聚合物结构与性能

合集下载

聚合物材料结构与性能分析

聚合物材料结构与性能分析

聚合物材料结构与性能分析随着科技的不断发展,聚合物材料在人们的生活中扮演着越来越重要的角色。

聚合物材料被广泛应用在塑料制品、涂料、胶水、纺织品、电力电缆、医疗器械、汽车零部件、航空航天工程等领域中,成为了工业化生产的主要材料之一。

为了更好地研究聚合物材料的性能,需要深入了解其结构。

一、聚合物材料的结构聚合物材料的结构可以分为线性、支化和交联三种形态。

其中,线性聚合物是由一种或者几种单体按照化学键的方式以链状排列而成,分子量较小;支化聚合物是通过在线性聚合物中引入支链而形成的,支链数量影响聚合物的分子量;交联聚合物是聚合物分子之间通过交联点相互连接形成的,具有较高的强度和硬度。

聚合物材料的结构对其性能具有较大的影响。

线性聚合物因分子之间的顺序排列有序,故具有较强的延展性和柔软性,但同时也很脆弱。

与之相比,支化聚合物分子之间存在交叉和支链,增加了分子间的空间间隙,分子不易移动,故其延展性和柔软性较差,但抗拉强度和耐磨性等方面表现出了优异的性能。

交联聚合物由于分子之间的连接非常紧密,形成了三维连通结构,具有优异的耐热性、耐压性和耐化学腐蚀性等方面性能。

二、聚合物材料的性能聚合物材料的性能可分为物理性能和化学性能两个方面。

1. 物理性能聚合物材料的物理性能包括密度、硬度、热膨胀率、热导率、电导率等方面。

其中,密度是聚合物材料中分子的堆积情况,影响材料的重量和容积比例;硬度是指材料表面对受力的抵抗力,硬度越大,耐磨性和耐刮性也越强;热膨胀率是指在温度变化下材料的长度、面积或体积变化程度;热导率是指在导热过程中单位时间内的热通量和面积比例;电导率则是指电流通过单位长度材料的电阻大小。

2. 化学性能聚合物材料的化学性能包括耐酸碱性、耐热性、阻燃性、耐紫外线性等方面。

其中,耐酸碱性是指聚合物材料在酸碱介质中稳定性和抗腐蚀性;耐热性是指材料在高温环境下变形程度和防止氧化剥蚀的能力;阻燃性是指材料在火灾中的燃烧速度和发出有害气体的程度;耐紫外线性是指材料对紫外线的抵抗程度。

第2章聚合物结构与性能1

第2章聚合物结构与性能1

2. 双烯类单体

以最简单的双烯单体丁二烯为例来考虑键接方 式: 顺式
1,4加成 CH2 全同 1,2加成 CH2 CH CH n CH2 间同 无规 CH2 CH CH CH n 反式 CH CH
nH2C

异戊二烯单体聚合的键接方式:
CH3 顺式 1,4加成 CH2 CH C CH n 反式
CH
CH2
P-CH CH· CH2 CH2
CH2=CH-CH=CH2
CH2 CH CH CH2
P-CH
CH-CH2-CH=CH-CH2- CH2
对高分子材料的使用性能的影响 (以PE为例)
LDPE(Low Density PE)(HPPE)自由基聚合) 这种聚合方式易发生链转移,因此支链多,破坏了分子 的规整度,其结晶能力下降,故其密度小,熔点低, 硬度低,较柔软。一般用于制食品袋、薄膜等等。
2、聚合物的命名


①习惯命名法: 来源(聚乙烯,酚醛树脂) ②IUPAC命名法 ③聚合物的缩写: PE,PP,PVC,PF,EP,PI,PA,PC ④商品名 包装材料: 1PET,2HDPE,3PVC,4LDPE,5PP,6PS,7other (PC)
2.2

聚合物合成与改性
2.支链形高分子


支化:指线形分子链上延伸出或短或长的分支 结构(支链)。 产生:a.加聚过程中有自由基的链转移发生或 双烯类单体中第二双键的活化; b.缩聚反应中存在三官能度的单体。 支化类型:长支链、短支链;星形(Star)、 梳形(Comb)、无规(Random)
P·+
- - = - -

