北京市西城区2014-2015第一学期九年级数学期末试卷及答案(扫描版)
2014-2015学年北京市西城区九年级(上)期末数学试卷-含详细解析
(2)求证:∠AOC=∠DBC;
(3)求 的值.
四、解答题(本大题共10小题,共57.0分)
16.计算:3tan30°+cos245°-2sin60°.
17.如图,在⊙O中,点P在直径AB的延长线上,PC,PD与⊙O相切,切点分别为点C,点D,连接CD交AB于点E.如果⊙O的半径等于3 ,tan∠CPO= ,求弦CD的长.
20.如图,小明同学在东西方向的环海路A处,测得海中灯塔P在它的北偏东60°方向上,在A的正东400米的B处,测得海中灯塔P在它的北偏东30°方向上.问:灯塔P到环海路的距离PC约等于多少米?( 取1.732,结果精确到1米)
21. 如图,在正方形ABCD中,有一个小正方形EFGH,其中顶点E,F,G分别在AB,BC,FD上.
11. 如图,点D为△ABC外一点,AD与BC边的交点为E,AE=3,DE=5,BE=4,要使△BDE∽△ACE,且点B,D的对应点为A,C,那么线段CE的长应等于______.
12.在平面直角坐标系xOy中,A(-m,0),B(m,0)(其中m>0),点P在以点C(3,4)为圆心,半径等于2的圆上,如果动点P满足∠APB=90°,
18.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.
(1)在正方形网格中,画出△AB′C′;
(2)计算线段AB在变换到AB′的过程中扫过区域的面积.(结果保留π)
19.某商店以每件20元的价格购进一批商品,若每件商品售价a元,则每天可卖出(800-10a)件.如果商店计划要每天恰好盈利8000元,并且要使每天的销售量尽量大,求每件商品的售价是多少元.
2014-2015年第一学期九年级数学试题答案
2014---2015学年度第一学期期末质量检测九年级数学试题 (答案)一、选择题(请把选择题答案填在下列表格中,每题3分,满分36分)二、填空题(本大题共8小题,每小题3分,共24分.) 13.1414. 24π 15. 35︒ 16. 80 17. 10 18. 2 三、解答题19.解: 1)设平均每次下调的百分率为x , 则6000(1-x )2=4860, 解得:x 1=0.1=10%, x 2=1.9(舍).故平均每周下调的百分率为10%.……………………5分 (2)方案1优惠:4860×100×(1-0.98)=9720(元); 方案2可优惠:80×100=8000(元). 故方案1优惠.…………………………9分 20. 解:设小明的身高为x 米,则CD=EF=x 米. 在Rt △ACD 中,∠ADC=90°,tan ∠CAD=AD CD ,即tan30°=xAD,AD=3x --2分 在Rt △BEF 中,∠BFE=90°,tan ∠EBF=EF BF ,即tan60°=x BF ,BF=x 33 ---4分 由题意得DF=2,∴BD=DF-BF=2-x 33,∵AB=AD+BD=4,∴3x+2-x 33=4 --7分即x=3.答:小明的身高为3米.------------------------------------------------------------------------9分21. 解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b═4,解得k=4,b=3,反比例函数的解析式是y=,一次函数解析式是y=x+3;…………4分(每个解析式2分)(2)如图,当x=﹣4时,y=﹣1,B(﹣4,﹣1),当y=0时,x+3=0,x=﹣3,C(﹣3,0)S△AOB=S△AOC+S△BOC==;…………8分(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.…………12分22.解:(1)∵x%+15%+10%+45%=1,∴x=30;…………1分∵调查的总人数=90÷45%=200(人),…………2分∴B等级人数=200×30%=60(人);C等级人数=200×10%=20(人),…………4分(求出1个1分)如图:…………5分(2)2500×(10%+30%)=1000(人),所以估计每周课外阅读时间量满足2≤t<4的人数为1000人;…………7分(3)3人学习组的3个人用甲表示,2人学习组的2个人用乙表示,画树状图为:,共有20种等可能的结果数,其中选出的2人来自不同小组占12种,…………10分所以选出的2人来自不同小组的概率==.…………12分23.(1)证明:∵AB是⊙O的切直径,∴∠ADB=90°,又∵∠BAD=∠BED,∠BED=∠DBC,∴∠BAD=∠DBC,∴∠BAD+∠ABD=∠DBC+∠ABD=90°,∴∠ABC=90°,∴BC是⊙O的切线;…………6分(2)解:∵∠BAD=∠DBC,∠C=∠C,∴△ABC∽△BDC,∴=,即BC2=AC•CD=(AD+CD)•CD=10,∴BC=.…………12分22.………………1分………………6分∴P 点的坐标为(5,2)………………12分………………7分………10分………………11分。
2014—2015学年第一学期初三年级数学期末考试试卷含答案
2014—2015学年第一学期初三年级期末质量抽测数学试卷2014.12学校姓名考试编号考生须知1.本试卷共6页,共五道大题,25个小题,满分120分.考试时间120分钟.2.在试卷和答题卡上认真填写学校名称、姓名和考试编号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.考试结束,请将答题卡交回.一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的.1.已知⊙O 1和⊙O 2的半径分别为3和5,如果O 1O 2= 8,那么⊙O 1和⊙O 2的位置关系是A .外切B.相交C.内切D.内含2.在不透明的布袋中装有2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球..的概率是A .15B.13C.25D.233.如图,⊙O 的直径AB=4,点C 在⊙O 上,如果∠ABC =30°,那么AC 的长是A .1B .2C .3D .24. 在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,使它与图中阴影部分组成的新图形构成中心对称图形,该小正方形的序号是A .①B .②C .③D .④5.如图,在△ABC 中,点D E 、分别在AB AC 、边上,DE ∥BC ,若:3:4AD AB,6AE,则AC 等于A. 3B. 4C . 6D. 86.当二次函数249y xx 取最小值时,x 的值为A .2B .1C .2D .9来源学|科|网ABC30°④③②①ABCODC BAO7.课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成30°角时,测得旗杆AB 在地面上的影长BC 为24米,那么旗杆AB 的高度约是A .12米B .83米C .24米D .243米[来源:]8.已知:如图,在半径为4的⊙O 中,AB 为直径,以弦AC (非直径)为对称轴将AC折叠后与AB 相交于点D ,如果3ADDB ,那么AC 的长为A .214B .27C .42D .6二、填空题(共4道小题,每小题4分,共16分)9.如果3cos 2A,那么锐角A 的度数为.10.如果一个圆锥的母线长为4,底面半径为1,那么这个圆锥的侧面积为.11.在1×2的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,如果第三枚棋子随机放在其它格点上,那么以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为.12.在平面直角坐标系xoy 中,直线2x 和抛物线2yax 在第一象限交于点A,过A 作ABx 轴于点B .如果a 取1,2,3,,,n 时对应的△AOB 的面积为123S S S ,,,,n S ,那么1S _____;123nS S S S _____.三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13.如图1,正方形ABCD 是一个 6 × 6网格的示意图,其中每个小正方形的边长为1,位于AD 中点处的点P 按图2的程序移动.(1)请在图中画出点P 经过的路径;(2)求点P 经过的路径总长.绕点A 顺时针旋转90°绕点B 顺时针旋转90°绕点C 顺时针旋转90°输入点P输出点ADPxOy[来源:.Com]14.计算:3tan302cos452sin 60.15.现有三个自愿献血者,两人血型为O 型,一人血型为A 型.若在三人中随意挑选一人献血,两年以后又从此三人中随意挑选一人献血,试求两次所献血的血型均为O 型的概率(要求:用列表或画树状图的方法解答).[来源:]16. 如图,从热气球C 处测得地面A 、B 两处的俯角分别为30°、45°,如果此时热气球C处的高度CD 为100米,点A 、D 、B 在同一直线上,求AB 两处的距离.17. 已知抛物线与x 轴相交于两点A(1,0),B(-3,0),与y 轴相交于点C (0,3).(1)求此抛物线的函数表达式;(2)如果点3,2Dm 是抛物线上的一点,求△ABD 的面积.18.如图,在△ABC 中,∠AB C =2∠C ,BD 平分∠ABC ,且2AD ,22BD ,求AB 的值.BCDADCBA四、解答题(共4道小题,每小题5分,共20分)19.如图,在平面直角坐标系xoy 中,⊙A 与y 轴相切于点3(0,)2B ,与x 轴相交于M 、N 两点.如果点M 的坐标为1(,0)2,求点N 的坐标.20.(1)已知二次函数223y xx ,请你化成2()y x h k的形式,并在直角坐标系中画出223y xx 的图象;(2)如果11()A x y ,,22()B x y ,是(1)中图象上的两点,且121x x ,请直接写出1y 、2y 的大小关系;(3)利用(1)中的图象表示出方程2210xx 的根来,要求保留画图痕迹,说明结果.21.已知:如图,在△ABC 中,AB =AC ,以AC 为直径的⊙O 与BC 交于点D ,DE ⊥AB ,垂足为E ,ED 的延长线与AC 的延长线交于点F .(1)求证:DE 是⊙O 的切线;(2)若⊙O 的半径为4,BE =2,求∠F 的度数.yxO AB MNyOxEOA22.阅读下面的材料:小明遇到一个问题:如图(1),在□ABCD 中,点E 是边BC 的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G. 如果3AF EF,求CD CG的值.他的做法是:过点E 作EH ∥AB 交BG 于点H ,则可以得到△BAF ∽△HEF .请你回答:(1)AB 和EH 的数量关系为,CG 和EH 的数量关系为,CD CG的值为.(2)如图(2),在原题的其他条件不变的情况下,如果(0)AF a a EF,那么CD CG的值为(用含a 的代数式表示).(3)请你参考小明的方法继续探究:如图(3),在四边形ABCD 中,DC ∥AB ,点E是BC 延长线上一点,AE 和BD 相交于点 F. 