第三章 工程制图
工程制图-第三章基本立体的投影
本章是这门课程的一个难点,教师为了自身业务的提高,要试做一定数目的练习,这对于讲课、辅导答疑、画好黑板图等都有很大的帮助,下面是教师在教学过程中的部分练习,虽然不要求学生掌握到这种难度,但教师要能绘制这种图样。
在讲解本章内容时可作为参考案例。
教师绘制的作业(三棱住切割)教师绘制的作业(长方体切割)教师绘制的作业(五棱柱切割)教师绘制的作业(长方体切割)教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业学生作业学生作业学生作业学生作业学生作业学生作业返回第一讲基本立体的投影1.知识要点(1)平面基本立体的投影(2)圆柱体的投影(3)圆锥体的投影(4)球体的投影2.教学设计本讲的内容不多,表面上容易,实际上同学掌握起来比较难,所以教学上要注意直观教学和空间想象能力培养的关系,明确教学目的。
虽然在上一章介绍了平面立体三视图的画法,在本章开始时还要进一步归纳平面基本体的投影,及其与平面相交时交线的画法,这是一个难点,要逐步掌握。
通过对圆柱体、圆锥体和球体在三面投影体系中投影的研究,进一步巩固三视图的投影规律,通过研究曲面上点、线的投影,暗示线面分析法的思想方法。
在介绍基本曲面立体的投影时,要紧紧抓住转向轮廓线的概念和投影,这对于接下来的截交线和相贯线的学习也是非常重要的,在讲圆柱截交线时,利用动画、模型、虚拟现实等多媒体技术介绍基本概念和作图方法。
把粗实线圆规铅心的修理、圆规的使用放在这里介绍,目的是分散难点,学生有了绘制粗实线直线的经验,学习绘制粗实线圆弧就容易些。
3.课前准备准备教具、熟悉教学内容和要使用的教学课件,课前最好将要布置的作业试做一遍,对学生作业中的问题作到心中有数。
工程制图 第三章 知识点
第三章一、点的投影两点的相对位置 :X 坐标值大的点在左; Y 坐标值大的点在前; Z 坐标值大的点在上。
二、直线的投影1、各种位置直线的投影特性(1 投影面平行直线:在平行的投影面上的投影,反映实长;投影与投影轴的夹角分别反映直线与另两个投影面的真实倾角; 在另两个投影面上的投影, 平行于相应的投影轴,长度缩短。
(2 投影面垂直直线:在直线垂直的投影面上的投影积聚成一点; 在另两个投影面上的投影,平行于相应的投影轴,反映实长。
(3 一般位置直线:三个投影面上的投影都倾斜于投影轴; 投影与投影轴的夹角不反映直线与投影面的倾角;不反映实长(缩短。
2、直线上点的投影特性及定比关系(1从属性:若点在直线上,则点的各个投影必在直线的各同面投影上。
(2定比性:属于线段上的点分割线段之比等于其投影之比。
3、两直线的相对位置关系及投影特性(1平行:三对同面投影分别互相平行。
(2 相交:三对同面投影都分别相交, 且投影的交点符合一点的三面投影特性。
(3交叉:既不符合平行特性也不复合相交特性。
判断两直线相交还是交叉的方法:(1 交点投影法:判断三个投影面的交点是否满足点的投影规则。
(通常需要做出第三投影面的两直线投影来判断(2定比关系法:由投影面的一条直线的交点投影,根据定比关系作出该交点在另一个投影面在该直线上的点的位置, 如果两个投影面上的交点是同一点, 则可判断两直线相交,反之则交叉。
4、直角三角形法 (求一般位置直线的实长和倾角直角三角形法的作图要领 :用线段在某投影面上的投影长作为一条直角边,以线段的两端点相对于该投影面的坐标差作为另一条直角边, 所作直角三角形的斜边即为线段的实长,斜边与投影长间的夹角即为线段与该投影面的倾角。
