'+∞++0a ≤()101F x a x '=-<+()F x ()1,-+∞0a >()0F x '=10ax a +-=11x a=-()11111,01a ax a x F x a a x '-+--<≤=-=≤+()111,01ax a x F x a x +--'>=>+()F x 11,1a ⎛⎤-- ⎥⎝⎦11,a ⎛⎫-+∞ ⎪⎝⎭0a ≤()F x ()1,-+∞0a >()F x 11,1a ⎛⎤-- ⎥⎝⎦11,a ⎛⎫-+∞ ⎪⎝⎭(3)证明:函数,函数的定义域为.若存在,使得曲线关于直线对称,则关于直线对称,所以由.可知曲线关于直线对称.19.【解】(1)设椭圆的方程为,代入已知点的坐标,得:,解得,所以椭圆的标准方程为.(2)如图:①设直线的方程为,并记点,由消去,得,易知,则.由条件,,直线的方程为,直线的方程为()()111ln 1ln 2g x x x x ⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭()g x ()(),10,-∞-+∞ m ()y g x =x m =()(),10,-∞-+∞ x m =12m =-()()111ln 1ln 211g x x x x ⎛⎫⎛⎫--=-+-+ ⎪ ⎪----⎝⎭⎝⎭21121lnln ln ln 111x x x x x x x x x x +++=--=-+++()()()11211211lnln ln 1ln ln 1x x x x x x x g x x x x x x+++++=+--=+-=+()y g x =12x =-C 221(0,0,)mx ny m n m n +=>>≠312413m n m n +=⎧⎪⎨+=⎪⎩1612m n ⎧=⎪⎪⎨⎪=⎪⎩C 22162x y +=l ()20x my m =+≠()()()112200,,,,,A x y B x y P x y 222,162x my x y =+⎧⎪⎨+=⎪⎩x ()223420m y my ++-=()()222Δ16832410m m m =++=+>12122242,33m y y y y m m --+==++()()12,0,,0D x E x AE ()1212y y x x x x =--BD,联立解得,所以点在定直线上.②,而,所以,则令,则,所以,当且仅当时,等号成立,所以.()2121y y x x x x =--()()2112211212012121222223my y my y x y x y my y x y y y y y y ++++====++++P 3x =0212121121111312222PAB S AD x x y x y my y my y =⋅-=⋅-=⋅-=-△121212my y y y =+()121212my y y y =+1211211224PABy y S y y y +=-=-==△t =1t >2122PAB t S t t t==≤=++△t =PAB △。

山东省泰安第一中学2024-2025学年高三上学期10月月考数学试题

山东省泰安第一中学2024-2025学年高三上学期10月月考数学试题

山东省泰安第一中学2024-2025学年高三上学期10月月考数学试题一、单选题1.设集合{}{}21,3,2,1,M a N a =+=,若{}1,4M N =I ,则a =( ) A .2- B .0 C .2 D .2±2.已知复数z 满足23i z z +=+,则3i z +=( ) A .12i + B .12i - C .2i + D .2i -3.在平行四边形ABCD 中,AB a AD b ==u u u r r u u u r r ,,点E 为CD 中点,点F 满足2AF FB=u u u r u u u r ,则EF =u u u r ( )A .16a b -r rB .1233a b +r rC .1233a b --r rD .1233a b -+r r 4.已知0,0a b >>,则“2a b +>”是“222a b +>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.在ABC V 中,内角,,A B C 的对边分别为,,a b c,已知a ()(()sin sin sin sin A B b c B C -=+,则ABC V 外接圆的半径为( ) A .1 BC .2 D6.某农业研究所对玉米幼穗的叶龄指数R 与可见叶片数x 进行分析研究,其关系可以用函数15e ax R =(a 为常数)表示.若玉米幼穗在伸长期可见叶片为7片,叶龄指数为30,则当玉米幼穗在四分体形成期叶龄指数为82.5时,可见叶片数约为( )(参考数据:ln20.7≈,ln5.5 1.7≈)A .15B .16C .17D .187.函数3214,0,()3cos ,0,x ax a x f x ax x x ⎧+-+>⎪=⎨⎪+≤⎩在R 上单调,则a 的取值范围是( )A .[1,3)B .(1,3]C .[]1,3D .(1,3)8.已知函数()()sin f x x ωθ=+π20,||ωθ⎛⎫< ⎪>⎝⎭,(0)f =,函数()f x 在区间2π,36π⎛⎫- ⎪⎝⎭上单调递增,在区间5π0,6⎛⎫ ⎪⎝⎭上恰有1个零点,则ω的取值范围是( ) A .4,25⎛⎤ ⎥⎝⎦B .45,54⎛⎤ ⎥⎝⎦C .4,15⎛⎤ ⎥⎝⎦D .5,24⎛⎤ ⎥⎝⎦二、多选题9.下列选项正确的是( )A .命题“0x ∃>,210x x ++≥”的否定是0x ∀≤,210x x ++<B .满足{}{}11,2,3M ⊆⊆的集合M 的个数为4C .已知lg3x =,lg5y =,则lg 452x y =+D .已知正方形OABC 的边长为1,则()()5OA OB CA CB +⋅+=u u u r u u u r u u u r u u u r 10.已知函数π()sin 33f x x ⎛⎫=+ ⎪⎝⎭,下列说法正确的是( ) A .()f x 的最小正周期为2π3B .点π,06⎛⎫ ⎪⎝⎭为()f x 图象的一个对称中心C .若()(R)f x a a =∈在ππ,189x ⎡⎤∈-⎢⎥⎣⎦1a ≤<D .若()f x 的导函数为()f x ',则函数()()y f x f x =+'11.已知函数()e ,R x f x ax x =+∈,则( )A .当0a >时,函数()f x 在R 上一定单调递增B .当3a =-时,函数()f x 有两个零点C .当0a <时,方程()1f x a=一定有解 D .当0a =时,()ln 2f x x ->在()0,∞+上恒成立三、填空题12.已知函数()()121x f x a a =-∈-R 为奇函数,则实数a 的值为. 13.已知π02βα<<<,()4cos 5αβ-=,1cos cos 2αβ=,则11tan tan αβ-=.14.已知函数()3,01,ln ,1,x x f x x x ≤≤⎧=⎨>⎩若存在实数12,x x 满足120x x ≤<,且()()12f x f x =,则216x x -的取值范围为.四、解答题15.如图,在四边形ABCD 中,2AB =,AC =AD =2π3CAD CBA ∠∠==.(1)求cos BCA ∠;(2)求BD .16.已知函数32()31f x x x ax =-+-.(1)若()f x 的图缘在点00(,())x f x 处的切线经过点(0,0),求0x ;(2)12,x x 为()f x 的极值点,若()()122f x f x +>-,求实数a 的取值范围.17.已知函数2()2sin cos f x x x x =+R x ∈,且将函数()f x 的图象向左平移π(0)2ϕϕ<<个单位长度得到函数()g x 的图象.(1)求()f x 的最小正周期和单调递增区间;(2)若函数()g x 是奇函数,求ϕ的值;(3)若1cos 3ϕ=,当x θ=时函数()g x 取得最大值,求π12f θ⎛⎫+ ⎪⎝⎭的值. 18.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,满足3cos 5c a B b =+. (1)求cos A 的值;(2)当BC 与BC 边上的中线长均为2时,求ABC V 的周长;(3)当ABC V 内切圆半径为1时,求ABC V 面积的最小值. 19.已知函数()e ,()ln (,)x f x a g x x b a b ==+∈R .(1)当1b =时,()()f x g x ≥恒成立,求实数a 的取值范围;(2)已知直线12l l 、是曲线()y g x =的两条切线,且直线12 l l 、的斜率之积为1.(i )记0x 为直线12 l l 、交点的横坐标,求证:01x <; (ii )若12 l l 、也与曲线()y f x =相切,求,a b 的关系式并求出b 的取值范围.。