如果(00)AB BC m n mnCDBE,,,那么AF EF的值为(用含m ,n 的代数式表示).H(1)ABCDE FG G FE DCBA(2)(3)AB CDEF五、解答题(共3道小题,第23题7分,第24、25题各8分,共23分)23.由于2013年第30号强台风“海燕”的侵袭,致使多个城市受到影响. 如图所示,A 市位于台风中心M 北偏东15°的方向上,距离612千米,B 市位于台风中心M 正东方向603千米处. 台风中心以每小时30千米的速度沿MF 向北偏东60°的方向移动(假设台风在移动的过程中的风速保持不变),距离台风中心60千米的圆形区域内均会受到此次强烈台风的影响.(1)A 市、B 市是否会受到此次台风的影响?说明理由.(2)如果受到此次台风影响,该城市受到台风影响的持续时间为多少小时?备用图24.已知二次函数y = x 2–kx + k – 1(k >2).(1)求证:抛物线y = x 2–kx + k- 1(k >2)与x 轴必有两个交点;(2)抛物线与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,若tan 3OAC,求抛物线的表达式;(3)以(2)中的抛物线上一点P (m,n )为圆心,1为半径作圆,直接写出:当m 取何值时,x 轴与P 相离、相切、相交.25.已知:四边形ABCD 中,AD ∥BC ,AD=AB=CD ,∠BAD =120°,点E 是射线CD 上的一个动点(与C 、D 不重合),将△ADE 绕点A 顺时针旋转120°后,得到△ABE',连接EE'.(1)如图1,∠AEE'= °;(2)如图2,如果将直线AE 绕点A 顺时针旋转30°后交直线BC 于点F ,过点E 作EM∥AD 交直线AF 于点M ,写出线段DE 、BF 、ME 之间的数量关系;(3)如图3,在(2)的条件下,如果CE =2,AE=27,求ME 的长.xyO–1–21234–1–21234E'MFEDC BAE'EDCBA图1图2E'MFEDC BA图32014—2015学年第一学期初三年级期末质量抽测数学试卷参考答案及评分标准2014.12一、选择题(共8个小题,每小题4分,共32分)题号 1 2 3 4 5 6 7 8 答案 ACDBDABA二、填空题(共4个小题,每小题4分,共16分)题号9 10 1112答案304344 ,2n(n+1)(各2分)三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13.解:(1)如图所示:PAB CD,,,,,,,,,,,,,,,,,,,,2分(2)由题意得,点P 经过的路径总长为:270318091802n r .,,,,,,,,,,,4分14.解:原式=323322322,,,,,,,,,,,,,,,,,,,,,,3分=113,,,,,,,,,,,,,,,,,,,,,,4分=23.,,,,,,,,,,,,,,,,,,,,,,,,,,,,5分15.解:列表如下:O 1O 2 A O 1(O 1,O 1)(O 1,O 2)(O 1,A)O 2(O 2,O 1) (O 2,O 2) (O 2,A) A(A ,O 1)(A ,O 2) (A ,A),,,,,,,,,,,,,,,,,,,,,,,4分所以,两次所献血型均为O 型的概率为49.,,,,,,,,,,,,,,,,,,,,,,5分16.解:依题意,可知:30,45,,100,CABCBACD AB D CD 于点,,,,,,,,,,,,,,,1分,CD AB 90.CDACDB ,,,,,,,,,,,,,,,,,,,,,,,,,2分Rt 100BDC BDCD 在中,,,,,,,,,,,,,,,,,,,,,,,,3分Rt tan CDADC AAD在中,.∴31003AD CD .,,,,,,,,,,,,,,,,,,,,,,,,,4分1003100ABADBD.,,,,,,,,,,,,,,,,,,,,,,,5分∴AB 两处的距离为(1003100)米.17.解:(1)∵抛物线与y 轴相交于点C (0,3),∴设抛物线的解析式为23y axbx .,,,,,,,,,,,,,,,,,1分∵抛物线与x 轴相交于两点(1,0),(3,0)A B ,∴30,9330.a b a b ,,,,,,,,,,,,,,,,,,,,,,,,,,,2分解得:1,2.a b∴抛物线的函数表达式为:232yxx .,,,,,,,,,,,,,,,,3分(2)∵点3(,)2D m 是抛物线上一点,∴2(23339)224m . ,,,,,,,,,,,,,,,,,,,,,,4分∴119942242ABDDSAB y . ,,,,,,,,,,,,,,,,,,5分18.解:∵BD 平分∠ABC ,∴∠ABC =2∠1=2∠2.∵∠ABC =2∠C ,∴∠C =∠1=∠2.,,,,,,,,,,,1分∴22CD BD . ,,,,,,,,,,,,2分∴32AC.又∵∠A=∠A,∴△ABD ∽△ACB .,,,,,,,,,,,,,,,,,,,,,,,,,,,3分∴AD AB ABAC.,,,,,,,,,,,,,,,,,,,,,,,,,,,4分∴22326AB AD AC .∴6AB(舍负).,,,,,,,,,,,,,,,,,,,,,,,,,,5分四、解答题(共4道小题,每小题5分,共20分)19.解:连接AB 、AM ,过点A 作AC ⊥MN 于点C .∵⊙A 与y 轴相切于点B(0,32),∴AB ⊥y 轴.又∵AC ⊥MN ,x 轴⊥y 轴,∴四边形BOCA 为矩形.∴AC =OB=32,OC =BA .∵AC ⊥MN ,∴∠ACM=90°,MC=CN .,,,,,,,,,,,,,,,,,,,,2分∵M(12,0),∴OM =12.在Rt △AMC 中,设AM=r.O A B MNCyx21DCBA。
2014~2015学年度第一学期期末考试九年级数学试卷答案
2014——2015学年度第一学期期末测试九 年 级 数 学参考答案一、选择题:本大题共 小题,每小题 分,共 分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的代号填入题后括号内.. . .C . . . . . . . 二、填空题:本大题共 小题,每小题 分,共 分.请把最后结果填在题中横线上.. . . .52 .277.( , ) .- < < .②④三、解答题:本大题共 小题,共 分.解答时应写出文字说明、证明过程或演算步骤..(本小题满分 分)每图 分 .(本小题满分 分)解:由表可以看出,随机地摸取一个小球然后放回,再随机地摸出一个小球,可能出现的结果有 个,它们出现的可.能性相等.………… 分( )满足两次取的小球的标号相同的结果有 个,所以 ( ) 164 41.…… 分( )满足两次取的小球的标号的和等于 的结果有 个,所以 ( ) 163.… 分.(本小题满分 分)( ) π ( 分) ( )( 分)( )③( 分) .(本小题满分 分)证明:连接 .……………………………………………… 分 , .……………………… 分 切 于点 , .…………………… 分,,即 + , ∥ ,…………………………………………… 分 ,…………………………… 分 平分∠ .…………………………………… 分.(本小题满分 分)解:设所围成圆锥的底面半径和高分别为 和 .∵扇形半径为 ㎝,圆心角为 °, 12032180r ππ⋅⋅=,…………………………………………………………………… 分BCDO.(第,…………………………………………………………………………………… 分h ==.………………………………………………………………… 分.(本小题满分 分)解:( )令 ,得2230x x --=,……………………………………………………… 分解得 , - ,……………………………………………………………… 分 ∴抛物线与 轴交点坐标为( , )和(- , ).…………………………… 分 ( )令 ,得 - ,∴抛物线与 轴交点坐标为( ,- ),………………………………………… 分 ∴将此抛物线向上平移 个单位后可以经过原点.…………………………… 分 平移后抛物线解析式为22y x x =-.……………………………………… 分.(本小题满分 分)( )证明: , , , ,…………… 分 .……………………………………………………………… 分( )解: ,AD DEEF FC=.………………………… 分 , , , 52.…………………………………… 分, , 四边形 是平行四边形, ,…… 分 52 152.……………………………………………………… 分.(本小题满分 分)( )证明: 四边形 是正方形, , .…分, , ,…………………………… 分 ,…………………………………………………………………… 分 .…………………………………………………………………… 分 ( )解: 正方形的边长为 , x , -x . , DA AEEB BF=,…………………………………………… 分 44x x y =-, 2(4)144x x y x x -==-+,………………………………… 分.(本小题满分 分) 解:( )由题意得1060xy -=.………………………………………………………… 分( )由题意得1200040101)200)(1060()200(2++-=+-=+=x x x x x y z . 分 ( )由题意得)1060(201200040101202xx x y z w --++-=-=10800421012++-=x x .………………………………………… 分当每个房间的定价2102=-=abx (元)时, 有最大值,最大值是 .………分.(本小题满分 分)解:( )∵点 坐标为( , ),∴ .∵矩形 面积为 ,∴ ,…… 分∴抛物线的对称轴为直线 .………………………………………………… 分 ( ) , , ,MOMD MD AM =, MO AM MD ⋅=2.设 ,则 - . )3(4-=x x , 41=x ,12-=x , , 点坐标为( , ).… 分设抛物线的解析式为4)2(2+-=x a y . 将点 ( , )代入得443+=a , 41-=a , 抛物线的解析式为4)2(412+--=x y .…………………………… 分 ( )∵⊙ 在 轴上截得线段长为 , , 点纵坐标为 或 .…… 分在4)2(412+--=x y 中,令 或 得 4)2(4122+--=x 或4)2(4142+--=x ,……………………………… 分解得2221+=x ,2222-=x ,23=x ,点坐标为(222+, )、(222-, )或( , ).……………… 分。
【VIP专享】2014--2015年西城区初三数学期末试题及答案
C.1
B. y x 32 3
D. y x 32 3
C.9
C.m<5
C
D.60°
D.2
2015. 1
D.12
D.∠ACB= 90 ,AC=12,BC=5,
CD⊥AB 于点 D,那么 sin BCD 的值是
5
A.
12 12
C.
13
8.如图,在 10×10 的网格中,每个小方格都是边长为 1 的小正 方形,每个小正方形的顶点称为格点.如果抛物线经过图中 的三个格点,那么以这三个格点为顶点的三角形称为该抛物 线的“内接格点三角形”.设对称轴平行于 y 轴的抛物线与
网 格对角线 OM 的两个交点为 A,B,其顶点为 C,如果△
ABC
是该抛物线的内接格点三角形, AB 3 2 ,且点 A,B,C
5
B.
13 12
D.