直角边与倾角的对应关系如下表:解题原则:求直线与哪个投影面的倾角, 就用哪个投影面上的投影长作为一条直角边。
5、直角的投影定理相互垂直的两直线, 其中有一条直线平行于投影面时, 则两直线在该投影面上的投影仍反映直角。
《工程制图》(程金霞)698-9课件 第三章
连接se,由于M点位于直线SE上,因此它的水平投 影m也一定位于直线se上。根据点的投影规律可依次求 出M点的水平投影m和侧面投影m''。
② 辅助圆法
过m'点 作与底边平 行的直线 a'b',该直 线为一个与 底面平行的 小圆的正面 投影。
由于M点的 正面投影不可 见,因此该点在 后棱面SAC上。 由于此棱面是侧 垂面,其侧面投 影具有积聚性, 因此M点的侧面 投影m''一定积 聚在直线s''a″ 上,根据点的投 影规律求出m ″ 点。最后由m'点 和m''点求出M点 的水平投影m。
由于N点的正 面投影可见,因此 该点在右侧棱面 SBC上。首先通过 n ′点作辅助线 n'1'平行于b'c'并 交s'c'于1'点。然 后求出Ⅰ点的水平 投影1。接着过1点 作平行于bc的直 线。最后根据点的 投影规律求出N点 的水平投影n。
以b'c'为 直径,在水平 面上作圆球水 平投影的同心圆, 则M点的水平 投影必定在该 圆周上。
根据点 的投影规律 可依次作出 水平投影 (m)和侧面 投影m''。
基本体的尺寸标注 基本体的尺寸标注以能确定其基本形状和大小为原
则,标注基本体的尺寸时,需要注意以下几点。
① 标注棱柱和棱锥的尺寸时,一般将尺寸标注在 最能反映其实形的投影上,然后在另一投影图上标注另 一方向的尺寸,如图所示。此外,六棱柱的底面通常标 注对边的间距,括号里的尺寸是参考尺寸,可不标注。
求作棱柱表面上点的投影时,应先确定该点在棱 柱的哪个表面上,然后利用棱柱面的积聚性来求点的 投影。判定点的可见性时,若平面可见,则该平面上 点的投影可见。
工程制图课件(第三章)第三节 相贯线
正确:要符合国家标准的有关规定。 完全:将确定组合体各部分形状大小及相
对位置的尺寸标注完全,不遗漏, 不重复。 清晰:尺寸布置要整齐、清晰,便于阅读。
一、 基本立体的尺寸标注
一、基本立体的尺寸标注
二、 带切口基本立体的尺寸标注
基本体被平面截切时,要标注基本体的定 形尺寸和截平面的定位尺寸。
2. 回转体与回转体相贯
★ 相贯线一般为光滑封闭的空
间曲线,它是两回转体表面 的共有线。
★ 作图方法
• 表面取点法 • 辅助平面法
★ 作图过程
• 先找特殊点。 • 补充中间点。
确定交线 的范围
确定交线的 弯曲趋势
例1 :圆柱与圆柱相贯,求其相贯线。
●
●
●
●
●
●
●
●
●
空间及投影分析: 小求圆相柱贯轴线线的垂投直于影H:面,水平 投影积聚为利圆用,积根聚据相性贯,线采的用共有 性,相表贯面线取的点水法平。投影积聚在该圆 上。大☆圆找柱特轴殊线垂点直于W面,侧面 投影积☆聚补为充圆中,相间贯点线的侧面投影 应的积一聚段☆在圆光该弧滑圆。上连,接为两圆柱面共有
2.讲评作业批改情况; 3.提问:棱柱与圆柱的截交线作图方法技 巧。
第三节 相贯线
一、相贯线的概念及其性质
• 两立体相交——相贯。
• 两立体相交表面产生的交线——相贯线。
相贯线的主要性质:
★ 表面性
相贯线位于两立体的表面上。
★ 封闭性
相贯线一般是封闭的空间折 线(通常由直线和曲线组成)或 空间曲线。
★ 共有性
相贯线是两立体表面的共有线。
求相贯线的作图实质是找出相贯 的两立体表面的若干共有点的投影。
工程制图 第三章
属于直线的点
它的三个投影分别属于直线的三个投影。 点分线段之比投影后保持不变。