HDPE(LPPE)(配位聚合,Zigler催化剂) 这种聚合方法获得的是几乎无支链的线型PE,易于 结晶,所以密度大,规整性好,结晶度高,强度、硬 度、熔点均高。可用作工程塑料部件,绳缆、管材、 棒材等等。

高聚物的结构与性能—聚合物的力学状态及其转变

高聚物的结构与性能—聚合物的力学状态及其转变

侧基的极性越强,数目越多,Tg越高,如:
CH2 CH
CH2CH
CH2CH
CH2CH
CH3
Cl
OH
CN
聚丙烯) -18
81
85
90
刚性侧基的体积越大,分子链的柔顺性越差,Tg越高,
如:
CH2 CH
CH2 CH
CH2CH
CH2CH
CH3
H3C C CH3
N
CH3
聚丙烯 Tg (oC) -18
率突变区,这两个突变区把热-机械曲线分为三个区域,分
别对应于三种不同的力学状态,三种状态的性能与分子运
动特征各有不同。
III
形 变I
II 温度
第七章 聚合物的结构与性能



形 变
I
III II
温度
在区域I,温度低,链段运动被冻结,只有侧基、链节、 链长、键角等的局部运动,因此聚合物在外力作用下的形 变小,具有虎克弹性行为:形变在瞬间完成,当外力除去 后,形变又立即恢复,表现为质硬而脆,这种力学状态与 无机玻璃相似,称为玻璃态。
Tm<Tf
Tm>Tf


高结晶度(>40%)
聚合物
Tg
温度
Tm
第七章 聚合物的结构与性能
7.5.3 力学状态的分子运动特点
聚合物的分子运动具有以下特点: (1)运动单元的多重性:
聚合物的分子运动可分小尺寸单元运动(即侧基、支链、 链节、链段等的运动)和大尺寸单元运动(即 整个分子运 动)。 (2)聚合物分子的运动是一个松弛过程:
CH2 CH
CH2-CH=CH-CH 2
CH3
CH3

第六章聚合物的结构与性能

第六章聚合物的结构与性能

返回
返回
(3)伸直链晶片
由完全伸展旳分子链平行规整排列而成旳小片状晶体, 晶体中分子链平行于晶面方向,晶片厚度基本与伸展旳分子 链长度相当。这种晶体主要形成于极高压力下。
(4)纤维状晶和串晶
纤维状晶是在流动场旳作用下使高分子链旳构象发生 畸变,成为沿流动方向平行排列旳伸展状态,在合适旳条 件下结晶而成。分子链取向与纤维轴平行。
返回
结晶温度不同,结晶速度也不同。在某一温度时出现最 大值,出现最大结晶速度旳结晶温度可由下列经验关系式 估算:
Tmax = 0.63 Tm + 0.37 Tg - 18.5 (2)同一聚合物在同一结晶温度下,结晶速度随结晶过程 而变化。一般最初结晶速度较慢,中间有加速过程,最终 结晶速度又减慢。 (3)结晶聚合物结晶不完善,没有精确旳熔点,存在熔限。 熔限大小与结晶温度有关。结晶温度低,熔限宽,反之则 窄。这是因为结晶温度较低时,高分子链旳流动性较差, 形成旳晶体不完善,且各晶体旳完善程度差别大,因而熔 限宽。
返回
(2) 高分子旳柔顺性
高分子链能够经过内旋转作用变化其构象旳性能称 为高分子链旳柔顺性。 高分子链能形成旳构象数越多, 柔顺性越大。
因为分子内旋转是造成分子链柔顺性旳根本原因,而 高分子链旳内旋转又主要受其分子构造旳制约,因而分子 链旳柔顺性与其分子构造亲密相关。分子构造对柔顺性旳 影响主要体现在下列几方面:
互为旋光异构,各有不同的旋光性
返回
若高分子中具有手性C原子,则其立体构型可有D型和L型, 据其连接方式可分为如下三种:(以聚丙烯为例)
(1) 全同立构高分子(isotactic polymer):主链上旳C*
旳立体构型全部为D型或L 型, 即DDDDDDDDDD或 LLLLLLLLLLL;