5
的横坐标 xA , xB , xC 满足 xA < xB < xC ,那么符合上述条件的抛物线条数是
A.7
B.8
二、填空题(本题共 16 分,每小题 4 分) 9.在平面直角坐标系 xOy 中,点 A(2, n) 在反比例函数 y 6 的图象上, AB x 轴于
北京市西城区 2014-2015 学年度第一学期期末试卷
九年级数学
1.本试卷共 6 页,共五道大题,25 道小题,满分 120 分。考试时间 120 分钟。 考
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。 生
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。 须
4.在答题卡上,选择题、作图题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答。 知
A.130°
C.80°
北京市西城区九年级上期末考试数学试题及答案.doc
北京市西城区2013-2014学年度第一学期期末试卷九年级数学 2014.1作图题用一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.抛物线2(2)1y x =-+的顶点坐标是 A .(21),B .(21)-,C .(21)-,D .(21)--,2.如图,⊙O 是△ABC 的外接圆,若o 100AOB ∠=,则∠ACB 的度数是 A .40° B .50° C .60°D .80°3.若两个圆的半径分别为2和1,圆心距为3,则这两个圆的位置关系是 A .内含B .内切C .相交D .外切4.下列图形中,既是轴对称图形又是中心对称图形的是A B C D 5.在Rt △ABC 中,∠C =90°,若BC =1,AC =2,则sin A 的值为 A B C .12D .26.如图,抛物线2y ax bx c =++(0)a ≠的对称轴为直线12x =-.下列结论中,正确的是A .a <0B .当12x <-时,y 随x C .0a b c ++>D .当12x =-时,y7.如图,在平面直角坐标系xOy 纵坐标都是整数.若将△ABC 则旋转中心的坐标是A .(00),B .(10),C .(11)-,D .(2.50.5),8.若抛物线()2231y x m m =-+-(m 是常数)与直线1y x =+有两个交点,且这两个交点分别在抛物线对称轴的两侧,则m 的取值范围是 A .2m < B .2m >C .94m <D .94m >二、填空题(本题共16分,每小题4分)9.如图,△A BC 中,点D ,E 分别在AB ,AC 边上,DE ∥BC ,若2AD =,3DB =,1DE =,则BC 的长是 .10.把抛物线2=y x 向右平移1个单位,再向下平移3个单位,得到抛物线=y .11.如图,在△ABC 中,∠ACB =90°,∠ABC =30°,BC =2.将△ABC 绕点C 逆时针旋转α角后得到△A ′B ′C ,当点A 的对应点A' 落在AB 边上时,旋转角α的度数是 度,阴影部分的面积为 .12.在平面直角坐标系xOy 中,过点(65)A ,作AB ⊥x 轴于点B .半径为(05)r r <<的⊙A与AB 交于点C ,过B 点作⊙A 的切线BD ,切点为D ,连接DC 并延长交x 轴于点E .(1)当52r =时,EB 的长等于 ;(2)点E 的坐标为 (用含r 的代数式表示).三、解答题(本题共30分,每小题5分) 13.计算:2sin603tan302tan60cos45︒+︒-︒⋅︒.14.已知:二次函数23y x bx =+-的图象经过点(25)A ,. (1)求二次函数的解析式;(2)求二次函数的图象与x 轴的交点坐标;(3)将(1)中求得的函数解析式用配方法化成2()y x h k =-+的形式.15.如图,在梯形ABCD 中,AB ∥DC ,∠A =90°,点P 在AD 边上,且PC PB ⊥.若AB =6,DC =4,PD =2,求PB 的长.16.列方程或方程组解应用题:“美化城市,改善人民居住环境”是城市建设的一项重要内容.某市近年来,通过植草、栽树、修建公园等措施,使城区绿地面积不断增加,2011年底该市城区绿地总面积约为75公顷,截止到2013年底,该市城区绿地总面积约为108公顷,求从2011年底至2013年底该市城区绿地总面积的年平均增长率.17.如图,为了估算某河的宽度,在河对岸边选定一个目标点A ,在近岸取点B ,C ,D ,使得AB ⊥BD ,∠ACB =45°,∠ADB =30°,并且点B ,C ,D 在同一条直线上.若测得CD =30米,求河宽AB (结果精确到11.73 1.41).18.如图,AB 是⊙O 的弦,OC ⊥AB 于点C ,连接OA ,AB =12,cos A (1)求OC 的长;(2)点E ,F 在⊙O 上,EF ∥AB .若EF =16,直接写出EF 与AB 之间的距离.四、解答题(本题共20分,每小题5分)19.设二次函数2143y x x =-+的图象为C 1.二次函数22(0)y ax bx c a =++≠的图象与C 1关于y 轴对称.(1)求二次函数22y ax bx c =++的解析式; (2)当3x -<≤0时,直接写出2y 的取值范围; (3)设二次函数22(0)y ax bx c a =++≠图象的顶点为点A ,与y 轴的交点为点B ,一次函数3y kx m =+( k ,m 为常数,k ≠0)的图象经过A ,B 两点,当23y y <时,直接写出x 的取值范围.ABCO20.如图,在矩形ABCD 中,E 是CD 边上任意一点(不与点C ,D 重合),作AF ⊥AE 交CB 的延长线于点F . (1)求证:△ADE ∽△ABF ;(2)连接EF ,M 为EF 的中点,AB =4,AD =2,设DE =x ,①求点M 到FC 的距离(用含x 的代数式表示);②连接BM ,设2BM y =,求y 与x 之间的函数关系式,并直接写出BM 的长度的最小值.21.如图,AB 是⊙O 的直径,点C 在⊙O 上,连接BC ,AC ,作OD ∥BC 与过点A 的切线交于点D ,连接DC 并延长交AB 的延长线于点E . (1)求证:DE 是⊙O 的切线;(2)若23CE DE =,求cos ABC ∠的值.22.阅读下面材料:定义:与圆的所有切线和割线.......都有公共点的几何图形叫做这个圆的关联图形. 问题:⊙O的半径为1,画一个⊙O 的关联图形.在解决这个问题时,小明以O 为原点建立平面直角坐标系xOy 进行探究,他发现能画出很多⊙O 的关联图形,例如:⊙O 本身和图1中的△ABC (它们都是封闭的图形),以及图2中以O 为圆心的 (它是非封闭的图形),它们都是⊙O 的关联图形.而图2中以P ,Q 为端点的一条曲线就不是⊙O 的关联图形.参考小明的发现,解决问题:(1)在下列几何图形中,⊙O 的关联图形是 (填序号);(DmE① ⊙O 的外切正多边形 ② ⊙O 的内接正多边形③ ⊙O 的一个半径大于1的同心圆(2)若图形G 是⊙O 的关联图形,并且它是封闭的,则图形G 的周长的最小值是____; (3)在图2中,当⊙O 的关联图形 的弧长最小时,经过D ,E 两点的直线为y =__; (4)请你在备用图中画出一个⊙O 的关联图形,所画图形的长度l 小于(2)中图形G的周长的最小值,并写出l 的值(直接画出图形,不写作法).五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.已知:二次函数2314y x mx m =-++(m 为常数).(1)若这个二次函数的图象与x 轴只有一个公共点A ,且A 点在x 轴的正半轴上. ①求m 的值;②四边形AOBC 是正方形,且点B 在y 轴的负半轴上,现将这个二次函数的图象平移,使平移后的函数图象恰好经过B ,C 两点,求平移后的图象对应的函数解析式;(2) 当0≤x ≤2时,求函数2314y x mx m =-++的最小值(用含m 的代数式表示).24.已知:△ABC ,△DEF 都是等边三角形,M 是BC 与EF 的中点,连接AD ,BE . (1)如图1,当EF 与BC 在同一条直线上时,直接写出AD 与BE 的数量关系和位置关系;(2)△ABC 固定不动,将图1中的△DEF 绕点M 顺时针旋转α(o 0≤α≤o 90)角,如图2所示,判断(1)中的结论是否仍然成立,若成立,请加以证明;若不成立,说明理由;(3)△ABC 固定不动,将图1中的△DEF 绕点M 旋转α(o 0≤α≤o 90)角,作DH ⊥BC于点H .设BH =x ,线段AB ,BE ,ED ,DA 所围成的图形面积为S .当A B =6,DE =2时,求S 关于x 的函数关系式,并写出相应的x 的取值范围.图2备用图图1(DmE25.已知:二次函数224y ax ax =+-(0)a ≠的图象与x 轴交于点A ,B (A 点在B 点的左侧),与y 轴交于点C ,△ABC 的面积为12. (1)①填空:二次函数图象的对称轴为 ; ②求二次函数的解析式;(2) 点D 的坐标为(-2,1),点P 在二次函数图象上,∠ADP 为锐角,且tan 2ADP ∠=,求点P 的横坐标;(3)点E 在x 轴的正半轴上,o 45OCE ∠>,点O 与点O '关于EC 所在直线对称.作ON ⊥EO '于点N ,交EC 于点M .若EM ·EC =32,求点E 的坐标.北京市西城区2013-2014学年度第一学期期末九年级数学试卷参考答案及评分标准 2014.1三、解答题(本题共30分,每小题5分) 13.解:2sin603tan302tan60cos45︒+︒-︒⋅︒.2322=- ................................................................................... 4分= ............................................................................................................... 5分14.解:(1)∵ 二次函数23y x bx =+-的图象经过点A (2,5),∴ 4235b +-=. .......................................................................................... 1分 ∴ 2b =.∴ 二次函数的解析式为223y x x =+-. ................................................... 2分 (2)令0y =,则有2230x x +-=.解得13x =-,21x =.∴ 二次函数的图象与x 轴的交点坐标为(3,0)-和(1,0). .......................... 4分 (3)223y x x =+-2(21)4x x =++-2(1)4x =+-. ............................................................................................. 5分15.解:∵ 在梯形ABCD 中,AB ∥CD ,∠A =90°,∴ ∠D =90°.∴ 90DCP DPC ∠+∠=︒. ∵PC PB ⊥,∴∠BPC =90°,90DPC APB ∠+∠=︒.∴∠DCP =∠APB . ................................................. 2分 ∴t an an t DCP APB =∠∠. 在Rt △PCD 中, CD =2,PD =4, ∴1tan 2PD DCP CD ∠==.在Rt △PBA 中,AB =6, ∴tan AB APB PA∠=.∴162PA=. ∴12PA =. ............................................................................................................... 4分∴PB .................................................................................. 5分16.解:设从2011年底至2013年底该市城区绿地总面积的年平均增长率是x . ......... 1分依题意,得275(1)108x +=. ................................................................................. 2分整理,得236(1)25x +=. .......................................................................................... 3分615x +=±.解得x 1=0.2=20%,x 2=-2.2(舍去). ................................................................... 4分 答:从2011年底至2013年底该市城区绿地总面积的年平均增长率是20%. ........ 5分 17.解:设河宽AB 为x 米. ............................................................................................... 