AC a c ac CB c b cb
证明:投影面平行线的投影是否反映实长
ab AB cos
当
90 时,
B A
AB P
当
ab 0
投影积聚一点
B1 a b P
0 时, AB // P ab AB
三、点的三面投影的投影规律
1.点的V、H投影连线垂直于OX轴,即
a a OX
2.点的V、W投影连线垂直于OZ轴,即 a a OZ 3.点的H投影到OX轴的距离等于点的W投影到OZ轴的距离,即 aax a a z
四、空间两点的相对位置可利用它们在投影图中各组同名投影 (同面投影)来判断
作图步骤 判别可见性
作图步骤
迹线表示平面
几何元素表示平面
判别可见性
2、一般位置平面与特殊位置平面相交
作图步骤 判别可见性
作图步骤
判别可见性
3、两投影面垂直面相交
m
n
X
O
RH
m( n)
QH
4、直线为特殊位置
1
m(n) 2
3
n
1
2(3)
m
1、直线与一般位置平面相交
求作交线的步骤: 1.含直线DE 作辅助平面
名称
正平面
水平面
正垂面
铅垂面
立 体 图
轨 迹
投 影 图
过直线EF,作铅垂面和正垂面
PV
铅垂面S
正垂面P
一般位置平面
投影特性: (1) 三个投影 均为的类似形 (2) 投影图不反映a、、 的真实角度
工程制图第三章
a m
c
n
k
注意分析点、直线 所在表面的可见性
b
§3-2 曲面立体的投影
表面是曲面或曲面和平面的立体称为曲面立体, 若曲面立体的表面是回转曲面称为回转体。回转体是一动 线绕一条定直线回转一周,形成一个回转面。这条定直线 称为回转体的轴线。动直线称为回转体的母线。回转体上 任意位置的母线称为素线。 常见的曲面立体有圆柱、圆锥、圆球和圆环等。
一、棱柱
1、棱柱的概念 由两个底面和几个侧棱 面组成。侧棱面与侧棱 面的交线叫侧棱线,侧 棱线相互平行。
底边 底面
棱柱的形成:由多 边形沿直线拉伸而 成。
L
m
侧棱线 侧棱面
棱柱的棱线相互平行
L m —直棱柱 L m —斜棱柱
2、棱柱的投影
V W
长
高
宽
H
H、V投影 — 长对正 V、W投影 — 高平齐 H、W投影 — 宽相等
轴线
圆环面
2.圆环的投影 内环面
外环面
V
W
H
赤道圆 喉圆
母线圆圆心轨迹
3.圆环表面取点、取线
例8:圆环表面点A、B,已知H面投影,求V、W面投影。
(a')
(b') (b) (b")
(a")
分析:点A在内环
面的上半部,点B在 外环面的下半部。
a
作图:过圆环表面任
一点均可作一垂直于 轴线的圆。
本章小结
m'
V
M
W
(m")
O
H
m
利用投影 的积聚性
例4: AC位于圆柱体表面,已知a’c’,求ac、a”c”。
a'
工程制图第三章体的投影
H Y
直观图
投影图
5
三棱柱体表面定点
(b ) a
b a
b y
a
解题思路: 利用棱柱表面的 积聚性
y
6
三棱锥的投影
Z
V
s
S
s
a
b
c
W
a
A
C a(c )
a
X O
a
B
c
b
s
H
b
Y
直观图
s
s
b
c a(c )
b
c
s
b
投影图
7
三棱锥体表面定点
s
s
n
(n)
m
m
a1
b
a
n
c c
a (c ) y1 y2
b
y1 y2
n m
b'(d')
d
b
a'
a
d n
a
m b
30
【例】求截平面P与三棱锥的截交线。
s
1 2
3 PV
a' b'
c'
a
1
s3 c
2
b
31
【例】求截平面P与三棱锥的截交线。
s'
3 2
4
a' 1 b'
c'
1
a
2
s
c
3
b 4 PH