陕西省西安2024-2025学年高三上学期10月月考数学试题含答案

陕西省西安2024-2025学年高三上学期10月月考数学试题含答案

陕西省西安高2025届高三第一次质量检测考试数学试题(答案在最后)(时间:120分钟满分:150分命题人:)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}(){}2210,log 1A x xB x x x =-≤≤=-≤,则A B = ()A.{}10x x -≤≤ B.{}10x x -<≤ C.{}10x x -≤< D.{}10x x -<<【答案】C 【解析】【分析】先根据对数函数的单调性解不等式化简集合B ,然后利用交集运算求解即可.【详解】因为()222log 1log 2x x -≤=,所以202x x <-≤,解得12x <≤或10x -≤<,故{10B x x =-≤<或}12x <≤,又{}10A x x =-≤≤,所以A B = {}10x x -≤<.故选:C2.“01a <<”是“函数()()log 2a f x a x =-在(),1-∞上单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据对数函数和一次函数的单调性,再结合复合函数“同增异减”的判断法则求得对应的a 的取值范围即可得出结论.【详解】易知()()log 2a f x a x =-的定义域为(),2a -∞,且函数2y a x =-为单调递减函数;根据复合函数单调性可知若函数()()log 2a f x a x =-在(),1-∞上单调递增,可得0121a a <<⎧⎨≥⎩,解得112a ≤<;显然112a a ⎧⎫|≤<⎨⎬⎩⎭是{}|01a a <<的真子集,所以“01a <<”是“函数()()log 2a f x a x =-在(),1-∞上单调递增”的必要不充分条件.3.函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的图象大致为()A.B.C. D.【答案】B 【解析】【分析】利用函数的奇偶性可排除A 、C ,代入1x =可得()10f >,可排除D.【详解】()()()()()22ee sin e e sin xx x x f x x x x x f x ---=-+--=-+-=,又函数定义域为[]2.8,2.8-,故该函数为偶函数,可排除A 、C ,又()11πe 11111e sin11e sin 10e e 622e 42e f ⎛⎫⎛⎫=-+->-+-=-->-> ⎪ ⎪⎝⎭⎝⎭,故可排除D.故选:B.4.已知521log 2,log ,2ba b a c ⎛⎫=== ⎪⎝⎭,则()A.c b a >>B.c a b>> C.a b c>> D.b c a>>【答案】B 【解析】【分析】判断出01a <<,0b <,1c >,即可求解.【详解】555log 1log 2log ,0151a a <=<∴<=< 22log log 10b a =<= ,故0b <;1122bc ⎛⎫⎛⎫=> ⎪ ⎪⎝⎭⎝⎭,故1c >,故c a b >>.5.已知定义在R 上的函数()f x 满足()()32f x f x +=,且()21f =-,则()100f =()A.1-B.1C.3- D.3【答案】C 【解析】【分析】由条件推得函数的周期为4,结合函数的周期,即可求解.【详解】由()()32f x f x +=,可得()()()342f x f x f x +==+,所以()f x 的周期为4,则()()()3100032f f f ===-.故选:C.6.已知函数()e 1,0,2,0,x x f x x x⎧-≥⎪=⎨<⎪⎩()1g x kx =-,若关于x 的方程()()f x g x =有2个不相等的实数解,则实数k 的取值范围是()A.{}e B.[)e,+∞ C.{}1,0e 8⎛⎫- ⎪⎝⎭D.{}1,e 8⎛⎫-∞- ⎪⎝⎭【答案】C 【解析】【分析】根据题意,转化为()y f x =与1y kx =-的图象有2个交点,分0k =、0k <和0k >,三种情况讨论,结合导数的几何意义与函数的图象,即可求解.【详解】由题意,关于x 的方程()()f x g x =有2个不相等的实数解,即()y f x =与1y kx =-的图象有2个交点,如图所示,当0k =,直线1y =-与2y x=的图象交于点()2,1--,又当0x ≥时,e 10x -≥,故直线1y =-与e 1x y =-(0x ≥)的图象无公共点,故当0k =时,()y f x =与1y kx =-的图象只有一个交点,不合题意;当0k >,直线1y kx =-与曲线e 1x y =-(0x ≥)相切时,此时()y f x =与1y kx =-的图象有2个交点,设切点()00,e 1xP x -,则00e x x x k y =='=,又由1y kx =-过点()0,1-,所以()000e 11e 0x x x ---=-,解得01x =,所以e =k ;当0k <时,若21kx x=-,则220kx x --=,由180k ∆=+=,可得18k =-,所以当18k =-时,直线1y kx =-与2y x=的图象相切,由图得当108k -<<时,直线1y kx =-与()y f x =的图象有2个交点.综上所述,实数k 的取值范围是{}1,0e 8⎛⎫- ⎪⎝⎭.故选:C .7.已知函数3()1f x x x =-+,则()A.()f x 有三个极值点B.()f x 有三个零点C.点(0,1)是曲线()y f x =的对称中心D.直线2y x =是曲线()y f x =的切线【答案】C 【解析】【分析】求导后判断单调性,从而求得极值点即可判断A ;利用单调性结合零点存在性定理即可判断B ;令3()h x x x =-,得到()h x 是奇函数,(0,0)是()h x 的对称中心,再结合图象的平移规律即可判断C ;由导数的几何意义求得切线方程即可判断D.【详解】对于A ,由题,()231f x x '=-,令()0f x '>得3x >或3x <-,令()0f x '<得33x -<<,所以()f x在(,3-∞-,)3+∞上单调递增,(,)33-上单调递减,所以3x =±是极值点,故A 不正确;对应B ,因323()1039f -=+>,323()1039f =->,()250f -=-<,所以,函数()f x 在3,3⎛⎫-∞ ⎪ ⎪⎝⎭上有一个零点,当3x ≥时,()03f x f ⎛≥> ⎝⎭,即函数()f x在3⎛⎫∞ ⎪ ⎪⎝⎭上无零点,综上所述,函数()f x 有一个零点,故B 错误;对于C ,令3()h x x x =-,该函数的定义域为R ,()()()()33h x x x x x h x -=---=-+=-,则()h x 是奇函数,(0,0)是()h x 的对称中心,将()h x 的图象向上移动一个单位得到()f x 的图象,所以点(0,1)是曲线()y f x =的对称中心,故C 正确;对于D ,令()2312f x x '=-=,可得1x =±,又()(1)11f f =-=,当切点为(1,1)时,切线方程为21y x =-,当切点为(1,1)-时,切线方程为23y x =+,故D 错误.故选:C8.已知函数24,0()log ,0x x f x x x x ⎧+>⎪=⎨⎪<⎩,2()g x x ax b =++,若方程()0g f x =⎡⎤⎣⎦有且仅有5个不相等的整数解,则其中最大整数解和最小整数解的和等于()A.28- B.28C.14- D.14【答案】A 【解析】【分析】利用换元法结合一元二次方程根的分布,数形结合计算即可.【详解】先作出()f x 的大致图象,如下令()f x t =,则()20g t t at b =++=,根据()f x 的图象可知:要满足题意必须()0g t =有两个不等根()1212,t t t t <,且()1f x t =有两个整数根,()2f x t =有三个整数根,结合对勾函数和对数函数的图象与性质知,两函数14,y t y x x==+相切时符合题意,因为4424x x x x+≥⋅=,当且仅当2x =时取得等号,又()()22log log 0y x x x ==-<,易知其定义域内单调递减,即()14f x t ==,此时有两个整数根2x =或16x =-,而要满足()2f x t =有三个整数根,结合()f x 图象知必有一根小于2,显然只有1x =符合题意,当1x =时有()15f =,则25t =,解方程45x x+=得25t =的另一个正根为4x =,又()2log 5x -=⇒32x =-,此时五个整数根依次是32,16,1,2,4x =--,显然最大的根和最小的根和为()43228+-=-.故选:A二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列导数运算正确的是()A.211()x x '=-B.(e )e x x--'= C.21(tan )cos x x'=D.1(ln )x x'=【答案】ACD 【解析】【分析】利用求导公式逐项判断即可.【详解】对于A ,211(x x '=-,故A 正确;对于B ,(e )e x x --'=-,故B 错误;对于C ,2222sin cos sin 1(tan )()=cos cos cos x x x x x x x +''==,故C 正确;对于D ,()(ln ),01(ln )ln ,0x x x x x x '>⎧⎪==⎨⎡⎤-<⎪⎣⎦⎩'',故D 正确.故选:ACD10.甲乙丙等5人的身高互不相同,站成一排进行列队训练,则()A.甲乙不相邻的不同排法有48种B.甲乙中间恰排一个人的不同排法有36种C.甲乙不排在两端的不同排法有36种D.甲乙丙三人从左到右由高到矮的不同排法有20种【答案】BCD 【解析】【分析】根据排列和组合的定义、结合捆绑法逐一判断即可.【详解】A :甲乙不相邻的不同排法有3234A A 72=种,所以本选项不正确;B :甲乙中间恰排一个人的不同排法有123323C A A 36=种,所以本选项正确;C :甲乙不排在两端的不同排法有2333A A 36=种,所以本选项正确;D :甲乙丙三人从左到右由高到矮的不同排法有5533A 20A =种,所以本选项正确.故选:BCD11.已知0c b a <<<,则()A.ac b bc a +<+B.333b c a +<C.a c ab c b +<+D.>【答案】ABD 【解析】【分析】选项ABD ,利用不等式的性质计算即可,选项C ,因为b c +可正可负,所以不容易化简解决,一般当乘或除以一个不知正负的数,基本上错误,我们只需要找反例即可.【详解】因为0c b a <<<,所以ac bc ac b bc a <⇒+<+,故A 正确;因为0c b a <<<,所以333333,0b a c b c a <<⇒+<,故B 正确;因为0c b a <<<,不妨令3,2,1a b c ===-,得32,2a c a b c b +==+,此时a c ab c b +>+,故C 错误;因为0c b a <<<0>>⇒<>,故D 正确.故选:ABD三、填空题:本题共3小题,每小题5分,共15分.12.某学校组织学生参加数学测试,成绩的频率分布直方图如下,数据的分组依次是[20,40),[40,60),[60,80),[80,100],则可估计这次数学测试成绩的第40百分位数是_________.【答案】65【解析】【分析】利用百分位数的定义求解.【详解】解:成绩在[20,60)的频率是()0.0050.01200.3+⨯=,成绩在[20,80)的频率为0.30.02200.7+⨯=,所以第40百分位数一定在[60,80)内,所以这次数学测试成绩的第40百分位数是0.40.36020650.4-+⨯=,故答案为:6513.若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则a =__________.【答案】ln 2【解析】【分析】先求出曲线e x y x =+在()0,1的切线方程,再设曲线()ln 1y x a =++的切点为()()0,ln 1x xa ++,求出y ',利用公切线斜率相等求出0x ,表示出切线方程,结合两切线方程相同即可求解.【详解】由e x y x =+得e 1x y '=+,00|e 12x y ='=+=,故曲线e x y x =+在()0,1处的切线方程为21y x =+;由()ln 1y x a =++得11y x '=+,设切线与曲线()ln 1y x a =++相切的切点为()()00,ln 1x x a ++,由两曲线有公切线得0121y x '==+,解得012x =-,则切点为11,ln 22a ⎛⎫-+ ⎪⎝⎭,切线方程为112ln 21ln 222y x a x a ⎛⎫=+++=++- ⎪⎝⎭,根据两切线重合,所以ln 20a -=,解得ln 2a =.故答案为:ln 214.51(2)y x y x ⎛⎫-+⎪⎝⎭的展开式中,23x y 的系数为__________.【答案】40【解析】【分析】根据二项式的通项公式进行求解即可.【详解】二项式5(2)x y +的通项公式为()515C 2rrr r T x y -+=⋅⋅,所以23x y 的系数为()233255C 21C 240⋅+-⋅⋅=,故答案为:40四、解答题:本题共5小题,其中第15题13分,第16,17题15分,第18,19题17分,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数3212()232a f x x x ax +=-+.(1)若1a =,求函数()f x 的极值;(2)讨论函数()f x 的单调性.【答案】(1)极小值为23,极大值为56(2)答案见解析【解析】【分析】(1)对()f x 求导,分析单调性,再根据极值定义即可求解;(2)()()(2)f x x a x =--',对a 分2a =,2a >和2a <讨论单调性即可.【小问1详解】3213()2,()(1)(2)32f x x x x f x x x =-+'=--.所以<1或>2时,'()0f x >,12x <<时,'()0f x <,则()f x 在(1,2)上递减,在(,1),(2,)-∞+∞递增,所以()f x 的极小值为2(2)3f =,极大值为5(1)6f =.【小问2详解】()()(2)f x x a x =--',当2a =时,'()0f x ≥,所以()f x 在(,)-∞+∞上递增,当2a >时,2x <或x a >时,'()0f x >;2x a <<时,'()0f x <,所以()f x 在(,2),(,)a -∞+∞上递增,在(2,)a 上递减,当2a <时,x a <或2x >时,'()0f x >;2a x <<时,'()0f x <,所以()f x 在(,),(2,)a -∞+∞上递增;在(,2)a 上递减.16.为践行“更快更高更强”的奥林匹克格言,落实全民健身国家战略.某校高三年级发起了“发扬奥林匹克精神,锻炼健康体魄”的年度主题活动,经过一段时间后,学生的身体素质明显提高.为了解活动效果,该年级对开展活动以来近6个月体重超重的人数进行了调查,调查结果统计如图,根据上面的散点图可以认为散点集中在曲线e bx a y +=的附近,请根据下表中的数据求出月份x123456体重超标人数y987754483227ln z y = 4.58 4.34 3.98 3.87 3.46 3.29(1)该年级体重超重人数y 与月份x 之间的经验回归方程(系数ˆ,a b的最终结果精确到0.01);(2)预测从开展活动以来第几个月份开始该年级体重超标的人数降至10人以下.附:经验回归方程:ˆˆˆy bx a =+中,1221ˆn i i i n i i x y nx yb x nx ==-⋅=-∑∑,ˆˆa y bx =-;参考数据:6123.52i i z ==∑,6177.72i i i x z ==∑,62191i i x ==∑,ln10 2.30.≈【答案】(1)0.26 4.83e x y -+=(2)从第十个月开始【解析】【分析】(1)由计算公式与参考数据,求出ˆ,a b 则可得回归方程;(2)根据经验回归方程建立不等式0.26 4.83e 10x -+<,解出不等式则可预测.【小问1详解】由e bx a y +=得ln z y bx a ==+,由题意得1(123456) 3.56x =+++++=,11123.52 3.9266n i i z z ===⨯=∑,所以6162221677.726 3.5 3.92ˆ0.26916 3.56i ii i i x z x zb x x ==-⋅-⨯⨯==≈--⨯-∑∑,ˆˆ 3.92(0.26) 3.5 4.83a z bx =-≈--⨯=,所以ˆˆln 0.26 4.83z y x ==-+,即y 关于x 的经验回归方程为0.26 4.83e x y -+=【小问2详解】令0.26 4.83ln10 2.3e 10e e x -+<=≈,所以0.26 4.83 2.3x -+<,又由于x ∈N ,所以解得10x ≥,且x *∈N ,所以从第十个月开始,该年级体重超标的人数降至10人以下.17.已知函数()log (1)a f x x =+,()()()2log 2a g x x t t =+∈R ,0a >,且 1.a ≠(1)当01a <<且1t =-时,求不等式()()f x g x ≤的解集;(2)若函数()2()21f x F x a tx t =+-+在区间(1,2]-上有零点,求t 的取值范围.【答案】(1)15|24x x ⎧⎫<≤⎨⎬⎩⎭(2)2t ≤-或224t +≥【解析】【分析】(1)当1t =-时,将不等式()()f x g x ≤转化为()()2log 1log 21a a x x +≤-,利用对数函数的单调性结合一元二次不等式求解即可;(2)解法一:分离参数,将原函数的零点问题转化为22(2x t x x +=-≠-且12)x -<≤有根,设2U x =+(14U <≤且2U ≠+,则124t U U=--+,利用对勾函数的单调性求解值域即可求解;解法二:先判断0t =时,不合题意,当0t ≠时,根据二次函数零点分布分类讨论,列不等式组求解即可.【小问1详解】当1t =-时,()()2log 1log 21a a x x +≤-,又0<<1,则+1≥(2−1)22−1>0,∴42−5≤0>12⇒12<≤54,∴不等式()()f x g x ≤的解集为15|24x x ⎧⎫<≤⎨⎬⎩⎭;【小问2详解】解法一:由题设()222F x tx x t =+-+,由()0F x =,得22(2x t x x +=-≠-且12)x -<≤,则()()222422x t x x +=-+-++,设2U x =+(14U <≤且2U ≠+,则212424U t U U U U=-=-+--,令2()U U Uϕ=+,当1U <<时,()U ϕ单调递减,当4U <<时,()U ϕ单调递增,且()()913,42ϕϕϕ===,故()92U ϕ≤≤且() 4.U ϕ≠12402U U ∴-≤--<或2044U U <--≤-t 的取值范围为:2t ≤-或2.4t ≥解法二:()222F x tx x t =+-+,若0t =,则()2F x x =+在(1,2]-上没有零点.下面就0t ≠时分三种情况讨论:①方程()0F x =在(1,2]-上有重根12x x =,则0∆=,解得24t ±=,又1212x x t ==-(]1,2∈-⇒224t +=;②在(1,2]-上只有一个零点,且不是方程的重根,则()()120F F -<,解得2t <-或1t >,经检验2t =-或1t =时,在(1,2]-上都有零点,则2t ≤-或 1.t ≥③方程()0F x =在(1,2]-上有两个相异实根,则有>0Δ>0−1<−12<2o −1)>0o2)>0或<0Δ>0−1<−12<2o −1)<0o2)<0,解得214t +<<,综上可知:t 的取值范围为2t ≤-或2.4t ≥18.某企业对某品牌芯片开发了一条生产线进行试产.其芯片质量按等级划分为五个层级,分别对应如下五组质量指标值:[45,55),[55,65),[65,75),[75,85),[85,95].根据长期检测结果,得到芯片的质量指标值X 服从正态分布()2,N μσ,并把质量指标值不小于80的产品称为A 等品,其它产品称为B 等品.现从该品牌芯片的生产线中随机抽取100件作为样本,统计得到如图所示的频率分布直方图.(1)根据长期检测结果,该芯片质量指标值的标准差s 的近似值为11,用样本平均数x 作为μ的近似值,用样本标准差s 作为σ的估计值.若从生产线中任取一件芯片,试估计该芯片为A 等品的概率(保留小数点后面两位有效数字);(①同一组中的数据用该组区间的中点值代表;②参考数据:若随机变量ξ服从正态分布()2,N μσ,则()0.6827,(22)0.9545P P μσξμσμσξμσ-<<+≈-<<+≈,(33)0.9973P μσξμσ-<<+≈.)(2)(i )从样本的质量指标值在[45,55)和[85,95]的芯片中随机抽取3件,记其中质量指标值在[85,95]的芯片件数为η,求η的分布列和数学期望;(ii )该企业为节省检测成本,采用随机混装的方式将所有的芯片按100件一箱包装.已知一件A 等品芯片的利润是(124)m m <<元,一件B 等品芯片的利润是ln(25)m -元,根据(1)的计算结果,试求m 的值,使得每箱产品的利润最大.【答案】(1)0.16(2)(i )分布列见解析,32;(ii )794m =【解析】【分析】(1)根据频率分布直方图求得样本平均数,然后利用正态分布的对称性求解概率.(2)(i )先求出η的取值,然后求出对应的概率,即可求出分布列,代入期望公式求解即可;(ii )先根据二项分布的期望求出()E Z 1684ln(25)m m =+-,然后构造函数()1684ln(25)(124)f x x x x =+-<<,利用导数求出最大值时的m 即可.【小问1详解】由题意,估计从该品牌芯片的生产线中随机抽取100件的平均数为:10(0.01500.025600.04700.015800.0190)69x =⨯⨯+⨯+⨯+⨯+⨯=.即69x μ≈=,11s σ≈≈,所以2(69,11)X N ~,因为质量指标值X 近似服从正态分布2)(69,11N ,所以1(69116911)(80)2P X P X --<<+≥=1()2P X μσμσ--<<+=10.68270.158650.162-≈=≈,所以从生产线中任取一件芯片,该芯片为A 等品的概率约为0.16.【小问2详解】(i )(0.010.01)1010020+⨯⨯=,所以所取样本的个数为20件,质量指标值在[]85,95的芯片件数为10件,故η可能取的值为0,1,2,3,相应的概率为:301010320C C 2(0)C 19η===P ,211010320C C 15(1)C 38η===P ,121010320C C 15(2)C 38η===P ,031010320C C 2(3)C 19η===P ,随机变量η的分布列为:η0123P 21915381538219所以η的数学期望2151523()0123193838192E η=⨯+⨯+⨯+⨯=.(ii )设每箱产品中A 等品有Y 件,则每箱产品中B 等品有(100)Y -件,设每箱产品的利润为Z 元,由题意知:(100)ln(25)(ln(25))100ln(25)Z mY Y m m m Y m =+--=--+-,由(1)知:每箱零件中A 等品的概率为0.16,所以~(100,0.16)Y B ,所以()1000.1616E Y =⨯=,所以()[(ln(25))100ln(25)]E Z E m m Y m =--+-(ln(25))100ln(25)m m EY m =--+-16(ln(25))100ln(25)m m m =--+-1684ln(25)m m =+-.令()1684ln(25)(124)f x x x x =+-<<,由84()16025f x x '=-=-得,794x =,又79(1,)4∈x ,()0f x '>,()f x 单调递增,79(,24)4∈x ,()0f x '<,()f x 单调递减,所以当79(1,24)4x =∈时,()f x 取得最大值.所以当794m =时,每箱产品利润最大.19.已知函数1()e ln (1).x f x a x a x -=+-+(1)当0a =时,求函数()f x 的单调区间;(2)当1a =时,证明:函数()f x 在(0,)+∞上单调递增;(3)若1x =是函数()f x 的极大值点,求实数a 的取值范围.【答案】(1)答案见解析(2)证明见解析(3)(,1).-∞【解析】【分析】(1)代入a 的值,求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)对函数()f x 二次求导,判断()f x 导函数的单调性,求出导函数的最小值,即可证明;(3)对()f x 求导得,11()e 1x f x a a x -'=+--,令11()e 1x h x a a x-=+--,再求导,分a 的不同取值讨论()h x 的性质,即可求出a 的取值范围.【小问1详解】当0a =时,()ln f x x x =-,且知11()1x f x x x-='-=,在(0,1)上,()0f x '>,()f x 在(0,1)上单调递增;在(1,)+∞上,()0f x '<,()f x 在(1,)+∞上单调递减;所以函数()f x 的单调增区间为(0,1),单调减区间为(1,)+∞【小问2详解】证明:因为1a =,所以1()e ln 2x f x x x -=+-,且知11()e 2x f x x-'=+-,要证函数()f x 单调递增,即证()0f x '≥在(0,)+∞上恒成立,设11()e 2x g x x-=+-,0x >,则121()e x g x x -'=-,注意1e x y -=,21y x =-在(0,)+∞上均为增函数,故()g x '在(0,)+∞上单调递增,且(1)0g '=,于是()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,()(1)0g x g ≥=,即()0f x '≥,因此函数()f x 在(0,)+∞上单调递增;【小问3详解】由11()e 1x f x a a x -'=+--,有(1)0f '=,令11()e 1x h x a a x -=+--,有121()e x h x a x -'=-,①当0a ≤时,11()e 0x xh x a x -'=-<在(0,)+∞上恒成立,因此()f x '在(0,)+∞上单调递减,注意到(1)0f '=,故函数()f x 的增区间为(0,1),减区间为(1,)+∞,此时1x =是函数()f x 的极大值点;②当0a >时,1e x y a -=与21y x=-在(0,)+∞上均为单调增函数,故()h x '在(0,)+∞上单调递增,注意到(1)1h a '=-,若(1)0h '<,即01a <<时,此时存在(1,)n ∈+∞,使()0h n '=,因此()f x '在(0,)n 上单调递减,在(,)n +∞上单调递增,又知(1)0f '=,则()f x 在(0,1)上单调递增,在(1,)n 上单调递减,此时1x =为函数()f x 的极大值点,若(1)0h '>,即1a >时,此时存在(0,1)m ∈,使()0h m '=,因此()f x '在(0,)m 上单调递减.在(,)m +∞上单调递增,又知(1)0f '=,则()f x 在(,1)m 上单调递减,在(1,)+∞上单调递增,此时1x =为函数()f x 的极小值点.当1a =时,由(1)可知()f x 单调递增,因此1x =非极大值点,综上所述,实数a 的取值范围为(,1).-∞【点睛】关键点点睛:已知函数的极大值点,求出函数的导数,根据导数的导数121()e x h x a x -'=-分类讨论,确定函数极值点是解题的关键,据此可得符合题意的参数取值范围.。

山东省宁阳一中2011届高三上学期期中考试(数学理)

山东省宁阳一中2011届高三上学期期中考试(数学理)

数学学科高三自主测试题本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷1至2页,第II 卷3至4页。

满分150分,考试时间120分钟。

第I 卷(选择题,共60分)注意事项:1.答第I 卷前,考生务必将自己的姓名、学号、学校、考试科目用铅笔涂写在答题卡上。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试卷上。

一、选择题:本大题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集U ={1,2,3,4,5},集合A = {1,3},B = {3,4,5},则集合()U C A B = ( ) A .{3} B .{4,5} C .{3,4,5} D .{1,2,4, 5}2.函数f(x)=log 2(3x-1)的定义域为A.(0,+∞)B.[0,+∞)C.(1,+∞)D.[1,+∞) 3.ABC ∆中,512sin cos -=A A ,则=+)23sin(A π( ) A .1312-B .135-C .135D .13124.已知}{n a 为等差数列,99,105642531=++=++a a a a a a ,以n S 表示}{n a 的前n 项和,则使n S 达到最大值的n 是( ) A .21B .20C .19D .185.设f(x)=⎩⎨⎧>-≤1),1(,1,x x f x e x 则f(ln3)=A. 3B.ln3-1C.eD.3e6.ABC ∆中,角A 、B 、C 的对边分别为c b a ,,,1,3,3===b a A π,则c 等于( )A .1B .2C .13-D .37.函数(1)||xxa y a x =>的图像大致形状是( )8.设0<+b a ,且0>b ,则( )A B C DA .ab a b ->>22B .ab a b -<<22C .22b ab a <-<D .22b ab a >->9.定义域为R 的函数()f x 对任意x 都有()(4)f x f x =-,若当2x ≥时,()f x 单调递增,则当24a <<时,有( ) A .2(2)(2)(log )a f f f a << B .2(2)(2)(log )a f f f a << C .2(2)(log )(2)a f f a f <<D . 2(log )(2)(2)a f a f f <<10.函数f(x)=3)2ln()4(---x x x 的零点有 A.0个 B.1个 C.2个 D.3个11.设A=[-1,2),B={x |x 2-ax-1≤0},若B ⊆A ,则实数a 的取值范围为( ) A.[-1,1) B.[-1,2) C.[0,3) D.[0,23)12.已知函数y =M ,最小值为m ,则mM的值为( ) A .14B .12CD第II 卷(非选择题,共90分)二、填空题:本大题共4个小题,每小题4分,共16分。

2023_2024学年上海市奉贤区高三上册10月月考数学模拟测试卷(附答案)

2023_2024学年上海市奉贤区高三上册10月月考数学模拟测试卷(附答案)