聚合物的结构与

聚合物的结构与

105℃ 135℃
60—70% 薄膜(软性)
95%
瓶、管、棒 等(硬性)
高压聚乙烯(低密度聚乙烯),由于支化破坏了分子的规 整性,使其结晶度大大降低;低压聚乙烯(高密度聚乙烯) 是线型分子,易于结晶,故在密度、熔点、结晶度和硬度方 面都高于前者。见上表
橡胶的硫化与交联度影响
橡胶的硫化是使聚异戊二烯的分子之间产生硫桥
材料 科 学 基 础 第四章 聚合物的结构与性能
高聚物的特点(与小分子物质相比)
高分子是由很大数目(103——105 数量级)的结构单 元组成的,每一个结构单元相当于一个小分子
一般高分子的主链都有一定的内旋转自由能,可 以使主链弯曲而具有柔性
高分子结构具有不均一性 各结构单元间的相互作用对其聚集态结构和物理
共聚物结构中的序列问题
为描述共聚物的序列结构,常用的参数有各单体单 元的平均序列长度和嵌段数R。例如下面共聚物分 子:
A B AA BBB A BB AA BBBB AAA B 其中A单体9个,A序列为5段,B单体11个,B序列 为5段(短划表示序列)。 嵌段R的含义是指在100个单体单元中出现的各种嵌 段的总和。R与平均— — 序列长度— — 的关系是:
1. 分子主链全部由碳原子以共价键相联结的碳链高分子不 易水解;
2. 分子主链由两种或两种以上的原子以共价键联结的杂链 高分子带有极性,易水解、醇解或酸解;
元素高分子具有无机物的热稳定性及有机物的 弹性和塑性;
分子主链不是一条单链而是像“梯子”和“双 股螺线”那样的高分子链;
为防止链断裂从端基开始,有些高分子需要封 头,以提高耐热性。
支化对物理机械性能的影响有时相当显著: 支化程度越高,支链结构越复杂,影响高分子材 料的使用性能越大;支化点密度或两相临支化点 之间的链的平均分子量来表示支化的程度,称为 支化度。

第一篇第一章聚合物结构与性能

第一篇第一章聚合物结构与性能

2 粘度法 溶液的粘度一方面与聚合物的分子量有关,却也决定 于聚合物分子的结构、形态和在溶剂中的扩散程度。因此 该法为相对方法。 一、粘度的定义 流体流动时,可以设想有无数个流动的液层,由于液 体分子间相互摩擦力的存在,各液层的流动速度不同。单 位面积液体的粘滞阻力为ζ,切变速度为ξ,那么粘度为 η= ζ/ ξ 即流速梯度为1秒-1、面积为1厘米2的两层液体间的内摩 擦力。其单位为泊(厘泊): 1P=100cP=1gs-1cm-1=0.1kg s-1m-1 =0.98(Ns2m-1) s-1m-1 =0.98Nm-2s=0.98Pa·s≈1Pa·s 以上所定义的粘度是绝对粘度。对于高分子溶液,我们感 兴趣的是高分子进入溶液后引起的粘度变化,一般采用以 下几种参数:
1
端基分析 聚合物的化学结构明确,每个高分子链末端有一个或 x个可以用化学方法分析的基团,那么一定重量试样中 端基的数目就是分子链数目的x倍。所以从化学分析的 结果就可以计算分子量。 M= xw/n w为试样重量,n为被分析端基的摩尔数。 注意: • 该法要求聚合物结构必须明确。 • 分子量越大,单位重量试样中可分析基团的数目越少, 分析误差越大,故此法只适于分析分子量较小的聚合物, 可分析分子量的上限为2×104左右。 • 一般用于缩聚物。加聚反应产物分子量较大,且一般无 可供化学分析的基团,应用较少。 • 还可用于分析聚合物的支化情况,但要与其他方法配合 才行。 • 数均分子量。
第一篇 聚合物加工的理论基础
• • • • 聚合物的结构 聚合物的流变性质(聚合物的分子运动) 材料的力学性能 聚合物加工过程的物理和化学变化
第一章 聚合物的构
• 聚合物的结构 • 高分子的链结构与高分子的柔顺性 • 高分子的聚集态结构
第一章 聚合物的结构

聚合物结构与性能

聚合物结构与性能

1、分析HIPS结构组成、加工原理、结构特点与性能高抗冲聚苯乙烯,是将少量聚丁二烯接技到聚苯乙烯基体上。

具有“海岛结构”,基体是塑料,分散相是橡胶 .具有诸多的特性 :①耐冲击聚苯乙烯为热塑性树脂;②无臭、无味、硬质材料、成形后尺寸安定性良好;③有优秀的高介电性绝缘性;④为非晶质低吸水性材料;⑤其光泽性良好易于涂装。