注意:同一棱面上的两点才能连接。
32
四棱锥切割体的投影
6
2 (3 )
1
4 (5 )
6
1 7 (8 )
8
(2 )
工程制图第三章-点、直线、平面投影
(1) 水平线 — 只平行于水平投影面的直线
z
a b
a
b
a
b
A
a
XOYWB来自b a ab
b YH
投影特性:1.ab平行于 OX ; ab平行于 OYW 。 2. ab=AB。
3.反映、 角的真实大小。
(2)正平线—只平行于正面投影面的直线
第三章 点、直线、平面的投影
第一节 点的投影 第二节 直线的投影 第三节 平面的投影 第四节 直线、平面的相对位置 第五节 投影变换
第一节 点的投影
基本要求
§1-1 两投影面体系中点的投影
§1-2 三投影面体系中点的投影
§1-3 两点的相对位置
§1-4 重影点的投影
例题1
例题2
§1-1 两投影面体系中点的投影
|zA-zB|
AB
ab
|zA-zB|
AB
|zA-zB|
ab O
|zA-zB |
AB
2. 求直线的实长及对正面投影面的夹角 角
|yA-yB|
AB
a' b'
AB
|yA-yB|
a' b'
AB
|yA-yB|
O |yA-yB|
3. 求直线的实长及对侧面投影面的夹角 角
|xA-xB|
[例题1] 已知 线段的实长AB,求它的水平投影。
AB垂直于AC,且AB平行于H面,则有ab ac
二、交叉垂直的两直线的投影
O
AB垂直于AC,且AB平行于H面,则有ab ac
[例题8] 过点A作线段EF的垂线AB,并使AB平行于V 面。
精品文档-工程制图(第二版)(周明贵-第3章
第3章 立体的投影
图3-12 棱锥台及其三视图 (a) 正三棱台;(b) 正四棱台;(c) 正六棱台
3.3 回转体的投影
第3章 立体的投影
由一条母线(直线或曲线)围绕轴线回转而形成的表 面,称为回转面(如图3-13所示);由回转面或回转面与平面 所围成的立体,称为回转体。
第3章 立体的投影
图3-13 回转面的形成 (a) 圆柱面的形成;(b) 圆锥面的形成;(c) 球面的形成
图3-7 已知主、左视图画俯视图 (a) 题目;(b) 立体图;(c) 画立板及前后通方孔的俯视图;
(d) 画前面圆柱的俯视图;(e) 加深,完成俯视图
第3章 立体的投影
3.2 平面立体的投影
3.2.1 棱柱体 1.棱柱体的三视图 图3-8所示为正五棱柱的投射情况。从图中可知,正五棱
柱的上顶面和下底面都是水平面,五个侧面(均为矩形)中,后 侧面是正平面,其余的四个侧面为铅垂面,五条侧棱线为铅垂 线。
第3章 立体的投影
第3章 立体的投影
3.1 物体的三视图 3.2 平面立体的投影 3.3 回转体的投影 3.4 平面与回转体相交 3.5 两回转体相交
第3章 立体的投影
3.1 物体的三视图
3.1.1 视图的基本概念 用正投影法绘制物体所得到的图形,称为视图。 应当指出,视图并不是观察者观看物体所得的直觉印象,
第3章 立体的投影
棱面△SAB是一般位置平面,过锥顶S及点M作一辅助线SⅡ(图 3-10(b)中即过m' 作s' 2',其水平投影为s2),然后根据直 线上的点的投影特性,求出其水平投影m,再由m'、m求出侧 面投影m″。若过点M作一水平辅助线ⅠM,同样可求得点M的 其余二投影。
工程制图 第三章 3-1
第三章平面体及其投影正投影图度量性好、作图简便,是绘制工程图样的基础。
本章首先介绍正投影法的基本知识,再讨论平面体的构成要素点、直线、平面的正投影特征及平面体正投影图的绘制。