2023_2024学年上海市奉贤区高三上册10月月考数学模拟测试卷二、选择题(本大题共4题,满分13.如果,,那么直线0AC <0BC >A .第一象限C .第三象限P(1)求成功点的轨迹方程;(2)为了记录比赛情况,摄影机从P F的轨迹没有公共点,求点纵坐标(1)若直线l 平行于AB ,与圆C 相交于两点,且,求直线l 的方程;,D E DE AB =(2)在圆C 上是否存在点P ,使得成立若存在,求点P 的个数;若不存在,说2212PA PB +=明理由;(3)对于线段AC 上的任意一点Q ,若在以点B 为圆心的圆上都存在不同的两点,使得点,M N M 是线段QN 的中点,求圆B 的半径r 的取值范围.【详解】如图,过点作垂直于,垂足为O OC PQ =22R d -2222()R ON CN --即两点重合时,CN =,N C PQ直径为14,.对于B ,因为()2213a b ++=当且仅当时,等号成立,故612a b =+=对于C ,将看作是22a b +(O 所以,故min 31d r OM =-=-.故选:D.16.C【分析】取点,推理证明得(4,0)-N 和的最小值作答.【详解】如图,点M 在圆O ,||2||4ON OM ==当点不共线时,,,O M N ||||2||||OM ON OA OM ==则有,当点共线时,有||||2||||MN OM MA OA ==,,O M N 因此2||||||(MA MB MN MB BN +=+≥=-O 的交点时取等号,2MA MB+26)设圆心C 到直线l :(1y k x =-O 到直线l :的距离为()1y k x =-,,241k =+221kd k =+2212OEF S EF d r =⋅⋅=-△(3)设,(,0)Q n。

四川省成都市实验外国语学校2024-2025学年高三上学期10月月考数学试题(含答案)

四川省成都市实验外国语学校2024-2025学年高三上学期10月月考数学试题(含答案)

成都市实验外国语学校高三10月月考数学试题总分:150考试时间:120分钟一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.命题“,使”的否定是( )A .,使B .不存在,使C .,D .,2.已知等差数列的前项和为,若,且,则( )A .60B .72C .120D .1443.若,则( )A .3B .4C .9D .164,侧面展开图的扇形圆心角为的圆锥侧面积为( )A .B .C .D .5.小王每次通过英语听力测试的概率是,且每次通过英语听力测试相互独立,他连续测试3次,那么其中恰有1次通过的概率是( )A .B .C .D .6.已知,是方程的两个根,则( )A .B .C .D .7.当阳光射入海水后,海水中的光照强度随着深度增加而减弱,可用表示其总衰减规律,其中是消光系数,(单位:米)是海水深度,(单位:坎德拉)和(单位:坎德拉)分别表示在深度处和海面的光强.已知某海域5米深处的光强是海面光强的,则该海域消光系数的值约为(参考数据:,)()A .0.2B .0.18C .0.1D .0.148.已知函数,方程有四个不同根,,,,且满足,则的取值范围是( )x ∃∈R 210x x +-=x ∃∈R 210x x +-≠x ∈R 210x x +-=x ∀∉R 210x x +-≠x ∀∈R 210x x +-≠{}n a n n S 21024a a +=36a =8S =24log log 2m n +=2m n =2π39π6π23292273949tan 23︒tan 37︒2230x mx +-=m =--0eKDD I I -=K D D I 0I D 40%K ln 20.7≈ln 5 1.6≈()22log ,012,04x x f x x x x ⎧>⎪=⎨++≤⎪⎩()f x a =1x 2x 3x 4x 1234x x x x <<<221323432x x x x x x +-A .B .C .D .二、多选题:本题共3小题,共18分。

江苏省扬州市高邮市2024-2025学年高三上学期10月月考数学试题(含答案)

江苏省扬州市高邮市2024-2025学年高三上学期10月月考数学试题(含答案)

2024-2025学年第一学期高三年级10月学情调研测试数学试题一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,若,则实数的值为( )A. B. C.12D.62.已知,则“”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.关于实数的不等式的解集是或,则关于的不等式的解集是(A. B.C. D.4.若,则点位于( )A.第一象限 B.第二象限C.第三象限D.第四象限5.若函数在上单调递增,则实数的取值范围是( )A. B. C. D.6.将函数的图象向左平移个单位,所得的函数图象关于对称,则()A. B. C. D.7.如图,在四边形中,的面积为3,{}{}21,2,3,4,70U Mx x x p ==-+=∣{}U 1,2M =ðp 6-12-,a b ∈R 1122log log a b >22a b <x 20x bx c ++>{2xx <-∣5}x >x 210cx bx ++>)11,,25∞∞⎛⎫⎛⎫--⋃+ ⎪ ⎪⎝⎭⎝⎭11,,52∞∞⎛⎫⎛⎫--⋃+ ⎪ ⎪⎝⎭⎝⎭11,25⎛⎫- ⎪⎝⎭11,52⎛⎫- ⎪⎝⎭ππ24α-<<-()sin cos ,tan sin P αααα+-()11,2,2x a x x f x xa x -⎧+-≥⎪=⎨⎪<⎩R a ()0,1(]1,2(]1,4[]2,4()()sin 2(0π)f x x ϕϕ=+<<π6π6x =ϕ=π6π32π35π6ABCD ,cos AB AD B ACB BC ACD ∠⊥===V则长为( )8.已知函数的定义域均是满足,,则下列结论中正确的是( )A.为奇函数B.为偶函数C.D.二、多选题:本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列各结论正确的是()A.“”是“”的充要条件B.命题“,有”的否定是“,使”的最小值为2D.若,则10.某物理量的测量结果服从正态分布,下列选项中正确的是( )A.越大,该物理量在一次测量中在的概率越大B.该物理量在一次测量中小于10的概率等于0.5C.该物理量在一次测量中小于9.98与大于10.02的概率相等D.该物理量在一次测量中落在与落在的概率相等11.已知函数,有下列四个结论,其中正确的结论为()A.的图像关于轴对称CD ()(),f x g x (),f x R ()()()()40,021f x f x g g ++-===()()()()g x y g x y g x f y ++-=()f x ()g x ()()11g x g x --=-+()()11g x g x -=+0x y≥0xy ≥0x ∀>20x x +>0x ∃>20x x +≤+0,0a b m <<<a a m b b m+>+()210,N σσ()9.8,10.2()9.8,10.2()9.9,10.3()cos2cos f x x x =+()f x yB.不是的一个周期C.在区间上单调递减D.当时,的值域为三、填空题:本大题共3小题,每小题5分,共15分.把答案填在答题卡中的横线上.12.若命题“”是假命题,则实数的取值范围是__________.13.已知__________.14.若对一切恒成立,则的最大值为__________.四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知(1)化简;(2)若,求的值.16.(15分)已知三棱锥底面,点是的中点,点为线段上一动点,点在线段上.(1)若平面,求证:为的中点;(2)若为的中点,求直线与平面所成角的余弦值.17.(15分)在每年的1月份到7月份,某品牌空调销售商发现:“每月销售量(单位:台)”与“当年π()f x ()f x π,π2⎡⎤⎢⎥⎣⎦π0,2x ⎡⎤∈⎢⎥⎣⎦()f x 2⎤⎥⎦2,20x x x a ∀∈-+>R a πsin sin 3αα⎛⎫++= ⎪⎝⎭πsin 26α⎛⎫-= ⎪⎝⎭ln 2ax x b ≥+()0,x ∞∈+b a()()()23ππsin cos tan π22πsin πcos 2f αααααα⎛⎫⎛⎫-+⋅-⋅-- ⎪ ⎪⎝⎭⎝⎭=⎛⎫--- ⎪⎝⎭()fα()2f α=3cos2sin2αα-,A BCD AD -⊥,,4,2BCD BC CD AD BC CD ⊥===P AD Q BC M DQ PM ∥ABC M DQ Q BC DQ ABC的月份”线性相关.根据统计得下表:月份123456销量101931455568(1)根据往年的统计得,当年的月份与销量满足回归方程.请预测当年7月份该品牌的空调可以销售多少台?(2)该销售商从当年的前6个月中随机选取2个月,记为销量不低于前6个月的月平均销量的月份数,求的分布列和数学期望18.(17分)已知锐角的内角,所对的边分别为,满足.(1)求角的大小;(2)若,求面积的取值范围.19.(17分)已知函数.(1)讨论在区间上的单调性;(2)若在上有两个极值点.①求实数的取值范围:②求证:.xy x y ˆ10yx t =+X X ABC V A B C 、、a b c 、、1cos c A b A=B 2b =ABC V ()()2e 23x f x x a x a ⎡⎤=-+++⎣⎦()f x R ()f x ()0,312,x x a ()()2124e f x f x <2024—2025学年第一学期高三年级10月学情调研测试参考答案1.C2.A3.C4.C5.B6.D7.B8.D9.BD 10.BC 11.ABD12. 13.14.13.(1).(2)由(1)得,所以14.(1)连结因为平面平面,平面平面,所以,又因为是的中点,所以是中点.(2)方法一:因为底面,如图建立坐标系,则,可得,,设平面的法向量为,则,令,则,可得,(],1∞-19-12()()()()2cos sin tan tan sin sin f ααααααα-⋅⋅==--⋅-tan 2α=-()22223cos sin 2sin cos 3cos2sin2sin cos αααααααα--⋅-=+2233tan 2tan 31241tan 141ααα---+===-++AQPM∥,ABC PM ⊂ADQ ADQ ⋂ABC AQ =PM ∥AQ P AD M DQ AD ⊥,BCD BC CD ⊥()()()()2,0,0,0,2,0,2,0,4,0,1,0D B A Q ()2,1,0DQ =- ()()2,0,4,0,2,0CA CB == ABC (),,n x y z = 24020n CA x z n CB y ⎧⋅=+=⎪⎨⋅==⎪⎩ 0,20y x z ∴=+=1z =0,2y x ==-()2,0,1n =-,设直线与平面所成角为,又则.因此直线与平面所成角的余弦值为.方法二:过点作交于,连接,因为底面底面,则,且平面,则平面,由平面,可得,且,平面,所以平面,可知即为直线与平面所成角.在中,,则,所以,又则.所以直线与平面所成角的余弦值为.17.解:(1),,又回归直线过样本中心点,所以,得,4cos ,5DQ n DQ n DQ n⋅<>=== DQ ABC 4,sin cos ,5DQ n θθ∴=<>= π0,2θ⎡⎤∈⎢⎥⎣⎦3cos 5θ=DQ ABC 35D DN AC ⊥AC N QN AD ⊥,BCD BC ⊂BCD AD BC ⊥,,,BC CD AD CD D AD CD ⊥⋂=⊂ACD BC ⊥ACD DN ⊂ACD BC DN ⊥AC BC C ⋂=,AC BC ⊂ABC DN ⊥ABC DQN ∠DQ ABC Rt ACD V 2,4CD AD ==AC =DN =DQ QN ==3cos 5QN DQN QD ∠==DQ ABC 35123456 3.56x +++++==101931455568386y +++++==()x y 3810 3.5t =⨯+3t =所以,当时,,所以预测当年7月份该品牌的空调可以销售73台;(2)因为,所以销量不低于前6个月的月平均销量的月份数为,所以所以所以的分布列为:012故数学期望18.(1)由,得,即根据正弦定理,得.因为,所以,即因为,所以,所以,又则.(2)在中由正弦定理得:所以,ˆ103yx =+7x =ˆ73y =38y =4,5,60,1,2X =()()()21123333222666C C C C 1310,1,2C 5C 5C 5P X P X P X ⋅=========X XP 153515()1310121555E X =⨯+⨯+⨯=1cos c A b A =1cos c b A =sin cos c A b A =+sin sin sin cos C B A B A =+()()sin sin πsin C A B A B ⎡⎤=-+=+⎣⎦sin cos cos sin sin sin cos A B A B B A B A +=+sin cos sin A B B A=()0,πA ∈sin 0A ≠tan B =()0,πB ∈π6B =ABC V sin sin sin a b c A B C ==4sin ,4sin a A c C ==215πsin 4sin sin 4sin sin 2sin cos 26ABC S ac B A C A A A A A ⎛⎫===-=+ ⎪⎝⎭V πsin22sin 23A A A ⎛⎫=+=- ⎪⎝⎭因为为锐角三角形,所以,即.所以,所以所以即面积的取值范围为19.(1)当,即时,恒成立,则在上单调递增;当,即或时,令,得或令综上所述:当时,单调递增区间是,无单调递减区间;当或时,的单调递增区间是和单调减区间是(2)①因为在有两个极值点,所以在有两个不等零点,所以解得,所以实数的取值范围为②由①知.所以同理.ABC V π025ππ062A A ⎧<<⎪⎪⎨⎪<-<⎪⎩ππ32A <<ππ2π2,333A ⎛⎫-∈ ⎪⎝⎭πsin 23A ⎤⎛⎫-∈⎥ ⎪⎝⎭⎦(2ABC S ∈+V ABC V (2+()()2e 1,x f x x ax x '-=+∈R 2Δ40a =-≤22a -≤≤()0f x '≥()f x R 2Δ40a =->2a <-2a >()0f x '>x <x >()0f x '<x <<22a -≤≤()f x (),∞∞-+2a <-2a >()f x ∞⎛- ⎝∞⎫+⎪⎪⎭()f x ()0,312,x x ()21g x x ax =-+()0,312,x x ()()2Δ4003201031030a a g g a ⎧=->⎪⎪<<⎪⎨⎪=>⎪=->⎪⎩1023a <<a 102,3⎛⎫ ⎪⎝⎭1212,1x x a x x +==()()()()1112111111e 23e 123e 22x x x f x x a x a ax a x a x a ⎡⎤⎡⎤=-+++=--+++=-++⎣⎦⎣⎦()()222e 22x f x x a =-++所以.设所以,所以函数在区间上单调递减,所以,所以()()()()()()1212121212221e 2222e 422(2)x x x x f x f x x a x a x x a x x a ++⎡⎤⎣⎦=-++-++=-++++()()22e 422(2)e 8a a a a a a ⎡⎤=-+++=-⎣⎦()()210e 8,2,3x h x x x ⎛⎫=-∈ ⎪⎝⎭()()()e 420x h x x x =-+-<'()h x 102,3⎛⎫ ⎪⎝⎭()()224e h x h <=()()2124e f x f x <。

辽宁省沈文新高考研究联盟2025届高三上学期10月月考数学试题(解析版)

辽宁省沈文新高考研究联盟2025届高三上学期10月月考数学试题(解析版)