1分AC B (2)2或14. ....................................................................................................... 5分四、解答题(本题共20分,每小题5分)19.解:(1)二次函数2143y x x =-+图象的顶点(2,1)-关于y 轴的对称点坐标为(2,1)--,········································································· 1分∴ 所求的二次函数的解析式为22(2)1y x =+-, ································ 2分即2243y x x =++.(2)1-≤2y ≤3. ·················································································· 4分(3)20x -<<. ··················································································· 5分20.(1)证明:∵ 在矩形ABCD 中,∠DAB =∠ABC =∠C =∠D =90°.∴ 90ABF D ∠=∠=︒. ∵ AF ⊥AE ,∴ ∠EAF =90DAE EAB DAB ∠+∠=∠=︒. ∴ 90BAE BAF ∠+∠=︒. ∴ ∠DAE =∠BAF .∴ △ADE ∽△ABF . ······························································ 2分(2)解:①如图,取FC 的中点H ,连接MH .∵ M 为EF 的中点,∴ MH ∥DC ,12MH EC =. ∵ 在矩形ABCD 中,∠C =90°, ∴ MH ⊥FC ,即MH 是点M 到FC 的距离. ∵ DE =x ,DC =AB =4. ∴ EC =4x -,∴ 12MH EC =122x =-.即点M 到FC 的距离为MH 122x =-. .................................................. 3分 ②∵△ADE ∽△ABF ,∴ DE BF AD AB =. ∴ 24x BF =. ∴ 2BF x =,FC =22x +,FH = CH =1x +. ∴ 1HB BF HF x =-=-. ∵ 122MH x =-, ∴ 在Rt △MHB 中,222221(2)(1)2MB BH MH x x =+=-+-25454x x =-+. ∴ 25454y x x =-+(04x <<), ............................................................ 4分当85x =时,BM 长的最小值是. ................................................... 5分21.(1)证明:如图,连接OC .∵ AD 是过点A 的切线,AB 是⊙O 的直径, ∴ AD ⊥AB , ∴ ∠DAB =90°. ∵ OD ∥BC ,HMDFAECB∴ ∠DOC =∠OCB ,∠AOD =∠ABC . ∵ OC =OB , ∴ ∠OCB =∠ABC . ∴ ∠DOC =∠AOD . 在△COD 和△AOD 中,OC = OA , ∠DOC =∠AOD ,OD=OD ,∴ △COD ≌△AOD . .................................................................................................. 1分 ∴ ∠OCD=∠DAB = 90°. ∴ OC ⊥DE 于点C . ∵ OC 是⊙O 的半径,∴ DE 是⊙O 的切线. ............................................................................................. 2分(2)解:由23CE DE =,可设2(0)CE k k =>,则3DE k =... ........................................ 3分∴ AD DC k ==. ∴ 在Rt △DAE 中,AE =.∴ tan E =AD AE =∵ 在Rt △OCE 中,tan 2OC OCE CE k==. ∴ 2OC k=, ∴ OC OA ==∴ 在Rt △AOD 中,OD ... ................................................ 4分 ∴ cos cos OA ABC AOD OD ∠=∠=... ............................................................... 5分 22.解:(1)①③; .......... 2分(2)2π; ............ 3分 (3)x -- ... 4分(4)答案不唯一,所画图形是非封闭的,长度l 满足2π+≤ l <2π. 例如:在图1中l 2=π+,在图2中l =6. .......... 5分阅卷说明:在(1)中,只填写一个结果得1分,有错误结果不得分;在(4)中画图正确且图形长度都正确得1分,否则得0分.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)图1 图223.解:(1)①∵ 二次函数2314y x mx m =-++的图象与x 轴只有一个公共点A , ∴ ∆2341(1)04m m =-⨯⨯+=. .................................................................... 1分 整理,得2340m m --=.解得,14m =,21m =-.又点A 在x 轴的正半轴上,∴ 0m >.∴ m =4. ............................................................................................................ 2分②由①得点A 的坐标为(20),.∵ 四边形AOBC 是正方形,点B 在y 轴的负半轴上,∴ 点B 的坐标为(02)-,,点C 的坐标为(22)-,. ...................................... 3分 设平移后的图象对应的函数解析式为2y x bx c =++(b ,c 为常数).∴ 2,42 2.c b c =-⎧⎨++=-⎩解得2,2.b c =-⎧⎨=-⎩ ∴平移后的图象对应的函数解析式为222y x x =--...................................... 4分 (2)函数2314y x mx m =-++的图象是顶点为23(,1)244m m m -++,且开口向上的抛物线.分三种情况:(ⅰ)当02m <,即0m <时,函数在0≤x ≤2内y 随x 的增大而增大,此时函数的最小值为314m +; (ⅱ)当0≤2m ≤2,即0≤m ≤4时,函数的最小值为23144m m -++; (ⅲ)当22m >,即4m >时,函数在0≤x ≤2内y 随x 的增大而减小,此时函数的最小值为554m -+. 综上,当0m <时,函数2314y x mx m =-++的最小值为314m +; 当04m ≤≤时,函数2314y x mx m =-++的最小值为23144m m -++; 当4m >时,函数2314y x mx m =-++的最小值为554m -+. ............... 7分24.(1)AD BE=,AD BE ⊥. ........................................................................................ 2分(2)证明:连接DM ,AM . 在等边三角形ABC 中,M 为BC 的中点,∴ AM BC ⊥,1302BAM BAC ∠=∠=︒,AM BM∴ 90BME EMA ∠+∠=︒.同理,DM EM90AMD EMA ∠+∠=︒. ∴ AM DM BM EM=,AMD BME ∠=∠. ······· 3分 ∴ △ADM ∽△BEM .∴AD DM BE EM= ................................................................................ 4分 延长BE 交AM 于点G ,交AD 于点K . ∴ MAD MBE ∠=∠,BGM AGK ∠=∠.∴ 90GKA AMB ∠=∠=︒.∴ AD BE ⊥. ............................................................................................ 5分(3)解:(ⅰ)当△DEF 绕点M 顺时针旋转α(o 0≤α≤o 90∵ △ADM ∽△BEM ,∴ 2()3ADM BEM S AD S BE∆∆==. ∴ 13BEM ADM S S ∆∆= ∴ ABM ADM BEM DEM S S S S S ∆∆∆∆=+--23ABM ADM DEM S S S ∆∆∆=+- 121133)12322x =⨯⨯⨯⨯--⨯ =+∴ S = (3≤x ≤3+. ........................................................... 6分(ⅱ) 当△DEF 绕点M 逆时针旋转α(o 0≤α≤o 90)角时,可证△ADM ∽△BEM ,∴ 21()3BEM ADM S BM S AM ∆∆==. ∴ 13BEM ADM S S ∆∆=. ∴ ABM BEM ADM DEM S S S S S ∆∆∆∆=+--23ABM ADM DEM S S S ∆∆∆=-- 21)32x =⨯⨯-=∴ S =+(3x ≤3).综上,S +(3≤x ≤3+). ......................................................... 7分25.解:(1)①该二次函数图象的对称轴为直线1x =-; ................................................ 1分②∵∴∵ ∴..................................... 2分 (2)如图,作(ⅰ)∴在Rt △ADF 中,o 90AFD ∠=,得tan 2ADF DF∠==.延长DF 与抛物线交于点P 1,则P 1点为所求. ∴点P 1的坐标为(24)--,. ....................................................................... 3分 (ⅱ)当点P 在直线AD 的上方时,延长P 1A 至点G 使得AG =AP 1,连接DG ,作GH ⊥x 轴于点H ,如图所示.可证 △GHA ≌△1PFA . ∴ HA =AF ,GH = P 1 F ,GA =P 1A .又∵ (40)A -,,1(2P --,∴ 点G 的坐标是(64)-,在△ADP 1中, DA =DP 1=5,1AP =,∴ 22211DA AP DP +=.∴ 1o 90DAP ∠=.∴ DA ⊥1GP .∴ 1DG DP =.∴ 1ADG ADP ∠=∠.∴ 1tan tan ADG ADP ∠=∠P 2,则P 2点为所求.作DK2S ∥GK 交DK 于点S .设P 4)x -, 则22241522S x x x x P =+--=+-,2DS x =--. 由2P S DS =,3GK =,4DK =,得2152234x x x +---=. 140x -=.∵ P 2点在第二象限,∴ P 2点的横坐标为71614x --=(舍正). 综上,P 点的横坐标为-2或71614--. ..................................................... 5分 (3)如图,连接O O ',交CE 于T .连接O 'C . ∵ 点O 与点O '关于EC 所在直线对称,∴ O O '⊥CE ,OCE ∠=∠O 'CE ,∠C O 'E o 90COE =∠=.∴ O 'C ⊥O 'E .∵ ON ⊥O 'E ,∴ O 'C ∥O N .∴ OMC ∠=∠O 'C E OCE =∠.分 ∴ CT MT =.∵ 在Rt △ETO 中,o 90ETO ∠=,cos ET OEC OE∠=, 在Rt △COE 中,o 90COE ∠=,cos OE OEC EC∠=, ∴ OE ET EC OE=. ∴ 2OE ET EC =⋅()EM TM EC =+⋅EM EC TM EC =⋅+⋅ 32TM EC =+⋅.同理 2OC CT EC =⋅TM EC =⋅16=.∴ 2321648OE =+=.∵ 0OE >,∴ 43OE =.∵ 点E 在x 轴的正半轴上,∴ E 点的坐标为(43,0). ............................................................................... 8分。
2015年北京市西城区初三上学期期末考试数学试卷(附答案)