2、分析ABS结构组成、结构特点、性能ABS树脂是丙烯酸、丁二烯和苯乙烯的三元共聚物。

共聚的方式是无规共聚与接枝共聚相结合:它可以是以丁苯橡胶为主链,将苯乙烯、丙烯腈接在支链上;也可以是丁腈橡胶为主链,将苯乙烯接在支链上;也可以以苯乙烯-丙烯腈的共聚物为主链,将丁二烯和丙烯腈接在支链上等等。

ABS三元接枝共聚物兼有三种组分的特性。

其中丙烯腈有氰基,能使聚合物耐化学腐蚀,提高制品的抗张强度和硬度;丁二烯能使聚合物呈现橡胶状的韧性,这是材料抗张强度增强的主要因素;苯乙烯的高温流动性能好,便于加工成型,且可改善制品的表面光洁度,是一种性能优良的热塑性塑料。

3、聚合物的增韧增强增韧:①橡胶增韧,如通过橡胶增韧苯乙烯-丙烯腈共聚物树脂,制备性能优良的ABS工程塑料。

②刚性无机填料增韧,如纳米碳酸钙粒子增韧高密度聚乙烯。

③热塑性塑料增韧,如热塑性塑料增韧双马来酰亚胺树脂。

④液晶聚合物增韧,如热致性液晶聚合物增韧环氧树脂。

增强:添加无机纳米粒子如TiO2、SiO2、Al2O3、CaCO3 等和橡胶纳米粒子以及蒙脱土等片状硅酸盐等形成聚合物基纳米复合材料;添加纤维状填料如碳纤维、石墨纤维、硼纤维和单晶纤维-晶须或短玻璃纤维等。