2024-2025(上)10月月度质量监测高三数学一、单选题(本大题共8小题,每小题5分,共40分,在每小题所给的四个选项中,有且只第Ⅰ卷选择题(共58分)有一项是符合题目要求的)1. 已知集合{}2A x x =∈Z,{}ln(1)B x y x ==−,则A B ∩中的元素个数为( )A. 3B. 4C. 5D. 6【答案】A 【解析】【分析】先求集合A 、B ,再根据交集的定义求出A B ∩即可求解.【详解】解:因为集合{}{}22,1,0,1,2A x x =∈=−−Z ,{}1B x x =<,所以{}2,1,0A B =−− , 故选:A .2. 已知12i +是方程250()x mx m ++=∈R 的一个根,则m =( ) A. -2 B. 2C. iD. -1【答案】A 【解析】【分析】法一:将复数代入二次方程,利用复数相等求解;法二:利韦达定理求解.【详解】方法1:由题意知2(12i)(12i)50m ++++=,即2(42)i 0m m +++=,解得2m =−. 方法2:根据虚根成对知1-2i 也是方程的根,由韦达定理得(12i)(12i)m ++−=−,所以2m =−. 故选:A.3. 不等式2320x x ++>成立的一个充分不必要条件是( ) A. (1,)−+∞B. [1−,)∞+C. (−∞,2][1−∪−,)∞+D. (1−,)(+∞−∞∪,2)−【解析】【分析】解不等式,根据集合的包含关系求出答案即可. 【详解】2320x x ++> ,(1)(2)0x x ∴++>,解得:1x >−或2x <−,故不等式2320x x ++>成立的一个充分不必要条件是(1,)−+∞, 故选:A .【点睛】本题考查了充分必要条件,考查不等式问题,是一道基础题.4. 已知π0,2θ ∈,且cos 2πsin 4θθ=−tan 2θ=( ). A.724B.247C. 724±D. 247±【答案】D 【解析】【分析】由余弦的二倍角公式和两角差正弦公式可得7cos sin 5θθ+=, 结合22cos sin 1θθ+=求出tan θ的值,再根据正切的二倍角公式即可.【详解】)cos2cos sin s in 4θθθπθ+ − 故7cos sin 5θθ+=, 又因为π0,2θ∈,且22cos sin 1θθ+=.故3cos 5θ=,4sin 5θ=或4cos 5θ=,3sin 5θ=,则4tan 3θ=或34,故22tan 24tan21tan 7θθθ==±−,5. 若a ,b是两个单位向量,则下列结论中正确的是( ) A. a b =B. a b∥C. 1a b ⋅=D. 22a b =【答案】D 【解析】【分析】a ,b是两个单位向量,则1ab == ,但a ,b 方向不能确定,即可判断AB ;利用数量积的定义与性质可判断CD .【详解】a ,b是两个单位向量,则1ab == ,但a ,b 方向不能确定,故选项AB 错误; cos co ,,s a b a b b a b a ⋅== ,只有a ,b同向共线时,才有cos ,1a b = ,故选项C 错误;221a a == ,221b b == ,22a b ∴= ,选项D 正确.故选:D.6. 如图,在直角梯形ABCD 中,AD ,AB BC ⊥,222BC AD AB ===,将直角梯形ABCD 沿对角线折起,使平面ABD ⊥平面BCD ,则异面直线AC 与BD 所成角的余弦值为( )A. 0B.C.D.【答案】B 【解析】【分析】取BD 的中点F ,连接AF ,则AF BD ⊥,通过面面垂直的性质定理可得到AF ⊥平面BCD . 过C 作CE ,且使12CE BD =,连接AE ,EF ,BE ,FC 则ACE ∠为所求的角, 在AEC △分别求出CE AC ,的大小,即可求出答案.【详解】在直角梯形ABCD 中,因为222BC AD AB ===,AD ,AB BC ⊥,所以,BD CD ==BD 的中点F ,连接AF ,则AF BD ⊥.又因为平面ABD ⊥平面BCD 且交于BD ,所以AF ⊥平面BCD .过C 作CE ,且使12CE BD =,连接AE ,EF ,BE ,FC 则ACE ∠为所求的角.在Rt AFC △中,AC =Rt AFE 中,AE =.因为CE =AEC △为直角三角形.所以cos CEACE AC∠=AC 与BD故选:B.7. 设正实数,x y 满足23x y +=,则下列说法错误的是( ) A.3y x y+的最小值为4 B. xy 的最大值为98C. +的最大值为2D. 224x y +的最小值为92【答案】C 【解析】【分析】根据基本不等式以及“1”的妙用判断各选项.【详解】对于A ,32224y y x y y x x y x y x y ++=+=++≥+=,当且仅当1xy ==时取等号,故A 正确;对于B ,21121992222248x y xy x y + =⋅⋅≤×=×= ,当且仅当2x y =,即33,24x y ==时取等号,故B 正确;对于C ,223336x y +=++≤+=+=,≤,当且仅当2x y =,即33,24x y ==时,故C 错误;对于D ,222994(2)49482x y x y xy +=+−≥−×=,当且仅当33,24x y ==时取等号,故D 正确. 故选:C.8. 定义在()0,∞+上的单调函数()f x ,对任意的()0,x ∈+∞有()ln 1f f x x −=恒成立,若方程()()f x f x m ⋅′=有两个不同的实数根,则实数m 的取值范围为( )A. (),1−∞B. ()0,1C. (]0,1D. (],1−∞【答案】B 【解析】【分析】由条件单调函数()f x ,对任意的()0,x ∈+∞都有()ln 1f f x x −=,故必有 ()ln f x x t −=,且()1=f t ,即可求得()f x ,再根据导数研究函数的性质,求得方程()()f x f x m ⋅′=有两个不同的实根满足的条件,求得m 的取值范围. 【详解】由于函数()f x 为单调函数,则不妨设()ln f x x t −=,则()1=f t , 且()ln 1ln f t t t t −=−=,解得1t =,所以()()1ln 1,f x x f x x′=+=. 设()()()ln 1x g x f x f x x=′+=⋅, 则方程()()f x f x m ⋅′=有两个不同的实数根等价于函数()ln 1x g x x+=与y m=有两个不同的交点. ()222ln 11ln 1ln x x x g x xx x x x ′−′=+=−=−, 易得当(0,1)x ∈时,()0g x ′>;当(1,)x ∈+∞时,()0g x ′<, 所以函数()g x 在(0,1)上单调递增,在(1,)+∞上单调递减,所以max()(1)0g x g ==. 又10g e=,且当x →+∞时,()0g x →. 故函数()ln 1x g x x+=与y m=有两个不同的交点则()0,1m ∈.故选:B二、多选题(本大题共3小题,每小题6分,共18分,在每小题所给的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分)9. 以下是真命题的是( )A. 已知a ,b为非零向量,若a b a b +>− ,则a 与b 的夹角为锐角 B. 已知a ,b ,c为两两非共线向量,若a b a c ⋅=⋅ ,则()a cb ⊥−C. 在三角形ABC 中,若cos cos a A b B ⋅=⋅,则三角形ABC 是等腰三角形D. 若三棱锥的三条侧棱与底面所成的角相等,则顶点在底面的射影是底面三角形的外心 【答案】BD 【解析】【分析】A :将已知条件两边同时平方,整理得到0a b ⋅>,结合平面向量的数量积的定义得到cos ,0a b >,由平面向量的夹角范围可得,0,2a b π ∈,进而可以判断选项;B :将已知条件变形为()0a b c ⋅−=,结合平面向量数量积即可判断选项;C :结合正弦定理化简整理即可判断三角形的形状;D :作出图形,证得PAO PBO PCO ≅≅ ,即可得到AO BO CO ==,结合三角形外心的性质即可判断.【详解】A :因为a b a b +>− ,两边同时平方,得()()22a ba b +>− ,即222222a b a b a b a b ++⋅>+−⋅,所以0a b ⋅> ,因此cos ,0a b > ,因为[],0,a b π∈ ,所以,0,2a b π ∈,因此a 与b的夹角为锐角或零角,故A 错误;B :因为a b a c ⋅=⋅ ,所以()0a b c ⋅−= ,又因为a ,b ,c 为两两非共线向量,则0,0a b c ≠−≠ ,所以()a cb ⊥−,故B 正确;C :因为cos cos a A b B ⋅=⋅,结合余弦定理得sin cos sin cos A A B B ⋅=⋅,所以sin 2sin 2A B =,所以22A B =或22A B π+=,即A B =或2A B π+=,所以角形ABC 是等腰三角形或直角三角形,故C 错误; D :设三棱锥P ABC −的顶点P 在底面ABC 的射影为O ,所以⊥PO 底面ABC ,又因为AO ⊂底面ABC ,BO ⊂底面ABC ,CO ⊂底面ABC ,所以,,PO AO PO BO PO CO ⊥⊥⊥,又因为三棱锥的三条侧棱与底面所成的角相等,所以PAO PBO PCO ∠=∠=∠,所以PAO PBO PCO ≅≅ ,所以AO BO CO ==,所以点O 是ABC 的外心,故D 正确;故选:BD.10. 八一广场位置处于解放碑繁华地段,紧挨着得意世界、大融城、八一好吃街等.重庆解放碑是抗战胜利纪功碑暨人民解放纪念碑,是抗战胜利的精神象征,是中国唯一一座纪念中华民族抗日战争胜利的纪念碑.现某兴趣小组准备在八一广场上对解放碑的高度进行测量,并绘制出测量方案示意图,A 为解放碑的最顶端,B 为解放碑的基座(即B 在A 的正下方),在广场内(与B 在同一水平面内)选取C ,D 两点,则根据下列各组中的测量数据,能计算出解放碑高度AB 的是( )A. CD ,ACB ∠,BCD ∠,BDC ∠B. CD ,ACB ∠,BCD ∠,ADC ∠C. CD ,ACB ∠,BCD ∠,ACD ∠D. BC ,BD ,2ACB ADB π∠+∠=【答案】ABD 【解析】【分析】A 、B 、C 根据正弦定理、余弦定理和直角三角形性质判断所给条件是否构成解三角形条件;D 选项根据相似三角形性质判断.【详解】由题意可知AB ⊥平面BCD ,由此进行下列判断:A 选项,在BCD △中,根据CD ,BCD ∠,BDC ∠,可利用正弦定理求得BC ,再根据tan ACB ∠求得AB ,故A 正确;B 选项,由ACB ∠,BCD ∠借助直角三角形和余弦定理,用AB 和CD 表示出BC ,BD ,AC ,AD ,然后结合ADC ∠在ACD 中利用余弦定理列方程,解方程求得AB ,故B 正确;C 选项,CD ,ACB ∠,BCD ∠,ACD ∠四个条件,无法通过解三角形求得AB ,故C 错误; D 选项,根据π2ACB ADB ∠+∠=,可得ABC 与DBA 相似,根据相似比AB BDBC AB =可解方程求得AB ,故D 正确, 故选:ABD .11. 设定义在R 上的函数()f x 与()g x 的导函数分别为()f x ′和()g x ′.若()()42f x g x −−=,()()2g x f x ′′=−,且()2f x +为奇函数,则( ). A. R x ∀∈,()()40f x f x ++−=B. ()()354g g +=C.()202310k f k ==∑D.()202310k g k ==∑【答案】AC 【解析】【分析】由()2f x +为奇函数,结合奇函数的性质判断A ,由条件证明()f x 为周期为4的函数,利用组合求和法求()20231k f k =∑判断C ,根据条件证明()()22g x f x =−−,由此判断BD.【详解】对A ,又∵()2f x +奇函数,则()y f x =图像关于()2,0对称,且()()220f x f x ++−=, 为所以()()40f x f x ++−=,A 正确; 对于C ,∵()(2)g x f x ′′=−,则()()2g x f x a =−+,则()()42g x f x a −=−+,又()()42f x g x −−=, 所以()()22f x f x a =−++,令1x =,可得20a +=,即2a =−.所以()(2)f x f x =−,又()()40f x f x ++−=所以()()()22f x f x f x +=−−+=−, 所以()()()24f x f x f x =−+=+, ∴()y f x =的周期4T =,所以()()04f f =,由()()220f x f x ++−=可得, ()()130f f +=,()()400f f +=,()20f =,所以()00f =,()40f =,∴[]20231()505(1)(2)(3)(4)(1)(2)(3)0k f k f f f f f f f ==++++++=∑,C 正确;对B ,()()22g x f x =−−,则()g x 是周期4T =的函数,()()()()3512324g g f f +=−+−=−,B错误; 对D ,()()()1120242023f f f −=−+=,()()()()022********f f f f ==+=,所以2023202311()(1)2(0)2(1)2(2021)2()22023k k g k f f f f f k ==−−+−+−+…+−=−×∑∑,所以20231()4046k g k ==−∑,D 错误.故选:AC.【点睛】知识点点睛:本题考查导数的运算,奇函数的性质,抽象函数周期性的证明,分组求和法等知识点,属于综合题,考查逻辑推理和首项运算的核心素养.第Ⅱ卷 非选择题(共92分)三、填空题(本大题共3小题,每小题5分,共15分)12. 设函数()log a f x x =(0a >且1a ≠),若()1220211010f x x x ⋅⋅⋅=,则()()()222122021f x f x f x ++⋅⋅⋅+=______.【答案】2020 【解析】 【分析】根据对数的运算法则计算.【详解】∵()1220211010f x x x ⋅⋅⋅=,∴()122021log 1010a x x x ⋅⋅⋅=; ∴()()()()()()222222122021122021log log log a a a f x f x f x x x x =++⋅⋅⋅+++⋅⋅⋅+()()222212320211220212l 2020og a f x x x x x x x =+=⋅⋅⋅.故答案为:2020.13. 如图,在ABC 中,4AB =,3AC =,90A ∠=°,若PQ 为圆心为A 的单位圆的一条动直径,则BP CQ ⋅的取值范围是__.【答案】[6,4]− 【解析】【分析】利用平面向量的线性运算可得出,BP AP AB CQ AQ AC AP AC =−=−=−−,运用平面向量数量积的运算性质解决即可.【详解】由题知,ABC 中,4AB =,3AC =,90A ∠=°,若PQ 为圆心为A 的单位圆的一条动直径,所以A 为PQ 的中点,1,,5AP AP QA BC ===, 因为,BP AP AB CQ AQ AC AP AC =−=−=−−,所以()()()()BP CQ AP AB AP AC AB AP AC AP ⋅=−⋅−−=−+2()1AB AC AP AP AB AC AP CB =⋅−+⋅−=−+⋅ ,因为AP CB AP CB AP CB −⋅≤⋅≤⋅ ,即55AP CB −≤⋅≤所以614AP CB −≤−+⋅≤ ,当且仅当,AP CB同向时取最大值,反向时取最小值,所以BP CQ ⋅的取值范围是[6,4]−,故答案为:[6,4]−14. 已知棱长为2的正方体1111ABCD A B C D −中,M 为AB 的中点,P 是平面ABCD 内的动点,且满足条件13PD PM =,则动点P 在平面ABCD 内形成的轨迹是 . 【答案】圆 【解析】【分析】分别以1,,DA DC DD 为x 轴,y 轴,z 轴,利用空间两点距离的坐标表示求轨迹方程即可. 【详解】分别以1,,DA DC DD 为x 轴,y 轴,z 轴,则1(0,0,2),(2,1,0)D M ,设(,,0)P x y ,由题意可得22222(02)9[(2)(1)]x y x y ++−=−+−, 化简可得2299410248x y x y +−−+=,易知轨迹是圆. 故答案为:圆四、解答题(本大题共5小题,共77分.解答时应写出必要的文字说明、证明过程或演算步骤)15. 在①1n n a a +−=+;② 184n n a a n −−=−(2n ≥)两个条件中,任选一个,补充在下面问题中,并求解.问题:已知数列{}n a 中,13a =,__________ (1)求n a ;.(2)若数列1n a的前n 项和为n T ,证明:1132n T ≤<.【答案】条件选择见解析;(1)241=−n a n ;(2)证明见解析.【解析】 【分析】若选① :(1)由1n n a a +−=2=,根据是首项为2,公差为2的等差数列,可得结果;(2)由2111114122121n a n n n ==− −−+利用裂项求和方法求和得n T ,进一步可证1132n T ≤<. 若选② :(1)由184n n a a n −−=−(2n ≥)利用累加法可求得n a ;(2)由2111114122121n a n n n ==− −−+ 利用裂项求和方法求和得n T ,进一步可证1132nT ≤<. 【详解】若选① :(1)由1n n a a +−=,13a =2=,2=,2=,所以是首项为2,公差为2的等差数列,2n =,所以241=−n a n ; (2)证明:由(1)得2111114122121n a n n n ==− −−+, 所以1111111213352121nT n n =−+−++− −+111221n −+ 11242n =−+, 因为1042n >+,所以12n T <,又因为11242n T n =−+随着n 的增大而增大,所以113n T T ≥=, 综上1132n T ≤<.若选② :(1)由184n n a a n −−=−(2n ≥)可得:当2n ≥时,112211()()()n n n n n a a a a a a a a −−−=−+−++−+ (84)(812)123n n −+−+++ [(84)12](1)32n n −+−+241n −,当1n =时,13a =,符合241=−n a n , 所以当*n N ∈时,241=−n a n ; (2)证明:由(1)得2111114122121na n n n ==− −−+, 所以1111111213352121nT n n =−+−++− −+111221n −+ 11242n =−+, 因为1042n >+,所以12n T <,又因为11242n T n =−+随着n 的增大而增大,所以113n T T ≥=, 综上1132n T ≤<.【点睛】方法点睛:求数列通项公式常用的七种方法:一、公式法:根据等差或等比数列的通项公式1(1)n a a n d =+−或11n n a a q −=进行求解;二、前n 项和法:根据11,1,2n nS n a S S n −= = −≥ 进行求解;三、n S 与n a 的关系式法:由n S 与n a 的关系式,类比出1n S −与1n a −的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项;四、累加法:当数列中有1()n n a a f n −−=,即第n 项与第1n −项的差是个有规律的数时,就可以用这种方法;五、累乘法:当数列{}n a 中有1()nn a f n a −=,即第n 项与第1n −项的积是个有规律的数时,就可以用这种方法;六、构造法:①一次函数法:在数列{}n a 中有1n n a ka b −=+(,k b 均为常数,且0k ≠), 一般化方法:设1()n n a m k a m −+=+,得到(1)b k m =−,1b m k =−,根据数列1{}1n ba k −+−是以k 为公比的等比数列,可求出n a ;②取倒数法:这种方法适用于11n n n ka a ma p−−=+(nn ≥2,nn ∈NN ∗)(,,k m p 均为常数,0m ≠),两边取倒数后,得到一个新的特殊(等差或等比)数列或类似于1n n a ka b −=+的式子; ③取对数法:一般情况下适用于1kln n a a −=(,k l 为非零常数)七、“1nn n a ba c +=+(,b c 为常数且不为0,*n N ∈)”型的数列求通项n a ,方法是等式的两边同除以1n c+,得到一个“1n n a ka b −=+”型的数列,再用上面的六种方法里的“一次函数法”便可求出nn a c的通项,从而求出n a .16. 已知函数()2cos 2cos 1f x x x x a =+−+(a 为常数). (1)求()f x 的单调递增区间; (2)若()f x 在0,2π上有最小值1,求a 的值. 【答案】(1)(),36k k k Z ππππ−+∈;(2)2. 【解析】【分析】(1)利用三角恒等变换思想化简函数()y f x =的解析式为()2sin 26f x x a π=++,然后解不等式()222262k x k k ππππ−≤+≤π+∈Z ,可得出函数()y f x =的单调递增区间; (2)由0,2x π∈计算出26x π+的取值范围,利用正弦函数的基本性质可求得函数()y f x =的最小值,进而可求得实数a 的值.【详解】(1)()2cos 2cos 12cos 2f x x x x a x x a=+−+=++122cos 22sin 226x x a x a π++=++, 令()222262k x k k ππππ−≤+≤π+∈Z ,解得()36k x k k Z ππππ−≤≤+∈所以,函数()y f x =的单调递增区间为(),36k k k Z ππππ−+∈; .(2)当02x π≤≤时,72666x πππ≤+≤,所以1sin 2126x π−≤+≤,所以()min 12112f x a a=×−+=−=,解得2a =. 【点睛】本题考查正弦型函数的单调区间和最值的求解,解答的关键就是利用三角恒等变换思想化简函数解析式,考查计算能力,属于中等题.17. 已知圆229x y +=,A (1,1)为圆内一点,P ,Q 为圆上的动点,且∠PAQ=90°,M 是PQ 的中点. (1)求点M 的轨迹曲线C 的方程;(2)设9111(,),(,)2222E D 对曲线C 上任意一点H ,在直线ED 上是否存在与点E 不重合的点F ,使HE HF 是常数,若存在,求出点F 的坐标,若不存在,说明理由【答案】(1)2211422x y −+−=;(2)见解析. 【解析】【分析】(1)利用直角三角形的中线定理及垂径定理,得到1||||||2AMPQ PM ===利用两点距离公式求出动点的轨迹方程.(2)先设出F 的坐标,将HE HF用点点距表示出,化简得到215(12)4248t x t x −++−,利用212815244t t −=−+解得t 的值即可.【详解】(1)设点(,)M x y ,由90PAQ ∠=°,得1||||||2AM PQ PM ===化简得22702x y x y +−−−=, 即2211422x y −+−=. (2)点91,22E,11,22D,直线ED 方程为12y =,假设存在点19,22F t t  ≠   ,满足条件,设,()H x y ,则有2211422x y −+−=,22291||22HE x y=−+− 2291424822x x x −+−−− ,2221||()2HF x t y=−+− 222115()4(12)24x t x t x t =−+−−=−++,当||||HE HF 是常数,2215(12)||4||248t x t HE HF x −++ =−是常数, ∴212815244t t −=−+,∴32t =或92t =(舍),∴32t =, ∴存在31,22F满足条件. 【点睛】本题考查了轨迹方程的求法,考查了分式型定值问题的求解,考查了运算能力,属于中档题. 18. 已知数列{}n a 与等比数列{}n b 满足3(N )n an b n ∗=∈. (1)试判断{}n a 是何种数列;(2)若813a a m +=,求1220b b b . 【答案】(1)数列{}n a 是等差数列; (2)103m 【解析】【分析】(1)由13log n n a a q +−=可知{}n a 为等差数列; (2)利用等差数列前n 项和以及指数运算的性质即可求解. 【小问1详解】设数列{}n b 的公比为q ,则0q >, 因为3nn a b =,所以113a b =,所以1133n a a n n b q −=⋅=. 方程两边取以3为底的对数, 得11313log (3)(1)log an n a qa n q −=⋅=+−,由于[]113133(log )(1)log log n n a a a n q a n q q +−=+−+−=, 所以数列{}n a 是以3log q 为公差的等差数列.的【小问2详解】因为120813a a a a m +=+=, 所以120122020()2a a a a a ++++==10m ,所以2012201210122033333aa a aaamb b b +++=== .19. 已知函数()ln f x x x =,()()1f x g x x+=.(1)求函数()f x 单调区间;(2)当12x x <,且()()12g x g x =时,证明:122x x +>. 【答案】(1)答案见解析 (2)证明见解析 【解析】【分析】(1)利用导函数的符号求单调区间; (2)分析法将问题化为证2121212ln 0x x xx x x −>>,再应用换元及导数研究恒成立,即可证. 【小问1详解】由题设,()f x 的定义域为()0,∞+()1ln 0f x x =+=′,得1ex =. 当1e x >时,()0f x ′>,()f x 在1,e +∞上单调递增;当10e x <<时,()0f x ′<,()f x 在10,e上单调递减. 所以()f x 单调递减区间为10,e,单调递增区间为1,e +∞. 【小问2详解】因为()ln f x x x =,故()()11ln f x g x x x x+==+,(xx >0). 由()()12g x g x =(12x x <),得121211ln ln x x x x +=+,即212121ln 0x x xx x x −=>. 要证122x x +>,需证()212121212ln x x xx x x x x −+⋅>,即证2121212ln x x x x x x −>.的设21x t x =(1t >),则要证12ln t t t−>(1t >). 令()12ln h t t t t=−−且1t >,则()22121110h t t t t′=+−=−> . 所以()h t 在()1,+∞上单调递增,则()()10h t h >=,即12ln t t t−>. 所以122x x +>,得证.。