§3-1 投影法基本知识一、投影法的建立及其分类1.投影法的建立物体在灯光或阳光的照射下,会在地面、桌面或墙壁上出现它的影子,如图3-1a所示,三角板在灯光的照射下,桌面出现了它的影子。
影子是一种自然现象,将影子这种自然现象进行几何抽象概括就会得到一个平面图形(图3-1b)。
在图3-1b中,S为投射中心,A、B、C 为空间点,平面H为投影面,S与点A、B、C的连线为投射线,SA、SB、SC的延长线与平面H的交点a、b、c,称为点A、B、C在平面H上的投影,将投影a、b、c按其空间关系连线得一平面图形。
这种将空间物体用平面图形(投影)表达的方法就称为投影法。
图3-1投影法的建立2. 投影法的分类投影法种类是根据投射线平行或汇交、投射线与投影面相对位置(垂直或倾斜)不同来区分的,投影法分为两类。
(1)中心投影法如图3-1b所示,投射线汇交于一点S(投射中心)的投影法,称为中心投影法。
用中心投影法得到的投影称为中心投影。
中心投影图形的大小随着投影面、物体和投射中心三者之间的相对距离不同而变化。
在工程上它主要用于绘制建筑物的透视图,机械图样较少采用。
图3-2平行投影法(2)平行投影法将图3-1b中的投射中心移至无穷远处时,所有的投射线都变成互相平行。
投射线相互平行的投影法,称为平行投影法。
用平行投影法得到的投影称为平行投影。
平行投影法根据投射线是否垂直于投影面又分为斜投影法与正投影法。
1)斜投影法投射线倾斜于投影面的平行投影法称为斜投影法。
用斜投影法得到的投影叫做斜投影(图3-2a)。
2)正投影法投射线垂直于投影面的平行投影法称为正投影法。
用正投影法得到的投影叫做正投影(图3-2b)。
正投影法的多面投影能准确完整地表达空间物体的形状和大小,作图比较简便,因此它在工程上应用非常广泛。
工程制图-第三章-直线、平面的相对位置
直线、平面的相对位置本章讨论直线与平面、平面与平面的相对位置关系及其投影,包括以下内容:1)平行关系:直线与平面平行,两平面平行。
2)相交关系:直线与平面相交,两平面相交。
§1 平行关系1.1 直线与平面平行定理:若一直线平行于平面上的某一直线,则该直线与此平面必相互平行。
以,直线EF平行于ABC平面。
[例1]过已知点k ,作一条水平线平行于△ABC 平面。
步骤:1)在ABC 平面内作一水平线AD ; 2)过点K 作 KL ∥AD ; 3)直线KL即为所求。
d′d l′lk′k a′a b′e′bc X[例2]试判断:已知直线AB是否平行于四棱锥的侧表面SCF。
作图步骤:1)作c'm'∥a'b';2)根据CM在平面SCF内,作出cm;3)由于cm不平行于ab,即在该平面内作不出与AB平行的直线,所以,直线AB不平行于四棱锥侧表面SCF。
1.2 平面与平面平行两平面相平行的条件是:如果一平面上的两条相交直线分别平行于另一平面上的两条相交直线,则此两平面平行。
所以:平面ABC 和平面DEF 相平行。
[例3]过点K作一平面,是其与平面ABC平行。
解:只要过K点作两条相交直线分别平行于△ABC的两条边,则这两条相交直线所确定的平面就是所求平面。
作图步骤:2)作KD∥AC(k'd'∥a'c',kd∥ac);a'cac'bb'k'kl'ld'dX1)作KL∥BC(k'l'∥b'c', kl∥bc); 3)平面KDL即为所求。
2.1 直线与平面相交2.1.1 利用积聚性求交点当平面或直线的投影有积聚性时,交点的两个投影中有一个可直接确定,另一个投影可用在直线上或平面上取点的方法求出。
⑴平面为特殊位置[例]求直线MN与平面ABC的交点K并判别可见性。