2015年北京市西城区初三上学期期末考试数学试卷满分:班级:_________ 姓名:_________ 考号:_________一、单选题(共8小题)1.二次函数的最大值是()A.B.C.1D.22.如图,四边形ABCD内接于⊙O,E为CD延长线上一点,如果∠ADE=120°,那么∠B等于()B.120°C.80°D.60°A.130°3.下列手机软件图标中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.把抛物线向右平移3个单位,再向下平移2个单位,得到抛物线()A.B.C.D.5.△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1∶2,如果△ABC的面积是3,那么△A′B′C′的面积等于()B.6C.9D.12A.36.如果关于x的一元二次方程有实数根,那么m的取值范围是()A.m>2B.m≥3C.m<5D.m≤57.如图,在Rt△ABC中,∠ACB=,AC=12,BC=5,CD⊥AB于点D,那么的值是()A.B.C.D.8.如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为该抛物线的“内接格点三角形”.设对称轴平行于y轴的抛物线与网格对角线OM的两个交点为A,B,其顶点为C,如果△ABC是该抛物线的内接格点三角形,,且点A,B,C的横坐标,,满足<<,那么符合上述条件的抛物线条数是()B.8C.14D.16A.7二、填空题(共4小题)9.在平面直角坐标系xOy中,点在反比例函数的图象上,x轴于点B,那么△AOB的面积等于.10.如图,将△ABC绕点A按顺时针方向旋转某个角度得到△AB′C′,使AB′∥CB,CB,AC′的延长线相交于点D,如果∠D=28°,那么 °.11.如图,点D为△ABC外一点,AD与BC边的交点为E,AE=3,DE=5,BE=4,要使△BDE∽△ACE,且点B,D的对应点为A,C,那么线段CE的长应等于.12.在平面直角坐标系xOy中,,(其中),点P在以点为圆心,半径等于2的圆上,如果动点P满足,(1)线段的长等于(用含m 的代数式表示);(2)m的最小值为.三、解答题(共13小题)13.计算:14.解方程:15.如图,在⊙中,点P在直径AB的延长线上,PC,PD与⊙相切,切点分别为点C,点D,连接交AB于点E.如果⊙的半径等于,,求弦的长.16.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A,B,C都在格点上,将△绕点A顺时针方向旋转90°得到△.(1)在正方形网格中,画出△;(2)计算线段AB在旋转到的过程中所扫过区域的面积.(结果保留)17.某商店以每件20元的价格购进一批商品,若每件商品售价a元,则每天可卖出件.如果商店计划要每天恰好盈利8000元,并且要使每天的销售量尽量大,求每件商品的售价是多少元.18.如果关于x的函数的图象与x轴只有一个公共点,求实数a的值.19.如图,小明同学在东西方向的环海路A处,测得海中灯塔P在它的北偏东60°方向上,在A 的正东400米的B处,测得海中灯塔P在它的北偏东30°方向上.问:灯塔P到环海路的距离PC约等于多少米?(取1.732,结果精确到1米)20.如图,在正方形ABCD中,有一个小正方形EFGH,其中顶点E,F,G分别在AB,BC,FD上.(1)求证:△EBF∽△FCD;(2)连接DH,如果BC=12,BF=3,求的值.21.如图,在⊙O中,弦BC,BD关于直径AB所在直线对称.E为半径OC上一点,,连接AE并延长交⊙O于点F,连接DF交BC于点M.(1)请依题意补全图形;(2)求证:;(3)求的值.22.已知抛物线C:.(1)补全表中A,B两点的坐标,并在所给的平面直角坐标系中画出抛物线C;(2)将抛物线C上每一点的横坐标变为原来的2倍,纵坐标变为原来的,可证明得到的曲线仍是抛物线,(记为),且抛物线的顶点是抛物线C的顶点的对应点,求抛物线对应的函数表达式.23.如图,在平面直角坐标系xOy中,点,在反比例函数(m为常数)的图象G上,连接AO并延长与图象G的另一个交点为点C,过点A的直线l与x轴的交点为点,过点C作CE∥x轴交直线l于点E.(1)求m的值及直线l对应的函数表达式;(2)求点E的坐标;(3)求证:.24.如图,等边三角形ABC的边长为4,直线l经过点A并与AC垂直.当点P在直线l上运动到某一位置(点P不与点A重合)时,连接PC,并将△ACP绕点C按逆时针方向旋转得到△BCQ,记点P的对应点为Q,线段PA的长为m().(1)①= ;②如图1,当点P与点B在直线AC的同侧,且时,点Q到直线l的距离等于;(2)当旋转后的点Q恰好落在直线l上时,点P,Q的位置分别记为,.在图2中画出此时的线段及△,并直接写出相应m的值;(3)当点P与点B在直线AC的异侧,且△PAQ的面积等于时,求m的值.25.如图1,对于平面上不大于的,我们给出如下定义:若点P在的内部或边界上,作于点E,于点,则称为点P相对于的“点角距离”,记为.如图2,在平面直角坐标系xOy中,对于,点P为第一象限内或两条坐标轴正半轴上的动点,且满足5,点P运动形成的图形记为图形G.(1)满足条件的其中一个点P的坐标是,图形G与坐标轴围成图形的面积等于;(2)设图形G与x轴的公共点为点A,已知,,求的值;(3)如果抛物线经过(2)中的A,B两点,点Q在A,B两点之间的抛物线上(点Q可与A,B两点重合),求当取最大值时,点Q的坐标.答案部分1.考点:二次函数试题解析:此函数的表达形式为顶点式,在顶点处取最值,所以最大值为-2,故选A答案:A2.考点:与圆有关的计算试题解析:圆内接四边形对角互补,圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角),由题意可知选B答案:B3.考点:轴对称与轴对称图形中心对称与中心对称图形试题解析:在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么就说明这两个图形关于这个点成中心对称。
2014-2015学年北京市西城区九年级(上)期末数学试卷
【解答】解:A、∵此图形旋转 180°后不能与原图形重合,∴此图形不是中心对
称图形,是轴对称图形,故 A 选项错误;
B、∵此图形旋转 180°后不能与原图形重合,∴此图形不是中心对称图形,也不
是轴对称图形,故 B 选项错误;
C、∵此图形旋转 180°后不能与原图形重合,∴此图形不是中心对称图形,是轴
(1)请依题意补全图形; (2)求证:∠AOC=∠DBC; (3)求 的值.
22.(5 分)已知抛物线 C:y=x2+2x﹣3.
抛物线
顶点坐标
与 x 轴交点坐标
与 y 轴交点 坐标
抛物线 C: A( y=x2+2x﹣3
)
B(
)
(1,0) (0,﹣3)
变换后的抛物
线 C1 (1)补全表中 A,B 两点的坐标,并在所给的平面直角坐标系中画出抛物线 C;
那么∠B 等于( )
A.130°
B.120°
C.80°
D.60°
3.(4 分)下列手机软件图标中,既是轴对称图形又是中心对称图形的是( )
A.
B.
C.
D.
4.(4 分)把抛物线 y=x2+1 向右平移 3 个单位,再向下平移 2 个单位,得到抛物
线( )
A.y=(x+3)2﹣1 B.y=(x+3)2+3 C.y=(x﹣3)2﹣1D.y=(x﹣3)2+3
18.(5 分)如果关于 x 的函数 y=ax2+(a+2)x+a+1 的图象与 x 轴只有一个公共 点,求实数 a 的值.
四、解答题(本题共 20 分,每小题 5 分) 19.(5 分)如图,小明同学在东西方向的环海路 A 处,测得海中灯塔 P 在它的
2014-2015学年度第一学期期末考试九年级 数学
2014-2015学年度第一学期期末考试九年级 数学班级 姓名 座号 成绩一、选择题(每小题3分,共21分)1. 下列运算中正确的是 ( ) A .623=⨯ ; B. 532=+ ;C. 6)23(2= ;D. 3)3(2-=-.2.下列根式中与2是同类二次根式的是 ( )A. 8;B. 9;C. 10;D. 12 . 3. 若5.0sin =α,则锐角α等于 ( )A .15°;B .30°;C .45°;D .60°.4. 有一种竞猜游戏的规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸就不得奖.小王随机翻动一个商标牌,那么他获奖的概率是 ( )A .21;B .31;C .41;D .51. 5. 用配方法解方程0322=-+x x ,下列配方结果正确的是( )A .2)1(2=-x ;B .4)1(2=-x ;C .2)1(2=+x ;D .4)1(2=+x . 6.如图,△DEF 与△ABC 是位似图形,点O 是位似中心, D 、E 、F 分别是OA 、OB 、OC 的中点,则△DEF 与△ABC的面积比是( ) A .1∶6 B .1∶5C .1∶4D .1∶27.如图,将一个大三角形剪成一个梯形..及一个小三角形,若梯形上、下底的长分别为7、14,两腰长为12、16,则剪出的小三角形是( )二、填空题:每小题4分,共40分。
8.当x 时,二次根式2-x 有意义.9.若1=x 是方程032=-ax 的一个根,则a =________.B 6 7 8 A 9 7 12C 10 7 14D 12 7 16(第7题)16 12 14 7A B C D E O F (第6题)10. 比较大小:.(填“>”、“<”或“=”号)11.方程062=-x x 的根为 .12. 计算:)25)(25(-+= ________.13. 若两个相似三角形的相似比为2:5, 则它们对应周长的比为 . 14. 如图,AB 与CD 相交于点O ,OA=3,OB=5,0D=6. 当OC= 时,图中的两个三角 形相似. (只需写出一个条件即可)15. 在△ABC 中,D 、E 分别为AB 、AC 的中点,DE=5cm ,则BC= cm .16. 如果,那么=+bb a . 17. 泉港区地处“天然良港”的湄洲湾南岸,在比例尺为1:80000的地图上,量得我区的深水海岸线的总长约为27cm ,则我区的深水海岸线的实际总长约为 千米.三、解答题:18.(9分)计算:663224+⨯-.19. (9分)解方程:0142=-+x x .A D CB 第14题 O20.(9分)某商场2008年高效节能灯的年销售量为5万只,2010年达到7.2万只.已知2008年到2010年每年销售量的增长率相同,求每年销售量的增长率.21..(12分)如图,将梯子AB斜靠在一面墙上,底端B与墙角C的距离为1.3米,梯子与地面的夹角为65°,求梯子AB的长度.(精确到0.1米)A65°BC。
2014~2015学年度第一学期期末检测九年级数学试卷(选用)附答案
2014~2015学年度第一学期期末检测九年级数学试卷(选用)(考试时间120分钟 满分120分)成绩一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的. 1.一元二次方程x 2-2x =0的解为A .x = 2B .x 1 = 0,x 2 = 2C .x 1 = 0,x 2 = -2D .x 1 = 1,x 2 = 2 2. 抛物线2(1)2y x =-+的顶点坐标是 A .(1,2)B .(1,-2)C .(-1, 2)D .(-1,-2)3.下列图形是中心对称图形的是A B C D4. 如图,A ,B ,C 是⊙O 上的三个点,若∠C =35°,则∠AOB 的度数为 A .35° B . 55° C .65° D . 70°5. 如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点 均在格点上,则tan ∠ABC 的值为A .3B .34C 5D .16.下列事件是随机事件的是 A .明天太阳从东方升起B .任意画一个三角形,其内角和是360°C .通常温度降到0℃以下,纯净的水结冰D .射击运动员射击一次,命中靶心7.一个矩形的长比宽相多3cm ,面积是25cm 2,求这个矩形的长和宽.设矩形的宽为x cm , 则所列方程正确的是A .x 2-3x +25=0B .x 2-3x -25=0C .x 2+3x -25=0D .x 2+3x -50=0B8.如图,点C 是以点O 为圆心,AB 为直径的半圆上的动点(点C 不与 点A ,B 重合),AB =4.设弦AC 的长为x ,△ABC 的面积为y ,则 下列图象中,能表示y 与x 的函数关系的图象大致是A B C D二、填空题(本题共16分,每小题4分)9.如图,A 是反比例函数(0)ky x x=>图象上的一点,AB 垂直于x 轴,垂足为B ,AC 垂直于 y 轴,垂足为C ,若矩形ABOC 的面积为5,则k 的值为 .10.一枚质地均匀的骰子,六个面分别刻有1到6的点数,掷这个骰子一次,则向上一面的 点数大3的概率是 .11. 如图,在平面直角坐标系xOy 中,点O 是边长为2的正方形ABCD 的中心.写出一个 函数2y x c =+,使它的图象与正方形ABCD 有公共点,这个函数的表达式为 .三、解答题(本题共30分,每小题5分) 13.计算:cos30sin602sin 45tan 45︒︒+︒∙︒- .A(第9题图)(第11题图)(第12题图)14. 用配方法解方程: x 2-4x -1=0.15. 如图,△ABC 中,点D 在AB 上,∠ACD =∠ABC ,若AD =2,AB =6,求AC 的长.16. 