4、PE结构、材料的加工原理聚乙烯的分子是长链线型结构或支结构,为典型的结晶聚合物。

在固体状态下,结晶部分与无定型共存。

结晶度视加工条件和原处理条件而异,一般情况下,密度高结晶度就越大。

LDPE结晶度通常为55 %-- 65%,HDPE结晶度为80%-90%。

高密度聚乙烯通常使用Ziegler-Natta聚合法制造,其特点是分子链上没有支链,因此分子链排布规整,具有较高的密度。

聚合物的结构与性能研究

聚合物的结构与性能研究

聚合物的结构与性能研究聚合物是由许多单体分子通过共价键连接而成的高分子化合物。

它们在我们日常生活中扮演着重要的角色,从塑料到纤维,从药物到涂料,无处不在。

聚合物的结构与性能之间存在着密切的关系,深入研究聚合物的结构与性能对于开发新材料和改进现有材料具有重要意义。

首先,聚合物的结构对其性能产生重要影响。

聚合物的结构可以分为线性、支化、交联等不同形式。

线性聚合物由一串单体分子线性连接而成,具有较高的延展性和柔韧性。

支化聚合物在主链上引入支链,增加了分子间的交联点,使其具有较高的强度和刚性。

交联聚合物通过交联剂将线性聚合物连接成网状结构,提高了其耐热性和耐化学腐蚀性。

不同结构的聚合物在性能上存在差异,因此深入研究聚合物的结构对于调控其性能具有重要意义。

其次,聚合物的结构可以通过不同的合成方法来控制。

聚合物的合成方法主要包括自由基聚合、阴离子聚合、阳离子聚合等。

自由基聚合是最常见的聚合方法,通过引入自由基引发剂,使单体分子发生聚合反应。

阴离子聚合和阳离子聚合则是通过阴离子或阳离子引发剂引发的聚合反应。

不同的合成方法可以控制聚合物的分子量、分子量分布以及结构形态,从而调控其性能。

例如,通过控制聚合反应的条件和反应物比例,可以合成具有不同分子量的聚合物,从而改变其物理和化学性质。

此外,聚合物的性能还与其组成单体的选择有关。

聚合物的单体可以是天然物质,也可以是合成物质。

不同的单体具有不同的化学结构和性质,从而影响聚合物的性能。

例如,聚乙烯是由乙烯单体聚合而成的,具有良好的耐热性和耐化学腐蚀性;聚丙烯是由丙烯单体聚合而成的,具有良好的机械强度和刚性。

选择不同的单体可以调控聚合物的性能,满足不同的应用需求。

此外,聚合物的结构与性能之间还存在着其他复杂的关系。

例如,聚合物的结晶性对其性能具有重要影响。

结晶性聚合物具有有序排列的分子结构,具有较高的强度和刚性;非结晶性聚合物则具有无序排列的分子结构,具有较高的延展性和柔韧性。

聚合物的结构与性能

聚合物的结构与性能
1. 分子主链全部由碳原子以共价键相联结的碳链高分子不 易水解;
2. 分子主链由两种或两种以上的原子以共价键联结的杂链 高分子带有极性,易水解、醇解或酸解;
元素高分子具有无机物的热稳定性及有机物的 弹性和塑性;
分子主链不是一条单链而是像“梯子”和“双 股螺线”那样的高分子链;
为防止链断裂从端基开始,有些高分子需要封 头,以提高耐热性。
II. 高分子的柔顺性
高分子链能够通过内旋转作用改变其构象的性能称为高分 子链的柔顺性。 高分子链能形成的构象数越多,柔顺性越大。 ①静态柔顺性:又称为平衡态或热力学柔性,是指高分子链 处在较稳定状态时的卷曲程度。 ②动态柔顺性:指在外界条件的影响下,从一种构象向另一 种构象转变的容易程度,这是一个速度过程,又称动力学柔 性。 高分子的柔性是静态柔性和动态柔性的综合效应 。
SBS树脂是用阴离子聚合法制得的苯乙烯 和丁二烯的嵌段共聚物。其分子链的中段 是聚丁二烯(顺式),两端是聚苯乙烯。 SBS具有两相结构。SBS是一种可用注塑 的方法进行加工而不需要硫化的橡胶,又 称为热塑性弹性体。
高分子链的构型
构型是对分子中的最邻近的原子见的相对位置的表征,是
指分子中有化学键所固定的原子在空间的集合排列,要改变 构型必须经过化学键的断裂和重组。构型不同的异构体有
强度,这一数值称为临界聚合度。对极性强的高聚物来说,其临
界聚合度约为40;非极性高聚物的临界聚合度约为80;弱极性的介 于二者之间。
机械强度
极性聚合物 非极性聚合物
100 200 300 400 500 聚合度
高聚物的分子量愈大, 则机械强度愈大。然而, 高聚物分子量增加后, 分子间作用力也增强, 使高聚物的高温流动粘 度增加,给加工成型带 来困难。高聚物的分子 量应兼顾使用和加工两 方面的要求。