空间及投影分析平面ABC 是一正垂面,其V 投影积聚成一条直线,该直线与m'n'的交点即为K点的V 投影。
工程制图:第三章 制图基础
60
a)
b)
1:3
锥
18
度
18 1等分
18
3等分
25
25
a)
b)
1:6
60
c)
1:3
25
c)
41
4、圆弧连接-用圆弧连接已知直线或圆弧
绘制平面图形时,有时会遇到从一条直线或圆弧经 圆弧光滑地过渡到另一条直线或圆弧的情况,我们称 这种作图为圆弧连接。在中间起连接作用的圆弧称为 连接弧。连接弧与直线或圆弧的光滑过渡,其实质是 直线或圆弧与圆弧相切,切点称为连接点。
角度、弦长与弧长注法
狭小部位注法
斜度与锥度
斜度和锥度的图形符号应与斜度、锥度的方向 一致,圆锥符号基准线应与圆锥轴线平行。
其它标注示例
28
§3-2 绘图工具及使用
选用3号图板、丁字尺。
绘图仪器:圆规、分规。
绘图铅笔:H、HB、B。
标号“H”表示硬铅芯,画底稿线; 标号“B”表示软铅芯,加深图线; 标号“HB”用来写字。
圆弧连接基本类型
连接两直线
外切连接圆弧
内切连接圆弧
43
作半径R圆弧与两直线连接 O
作半径R圆弧与两已知圆外切 O3
作半径R圆弧与两已知圆内切 O3
§3-4 平面图形的分析和画法
绘制平面图形时,首先要对组成平面图形的各线段的形状 和位置进行分析,找出连接关系,明确哪些线段可以直接画 出,哪些线段需要通过几何作图才能画出,即平面图形的分 析,以确定平面图形的画法和尺寸标注。
线段
已知线段 已知线段的定形尺寸和定位尺寸。
中间线段
已知线段的定形尺寸及一个相切 或相交条件。
连接线段
已知线段的定形尺寸及两个相切 或相交条件。
第三章 工程制图A 立体的投影
二、棱锥
1.棱锥的组成
由一个底面和几个侧 棱面组成。侧棱线交于有 限远的一点——锥顶。
棱锥---底面是多边形,各侧面为 若干具有公共顶点的三角形。 正棱锥----底面为正多边形,各侧面 是全等的等腰三角形的棱锥。
S
棱锥的顶点
棱锥的侧棱
D
棱锥的侧面
E A
C
棱锥的底面
B
• 一个特殊的棱锥:正棱锥 把底面为正多边形,侧面是全等的三角形的棱 锥叫作正棱锥
第二节 曲面立体的投影
回转体——由回转面或回转面和平面围成的立体 母线
轴线
(a)形成
(b)回转体
•一动线绕一定线回转一周后形成的曲面称为回转面。
•形成回转面的动线称为母线,定线称为轴线, 母线在 回转面上的任意位置都称为素线。
O
轴线
母线
顶圆 素线 轴线
赤道圆
O
喉圆
纬圆 底圆
回转面的术语
在投影图上表示回转 体,就是把组成立体的 回转面或平面表示出来, 然后判断可见性。如图 所示。
棱台的分类:由三棱锥、四棱锥、五棱锥… 截得的棱台,分别叫做三棱台,四棱台,五 棱台…
棱台的表示法:棱台用表示上、下底面各顶
点的字母来表示,如图棱台ABCD-A1B1C1D1 。
A1 D1
C B1 1
正棱锥台----由正棱锥截得的棱台。 四棱锥台的投影图
(a) 直观图
(b) 投影图
平面立体投影可见性的判别规律
小结
1.平面立体投影的作图可归结为绘制平面 (立体表面)和(棱)线投影的作图。
2.在立体表面上取点、取线的方法与在 平面上取点、取线的方法相同。
——如果点或直线在特殊位置平面内,则 作图时,可充分利用平面投影有积聚性的 特点,由一个投影求出其另外两个投影;
工程制图 第三章
⑵ 圆锥的投影
投影特性: 当圆锥的轴线垂直某一个投影面 时,则圆锥在该投影面上的投影是 与其底面全等的圆形,另外两个投 影为等腰三角形。
⑶圆锥面上取点
★辅助直线法 如何在圆锥面上作直线? 过锥顶作一条素线 ★辅助圆法 圆的半径?