如图,在平面直角坐标系xOy 中,以点A (2,3)为圆心的⊙A 交 x 轴于点B ,C ,BC =8, 求⊙A 的半径.17. 如图,正方形ABCD 的边长为2,E 是BC 的中点,以点A 为中心,把△ABE 逆时针旋转90°, 设点E 的对应点为F .(1)画出旋转后的三角形. (2)在(1)的条件下,①求EF 的长;②求点E 经过的路径弧EF 的长.18.如图,甲船在港口P 的南偏东60°方向,距港口30海里的A 处,沿AP 方向以每小时5海里的速度驶向港口P ;乙船从港口P 出发,沿南偏西45°方向驶离港口P .现两船 同时出发,2小时后甲船到达B 处,乙船到达C 处,此时乙船恰好在甲船的正西方向,A求乙船的航行距离 1.41≈ 1.73,结果保留整数).四、解答题(本题共20分,每小题5分)19.已知关于x 的一元二次方程mx 2-(m +1)x +1=0. (1)求证:此方程总有两个实数根;(2)若m 为整数,当此方程的两个实数根都是整数时,求m 的值.20. 如图,直线2y x =-+与反比例函数k y =x的图象相交于点A (a ,3),且与x 轴相交于点B .(1)求该反比例函数的表达式;(2)若P 为y 轴上的点,且△AOP 的面积是△AOB 的面积的23, 请直接写出点P 的坐标.21. 随着“节能减排、绿色出行”的健康生活意识的普及,新能源汽车越来越多地走进百姓的生活. 某汽车租赁公司拥有40辆电动汽车,据统计,当每辆车的日租金为120元时, 可全部租出;当每辆车的日租金每增加5元时,未租出的车将增加1辆;该公司平均每日 的各项支出共2100元.(1) 若某日共有x 辆车未租出,则当日每辆车的日租金为 元;(2) 当每辆车的日租金为多少时,该汽车租赁公司日收益最大?最大日收益是多少?22.如图,在△ABC 中,BA =BC ,以AB 为直径的⊙O 分别交AC ,BC 于点D ,E ,BC 的延长线 与⊙O 的切线AF 交于点F . (1)求证:∠ABC =2∠CAF ;(2)若AC=CE :EB =1:4,求CE ,AF 的长.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 已知二次函数y =kx 2-(k +3)x +3在x =0和x =4时的函数值相等. (1)求该二次函数的表达式;(2)画出该函数的图象,并结合图象直接写出当y <0时,自变量x 的取值范围;(3)已知关于x 的一元二次方程2220k x m m +-=,当-1≤m ≤3 时,判断此方程根的情况.24. △ABC 和△ADE 中,AB =AC ,AD =AE ,∠BAC =∠DAE = α (0°<α ≤90°) ,点F ,G ,P 分别是DE ,BC ,CD 的中点,连接PF ,PG .A(1)如图①,α=90°,点D 在AB 上,则∠FPG = °;(2)如图②,α=60°,点D 不在AB 上,判断∠FPG 的度数,并证明你的结论;(3)连接FG ,若AB =5, AD =2,固定△ABC ,将△ADE 绕点A 旋转,当PF 的长最大时,FG 的长为 (用含α的式子表示).25. 在平面直角坐标系xOy 中,直线y =2x +2与x 轴,y 轴分别交于点A ,B ,抛物线y =ax 2+bx -32经过点A 和点C (4,0) . (1)求该抛物线的表达式.(2)连接CB ,并延长CB 至点D ,使DB =CB ,请判断点D 是否在该抛物线上,并说明理由. (3)在(2)的条件下,过点C 作x 轴的垂线EC 与直线y =2x +2交于点E ,以DE 为直径画⊙M ,①求圆心M 的坐标;②若直线AP 与⊙M 相切,P 为切点,直接写出点P 的坐标.九年级数学试卷参考答案及评分标准 2015.1图①B图②B备用图B二、填空题(本题共16分,每小题4分) 9.5 10.1211.答案不惟一,如2y x =(说明:写成2y x c =+的形式时,c 的取值范围是-2≤c ≤1) 12.60,3π 三、解答题(本题共30分,每小题5分)13.解:原式21=……………………………………………………………………4分 = ………………………………………………………………………………………5分 14.解: x 2-4x =1. ……………………………………………………………………………………………… 1分x 2-4x +4=1+4 ,(x -2)2=5 .…………………………………………………………………………………………… 3分x -2=∴12x =+22x =………………………………………………………………………5分 15.解:∵∠ACD =∠ABC ,∠A=∠A , …………………………………………………………………… 2分∴△ACD ∽△ABC . ……………………………………………………………………………… 3分∴AD ACAC AB=. …………………………………………………………………………………… 4分 ∵AD =2,AB =6,∴26AC AC =.∴212AC =.∴AC = …………………………………………………………………………………………5分16.解:如图,作AD ⊥BC 于点D .………………………………… 1分连接AB . ∴142BD BC ==. ………………………………………… 3分 ∵点A 的坐标是(2,3),∴AD=3.……………………………………………………… 4分在Rt△ABD中,∴5AB……………………………………… 5分∴⊙A的半径为5.17.解:(1)如图1.………………………… 1分(说明:点F在CD的延长线上)∴△ADF为所求.(2)①如图2,依题意,AE=AF,∠EAF =90°.…………… 2分在Rt△ABE中,∵AB=2,112BE BC==,∴AE=…………………………………………… 3分在Rt△AEF中,EF=……………………………… 4分②l==.……………………………… 5分∴弧EF.18.解:如图,作PD⊥BC于点D.………………………1分根据题意,得∠BPD=60°,∠CPD=45°.PB=AP - AB =20.………………………………… 2分在Rt△BPD中,∴cos60=10PD PB=∙︒.……………………………3分在Rt△CPD中,∴cos45PDPC=︒…………………………… 4分∴14PC≈.…………………………………………5分答:乙船的航行距离约是14海里.C图1D图2四、解答题(本题共20分,每小题5分)19.解:(1)证明:∆=〔-(m +1)]2-4m =(m -1)2.…………………………………………………………………………………… 1分∵(m -1)2≥0, ∴∆≥0.∴该方程总有两个实数根. …………………………………………………………………2分(2)解:x =当m 为整数1或-1时,x 2为整数,即该方程的两个实数根都是整数, ∴m 的值为1或-1.……………………………………………………………………………5分20.解:(1)∵点A (a ,3)在直线2y x =-+ 上,∴ 3=-a +2. ∴ a=-1.………………………………………………………………………………………… 1分 ∴A (-1,3).∵点A (-1,3)在反比例函数ky =x的图象上,∴31k=-.∴ k =-3. ………………………………………………………………………………………… 2分∴3y =x -. ……………………………………………………………………………………… 3分(2)(0,4 )或(0,-4 ).……………………………………………………………………………5分21.解:(1)120+5x ;……………………………………………………………………………………………………………………………… 1分(2)设有x 辆车未租出时,该汽车租赁公司日收益为y 元.根据题意,有()()4012052100y x x =-+-. (3)分即 25802700y x x =-++.∵05<-, ∴当8082(5)x =-=⨯-时,y 有最大值.y 有最大值是3020. ……………………………………………………………………………………………………………………… 4分∴120+5x =120+5×8=160. …………………………………………………………………………………………………………… 5分答:当每辆车的日租金为160元时,该汽车租赁公司日收益最大,最大日收益为3020元.22. (1)证明:如图,连接BD .∵AB 为⊙O 的直径,∴∠ADB =90°.…………………………………… 1分∴∠DAB +∠ABD =90°. ∵AF 是⊙O 的切线, ∴∠FAB =90°.…………………………………… 2分 即∠DAB +∠CAF =90°.∴∠CAF =∠ABD . ∵BA =BC ,∠ADB =90°, ∴∠ABC =2∠ABD .∴∠ABC =2∠CAF .………………………………… 3分(2)解:如图,连接AE .∴∠AEB =90°. 设CE = x ,∵CE :EB =1:4,∴EB =4x ,BA =BC =5x ,AE=3x . 在Rt △ACE 中,AC 2=CE 2+AE 2.即(2= x 2+(3x ) 2.∴x =2.∴CE =2.…………………………………………………………………………………………… 4分∴EB =8,BA =BC =10,AE =6.∵tan AE AFEB BAABF ==∠. ∴6810AF =. ∴AF =152. ……………………………………………………………………………………… 5分 五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.解: (1) 由题意可知,此二次函数图象的对称轴为2x =,即()322k k-+-=.A∴1k =. …………………………………………………………………………………………1分 ∴y=x 2-4x +3. ……………………………………………………………………………………2分(2)如图1…………………………………………3分1<x <3. …………………………………………………………………………………………………………………………… 4分(3)由(1)得此方程为220x m m +-=.22=4m m ∆--()()=-m 2+4m . …………………………………………………………………………………… 5分∴Δ是m 的二次函数.由图2可知,当-1≤m <0时,Δ<0; 当m =0时,Δ=0;当0<m ≤3时,Δ>0. ∴当-1≤m <0时,原方程没有实数根;当m =0时, 原方程有两个相等的实数根 ;当0<m ≤3时,原方程有 两个不相等的实数根. ………………………………7分24.(1)90;………………………………………………………1分 (2)∠FPG =120°;……………………………………………2分证明:如图,连接BD ,CE . ∵∠BAC =∠DAE , ∴∠BAD =∠CAE . ∵AB =AC ,AD =AE ,∴△BAD ≌△CAE ……………………………………3分∴∠1=∠2.∵点F ,G ,P 分别是DE ,BC ,CD 的中点, ∴PF ∥CE ,PG∥B图1图2BD .……………………………………………………………………………4分∴∠FPD=∠ECD =∠2+∠3,∠4=∠5. ∴∠DPG =∠4+∠6=∠5+∠6.∴∠FPG=∠FPD +∠DPG =∠2+∠3 +∠5+∠6=∠1+∠3 +∠5+∠6. 即∠FPG=∠ABC +∠ACB =180°-∠BAC =120°.…………………………………………………5分(3)7sin(90)2α︒-. ……………………………………………………………………………………7分(说明:也可以写成7cos 2α)25.解:(1)依题意,可知 A (-1, 0),B (0,2).抛物线y =ax 2+bx -32经过点A ,C (4,0) 所以有 203216+40.3a b a b ⎧--=⎪⎪⎨⎪-=⎪⎩, ………………………………………………………………………1分解得 161.2a b ⎧=⎪⎪⎨⎪=-⎪⎩,∴2112623y x x =--.………………………………………………………………………………2分(2)点D 在该抛物线上.………………………………………………………………………………3分依题意,可得BO =2,CO =4. 过点D 作DF 垂直x 轴于点F , ∴△CDF ∽△CBO . ∴2===1DC DF CF BC BO CO . ∴DF =4,OF = CF - OC = 4.∴ D (-4,4).……………………………………4分∵()()21124623⨯-⨯-=-4-4,∴点D 在该抛物线上.(3)①由题意可知E (4,10). 设DE 与y 轴的交点为M ′, ∵M ′B ∥EC ,∴'1'DM DBEM CB==.∴D M′=EM′.∴M′即⊙M的圆心M.∴152BM EC==.∴M(0,7). (6)分②(-4,4)或(3,3). (8)分说明:各解答题的其他正确解法请参照以上标准给分.。
2014-2015学年度第一学期期末学习水平测试试卷九年级 数学
11、已知x=-2是方程x2+mx-6=0的一个根,则方程的另一个根是;
12、计算: =;
13、如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得不到线段 ,则 的坐标为;
14、若最简二次根式 与 是同类二次根式,则a=;
15、已知 ,则点A(a,b)关于原点对称的点的坐标是;
A.