聚合物中的分子结构与性能

聚合物中的分子结构与性能

聚合物中的分子结构与性能聚合物是一种由大量相同或类似分子(称为“单体”)通过共价化学键连接而成的高分子化合物。

聚合物的性质取决于分子结构,因此分子结构对聚合物的性能有着非常重要的影响。

本文将介绍聚合物中的分子结构与性能之间的关系。

一、线性聚合物与支化聚合物聚合物可以根据分子结构的形态分为线性聚合物和支化聚合物。

线性聚合物的分子链是直线型的,通常具有规则、连续的结构,例如聚丙烯和聚乙烯。

支化聚合物的分子链上会有分支或侧链,这些分支可以与主链结合,使分子形状多样化。

支化聚合物通常比线性聚合物更容易形成有序晶体结构,因此在物理性能、热稳定性和耐化学腐蚀性方面具有优势。

例如,聚乙烯可支化使其具有更高的耐热性和耐化学腐蚀性能。

二、分子量分布对聚合物性能的影响聚合物的分子量也会直接影响其性能。

分子量分布对聚合物的分子结构和性能有着直接的影响。

聚合物可分为单分散聚合物和多分散聚合物。

单分散聚合物的分子量分布非常狭窄。

由于它们的分子量比较统一,因此它们的物理性质、力学性能和加工工艺都非常稳定和可预测。

多分散聚合物的分子量分布范围较广。

由于它们的分子量和分子结构不均匀,使其在加工和使用方面有一定的不确定性。

因此,控制聚合物分子量分布是制备高品质聚合物的重要环节之一。

三、共聚物结构与性能共聚物是同时使用两种或两种以上不同单体制成的高分子化合物。

共聚物的分子结构和性能取决于各单体之间的相互作用。

共聚物可以分为随机共聚物、交替共聚物和嵌段共聚物。

随机共聚物是指不同单体按随机顺序聚合而成的高分子化合物。

交替共聚物是交替聚合两种或多种不同单体而成的高分子化合物。

嵌段共聚物是指在高分子链中不同单体按均匀方式排列并形成相同长度的片段。

共聚物具有比单一组分聚合物更多样化的化学和物理性能,可以通过合理选择单体组合,来调节其性能。

例如,丙烯酸甲酯和丙烯酸乙酯可以聚合成随机共聚物,由于甲基侧链比乙基侧链更大,制得的共聚物可以具有更高的玻璃化转变温度和更好的玻璃稳定性。

聚合物的结构与性能

聚合物的结构与性能

对应用做材料的高分子来说,关心的不是具体构型(左旋 或右旋),而是构型在分子链中的异同,即全同(等规)、间 同或无规。
聚合物的结构与性能
Isotactic 全同立构
Syndiotactic 间同立构
Atactic 无规立构
结构规整 较规整 不规整
等规度(tacticity): 全同或间同立构单元所占的百分数
非反应性:-CH3、-OCH3, 如聚甲醛受热降解从端羟基开始,必须进行酯化或醚化以封端。
HO-CH2-O-CH2-O-CH2 CH3O-CH2-O-CH2-O-CH2
-O-CH2-O-CH2-OH 酯化
-O-CH2-O-CH2-OCH3
聚合物的结构与性能
反应性:-OH、-COOH、-NH2, 可进一步反应合成复杂结构
聚合物的结构与性能
一、(单根)高分子链的结构
高分子链结构的特点
●既简单又复杂; ●长而柔; ●分子量大而不均匀
聚合物的结构与性能
1.一级结构
1).化学组成
结构术语
主链
支链
聚合物的结构与性能
端基
侧基
➢ 主链
(A) 碳链高分子
主链全部由碳原子组成
CH2
CH2
CH2
CH2
CH2
CH2
CH2
CH2
聚乙烯
聚合物的结构与性能
有机氟高分子的化学特性:
最好的化学稳定性: 高抗紫外线性、高耐候性、高耐化学性、高耐老化性 特异的表面性能—表面能最低: 拒水性好、拒油性好、耐沾污性好 理想的生物稳定性和生物相容性: 优异的光学性能: 可有低折射率、高透明性 优异的电学性能:
低介电常数、高绝缘性 有机氟高分子材料被誉为“有机材料之王”。