2025届上师大附中高三数学上学期10月考试卷一附答案解析

2025届上师大附中高三数学上学期10月考试卷一附答案解析

2025届上师大附中高三10月月考数学试卷一一、填空题(1-6每题4分,7-12每题5分,共54分)1.函数()f x =的定义域为__.【答案】(0,1].【解析】【分析】由函数有意义需要的条件,求解函数定义域【详解】函数的意义,有0110x x≠⎧⎪⎨-≥⎪⎩,解得01x <≤,即函数()f x =定义域为(0,1].故答案为:(0,1]2. 已知0a >=________.【答案】34a 【解析】【分析】根式形式化为分数指数幂形式再由指数运算化简即可.1113322224a a a a ⎛⎫⎛⎫=⋅== ⎪ ⎪⎝⎭⎝⎭.故答案为:34a .3. 已知幂函数()f x 的图象经过点13,9⎛⎫ ⎪⎝⎭,求(3)f -=_________.【答案】19【解析】【分析】设幂函数为(),R f x x αα=∈,根据题意求得2α=-,得到2()f x x -=,代入即可求解.【详解】设幂函数为(),R f x x αα=∈,因为幂函数()f x 的图象经过点13,9⎛⎫ ⎪⎝⎭,可得139α=,解得2α=-,即2()f x x -=,所以21(3)(3)9f --=-=.故答案为:19.4. 若1sin 3α=,则cos(2)πα-=____.【答案】79-【解析】【分析】原式利用诱导公式化简后,再利用二倍角的余弦函数公式变形,将sin α的值代入计算即可求出值.【详解】因为1sin 3α=,所以()2227cos(2)cos 212sin12sin 199παααα-=-=--=-+=-+=-.故答案为: 79-5. 已知集合{|3sin ,}M y y x x =∈=R ,{|||}N x x a =<,若M N ⊆,则实数a 的取值范围是___________.【答案】(3,)+∞【解析】【分析】先求出集合M ,N ,再由M N ⊆可求出实数a 的取值范围【详解】解:由题意得{}{|3sin ,}33M y y x x y y ===-≤∈≤R ,{}{|||}N x x a x a x a =<=-<<,因为M N ⊆,所以3a >,故答案为:(3,)+∞6. 设a ,b ∈R .已知关于x 的不等式250ax x b -+>的解集为21,34⎛⎫-⎪⎝⎭,则不等式250ax x b ++<的解集为__________.【答案】12,,43⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭【解析】【分析】先由不等式250ax x b -+>的解集为21,34⎛⎫- ⎪⎝⎭求出实数a ,b 的值,再求不等式250ax x b ++<的解集.【详解】∵不等式250ax x b -+>的解集为21,34⎛⎫- ⎪⎝⎭,∴方程250ax x b -+=的两根分别为123x =-,214x =,且0a <∴由韦达定理可知,1212215342134x x a b x x a ⎧+=-+=⎪⎪⎨⎛⎫⎪=-⨯= ⎪⎪⎝⎭⎩解得122a b =-⎧⎨=⎩,∴将a ,b 代入不等式250ax x b ++<得212520x x -++<,即212520x x -->()()32410x x ⇔-+>∴不等式250ax x b ++<的解集为12,,43⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭.故答案为:12,,43⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭.7. 已知锐角α的顶点为原点,始边为x 轴的正半轴,将α的终边绕原点逆时针旋转π6后交单位圆于点1,3P y ⎛⎫- ⎪⎝⎭,则sin α的值为________.【解析】【分析】先求得ππcos ,sin 66αα⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,然后利用三角恒等变换的知识求得sin α【详解】由于1,3P y ⎛⎫- ⎪⎝⎭在单位圆上,所以222181,39y y ⎛⎫-+== ⎪⎝⎭,由于α是锐角,所以289y y =⇒=13P ⎛- ⎝,所以π1πcos ,sin 636αα⎛⎫⎛⎫+=-+= ⎪ ⎪⎝⎭⎝⎭所以ππππππsin sin sin cos cos sin 666666αααα⎛⎫⎛⎫⎛⎫=+-=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1132=⨯=.8. 已知()()()()1f x x x a x b =+++.若()y f x =为奇函数,则()0f '=__________.【答案】1-【解析】【分析】根据题意,求得()3f x x x =-,得到()231f x x ='-,即可求解.【详解】由函数()()()()321(1)()f x x x a x b x a b x a b ab x ab =+++=+++++++,可得()32(1)()f x x a b x a b ab x ab -=-+++-+++因为函数()f x 为R 上的奇函数,可得()()f x f x -=-,即3232(1)()(1)()x a b x a b ab x ab x a b x a b ab x ab -+++-+++=--++-++-,所以100a b ab ++=⎧⎨=⎩,解得01a b =⎧⎨=-⎩或10=-⎧⎨=⎩a b ,所以()3f x x x =-,可得()231f x x ='-,所以()01f '=-.故答案为:1-.9. 如图,某同学为测量鹳雀楼的高度MN ,在鹳雀楼的正东方向找到一座建筑物AB ,高约为37m ,在地面上点C 处(,,B C N 三点共线)测得建筑物顶部A ,鹳雀楼顶部M 的仰角分别为30o 和45 ,在A 处测得楼顶部M 的仰角为15 ,则鹳雀楼的高度约为___________m .【答案】74【解析】【分析】根据题意在Rt △ABC 中求出AC ,在△MCA 中利用正弦定理求出MC ,然后在Rt △MNC 中可求得结果.【详解】在Rt △ABC 中,274AC AB ==,在△MCA 中,105MCA ︒∠=,45MAC ︒∠=,则18030AMC MCA MAC ︒︒∠=-∠-∠=,由正弦定理得sin sin MC AC MAC AMC=∠∠,即74sin 45sin 30MC ︒︒=,解得MC =,在Rt △MNC中,74m MN ==.故答案:7410. 对于函数()f x 和()g x ,设(){}|0x f x α∈=,(){}|0x g x β∈=,若存在α,β,使得1αβ-<,则称()f x 与()g x 互为“零点相邻函数”.若函数()1e 2x f x x -=+-与()21g x x ax =-+互为“零点相邻函数”,则实数a 的取值范围是______.【答案】[2,)+∞【解析】【分析】由题知函数()f x 有唯一零点1,进而得210x ax -+=在(0,2)上有解,再根据二次函数零点分布求解即可.【详解】因为1()e 2-=+-x f x x ,所以()f x 在R 上为增函数,又0(1)e 120f =+-=,所以()f x 有唯一零点为1,令()g x 的零点为0x ,依题意知0||11x -<,即002x <<,即函数()g x 在(0,2)上有零点,令()0g x =,则210x ax -+=(0,2)上有解,即1x a x +=在(0,2)上有解,因为12x x +≥=,当且仅当1x x =,即1x =时,取等号,所以2a ≥,故答案为:[2,)+∞.为为在11. 若函数()y f x =的图像上存在不同的两点M (x 1,y 1)和N (x 2,y 2),满足1212x x y y +≥()y f x =具有性质P ,给出下列函数:①()sin f x x =;②()x f x e =;③1(),(0,)f x x x x=+∈+∞;④()||1f x x =+.其中其有性质p 的函数为________(填上所有正确序号).【答案】①②【解析】【分析】利用数量积性质得出过点O 的直线与函数图像存在至少两个不同的交点,结合函数图象可得.【详解】1212||||cos ,,|||OM ON x x y y OM ON OM ON OM ON ⋅=+=〈〉==所以1212cos ,1x x y y OM ON +≥⇔〈〉≥ ,即cos ,1OM ON 〈〉=± .即O ,M ,N 三点共线,即过点O 的直线与函数图像存在至少两个不同的交点,由图可知,①②符合.故答案为:①②12. 已知函数()ln 1f x b x =--,若关于x 的方程()0f x =在2e,e ⎡⎤⎣⎦上有解,则22a b +的最小值为______.【答案】29e 【解析】【分析】设函数()f x 在2e,e ⎡⎤⎣⎦上的零点为m ,则由ln 10b m +--=,则(),P a b 在直线:ln 10l x y m +--=上,则22a b +可看作是O 到直线l 的距离的平方,利用导数求出其最小值即可得到答案【详解】解:设函数()f x 在2e,e ⎡⎤⎣⎦上的零点为m ,则ln 10b m --=,所以点(),P a b 在直线ln 10l x y m +--=上,设O 为坐标原点,则222||a b OP +=,其最小值就是O 到直线l 的距离的平方,,2e,eméùÎêúëû,设t⎤=⎦,设()2ln1tg tt+=,则()()212lntg t tt-⎤'=≤∈⎦,所以()g t在⎤⎦上单调递减,所以()()min3eeg t g==,3e≥即2229ea b+≥,所以22a b+的最小值为29e,故答案为:29e二、选择题(13-14每题4分,15-16每题5分,共18分)13. 已知a b∈R,且0ab≠,则“22a b>”是“11a b<”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】D【解析】【分析】结合指数函数单调性,根据充分必要条件的定义分别进行判断即可.【详解】22a b a b>⇔>Q,当0a b>>时,11a b<不成立,当11a b<<时,a b>不成立.所以a b>是11a b<的既不充分也不必要条件,即22a b>是11a b<的既不充分也不必要条件.故选:D.14. 设函数()sinf x x=,若对于任意5π2π,63α⎡⎤∈--⎢⎥⎣⎦,在区间[0,]m上总存在唯一确定的β,使得()()0f fαβ+=,则m的值可能是()A.π6B.π3C.2π3D.5π6【答案】B【解析】的【分析】由等量关系找α与β的关系,由α的范围求出sin β的范围,从而得出m 的值.【详解】∵()()0f f αβ+=,∴sin sin 0αβ+=,即()sin sin sin βαα=-=-,∵5π2π,63α⎡⎤∈--⎢⎥⎣⎦,即2π5π,36α⎡⎤-∈⎢⎥⎣⎦,∴()1sin sin 2βα⎡=-∈⎢⎣,又∵[]0,m β∈,∴π3m =故选:B15. 已知在ABC V 中,0P 是边AB 上一定点,满足023P B AB = ,且对于边AB 上任意一点P ,都有00PB PC P B P C ⋅≥⋅ ,则ABC V 是( )A. 钝角三角形B. 直角三角形C. 锐角三角形D. 无法确定【答案】A【解析】【分析】取BC 的中点D ,DC 的中点E ,连接0P D ,AE ,根据向量的线性运算计算向量00,P B P C 并计算00P B P C ⋅ ,同理计算PB PC ⋅ ,根据不等关系可得出对于边AB 上任意一点P 都有0PD P D ≥ ,从而确定0P D AB ⊥,从而得到结果.【详解】取BC 的中点D ,DC 的中点E ,连接0P D ,AE (如图所示),则()()0000P B P C P D DB P D DC ⋅=+⋅+ ()()22000P D DB P D DB P D DB =+⋅-=- ,同理22PB PC PD DB ⋅=- ,因为00PB PC P B P C ⋅≥⋅ ,所以22220PD DB P D DB -≥- ,即220PD P D ≥ ,所以对于边AB 上任意一点P 都有0PD P D ≥ ,因此0P D AB ⊥,又023P B AB = ,D 为BC 中点,E 为DC 中点,所以023P B BD AB BE ==,所以0//P D AE ,即90BAE ∠=︒,所以90BAC ∠>︒,即ABC V 为钝角三角形.故选:A .16. 设函数,()2,2x x P f x x x M x∈⎧⎪=⎨+∈⎪⎩其中,P M 是实数集R 的两个非空子集,又规定(){(),},(){(),}A P y y f x x P A M y y f x x M ==∈==∈∣∣,有下列命题:①对任意满足P M ⋃=R 的集合P 和M ,都有()()A P A M ⋃=R ;②对任意满足P M ⋃≠R 的集合P 和M ,都有()()A P A M ⋃≠R ,则对于两个命题真假判断正确的是( )A. ①和②都是真命题B. ①和②都是假命题C. ①是真命题,②是假命题D. ①是假命题,②是真命题【答案】B【解析】【分析】根据集合的新定义对两个命题进行分析,从而确定正确答案.【详解】对于①可举反例,(,0],(0,)P M =-∞=+∞此时()()()()(),0,2,,A P A M A P A M ∞∞⎤⎡=-=+⋃≠⎦⎣R ,故①是假命题;对于②,可举反例(,4],(4)P M =-∞=++∞,此时()(,4],()(4,),()()R A P A M A P A M =-∞=+∞= ,故②是假命题;故选:B【点睛】解新定义题型的步骤:(1)理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论.(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的解题方法.归纳“举例”提供的分类情况.(3)类比新定义中的概念、原理、方法,解决题中需要解决的问题.三、解答题(共5题,满分78分)17. 已知向量3sin ,,(cos ,1)4a x b x ⎛⎫==- ⎪⎝⎭ .(1)当a b∥时,求tan 2x 的值;(2)设函数()2()f x a b b =+⋅ ,且π0,2x ⎛⎫∈ ⎪⎝⎭,求()f x 的值域.【答案】(1)247- (2)1322⎛⎤+ ⎥⎝⎦【解析】【分析】(1)根据向量平行列出等式,计算tan x 的值,二倍角公式即可计算tan 2x ;(2)计算()f x ,并用辅助角公式化简,根据角的范围可求出值域.【小问1详解】因为a b∥,所以3sin cos 4x x -=,因为cos 0x ≠,所以3tan 4x =-,所以22tan 24tan 21tan 7x x x ==--.【小问2详解】213π3()2()2sin cos 2cos sin 2cos 222242f x a b b x x x x x x ⎛⎫=+⋅=++=++=++ ⎪⎝⎭ ,因为π0,2x ⎛⎫∈ ⎪⎝⎭,所以ππ5π2,444x ⎛⎫+∈ ⎪⎝⎭,所以πsin 24x ⎛⎤⎛⎫+∈ ⎥ ⎪ ⎝⎭⎝⎦,所以()f x的值域为1322⎛⎤ ⎥⎝⎦.18. 已知函数()22x x a f x =+其中a 为实常数.(1)若()07f =,解关于x 的方程()5f x =;(2)判断函数()f x 的奇偶性,并说明理由.【答案】(1)1x =或2log 3(2)答案见解析【解析】【分析】(1)因为()22x x a f x =+,()07f =,可得6a =,故6()22x x f x =+,因为()5f x =,即6252x x+=,通过换元法,即可求得答案;(2)因为函数定义域为R ,分别讨论()f x 为奇函数和()f x 为偶函数,即可求得答案.【详解】(1) ()22x xa f x =+,∴()07f =,即17a +=解得:6a =可得:6()22x xf x =+ ()5f x =∴6252x x+=令2x t =(0t >)∴65t t+=,即:2560t t -+=解得:12t =或23t =即:122x =,223x =∴11x =或22log 3x =.(2)函数定义域为R ,①当()f x 为奇函数时,根据奇函数性质()()f x f x -=-可得2222x x x x a a --⎛⎫+=-+ ⎪⎝⎭恒成立即1(1)202x x a ⎛⎫+⋅+= ⎪⎝⎭恒成立,∴1a =-.②当()f x 为偶函数时,根据偶函数性质()()f x f x -=可得2222x x x x a a --+=+恒成立即1(1)202x x a ⎛⎫-⋅-= ⎪⎝⎭恒成立,∴1a =.③当1a ≠±时,函数为非奇非偶函数.【点睛】本题主要考查了解指数方程和根据奇偶性求参数,解题关键是掌握指数方程的解法和奇偶函数的定义,考查了分析能力和计算能力,属于中档题.19. 某创业投资公司拟投资开发某种新能源产品,估计能获得10万元~1000万元的投资收益.现准备制定一个对科研课题组的奖励方案:奖金y (万元)随投资收益x (万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.(1)若建立函数()f x 模型制定奖励方案,试用数学语言表述公司对奖励函数()f x 模型的基本要求;(2)现有两个奖励函数模型:①()2150x f x =+;②()ln 2f x x =-;问这两个函数模型是否符合公司要求,并说明理由?【答案】(1)答案见解析(2)()2150x f x =+不符合公司要求,()ln 2f x x =-符合公司要求,理由见解析【解析】【分析】(1)根据题意,用数学语言依次写出函数()f x 的要求即可;(2)判断两个函数模型的单调性,并判断()9f x ≤,()5x f x ≤是否成立得解.【小问1详解】设奖励函数模型为()y f x =,则公司对奖励函数模型基本要求是:当[]10,1000x ∈时,()f x 是严格增函数,()9f x ≤恒成立,()5x f x ≤恒成立.【小问2详解】①对于函数模型()2150x f x =+,易知当[]10,1000x ∈时,()f x 为增函数,且()()max 26100093f x f ==<,所以()9f x ≤恒成立,但是()101005f ->,不满足()5x f x ≤恒成立,所以()2150x f x =+不符合公司要求;②对于函数模型()ln 2f x x =-,的当[]10,1000x ∈时,()10f x x'=>,所以()f x 为增函数,且()max f x f =()100023ln109=-+<,所以()9f x ≤恒成立,令()()ln 255x x g x f x x =-=--,则()1105g x x '=-<,所以()()10ln1040g x g =-<≤,所以()5x f x ≤恒成立,所以()ln 2f x x =-符合公司要求.20. 已知函数()y f x =的定义域为区间D ,若对于给定的非零实数m ,存在0x ,使得()()00f f x x m =+,则称函数()y f x =在区间D 上具有性质()P m .(1)判断函数()2f x x =在区间[]1,1-上是否具有性质12P ⎛⎫ ⎪⎝⎭,并说明理由;(2)若函数()sin f x x =在区间()()0,0>n n 上具有性质4P π⎛⎫⎪⎝⎭,求n 的取值范围;(3)已知函数()y f x =的图像是连续不断的曲线,且()()02f f =,求证:函数()y f x =在区间[]0,2上具有性质13P ⎛⎫ ⎪⎝⎭.【答案】(1)具有性质12P ⎛⎫ ⎪⎝⎭,理由见解析 (2)5,8π⎛⎫+∞ ⎪⎝⎭(3)证明见解析【解析】【分析】(1)由题可得220012x x ⎛⎫=+ ⎪⎝⎭,则014x =-,结合条件即得;(2)由00sin sin 4x x π⎛⎫=+⎪⎝⎭,解得038x k ππ=+,()()050,N 48x k n k πππ+=+∈∈,可得58n π>,即得;(3)设()()13g x f x f x ⎛⎫=-+ ⎪⎝⎭,50,3x ⎡⎤∈⎢⎥⎣⎦,可得()()()1150200333k g g g g f f -⎛⎫⎛⎫⎛⎫++⋅⋅⋅++⋅⋅⋅+=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当()0g 、13g ⎛⎫ ⎪⎝⎭、⋅⋅⋅、13k g -⎛⎫ ⎪⎝⎭、⋅⋅⋅、53g ⎛⎫ ⎪⎝⎭中有一个为0时,可得111333i i f f --⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,{}1,2,3,,6i ∈⋅⋅⋅,即证;当()0g 、13g ⎛⎫ ⎪⎝⎭、⋅⋅⋅、13n g -⎛⎫ ⎪⎝⎭、⋅⋅⋅、53g ⎛⎫ ⎪⎝⎭中均不为0时,由于其和为0,则其中必存在正数和负数,不妨设103i g -⎛⎫> ⎪⎝⎭,103j g -⎛⎫< ⎪⎝⎭,结合条件可知,存在0x ,()()000103g x f x f x ⎛⎫=-+= ⎪⎝⎭,即证.【小问1详解】函数()2f x x =在[]1,1-上具有性质12P ⎛⎫⎪⎝⎭.若220012x x ⎛⎫=+ ⎪⎝⎭,则014x =-,因为[]11,14-∈-,且[]1111,1424-+=∈-,所以函数()2f x x =在[]1,1-上具有性质12P ⎛⎫⎪⎝⎭.【小问2详解】解法1:由题意,存在()00,x n ∈,使得00sin sin 4x x π⎛⎫=+ ⎪⎝⎭,得0024x x k ππ+=+(舍)或0024x k x πππ+=+-()k ∈Z ,则得038x k ππ=+.因为0308x k ππ=+>,所以k ∈N .又因为()030,8x k n ππ=+∈且()()050,48x k n k πππ+=+∈∈N ,所以58n π>,即所求n 的取值范围是5,8π⎛⎫+∞ ⎪⎝⎭.解法2:当02n π<≤时,函数()sin f x x =,()0,x n ∈是增函数,所以不符合题意;当2n π>时,因为直线2x π=是函数()sin f x x =的一条对称轴,而函数()sin f x x =在区间()()0,0>n n 上具有性质4P π⎛⎫ ⎪⎝⎭,所以224n ππ⎛⎫-> ⎪⎝⎭,解得58n π>,即所求n 的取值范围是5,8π⎛⎫+∞ ⎪⎝⎭.【小问3详解】设()()13g x f x f x ⎛⎫=-+ ⎪⎝⎭,50,3x ⎡⎤∈⎢⎥⎣⎦.则有()()1003g f f ⎛⎫=- ⎪⎝⎭,112333g f f ⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()22133g f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,⋅⋅⋅,11333k k k g f f --⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,⋅⋅⋅,()55233g f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭{}()1,2,3,,6k ∈⋅⋅⋅.以上各式相加得()()()115020333k g g g g f f -⎛⎫⎛⎫⎛⎫++⋅⋅⋅++⋅⋅⋅+=- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭即()11500333k g g g g -⎛⎫⎛⎫⎛⎫++⋅⋅⋅++⋅⋅⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,(ⅰ)当()0g 、13g ⎛⎫ ⎪⎝⎭、⋅⋅⋅、13k g -⎛⎫ ⎪⎝⎭、⋅⋅⋅、53g ⎛⎫ ⎪⎝⎭中有一个为0时,不妨设103i g -⎛⎫= ⎪⎝⎭,{}1,2,3,,6i ∈⋅⋅⋅,即110333i i i g f f --⎛⎫⎛⎫⎛⎫=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即111333i i f f --⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,{}1,2,3,,6i ∈⋅⋅⋅,所以函数()y f x =在区间[]0,2上具有性质13P ⎛⎫⎪⎝⎭.(ⅱ)当()0g 、13g ⎛⎫ ⎪⎝⎭、⋅⋅⋅、13n g -⎛⎫ ⎪⎝⎭、⋅⋅⋅、53g ⎛⎫ ⎪⎝⎭中均不为0时,由于其和为0,则其中必存在正数和负数,不妨设103i g -⎛⎫>⎪⎝⎭,103j g -⎛⎫< ⎪⎝⎭,其中i j ≠,{}1,2,3,,6i j ∈⋅⋅⋅、.由于函数()y g x =的图像是连续不断的曲线,所以当i j <时,至少存在一个实数011,33i j x --⎛⎫∈ ⎪⎝⎭(当i j >时,至少存在一个实数011,33j i x --⎛⎫∈ ⎪⎝⎭),其中{}1,2,3,,6i j ∈⋅⋅⋅、,使得()00g x =,即()()000103g x f x f x ⎛⎫=-+= ⎪⎝⎭,即存在0x ,使得()0013f x f x ⎛⎫=+ ⎪⎝⎭,所以函数()y f x =在区间[]0,2上也具有性质13P ⎛⎫⎪⎝⎭.综上,函数()y f x =在区间[]0,2上具有性质13P ⎛⎫⎪⎝⎭.21. 已知函数()e (,1),()(,)k x f x x k k g x cx m c m =∈≥=+∈N R ,其中e 是自然对数的底数.(1)当1k =时,若曲线()y f x =在1x =处的切线恰好是直线()y g x =,求c 和m 的值;(2)当1k =,e m =-时,关于x 的方程()()f x g x =有正实数根,求c 的取值范围:(3)当2,1k m ==-时,关于x 的不等式2()e ()f x ax bx g x -≥+≥对于任意[1,)x ∈+∞恒成立(其中,a b ∈R ),当c 取得最大值时,求a 的最小值.【答案】(1)2e,e c m ==-(2)[2e,)+∞(3)1【解析】【分析】(1)利用导数求得()f x 在1x =处的切线方程,通过对比系数求得,c m .(2)由()()f x g x =分离c ,利用构造函数法,结合导数来求得c 的取值范围.(3)由恒成立的不等式得到e 1e xc x x-≤-恒成立,利用构造函数法,结合导数来求得c 的最大值,进而求得a 的最小值,并利用构造函数法,结合导数来判断a 的最小值符合题意.【小问1详解】当1k =时,()e x f x x =,所以()(1)e x f x x '=+,由(1)e,(1)2e f f '==,得曲线()y f x =在1x =处的切线方程为e 2e(1)y x -=-,即2e e y x =-,由题意,2e,e c m ==-.【小问2详解】当1k =,e m =-时,()e ,()e x f x x g x cx ==-,由题意,方程e e x x cx =-在(0,)+∞上有解,即e e x c x =+在(0,)+∞上有解,令e ()e (0)x h x x x =+>,则2e e ()x h x x'=-,由()0h x '=得1x =,()h x '在()0,∞+上严格递增,所以:当(0,1)x ∈时,()0h x '<,所以()h x 严格递减,当(1,)x ∈+∞时,()0h x '>,所以()h x 严格递增,所以min ()(1)2e h x h ==,又x →+∞时,()h x →+∞,所以()h x 的值域为[2e,)+∞,所以c 的取值范围为[2e,)+∞.【小问3详解】当2,1k m ==-时,2()e ,()1x f x x g x cx ==-,由题意,对于任意2[1,),()e ()x f x ax bx g x ∈+∞-≥+≥恒成立,即:22e e 1x x ax bx cx -≥+≥-(*)恒成立,那么,2e 1x x cx ≥-恒成立,所以e 1e xc x x-≤-恒成立,令e 1()e (1)x x x x x ϕ-=-≥,则2e 1()(1)e 0x x x x ϕ-'=++>在[1,)+∞上恒成立,所以()ϕx 在[1,)+∞上严格递增,所以min ()(1)1x ϕϕ==,从而1c ≤,即c 的最大值为1,1c =时,取1x =代入(*)式,得00a b ≥+≥,所以=-b a ,所以21ax ax x -≥-在[1,)+∞上恒成立,得1a ≥,即a 的最小值为1,当1a =时,记()222()()e e e (1)x F x f x x x x x x x =---=--+≥,则()2()2e 21x F x x x x '=+-+,设()()()()222e 21,42e 2x x x x x u u x x x x '+-+=++-=,因为()u x '在[1,)+∞上严格递增,所以()()17e 20u x u ''≥=->,所以()F x '在[1,)+∞上严格递增,所以()(1)3e 10F x F ''≥=->,所以()F x 在[1,)+∞上严格递增,所以()(1)0F x F ≥=,从而对于任意2[1,),()e ()x f x ax bx g x ∈+∞-≥+≥恒成立,综上,a 的最小值为1.【点睛】方法点睛:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题,注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理,。