s
●
●
s
m
(n)
●
(n)
m
n●
s
m
3.圆球
⑴ 圆球的形成
完成开槽半圆球的水平投影和侧面投影
水平面截圆球的截交线的投影,在俯视 两个侧平面截圆球的截交线的投影,在 图上为部分圆弧,在侧视图上积聚为直线 侧视图上为部分圆弧,在俯视图上积聚为 直线
3.3 相贯线的性质及画法
两立体相交称为相贯,其表面产生的交线称为相贯线 相贯线特性
共有性 相贯线是两立体表面上的共有线,也是两 立体表面的分界线
1. 棱柱
棱柱的投影
六棱柱表面特征:
平面立体
①六个棱面为矩形,均垂直于顶面
和底面,且两两对应平行; ②顶面和底面均为正六边形,且相 互平行; ③棱线相互平行,且垂直于顶(底) 面。
六棱柱的三视图 作图步骤:
⑴画三面投影的对称中心线。
⑵画顶面(底面)的三面投
影。 ⑶分别连接上、下底面对应 顶点的同面投影,并判别可 见性。
辅助平面的选择原则 使辅助平面与两回转体表面截交线 的投影简单易画,例如直线或圆,一 般选择投影面平行面
例3.8 求轴线相互垂直的圆锥和圆柱的相贯线
● ● ● ●
●
● ● ●
解题步骤
●
●
★ 求特殊点 ★ 用辅助平面法求中间点
● ●
●
★ 光滑连接各点
工程制图第三章习题答案
答案
求圆锥被正垂面截切后的投影。
17页
3-3曲面立体的截交线
第三章 立体的投影
答案
8.
第三章 立体的投影
9.
3-3曲面立体的截交线
答案
求圆锥被正垂面截切后的投影。
17页
第三章 立体的投影
10.
3-3曲面立体的截交线
答案
补全球被正垂面截切后的投影。
17页
中点
长轴等于断面圆的直径
3-1 立体的投影及表面取点和线
答案
第三章 立体的投影
4.
3-1 立体的投影及表面取点和线
答案
画出立体的第三投影并补全点和线的其他两投影
第三章 立体的投影
5.
3-1 立体的投影及表面取点和线
答案
14页
画出立体的第三投影并补全点和线的其他两投影
(c)
b
e
d
a
c'
b'
d'
e'
c"
b"
a'
a"
e"
3-1 立体的投影及表面取点和线
答案
画出立体的第三投影并补全点和线的其他两投影
(d)
第三章 立体的投影
8.
3-1 立体的投影及表面取点和线
答案
只补画各点的水平投影。
14页
第三章 立体的投影
1.
3-2 平面立体的截交线
答案
求具有正方形通孔的六棱柱被正垂面截切后的侧面投影。
15页
第三章 立体的投影
求偏交圆台和球相贯线的投影。
R
R
1.取特殊点
步骤:
工程图学基础 04第三章 制图的基本知识
第三章制图的基本知识本章内容:第一节制图的一般规定第二节绘图工具简介第三节几何作图第四节平面图形的尺寸分析及绘图步骤第五节徒手绘图的方法第六节绘图的一般步骤第一节制图的一般规定机械图样是机械设计和制造过程中的重要文件,是技术思想交流的工具,为此必须有统一的标准和规定。
国家质量技术监督局不断吸收最新相关国际标准的成果,并密切结合我国工业生产及科学进步的实际需要,制定并颁布了《技术制图》和《机械制图》等国家标准,简称“国标”代号“GB”。
在国家标准GB/T14689~14691—1993、GB/T17450-1998 、GB4458.4-1984中分别对《图纸幅面和图框格式》、《比例》、《字体》、《图线》、《尺寸注法》等作了统一规定。
人人都必须树立标准化的概念,严格遵守,认真执行国家标准。
一、图纸幅面和格式(GB/T 14689‐1993)1、图纸幅面加长幅面的尺寸是由基本幅面的短边成整数倍增加后得出A4A3A 4A1A0A25A 44A 43A 33A 340210420630841105112611471168218922102252329759489111891486178320802378一、图纸幅面和格式(GB/T 14689‐1993)1、图纸幅面幅面代号B LecaA0A1A2A3A4 8411189594841420594297420210297 201010525(单位:mm)一、图纸幅面和格式(GB/T 14689‐1993)2、图框格式1)不留装订边的图纸图框线标题栏图框线标题栏ee eeeeeeBLBLa)b)标题栏L BcccL标题栏Bcccaa2、图框格式2)留有装订边的图纸一、图纸幅面和格式(GB/T 14689‐1993)3、标题栏标题栏位于图纸的右下角,其格式与尺寸按国标GB/T10610.1-1989 的规定。