k<-2
B.
k<2
C.
k<2且k≠1
D.
k>2
4、四张质地、大小、背面完全相同的卡片上,下面分别画有圆、矩形、等边三角形、等腰梯形四个图案,现把它们的下面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片下面图案是中心对称图形的概率为()
A.
B.
C.
D.
1
5、某机械厂七月份生产零件50万个,第三季度生产零件196万个,设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()
A.
B.
C.
D.
6、Rt△ABC中,∠C=90°,AC=3㎝,BC=4㎝,以C为圆心,r为半径作圆,若圆C与直线AB相切,则r的值为()
A.
2㎝
B.
2.4㎝
C.
3㎝
D.
4㎝
7、下列说法中,正确的是()
A.一件事情要么发生,要么不发生,所以它发生的概率为0.5
B.投掷一枚质地均匀的硬币在前99次都出现了正面,则第100次一定会出现正面
2014-2015学年度第一学期期末学习水平测试试卷
九年级数学
题号
一
二
三
总分
总分人
复查人
21
22
23
2014-2015学年度第一学期期末学习水平测试试卷 九年级 数学
2014-2015学年度第一学期期末学习水平测试试卷九年级数学一、选择题(本大题共8个小题,每小题3分,共24分. 每小题所给出的四个选项中,只有一个正确选项,请把正确答案前的字母填在答题框中相应题号1. 在下列事件中,不可能事件为A.通常加热到100℃时,水沸腾B.度量三角形内角和,结果是180°C.抛掷两枚硬币,两枚硬币全部正面朝上D.在布袋中装有两个完全相同的红球,从中摸出一个白球2. 一元二次方程2x2-2-3x=0的二次项系数、一次项系数、常数项依次是A. 2,-2,-3B.,3-,1-C. 2,-3,-2D. 2,3-,1-3. 随着人民生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是4. <n≤5)是整数,则满足条件的整数n为A. 2B. 3C. 4D. 55. 观察图(1)至图(4)及相应推理,其中正确的是A. B. C. D.6. x的取值范围是A. x ≠-1B. x≥0C. x >0D. x≤0且x ≠-17. 如图,正方形ABCD内接于⊙O,它的边长为4cm,则⊙O的半径是A.cm B.cmC.2 cm D.4 cm8. 已知x1,x2是方程x2-x-1=0的两实数根,则(x1-x2)2=A. 5B.C. 1D.二、填空题:(本大题共8个小题,每小题3分,共24分)9.点A(1,-2)关于原点对称的点为C,则点C的坐标是.10. 如图,点P是半径为5的⊙O内一点,且弦AB⊥OP,垂足为P,OP=3,则弦AB长是________.11. 如图,是一个可以任意转动的圆盘,如果指针落在每个数上的机会均等,那么指针落在偶数上的概率是.12. 已知⊙O1和⊙O2的半径分别为3 cm和5 cm,两圆的圆心距是6 cm,则这两圆的位置关系是.13. +|3-π|的结果是.14. 如图,AB 与圆⊙O 相切于点B ,若AB =4 cm ,AO =6 cm ,则⊙O 的半径为 cm .15. 如图,如果用80 m 长的篱笆靠着一面墙围成一个矩形场地,能否使所围的矩形场地面积为810 m 2? ______(填 “能”或“不能”)16. 如图,以等腰三角形ABC 的一腰AB 为直径的⊙O 交BC 于点D ,交AC 于点G ,连结AD ,并过点D 作DE AC ⊥, 垂足为E .根据以上条件写出三个正确结论(除AB =AC , AO =BO ,∠ABC =∠ACB 外)是:(1) ;(2) ; (3) .三、解答题:(本大题共9个小题,满分72分,解答时应写出必要的文字说明、证明过程或演算步骤) 17.(本题共6分)计算:(1+ (2)21-2518.(本题共8分)解方程:(1)x 2-4x -5=0 (2)2x (x -1)=1-x19.(本题共6分)一个桶里有红、蓝、白三色弹珠共60个. 拿出红色弹珠的概率是35%,拿出蓝色弹珠的概率是25%. 桶里每种颜色的弹珠各有多少?20.(本题共6分)如图,在1010⨯正方形网格中,每个小正方形的边长均为1个单位.将ABC △向下平移4个单位,得到A B C '''△,再把A B C '''△绕点C '顺时针旋转90,得到A B C '''''△,请你画出A B C '''△和A B C '''''△(不要求写画法).21. (本题共8分)要为一幅长30厘米,宽20厘米的十字绣安装一个镜框,要求镜框的四条边宽度相等,且镜框所占面积为184平方厘米,试求镜框边的宽度是多少厘米?(参考数据:112=121,212=431,312=961,412=1681)AB C22.(本题共8分)如图,AB在⊙O的直径,点D在AB的延长线上,且BD=OB,点C在⊙O上,∠CAB=30°.(1) 不添加辅助线,图中有几对全等的三角形,请将其写出(不需要证明);(2) 求证:CD是⊙O的切线.23. (本题共10分)在一个口袋中有三个完全相同的小球,它们的标号分别为1、2、3,随机地摸取一个小球后放回,再随机地摸出一个小球.(1) 用画树状图或列表的方法写出所有可能出现的结果;(2) 求事件A:“两次摸取小球的标号的和是3”的概率.24.(本题共10分)如图,已知半圆的圆心为O,半径OD=2. 扇形BDC所在圆以B为圆心,以DB为半径,圆心角为45°.(1)求扇形BDC的面积和弧DC的长;(2)求图中阴影部分的面积.25.(本题共10分)问题探究(1) 请在图(1)中作出两条直线,使它们将圆面四等分,并写出作图过程;拓展应用(2) 如图(2),M是正方形ABCD内一定点,G是对角线AC、BD的交点. 连接GM并延长,分别交AD、BC于P、N. 过G做直线EF⊥GM,分别交AB、CD于E、F. 求证:PN、EF将正方形ABCD的面积四等分.。
2014—2015学年度第一学期期末学业质量评估九年级数学试题(含答案)
九年级数学试题注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷2页,为选择题,共36分.第Ⅱ卷2页,为非选择题,共84分.全卷满分120分,考试时间120分钟.2.答卷前,务必将答题卡上面的项目填涂清楚.所有答案都必须涂、写在答题卡相应的位置,答在本试卷上一律无效.第Ⅰ卷一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,多选、不选、错选均记零分.)1. 下列说法中正确的是()A. 平分弦的直径垂直于弦,并且平分弦所对的两条弧;B. 圆是轴对称图形,每一条直径都是它的对称轴;C. 弦的垂直平分线过圆心;D. 相等的圆心角所对的弧也相等.2. 如图,A、B、P是⊙O上的三点,∠APB=40°,则弧AB的度数为()A.50°B.80°C.280°D.80°或280°3. 如图,在直径为AB的半圆O上有一动点P从O点出发,以相同的速度沿O-A-B-O的路线运动,线段OP的长度d与运动时间t之间的函数关系用图象描述大致是()4. 下列命题中的假命题是()A. 正方形的半径等于正方形的边心距的2倍;B. 三角形任意两边的垂直平分线的交点是三角形的外心;C. 用反证法证明命题“三角形中至少有一个内角不小于60°”时,第一步应该“假设每一个内角都小于60°”;D. 过三点能且只能作一个圆.5. 如图,⊙O的半径是4,点P是弦AB延长线上的一点,连接OP,若OP=6,∠APO=30°,则弦AB的长为()A .27B .7C .5D .526. 如图所示,在△ABC 中D 为AC 边上一点,若∠DBC =∠A ,BC =3,AC =6,则CD 的长为( ) A .1 B .2 C .23 D .25 7. 下列方程中:①x 2-2x -1=0, ②2x 2-7x +2=0, ③x 2-x +1=0 两根互为倒数有( ) A. 0个 B. 1个 C. 2个 D. 3个 8. 一次函数y 1=3x +3与y 2=-2x +8在同一直角坐标系内的交点坐标 为(1,6).则当y 1>y 2时,x 的取值范围是( )A. x ≥1B. x =1C. x <1D. x >1 9. 在△ABC 中,若()21cosA 1tanB 02-+-=,则∠C 的度数是( ) A. 45° B. 60° C. 75° D. 105°10. 如图,热气球的探测器显示,从热气球A 看一栋高楼顶部B 的仰角为30°,看这栋高楼底部C 的俯角为60°,热气球A 与高楼的水平距离为120m ,这栋高楼BC 的高度为( ) A .1603m B .803 m C .()12031- m D .()12031+m11. 已知反比例函数y =xk的图像经过点P (-1,2),则这个函数图像位于( ) A .第二、三象限 B .第一、三象限 C .第三、四象限 D .第二、四象限 12. 已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列4个结论:①abc <0;②b >a +c ;③2a -b =0;④b 2-4ac <0.其中正确的结论个数是( ) A.1个 B.2个 C.3个 D.4个第Ⅱ卷二、填空题(本题共6小题,要求将每小题的最后结果填写在横线上. 每小题3分,满分18分) 13. 已知一元二次方程ax 2+bx +c =0的两根为x 1=2,x 2=-3,则二次三项式ax 2+bx +c 可分解因式为 .14. ⊙O 的半径为10cm ,AB ,CD 是⊙O 的两条弦,且AB ∥CD ,AB =16cm ,CD =12cm .则AB 与CD 之间的距离是 cm .15. 如图所示,△ABC 中,E 、F 、D 分别是边AB 、AC 、BC 上的点,且满足12AE AF EB FC ==,则△EFD 与△ABC 的面积比为 .16. 如图,M 是Rt △ABC 的斜边BC 上异于B 、C 的一定点,过M 点作直线MN 截△ABC交AC 于点N ,使截得的△CMN 与△ABC 相似. 已知AB =6,AC =8,CM =4,则CN = .17. 