十月高三月考数学试卷

十月高三月考数学试卷

考试时间:120分钟满分:150分一、选择题(每题5分,共50分)1. 已知函数$f(x) = ax^2 + bx + c$($a \neq 0$)的图象开口向上,对称轴为$x = -1$,且过点$(2, 3)$,则下列选项中正确的是()。

A. $a = 1, b = -2, c = 3$B. $a = 1, b = 2, c = 3$C. $a = -1, b = -2, c = 3$D. $a = -1, b = 2, c = 3$2. 若等差数列$\{a_n\}$的前$n$项和为$S_n$,且$S_5 = 50$,$S_9 = 90$,则$a_7$的值为()。

A. 5B. 10C. 15D. 203. 下列命题中正确的是()。

A. 若$a > b$,则$\frac{1}{a} < \frac{1}{b}$B. 若$a^2 > b^2$,则$a > b$C. 若$a > b$,则$a^2 > b^2$D. 若$a^2 > b^2$,则$a > |b|$4. 在直角坐标系中,点$A(1, 2)$关于直线$y = x$的对称点为()。

A. $(2, 1)$B. $(1, 2)$C. $(-2, -1)$D. $(-1, -2)$5. 若复数$z = a + bi$($a, b \in \mathbb{R}$)满足$|z + 1| = |z - 1|$,则$\operatorname{Im}(z)$的值为()。