180161216161010121216121216508⨯7=(56)18204⨯6.5=(26)1212(单位名称)(图样名称)(图样代号)重量比例阶段标记共张第张工艺审核批准设计标记处数分区签名(签名)更改文件(签名)(年月日)(年月日)年月日(材料标记)标准化30(日期)888888此线以上的明细表仅在装配图上使用1306540122512(图 名)(校 名)备注材料件数名称序号(图 号)材料比例(日期)审核制图( 32 )教学用标题栏二、比例(GB/T 14690 -1993)图样的比例是指图形要素的线性尺寸与实物相应要素的线性尺寸之比。
第3章.工程制图--立体的投影
面,另两个侧棱面为一
般位置平面。
b
返回本章目录
3.1.2 曲面立体的投影及表面上的点O
1.圆柱体
⑴ 圆柱体的组成
A
由圆柱面和两个底面组成。
圆柱面是由直线AA1绕与 它平行的轴线OO1旋转而成。
直线AA1称为母线。 圆柱面上与轴线平行的任 一直线称为圆柱面的素线。
1′ 3′ a
O1 A1 1″ 3″ a
P
P 轴线 = 交线为抛物线
返回本章目录
P 轴线 0 < 交线为双曲线
19
平面P与圆锥面的交线
P
P过锥顶 交线为直线
返回本章目录
归纳
P轴线 交线为圆 P 轴线 > 交线为椭圆 P 轴线 = 交线为抛物线
P 轴线 0< 交线为双曲线 P过锥顶 交线为直线
20
例 求截交线 P
椭是圆什短么轴点的?投影 P
【学习目标】学习基本体的投影;截交线和相 贯线。 【能力目标】通过本章的学习,要掌握基本体 的投影特性、投影图的画法以及表面上点的画 法;掌握求作截交线和相贯线的基本方法。
本章内容
3.1 基本立体的投影 3.2 切割体的投影 3.3 相贯体的投影 本章小结
返回总目录
3.1 基本体的投影
常见的基本几何体
4、圆环
圆环是由圆环面围成的立体。圆环面是由一圆母线绕 着与其共面,却不经过圆心的轴线旋转一周而形成的。 由圆母线外半圆回转形成的曲面称为外环面;由圆母 线内半圆回转形成的曲面称为内环面。
返回本章目录
返回本章目录
3.2 切割体的投影
在工程上经常看到一些不完整、带有缺口的基本 立体,这些立体都是被平面截切而形成的。
截交线分析 截截交交线线投为影椭分圆析 截检交查线外投形影轮仍廓为线椭投圆影
工程制图第三章习题答案
习题三解析
总结词
剖面图绘制
详细描述
这道题考察了如何绘制剖面图来表达物体的内部结构。通过 绘制不同形式的剖面图,理解了剖面图的特点和应用场景, 掌握了剖面图的绘制方法和注意事项。
巩固知识点
通过习题答案,学生可以更好地理解课程内容, 巩固所学知识点,加深对知识点的理解和记忆。
提高解题能力
习题答案可以帮助学生提高解题能力,掌握解题 技巧,熟悉考试形式和难度,为考试做好准备。
3
自我检测与反馈
习题答案可以让学生自我检测学习效果,发现自 己的不足之处,及时反馈问题,以便更好地调整 学习计划和策略。
先做习题
在查看答案之前,先尝试自己做一遍习题,尽量独立思考和解决问题。
对照答案
查看答案时,要认真对照自己的解题思路和方法,找出自己的不足之 处,及时纠正和改进。
总结归纳
在完成习题后,要总结归纳解题方法和技巧,形成自己的解题思路和 方法,以便更好地应对其他类似题目。
反复练习
对于自己不熟悉的题目或难度较大的题目,要反复练习,加深理解和 记忆,提高解题能力。
习题二答案
答案一
根据主视图和俯视图,可以得出该组合体的左视图。左视图是一个圆弧,半径 为10,圆心在中心线上,与水平线成30°角。
答案二
该组合体由一个圆柱和一个圆锥组成。圆柱的高为20,半径为10;圆锥的高为 30,底面半径为15。
习题三答案
答案一
根据主视图和左视图,可以得出该组合体的俯视图。俯视图是一个圆弧,半径为20, 圆心在中心线上,与水平线成60°角。