一个足球从地面上被踢出,它距地面高度y (米)可以用二次函数x x y 6.199.42+-=刻画,其中x (秒)表示足球被踢出后经过的时间. 则足球被踢出后到离开地面达到最高点所用的时间是 秒. 18. 在△ABC 中,AB =AC =5,tanB =34.若⊙O 的半径为10,且⊙O 经过点B 、C ,那么线段OA 的长等于 .三、解答题(本题共6小题,解答应写出文字说明、证明过程或推演步骤. 共66分) 19. (本题满分10分)市某楼盘准备以每平方米6 000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4 860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?如图,晚上小明站在路灯P的底下观察自己的影子时发现,当他站在F点的位置时,在地面上的影子为BF,小明向前走2米到D点时,在地面上的影子为AD,若AB=4米,∠PBF=60°,∠PAB=30°,通过计算,求出小明的身高.(结果保留根号).21. (本题满分11分)如图,四边形ABCD内接于⊙O,BC是直径,∠BAD=120°,AB=AD.(1)求证:四边形ABCD是等腰梯形;(2)已知AC=6,求阴影部分的面积.如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE =∠B .(1)求证:△ADF ∽△DEC ;(2)若AB =8,AD =63,AF =43,求sinB 的值.23. (本题满分12分)已知关于x 的一元二次方程()2kx 4k 1x 3k 30-+++=. (1)试说明:无论k 取何值,方程总有两个实数根;(2)若△ABC 的两边AB 、AC 的长是方程的两个实数根,第三边BC 的长为5. 当△ABC 是等腰三角形时,求k 的值.AB是⊙O的直径,AD与⊙O相交,点C是⊙O上一点,经过点C的直线交AD于点E.⑴如图1 ,若AC平分∠BAD,CE⊥AD于点E,求证:CE是⊙O的切线;⑵如图2,若CE是⊙O的切线,CE⊥AD于点E,AC是∠BAD的平分线吗?说明理由;⑶如图3,若CE是⊙O的切线,AC平分∠BAD,AB=8,AC=6,求AE的长度.试题答案及评分标准一、选择题(每小题选对得3分,满分36分. 多选、不选、错选均记零分.)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CBBDACBDCADB二、填空题(每小题3分,满分18分)13. a (x -2)(x +3) 14. 214或 15. 2:9 16. 1655或17.2 18. 3或5 三、解答题(本题共6小题,解答应写出文字说明、证明过程或推演步骤.共66分) 19. (本题满分10分)解:解:(1)设平均每次下调的百分率为x , 则6000(1-x )2=4860, 解得:x 1=0.1=10%, x 2=1.9(舍).故平均每周下调的百分率为10%.……………………6分 (2)方案1优惠:4860×100×(1-0.98)=9720(元); 方案2可优惠:80×100=8000(元). 故方案1优惠.…………………………10分20. (本题满分10分)解:设小明的身高为x 米,则CD =EF =x 米. 在Rt △ACD 中,∠ADC =90°,tan ∠CAD =ADCD,即tan 30°=x /AD ,AD =3x --2分 在Rt △BEF 中,∠BFE =90°,tan ∠EBF =EF /BF ,即tan 60°=x /BF ,BF =x 33---4分 由题意得DF =2,∴BD =DF -BF =2-x 33,∵AB =AD +BD =4,∴3x +2-x 33=4 --8分即x =3.答:小明的身高为3米.------------------------------------------------------------------------10分 21. (本题满分11分)⑴证明:∵∠BAD =120°,AB =AD ∴∠ABD =∠ADB =30° ∴弧AB 和弧AD 的度数都等于60°又 ∵BC 是直径 ∴弧CD 的度数也是60° ------------------ --------------2分 ∴AB =CD 且∠CAD =∠ACB =30° ∴BC ∥AD∴四边形ABCD 是等腰梯形. --------------------------------------------------5分⑵∵BC 是直径 ∴∠BAC =90°∵∠ACB =30°,AC =6∴0cos 30AC BC ===R =∵弧AB 和弧AD 的度数都等于60° ∴∠BOD =120° ---------------------------6分 连接OA 交BD 于点E ,则OA ⊥BD 在Rt △BOE中:0sin30OE OB =⋅=0cos 330BE OB =⋅=,BD =2BE =6----------------------------------------------------8分∴(21201-63602BOD BODS S S⨯⨯=-=⨯阴影扇形ππ ----------------------------------------------------11分 22. (本题满分11分)⑴证明:∵∠AFE =∠B ,∠AFE 与∠AFD 互补,∠B 与∠C 互补∴∠AFD =∠C --------------------------------------------------2分 ∵AD ∥BC ∴∠ADF =∠DEC -------------------------------------------4分 ∴△ADF ∽△DEC ----------------------------------------------------5分 ⑵解:∵△ADF ∽△DEC ∴AD AFDE CD== 解得:DE =12 ----------------------------------------------------7分 ∵AE ⊥BC , AD ∥BC ∴AE ⊥AD∴6AE ==----9分在Rt △ABE 中,63sin 84AE B AB === -------------------------------------------------11分 23. (本题满分12分)解:⑴△=()()243341k k k -++ =2216181212k k k k ++--=2441k k -+ =()221k -≥0 --------------------------------------------------4分∴无论k 取何值,方程总有两个实数根. -------------------------------------------------5分 ⑵若AB =AC 则方程()2kx 4k 1x 3k 30-+++=有两个相等的实数根此时△=0,即:()221k -=0 解得:12k =当12k =时,AB =AC =3,此时AB 、AC 、BC 满足三边关系. -------------------------8分 若BC =5为△ABC 的一腰,则方程()2kx 4k 1x 3k 30-+++=有一根是5,将5x =代入方程()2kx 4k 1x 3k 30-+++=解得:14k = 当14k =时,解得方程两根为5和3,此时AB 、AC 、BC 满足三边关系. ----------11分 综上:当△ABC 是等腰三角形时,k 的值为1124或. -----------------------------12分24. (本题满分12分) ⑴证明:连接OC∵OA =OC ∴∠OAC =∠OCA ∵AC 平分∠BAD ∴∠OCA =∠CAD ∴OC ∥AD∵CE ⊥AD ∴CE ⊥OC -----------------------------------------------3分 又OC 是半径 ∴CE 是⊙O 的切线。
2014-2015学年北京市西城区2015届九年级上学期期末考试数学试题(含答案)
北京市西城区2014-2015学年度第一学期期末试卷九年级数学 2015. 1一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个....是符合题意的. 1.二次函数2(+1)2y x =--的最大值是( )A .2-B .1-C .1D .22.如图,四边形ABCD 内接于⊙O ,E 为CD 延长线上一点,如果ADE =120°,那么∠B 等于( ) A .130°B .120°C .80°D .60°3.下列手机软件图标中,既是轴对称图形又是中心对称图形的是A B C D 4.把抛物线2=+1y x 向右平移3个单位,再向下平移2个单位,得到抛物线A .()231y x =+- B .()233y x =++ C .()231y x =-- D .()233y x =-+5.△ABC 与△A ′B ′C ′是位似图形,且△ABC 与△A ′B ′C ′的位似比是1∶2,如果△ABC 的面 积是3,那么△A ′B ′C ′的面积等于A .3B .6C .9D .126.如果关于x 的一元二次方程21104x x m -+-=有实数根,那么m 的取值范围是A .m >2B .m ≥3C .m <5D .m ≤57.如图,在Rt △ABC 中,∠ACB =90︒,AC =12,BC =5, CD ⊥AB 于点D ,那么sin BCD ∠的值是 A .512B .513 C .1213D .1258.如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为该抛物线的“内接格点三角形”.设对称轴平行于y 轴的抛物线与网格对角线OM 的两个交点为A ,B ,其顶点为C ,如果△ABC 是该抛物线的内接格点三角形,AB =A ,B ,C 的横坐标A x ,B x ,C x 满足A x <B x <C x ,那么符合上述条件的抛物线条数是( ) A .7 B .8 C .14 D .16二、填空题(本题共16分,每小题4分)9.在平面直角坐标系xOy 中,点(2,)A n -在反比例函数6y x=-错误!未找到引用源。