A. 0B. 1C. -1D. 2二、填空题(每题5分,共50分)6. 函数$f(x) = \sqrt{1 - x^2}$的定义域为______。

7. 等差数列$\{a_n\}$中,$a_1 = 3$,公差$d = 2$,则$a_{10}$的值为______。

8. 已知函数$f(x) = x^3 - 3x$,则$f'(x) = ______。

北京市2025届高三上学期10月月考数学试题含答案

北京市2025届高三上学期10月月考数学试题含答案

北京市2024-2025学年高三上学期10月月考数学试题(答案在最后)(清华附中朝阳望京学校)2024.10.10姓名____________一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集{}0U x x =>,集合{}23A x x =≤≤,则U A =ð()A.(][)0,23,+∞B.()()0,23,+∞ C.(][),23,-∞⋃+∞ D.()(),23,-∞⋃+∞【答案】B 【解析】【分析】由补集定义可直接求得结果.【详解】()0,U =+∞ ,[]2,3A =,()()0,23,U A ∴=+∞ ð.故选:B.2.若等差数列{}n a 和等比数列{}n b 满足11a b =,222a b ==,48a =,则{}n b 的公比为()A.2B.2- C.4D.4-【答案】B 【解析】【分析】根据等差数列的基本量运算可得111a b ==-,然后利用等比数列的概念结合条件即得.【详解】设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,则242822a a d d +=+==,所以3d =,∴22123b a a ===+,111a b ==-,所以212b q b ==-.故选:B.3.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于直线y x =对称.若3sin 5α=,则cos β=()A.45-B.45C.35-D.35【答案】D 【解析】【分析】根据对称关系可得()22k k παβπ+=+∈Z ,利用诱导公式可求得结果.【详解】y x = 的倾斜角为4π,α\与β满足()22242k k k ππαβππ+=⨯+=+∈Z ,3cos cos 2cos sin 225k ππβπααα⎛⎫⎛⎫∴=+-=-==⎪ ⎪⎝⎭⎝⎭.故选:D.4.若点()1,1M 为圆22:40C x y x +-=的弦AB 的中点,则直线AB 的方程是()A.20x y --=B.20x y +-=C.0x y -=D.0x y +=【答案】C 【解析】【分析】由垂径定理可知MC AB ⊥,求出直线AB 的斜率,利用点斜式可得出直线AB 的方程.【详解】圆C 的标准方程方程为()2224x y -+=,()221214-+< ,即点M 在圆C 内,圆心()2,0C ,10112MC k -==--,由垂径定理可知MC AB ⊥,则1AB k =,故直线AB 的方程为11y x -=-,即0x y -=.故选:C.5.已知D 是边长为2的正△ABC 边BC 上的动点,则AB AD ⋅的取值范围是()A.B.2]C.[0,2]D.[2,4]【答案】D 【解析】【分析】根据向量数量积的几何意义可得||cos [1,2]AD DAB ∠∈ ,再由||||cos AD AB D A A B AD B =∠⋅即可求范围.【详解】由D 在边BC 上运动,且△ABC 为边长为2的正三角形,所以03DAB π≤∠≤,则[]cos 1,2AB DAB ∠∈ ,由||||cos [2,4]AD AB D D B A A A B =∠⋅∈.故选:D6.若0a b >>,则①11b a >;②11a ab b +>+>的序号是()A.①②B.①③C.②③D.①②③【答案】A 【解析】【分析】对①,由a b >两边同除ab 化简即可判断;对②,由a b >得a ab b ab +>+,两边同除()1b b +化简即可判断;>>【详解】对①,0a b a b ab ab>>⇒>,即11b a >,①对;对②,由()()011a b a ab b ab a b b a >>⇒+>+⇒+>+,则()()()()111111a b b a a a b b b b b b +++>⇒>+++,②对;对③,由>,>,与0a b >>矛盾,③错;故选:A7.若命题“2,20x x x m ∃∈++≤R ”是真命题,则实数m 的取值范围是()A.1m < B.1m ≤ C.1m > D.1m ≥【答案】B 【解析】【分析】不等式能成立,等价于方程有实数解,用判别式计算求参数即可.【详解】由题可知,不等式220x x m ++≤在实数范围内有解,等价于方程220x x m ++=有实数解,即440m ∆=-≥,解得1m ≤.8.“1a =”是“函数()22x x af x a+=-具有奇偶性”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据充分、必要性的定义,及奇偶性的定义求参数a ,判断题设条件间的关系即可.【详解】当1a =时21()21x x f x +=-,则定义域为{|0}x x ≠,211221()()211221x x x x xx f x f x --+++-===-=----,故()f x 为奇函数,充分性成立;若2()2x x af x a+=-具有奇偶性,当()f x 为偶函数,则212()()212x x x xa a f x f x a a --++⋅-===--⋅,所以212212x xx xa a a a ++⋅=--⋅恒成立,可得0a =;当()f x 为奇函数,则212()()212x x x xa a f x f x a a --++⋅-===---⋅,所以212212x xx xa a a a ++⋅-=--⋅恒成立,可得1a =或=−1;所以必要性不成立;综上,“1a =”是“函数()22x x af x a+=-具有奇偶性”的充分而不必要条件.故选:A9.已知函数()32x x f x =-,则()A.()f x 在R 上单调递增B.对R,()1x f x ∀∈>-恒成立C.不存在正实数a ,使得函数()xf x y a=为奇函数D.方程()f x x =只有一个解【答案】B【分析】对()f x 求导,研究()f x '在0x ≥、0x <上的符号,结合指数幂的性质判断()f x '零点的存在性,进而确定单调性区间、最小值,进而判断A 、B 的正误;利用奇偶性定义求参数a 判断C ;由(0)0f =、(1)1f =即可排除D.【详解】由3ln 3ln 22[(ln 3ln ()322]2x x x xf x =-'=-,而20x >,当0x ≥时()0f x '>,即(0,)+∞上()f x 递增,且(30)2x x f x =->恒成立;而0x <,令()0f x '=,可得3ln 2()2ln 3x=,所以00x x ∃=<使03ln 2(2ln 3x =,综上,0(,)x -∞上()0f x '<,()f x 递减;0(,)x +∞上()0f x '>,()f x 递增;故在R 上不单调递增,A 错误;所以0x x =时,有最小值0000002()323()3ln 3[1]3(1)ln 2x x x x xf x ===---,而0031x <<,ln 310ln 2<-,所以0ln 3ln 4111ln 2()ln 2f x >-->=-,故R,()1x f x ∀∈>-恒成立,B 正确;令()()x f x y g x a ==为奇函数且0a >,则3232()()x x x x x xg x g x a a ------==-=-恒成立,所以6(23)23x x x x x xxaa --=恒成立,则a =满足要求,C 错误;显然000)20(3f -==,故0x =为一个解,且(1)321f =-=,即1x =为另一个解,显然不止有一个解,D 错误.故选:B【点睛】关键点点睛:A 、B 判断注意分类讨论()f x '的符号,结合指数幂的性质确定导函数的零点位置,C 、D 应用奇偶性定义得到等式恒成立求参、特殊值法直接确定()f x x =的解.10.如图为某无人机飞行时,从某时刻开始15分钟内的速度()V x (单位:米/分钟)与时间x (单位:分钟)的关系.若定义“速度差函数”()v x 为无人机在时间段[]0,x 内的最大速度与最小速度的差,则()v x 的图像为()A. B.C. D.【答案】C 【解析】【分析】根据速度差函数的定义,分[0,6],[6,10],[10,12],[12,15]x x x x ∈∈∈∈四种情况,分别求得函数解析式,从而得到函数图像.【详解】由题意可得,当[0,6]x ∈时,无人机做匀加速运动,40()603V x x =+,“速度差函数”40()3v x x =;当[6,10]x ∈时,无人机做匀速运动,()140V x =,“速度差函数”()80v x =;当[10,12]x ∈时,无人机做匀加速运动,()4010V x x =+,“速度差函数”()2010v x x =-+;当[12,15]x ∈时,无人机做匀减速运动,“速度差函数”()100v x =,结合选项C 满足“速度差函数”解析式,故选:C.二、填空题共5小题,每小题5分,共25分.11.函数()1ln 1f x x x =+-的定义域是____________.【答案】()()0,11+,⋃∞.【解析】【分析】根据分母不为零、真数大于零列不等式组,解得结果.【详解】由题意得,10x x -≠⎧⎨>⎩故答案为:()()0,11,+∞ .【点睛】本题考查函数定义域,考查基本分析求解能力,属基础题.12.直线:1l x y +=截圆22220x y x y +--=的弦长=___________.【答案】【解析】【分析】由圆的弦长与半径、弦心距的关系,求直线l 被圆C 截得的弦长.【详解】线l 的方程为10x y +-=,圆心(1,1)C 到直线l 的距离2d ==.∴此时直线l 被圆C 截得的弦长为=..13.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥底面ABCD ,2PA AB ==,E 为线段PB 的中点,F 为线段BC 上的动点,平面AEF 与平面PBC ____________(填“垂直”或“不垂直”);AEF △的面积的最大值为_____________.【答案】①.垂直②.【解析】【分析】根据线面垂直的的性质定理,判定定理,可证AE ⊥平面PBC ,根据面面垂直的判定定理,即可得证.分析可得,当点F 位于点C 时,面积最大,代入数据,即可得答案.【详解】因为PA ⊥底面ABCD ,⊂BC 平面ABCD ,所以PA BC ⊥,又底面ABCD 为正方形,所以AB BC ⊥,又AB PA A = ,,AB PA ⊂平面PAB ,所以⊥BC 平面PAB ,因为AE ⊂平面PAB ,所以BC AE ⊥,又2PA AB ==,所以PAB 为等腰直角三角形,且E 为线段PB 的中点,所以AE PB ⊥,又BC PB B ⋂=,,BC PB ⊂平面PBC ,所以AE ⊥平面PBC ,因为AE ⊂平面AEF ,所以平面AEF ⊥与平面PBC .因为AE ⊥平面PBC ,EF ⊂平面PBC ,所以AE EF ⊥,所以当EF 最大时,AEF △的面积的最大,当F 位于点C 时,EF 最大且EF ==,所以AEF △的面积的最大为12⨯⨯=.14.设函数()221,,x x af x x a x a⎧-<=⎨+≥⎩①若2a =-,则()f x 的最小值为__________.②若()f x 有最小值,则实数a 的取值范围是__________.【答案】①.2-②.1a ≤-【解析】【分析】对①,分别计算出每段的范围或最小值即可得;对②,由指数函数在开区间内没有最小值,可得存在最小值则最小值一定在x a ≥段,结合二次函数的性质即可得.【详解】①当2a =-时,()221,22,2x x f x x x ⎧-<-=⎨-≥-⎩,则当2x <-时,()3211,4xf x ⎛⎫=-∈--⎪⎝⎭,当2x ≥-时,()222f x x =-≥-,故()f x 的最小值为2-;②由()221,,x x a f x x a x a⎧-<=⎨+≥⎩,则当x a <时,()()211,21x af x =-∈--,由()f x 有最小值,故当x a ≥时,()f x 的最小值小于等于1-,则当1a ≤-且x a ≥时,有()min 1f x a =≤-,符合要求;当1>-a 时,21y x a a =+≥>-,故不符合要求,故舍去.综上所述,1a ≤-.故答案为:2-;1a ≤-.15.设数列{}n a 的前n 项和为n S ,10a >,21(R)n n n a a a λλ+-=∈.给出下列四个结论:①{}n a 是递增数列;②{}R,n a λ∀∈都不是等差数列;③当1λ=时,1a 是{}n a 中的最小项;④当14λ≥时,20232022S >.其中所有正确结论的序号是____________.【答案】③④【解析】【分析】利用特殊数列排除①②,当0λ≠时显然有0n a ≠,对数列递推关系变形得到1n n na a a λ+=+,再判断③④即可.【详解】当数列{}n a 为常数列时,210n n n a a a +-=,{}n a 不是递增数列,是公差为0的等差数列,①②错误;当1λ=时,211n n na a a +-=,显然有0n a ≠,所以11n n na a a +=+,又因为10a >,所以由递推关系得0n a >,所以110n n na a a +-=>,故数列{}n a 是递增数列,1a 是{}n a 中的最小项,③正确;当14λ≥时,由③得0n a >,所以由基本不等式得11n n n a a a λ+=+≥=≥,当且仅当n na a λ=时等号成立,所以2320232022a a a ++⋅⋅⋅+≥,所以20232022S >,④正确.故选:③④.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.在ABC V 中,角,,A B C 所对的边分别为,,,a b c 已知222b c a bc +=+.(1)求A 的大小;(2)如果cos 2B b ==,求ABC V 的面积.【答案】(1)3π;(2)2【解析】【分析】(1)利用余弦定理的变形:222cos 2b c a A bc+-=即可求解.(2)利用正弦定理求出3a =,再根据三角形的内角和性质以及两角和的正弦公式求出sin C ,由三角形的面积公式即可求解.【详解】(1)222b c a bc +=+。

高三数学上学期10月月考试题文含解析试题

高三数学上学期10月月考试题文含解析试题

二中、呼二中2021届高三数学上学期10月月考试题 文〔含解析〕本卷贰O 贰贰年贰月捌日编写; 出题人:令狐学复;欧阳化语;令狐理总。

考生注意:1.本套试卷分第一卷〔选择题〕和第二卷〔非选择题〕两局部。

满分是150分,考试时间是是120分钟。

2.考生答题时,请将答案答在答题卡上。

第一卷每一小题在选出答案以后,需要用2B 铅笔把答题卡上对应题目之答案标号涂黑;第二卷请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内答题,超出答题区域书写之答案无效.............,在试题卷....、草稿纸上答题无效........。

第一卷〔选择题 一共60分〕一、选择题:此题一共12小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的.1.集合{}|2A x x =>,{}2,0,2,4B =-,那么()R C A B ⋂等于〔 〕A. {}2,0-B. {}2,4C. 2,0,2D. {}0,2,4【答案】C【解析】【分析】根据集合的补集交集运算即可求解.【详解】因为{}|2A x x =>,所以={|2}R C A x x ≤,所以(){}2,0,2R C A B -⋂=,应选C【点睛】此题主要考察了集合的交集补集运算,属于容易题.2.设i 为虚数单位,复数()()12i i +-的实部为〔 〕A. 3B. -3C. 2D. -2 【答案】A【解析】【分析】根据复数的运算法那么及复数的概念即可求解.【详解】因为()()122+213+i i i i i +-=-+=,所以复数的实部为3,应选A【点睛】此题主要考察了复数的运算,复数的概念,属于容易题.3.假设函数()f x 是周期为4的奇函数,且()13f =,那么()3f =〔 〕A. -2B. 2C. -3D. 3【答案】C【解析】【分析】根据周期可知(1)(14)(3)f f f =-=-,再根据奇函数性质即可求解.【详解】因为函数()f x 是周期为4的奇函数,所以()()()3113f f f =-=-=-.应选C【点睛】此题主要考察了函数的周期性及奇函数的性质,属于中档题. 4.x ,y 满足3010510x y x y x y +-≤⎧⎪-+≥⎨⎪-+≤⎩,那么2z x y =+的最大值为〔 〕A. 5B. 6C. 7D. 8【答案】A【解析】【分析】作出可行域,根据简单线性规划求解即可.【详解】作出可行域如图:由2z x y =+可得:122z y x =-+, 平移直线12y x =-经过点A 时,z 有最大值, 由3010x y x y +-≤⎧⎨-+≥⎩解得(1,2)A , 平移直线12y x =-经过点A 时,z 有最大值, max 145z =+=.应选A【点睛】此题主要考察了简单的线性规划,属于中档题.5.观察以下等式:332123+=,33321236++=,33332123410+++=,记()3333123f n n =+++⋅⋅⋅+.根据上述规律,假设()225f n =,那么正整数n 的值是〔 〕A. 8B. 7C. 6D. 5 【答案】D【解析】【分析】由规律得()()()22211234n n f n n +=+++⋅⋅⋅+=再解方程即可 【详解】由等式的规律可知()()()22211234n n f n n +=+++⋅⋅⋅+=,当()225f n =时,可得5n =. 应选D【点睛】此题考察归纳推理,熟记等差数列求和公式是关键,考察观察转化才能,是根底题6.0m >,0n >,141m n +=,那么m n +〔 〕 A. 有最大值,最大值为6 B. 有最大值,最大值为9C. 有最小值,最小值为6D. 有最小值,最小值为9 【答案】D【解析】【分析】利用()14m n m n m n ⎛⎫+=++ ⎪⎝⎭,根据均值不等式,即可求出最值. 【详解】∵()1445n m m n m n m n m n ⎛⎫+=++=++⎪⎝⎭4529n m m n ≥+⨯=, 当且仅当4n m m n=时等号成立, m n ∴+的最小值为9.【点睛】此题主要考察了均值不等式,属于中档题.7.如图是一个程序框图,那么输出k 的值是〔 〕A. 6B. 7C. 8D. 9【答案】B【解析】【分析】 根据程序框图,模拟计算过程即可求解.【详解】程序框图的执行过程如下:1S =,10k =;1011S =,9k =; 911S =,8k ; 811S =,7k =, 循环完毕.应选B.【点睛】此题主要考察了程序框图,算法构造,属于中档题.8.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且c b a >>,那么“ABC ∆为钝角三角形〞是“222c a b >+〞的〔 〕A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】C【解析】【分析】根据大边对大角及余弦定理可求解.【详解】由c b a >>,有C B A >>, 又222222cos 02a b c C c a b ab+-=<⇔>+, 故“ABC ∆为钝角三角形〞是“222c a b >+〞的充要条件.应选C【点睛】此题主要考察了三角形的性质,余弦定理,属于中档题.9.在平行四边形ABCD 中,22AB AD ==,60BAD ∠=,点E 在CD 上,2CE ED =,那么AE BE ⋅=〔 〕 A. 49- B. 29- C. 29 D. 49【答案】B【解析】【分析】以向量,AB AD 为基底,根据向量加减法的运算可将,AE BE 表示出来,利用数量积法那么运算即可.【详解】因为22AB AD ==,60BAD ∠=,设1AD =,那么1AB AD ⋅=, 因为13AE AD DE AD AB =+=+,23BE AE AB AD AB =-=-, 所以222193AE BE AD AB AB AD ⋅=--⋅8121939=--=-. 应选B【点睛】此题主要考察了向量的加减法运算,数量积的运算,属于中档题.10.假设函数()log a f x x =〔0a >,且1a ≠〕的定义域和值域均为[],2t t ,那么a 的值是〔 〕 A. 12或者4 B. 116C. 14或者8D. 12或者16 【答案】B【解析】【分析】分1a >和01a <<讨论,利用函数单调性根据定义域求出值域即可分析出a 的值.【详解】由题意有0t >,①当1a >时,()()()2log 22log a a f t t t f t t t ⎧==⎪⎨==⎪⎩, 有()log 22log a a t t =,得22t t =,解得2t =,由log 22a =,解得a =②当01a <<时,()()()2log 2log 2a a f t t t f t t t⎧==⎪⎨==⎪⎩,有()2log 2log a a t t =,得24t t =,解14t =, 代入log 2a t t = ,解得116a =. 应选B【点睛】此题主要考察了对数函数的单调性,值域,分类讨论的思想,属于中档题.11.函数()f x 满足()01f =,且()()'cos sin f x x f x x >,那么不等式()cos 10f x x ->的解集为〔 〕A. (),1-∞-B. ()1,+∞C. (),0-∞D. ()0,∞+【答案】D【解析】【分析】令()()cos g x f x x =,利用导数可研究函数为增函数,且原不等式可转化为()()0g x g >,利用单调性即可求解.【详解】令()()cos g x f x x =,有()()()''cos sin 0g x f x x f x x =->,故函数()g x 单调递增,又由()()00cos01g f ==,不等式()cos 10f x x ->可化为()()0g x g >,那么不等式()cos 10f x x ->的解集为()0,∞+.应选D【点睛】此题主要考察了利用导数研究函数的增减性,根据函数单调性解不等式,属于中档题. 12.函数()()222,01,0x x a x a x f x a x ⎧+-+>=⎨-≤⎩〔0a >,且1a ≠〕在R 上单调递增,且关于x 的方程()22f x x =+恰有两个不等的实数解,那么a 的取值范围是〔 〕A. ()1,2B. (]1,2C. (]{}1,23D. (){}1,23【答案】A【解析】【分析】先根据分段函数的单调性求出1a >,方程有两根可转化为函数图象有两个不同的交点,作出函数图象,利用图象数形结合即可求解.【详解】由1xy a =-在(],0-∞上递增,得1a >,又由()f x 在R 上单调递增,那么()2022002202a a a ⎧+-⨯+≥⎪⎨-<⎪⎩,解得1a > 如下图,在同一坐标系中作出函数()f x 和22y x =+的图象,当2a <时,由图象可知,(],0-∞上,()22f x x =+有且仅有一个解,在()0,∞+上()22f x x =+同样有且仅有一个解.当2a ≥时,直线22y x =+与(),0y f x x =>相切时有一个交点,由()22222x a x a x +-+=+〔其中0x >〕, 得:()22420x a x a +-+-=, 那么()()222442420240a a a a ∆=---=-+=,解得2a =或者3a =此时切点横坐标分别为0,1x x ==-与0x >矛盾,故2a =或者3a =不符合题意,综上所述()1,2a ∈.【点睛】此题主要考察了函数方程与函数的零点,分类讨论思想,数形结合的思想,属于难题.第二卷〔非选择题 一共90分〕二、填空题:本大题一一共4小题,每一小题5分,一共20分.13.设向量()3,4a =,(),2b λ=-,假设a b ⊥,那么实数λ的值是______.【答案】83【解析】【分析】根据向量垂直知其数量积为0,根据坐标计算即可.【详解】∵a b ⊥,0a b ∴⋅=,∴380λ-=, ∴83λ=. 故答案为83. 【点睛】此题主要考察了向量垂直的条件,属于中档题.14.角θ的顶点与坐标原点重合,始边为x 轴的正半轴,终边上有一点P 的坐标为()3,4-,那么()()sin cos πθπθ-++=______. 【答案】75-【解析】【分析】根据三角函数的定义,求出sin θ,cos θ,利用诱导公式即可求解. 【详解】由题意有4sin 5θ=-,3cos 5θ=, 那么()()sin cos sin cos πθπθθθ-++=-437555⎛⎫=--=- ⎪⎝⎭. 故答案为75- 【点睛】此题主要考察了三角函数的定义,诱导公式,属于中档题.15.幂函数()()2231m m f x m m x +-=--在()0,∞+上是减函数,那么实数m 的值是______.【答案】-1【解析】【分析】根据幂函数的定义及幂函数的单调性,即可求解.【详解】由幂函数()()2231m m f x m m x +-=--知,211m m --=得2m =或者1m =-.当2m =时,()3f x x =在(]0,+∞上是增函数, 当1m =-时,()3f x x -=在()0,∞+上是减函数, ∴1m =-.故答案为1-【点睛】此题主要考察了幂函数的定义及单调性,属于中档题.16.曲线()3f x x x =-,那么过点()1,0P -,且与曲线相切的直线方程为______. 【答案】22y x =+或者1144y x =-- 【解析】【分析】 根据导数的几何意义,可求出切线的斜率,由点斜式写出直线方程.【详解】设切点为()3000,Q x x x -,因为()2'31f x x =-, 所以Q 为切点的切线方程为:()()()32000031y x x x x x --=--, 代入点P 坐标有:()()()320000311x x x x --=---, 解得:01x =-或者012x =. 当01x =-时,切线方程为:22y x =+; 当012x =时,切线方程为:1144y x =--. 故答案为22y x =+或者1144y x =--. 【点睛】此题主要考察了函数图象的切线,导数的几何意义,点斜式直线方程,属于中档题.三、解答题:本大题一一共6小题,一共70分.解容许写出必要的文字说明、证明过程及演算步骤.17.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,cos cos sin sin 1A B A B C -=. 〔1〕求角C 的大小;〔2〕假设ABC ∆的面积为c =,求+a b 的值.【答案】〔1〕3C π=〔2〕6a b +=【解析】【分析】〔1〕利用两角和的余弦公式及内角和定理得cos 1C C -=,由二倍角公式得2cos cos 222C C C=,进而求得C; 〔2〕利用面积公式得8ab =,结合余弦定理得()2220a b ab +-=,那么+a b 可求【详解】〔1〕∵()cos 1A B C +=,∴cos 1C C -=,22cos 11cos 222C C C ⎛⎫--=- ⎪⎝⎭,2cos cos 222C C C =.∵0C π<<,故tan23C =,26C π=,3C π=.〔2〕由ABC ∆的面积为3C π=,知1sin 232ABCS ab C ∆,∴8ab =,由余弦定理知2222cos 12c a b ab C =+-=,故2220a b +=,()2220a b ab +-=, 解得6a b +=.【点睛】主要考察两角差的余弦公式、利用正余弦定理解三角形等根底知识,考察运算求解才能,考察数形结合思想、化归与转化思想、函数与方程思想.18.函数())22sin cos 0f x x x x ωωωω=->的图象与直线2y =-的相邻两个交点之间的间隔 为1.〔1〕求函数()f x 的增区间; 〔2〕当1163x -≤≤时,求函数()f x 的最大值、最小值及相应的x 的值. 【答案】〔1〕()15,1212k k k Z ⎡⎤-+∈⎢⎥⎣⎦.〔2〕112x =-时,函数()f x 的最小值为-2;13x =时,函数()f x. 【解析】 【分析】〔1〕利用二倍角公式及辅助角公式化简()f x =2sin 23x πω⎛⎫- ⎪⎝⎭,进而得1T =及ωπ=那么解析式可求;〔2〕由1163x -≤≤得22333x ππππ-≤-≤,利用正弦函数的图像及性质得值域即可【详解】〔1〕由()())2sin 22cos 1f x x x ωω=-()()sin 222sin 23x x x πωωω⎛⎫==-⎪⎝⎭. 由函数()f x 的图象与直线2y =-的相邻两个交点之间的间隔 为1,有1T =,有212πω=,得ωπ=,故()2sin 23f x x ππ⎛⎫=- ⎪⎝⎭. 令()222232k x k k Z ππππππ-≤-≤+∈,得()151212k x k k Z -≤≤+∈. 故函数()f x 的增区间为()15,1212k k k Z ⎡⎤-+∈⎢⎥⎣⎦.〔2〕当1163x -≤≤时,22333x ππππ-≤-≤. 那么当232x πππ-=-,即112x =-时,函数()f x 的最小值为-2;当233x πππ-=,即13x =时,函数()f x 【点睛】此题主要考察三角函数的图象与性质〔对称性、周期性、单调性〕、两角差的正弦公式,考察运算求解才能,考察化归与转化思想、函数与方程思想.19.数列{}n a 是各项均为正数的等比数列,前n 项和为n S ,且245a a a =,37S =. 〔1〕求数列{}n a 的通项公式;〔2〕假设()21n n b n a =-,求数列{}n b 的前n 项和n T . 【答案】〔1〕()2323nn T n =-⨯+〔2〕()2323nn T n =-⨯+【解析】 【分析】〔1〕根据条件联立方程即可求出首项与公比,即可写出通项公式〔2〕利用错位相减法求和即可. 【详解】〔1〕∵245a a a =,∴34111a q a q a q ⋅=,∴11a =; 又37S =,∴()31171a q q-=-,解得3q =-〔舍〕或者2q ,∴12n na .〔2〕由〔1〕知()()121212n n n b n a n -=-=-⋅.那么()0121123252212n n T n -=⨯+⨯+⨯+⋅⋅⋅+-⨯()1232123252212n n T n =⨯+⨯+⨯+⋅⋅⋅+-⨯相减得()231222212n n n T n -=+++⋅⋅⋅+--⨯()12322222121n n n =+++⋅⋅⋅+--⨯- ()()212212112n n n -=--⨯--∴()2323nn T n =-⨯+.【点睛】此题主要考察了等比数列的通项公式,前n 项和公式,错位相减法,属于中档题. 20.向量()cos ,sin a αα=,()cos ,sin b ββ=,233a b +=. 〔1〕求()cos αβ-的值; 〔2〕假设02πα<<,2πβπ<<,且4sin 5β=,求sin α的值. 【答案】〔1〕13-〔2〕415【解析】 【分析】〔1〕由条件知1a =,1b =,()cos a b αβ⋅=-,利用向量的数量积运算即可求解〔2〕利用同角三角函数的关系求出cos β,()sin αβ-,再根据角的变换可知()sin sin ααββ=-+⎡⎤⎣⎦即可求解. 【详解】因为()cos ,sin a αα=,()cos ,sin b ββ=所以1a =,1b =,()cos cos sin sin cos a b αβαβαβ⋅=+=-, 又()2224222cos 3a b a a b b αβ+=+⋅+=+-=, 得()1cos 3αβ-=-.〔2〕∵2πβπ<<,4sin 5β=,∴3cos 5β=-,∵02πα<<,2ππβ-<-<-,∴0παβ-<-<,又∵()cos 0αβ-<,故2ππαβ-<-<-,∴()sin 3αβ-==-,∴()()()sin sin sin cos cos sin ααββαββαββ=-+=-+-⎡⎤⎣⎦3144353515⎛⎫⎛⎫=--+-⨯=⎪ ⎪⎝⎭⎝⎭. 【点睛】此题主要考察了向量的坐标运算,数量积的性质,同角三角函数的关系,两角差的正弦公式,属于中档题. 21.函数()1log 1axf x x+=-〔0a >且1a ≠〕. 〔1〕当1a >时,用定义法证明函数()f x 在定义域上单调递增; 〔2〕解关于x 的不等式()log 2a f x >-. 【答案】〔1〕见解析〔2〕答案不唯一,见解析 【解析】 【分析】〔1〕根据函数单调性的定义,注意做差后变形,即可求证〔2〕分1a >和01a <<两种情况分类讨论,根据对数函数的单调性求解. 【详解】〔1〕证明:由101xx+>-得11x -<<,故函数()f x 的定义域为()1,1-, 令1211x x -<<<,因为()()()()()()21122121211111111111x x x x x x x x x x +--+-++-=---- ()()()()21121212211111x x x x x x x x x x +---+--=--()()()2121211x x x x -=--,由1211x x -<<<,有110x ->,210x ->,210x x ->,可得()()()21212011x x x x ->--,由21211111x x x x ++>--,且1a >, 得212111log log 11aa x x x x ++>--, 所以()()21f x f x >,故当1a >时,函数()f x 在定义域()1,1-单调递增, 〔2〕不等式()log 2a f x >-可化为11log log 12aa x x +>-, ①当1a >时,不等式可化为111211x x x +⎧>⎪-⎨⎪-<<⎩,解得113-<<x ,②当01a <<时,不等式可化为111211x x x +⎧<⎪-⎨⎪-<<⎩,解得113x -<<-.【点睛】此题主要考察了函数单调性的定义,对数函数的单调性,分类讨论的思想,属于中档题. 22.函数()321132f x x ax =-,a 为实数. 〔1〕讨论函数()f x 的单调性;〔2〕设()'f x 是函数()f x 的导函数,假设()'3f x <对任意[]2,3x ∈恒成立,务实数a 的取值范围. 【答案】〔1〕答案不唯一,见解析〔2〕72,2⎛⎫ ⎪⎝⎭【解析】 【分析】〔1〕函数求导后,分0,0,0a a a >=<三种情况讨论,结合导函数的正负可求出函数的单调区间〔2〕根据不等式恒成立,别离参数可得2233x x a x x-++<<,[]2,3x ∈时恒成立,分别求出左边的最大值与右边的最小值即可. 【详解】〔1〕函数()321132f x x ax =-的定义域是R .()()2211'3232f x x a x x ax x x a =⋅-⋅=-=-.〔i 〕当0a >时,令()'0f x <,得0x a <<; 令()'0f x >,得0x <或者x a >,所以函数()f x 在区间()0,a 上单调递减,在区间(),0-∞,(),a +∞上单调递增; 〔ii 〕当0a =时,()2'0f x x =≥对任意x ∈R 恒成立,且()'f x 不恒为0,所以函数()f x 在R 上单调递增;〔iii 〕当0a <时,令()'0f x <,得0a x <<; 令()'0f x >,得x a <或者0x >,所以函数()f x 在区间(),0a 上单调递减,在区间(),a -∞,()0,∞+上单调递增. 〔2〕()'3f x <等价于23x ax -<,得233x ax -<-<,得2233x ax x --<-<-,因为[]2,3x ∈,所以[]3,2x -∈--.所以不等式两边同时除以x -,得2233x xa x x--->>--, 即2233x x a x x ---<<--, 得2233x x a x x-++<<. 所以33x a x x x -<<+. 即33x a x x x-<<+对任意[]2,3x ∈恒成立.设()3g x x x =-,()3h x x x =+,[]2,3x ∈,那么()23'10g x x =+>,()23'10h x x=->.所以函数()g x 在区间[]2,3上是增函数,()h x 在区间[]2,3上是增函数. 所以()()max 32g x g ==,()()min 722h x h ==. 所以722a <<.所以实数a的取值范围是7 2,2⎛⎫ ⎪⎝⎭.【点睛】此题主要考察了利用导数求函数的单调性、最值,不等式恒成立问题,分类讨论的思想,属于难题.本卷贰O贰贰年贰月捌日编写;出题人:令狐学复;欧阳化语;令狐理总。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

巴市中学2010-2011学年第一学期10月份月考
高 三 数 学(文科) 试卷类型 A
说明: 1.本试卷分第I 卷和第II 卷两部分,共150分。

2.将第I 卷选择题答案代号用2B 铅笔填在答题卡上。

第I 卷(选择题 共60分)
一、选择题(5分×12=60分)每小题给出的四个选项只有一项正确
1. 已知{}
1M x x =<,{}
21x
N x =>,则M
N = ( )
A.∅
B.{}
0x x < C.{}1x x < D.{}
01x x << 2.有下列四个命题
①“若x +y =0,则x 、y 互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题;
③“若q ≤1,则x 2
+2x +q =0有实根”的逆否命题;
④“不等边三角形的三个内角相等”的逆命题。

其中真命题为 ( ) A .①② B. ①③ C .②③ D .③④ 3.“12x -<成立”是“(3)0x x -<成立”的 ( ) A .充分不必要条件
B.必要不充分条件
C .充分必要条件 D.既不充分也不必要条件 4
.函数y =
的定义域为 ( )
A. ()1,1-
B. (]1,1-
C. ()4,1--
D. ()4,1- 5.当10<<a 时,在同一坐标系中,函数x y a y a x log ==-与的图象是
( )
D
6.等差数列{a n }中,a 5 + a 7 = 16,a 3 = 4,则a 9 = ( )
y
A .25
B .24 C. 12 D .8
7.在等比数列{}n a 中,92=a ,2435=a ,则{}n a 的前4项和为( ) A .81 B .120 C .168 D .192 8.若等差数列{}n a 的前7项和28S 7=,且23=a ,则10a = ( ) A .15 B .16 C .17 D .18 9.不等式230ax ax +-<的解集为R ,则a 的取值范围是 ( ) A .120a -≤< B .12a >- C .120a -<≤ D .0<a
10.设S n 是等差数列{}n a 的前n 项和,且 87665
S S S S S >=<,,则下列结论错误的是
( )
A. 59S S >
B.07=a
C. d<0
D.S 6和S 7均为S n 的最大值
11.已知()f x 在R 上是奇函数,且)()4(x f x f =+,当()2,0∈x 时22)(x x f =,则=)7(f ( )
A .-98
B .98
C .-2
D .2
12.设函数2()()f x g x x =+,曲线()y g x =在点()()
1,1g 处的切线方程为21y x =+,则曲线()y f x =在点()()
1,1f 处的切线斜率为( ) A. 4 B. 14-
C. 2
D.12
- 第II 卷(非选择题 共90分)
二、填空题(5分×4=20分)将最后结果直接填在横线上.
13. 计算2
lg 25lg 2lg50(lg 2)+⋅+= ;
14.已知等比数列
{}
n a ,且,12321=++a a a ,18654=++a a a 则
987a a a ++= ;
15.已知(3)
1)()log (1)a a x a x f x x x --<⎧=⎨
≥⎩ (
是R 上的增函数,则实数a 的取值范围
是 ;
16.若数列{}n a 是等差数列,前n 项和为S n ,
9535=a a ,则5
9S S = .
三、解答题(10分+12分+12分+12分+12分+12分=70分)
17.求函数12(0)x y x -=<的反函数.
18. 已知函数b
ax x x f +=2
)((a ,b 为常数),且方程f(x)-x+12=0有两个实根,分别为
x 1=3, x 2=4,求函数f(x)的解析式.
19.已知等差数列{}n a 满足24354,10a a a a +=+=,求它的前10项和.
20.已知数列{}n a 的前n 项和n S 满足3log (2)1n S n +=+,求通项公式n a .
21.已知函数2()(1)()f x x x a =++(a 为实数),若函数()f x 的图象上有与x 轴平行的切线,求a 的取值范围.
22.已知a ∈R ,函数()32
11232
f x x ax ax =-
++(x ∈R ). (Ⅰ)当1a =时,求函数()f x 的单调递增区间;
(Ⅱ)若函数()f x 能在R 上单调递减,求出a 的取值范围;若不能,请说明理由; (Ⅲ)若函数()f x 在[]1,1-上单调递增,求a 的取值范围.
高 三 数学(文科)参考答案
18.解:依题意,得 012)12()1(2=+-+-b x b a x a 此方程有两根3和4,
∴⎪⎪⎪⎩⎪⎪⎪⎨⎧
=-=--≠-12112711201a
b a b
a a
解之得⎩
⎨⎧=-=21b a
2
)(2
+-=x x x f ∴
19.解:由已知得⎩⎨⎧=+=+10624
421
1d a d a
解之得⎩⎨
⎧=-=3
4
1d a
∴952
9
1010110=⨯+
=d a S 20.解:1)2(log 3+=+n S n 231-=∴+n n S
1=n 时,711==S a
2≥n 时,n n n n S S a 321⋅=-=- 1=n 时,761≠=a
∴数列的通项公式为
⎩⎨⎧≥⋅==2
,321
,7n n a n
n
22. 解: (Ⅰ) 当1a =时,()32
11232
f x x x x =-
++, 2
()2f x x x '∴=-++. … 2分
令()0f x '>,即2
20x x -++>,
即2
20x x --<,解得12x -<<.
∴函数()f x 的单调递增区间是()1,2-. …… 4分
(Ⅱ) 若函数()f x 在R 上单调递减,则()0f x '≤对x ∈R 都成立,
即2
20x ax a -++≤对x ∈R 都成立, 即2
20x ax a --≥对x ∈R 都成立.
280a a ∴∆=+≤, …… 7分 解得80a -≤≤.
∴当80a -≤≤时, 函数()f x 在R 上单调递减. …… 9分。

相关文档
最新文档