聚合物的结构和性质

聚合物的结构和性质

聚合物的结构和性质聚合物是由许多单体分子连接而成的高分子化合物。

聚合物的结构相对复杂,包括链状、分支、交联以及网络结构。

这种复杂的结构赋予了聚合物独特的性质和用途。

1. 链状聚合物链状聚合物是由相同的单体分子连接而成的长链分子。

其分子链可以通过键键相连,形成线性链、弯曲链以及环状链等不同形态。

链状聚合物具有以下性质:(1) 高分子量:由于链状聚合物是由若干单体分子连接而成的,其分子量往往会非常大。

(2) 高分子稳定性:由于分子链往往是线性或弯曲的,相对稳定。

链状聚合物的热稳定性、化学稳定性等均较为优异。

(3) 高分子合成方便:链状聚合物的合成方法较为简单,容易掌握,重复性、扩展性较强。

2. 分支聚合物分支聚合物是由一个或几个核心结构上连接若干单体分子而形成的。

分支聚合物具有以下性质:(1) 分子体积大:由于分支结构紧密,空隙较小,其分子体积往往较大。

(2) 分子构造复杂:分支聚合物的结构通常是分子核心 + 分子支链,有些还包含有分子夹层等结构。

分支聚合物的结构复杂度相对较高。

(3) 物理性能特别:由于分支聚合物分子内部空间充足,分子间相互作用力较弱。

因此分支聚合物的物理性能常常非常特别,如超高分子材料等。

3. 交联聚合物交联聚合物是由可交联单体或可交联化合物单体所制备的高分子材料。

交联聚合物具有以下性质:(1) 耐火性和耐化学性较好:交联聚合物通常结构致密,交联度较高。

因此其耐火性和耐化学性均优异。

(2) 物理性质均匀:交联聚合物结构致密,分子间相互作用较强。

相当于是一个三维网状结构,物理性质较均匀。

(3) 生物相容性较差:交联聚合物一般具有化学反应性,因此在生物系统中应用较为有限。

4. 网络聚合物网络聚合物也称为化学凝胶,是由高分子单体经过交联反应在溶液或固态中形成的凝胶式高分子材料。

网络聚合物具有以下性质:(1) 密闭性极强:网络聚合物分子间交联后,形成一种网络结构,因此密闭性非常强。

(2) 可逆性预留时间较长:由于网络聚合物结构化学性质非常稳定,因此可逆性预留时间通常较长。

聚合物材料的结构与性能

聚合物材料的结构与性能

聚合物材料的结构与性能聚合物材料是指由单体聚合而成的大分子有机化合物,它具有很多优异的性质和广泛的应用领域,如塑料、纤维、涂料、胶黏剂等。

其中,聚合物材料的结构对其性能具有极其重要的影响,本文将从聚合物基础结构、拓扑结构、化学结构三方面来探讨聚合物材料的结构与性能。

聚合物基础结构聚合物材料的基础结构分为线性聚合物、支化聚合物、交联聚合物和其它结构材料。

线性聚合物,就是由一条长链组成的聚合物,它拥有极高的延展性和柔韧性,如聚乙烯、聚丙烯、聚苯乙烯等。

线性聚合物的结构越规则,其性能就越稳定、耐久。

支化聚合物是在线性聚合物上引入支链的结构,支链的引入能改善聚合物的特性,如增强其耐热、抗氧化和耐寒性。

支化聚合物具有良好的弹性、韧性和可加工性,如聚丙烯、丙烯腈-丁二烯-苯乙烯共聚物等。

交联聚合物是通过交联剂将线性聚合物交联成三维网络结构,使其具有更强的力学性能,如聚氯丁二烯橡胶、聚氨酯泡沫等。

交联聚合物还可通过交联剂的不同组合,调节其硬度、弹性和耐久性等性能,其性能更加多变和可定制化。

其他结构材料包括固体聚合物、液晶聚合物、高分子共价键网络材料等。

这些结构材料的特点和应用比较独特和特殊,但它们都具有聚合物材料独有的柔性、可塑性和设计性等特点。

聚合物拓扑结构聚合物材料的拓扑结构是指其它多重基元的组合方式,包括线性、支化、平面、星形、环状、螺旋等几何形状。

不同的聚合物结构具有不同的物理、化学和力学性质,如韧性、刚度、柔韧性、可加工性、分子分布、链分布等。

线性结构的聚合物是最基本和最常见的结构,在其它结构中也普遍存在。

线性结构聚合物的物理性质可通过PEG和PEG-PEO均聚物、PEG和PEG-g-PEO共聚物体系中的模拟来更好地理解。

支化聚合物中,平面和星形结构在抗拉强度和刚度方面比较优异,而三分子分岔的树枝聚合物具有良好的可加工性、熔体黏度和流动性。

环状聚合物具有特殊的结构和性能,如导电性、功能性、生物相容性能。

聚合物的结构与性能

聚合物的结构与性能

结晶对聚合物性能的影响
结晶使高分子链规整排列,堆砌紧密,因而增强了分子链间的作用力,使聚合物的密度、强度、硬度、耐热性、耐溶剂性、耐化学腐蚀性等性能得以提高,从而改善塑料的使用性能。 但结晶使高弹性、断裂伸长率、抗冲击强度等性能下降,对以弹性、韧性为主要使用性能的材料是不利的。如结晶会使橡胶失去弹性,发生爆裂。 随结晶度的增加,聚合物的耐热性提高,总蠕变量、蠕变速率和应力松弛降低。 耐龟裂性降低,收缩率增大。
聚合物的结构
聚合物结构比较复杂,主要有以下特点: 由许多结构单元组成,相互作用力对分子运动有影响; 聚合物的聚集态有晶态与非晶态之分,但聚合物晶态有序程度较差; 织态结构也会影响聚合物材料的性能。
聚合物的聚集态结构
聚集态结构直接决定聚合物本体性质。 由于聚合物链结构的不同及成型工艺条件的影响,聚合物的聚集态结构主要包括非晶态结构、晶态结构、液晶态结构、取向态结构和共混聚合物的织态结构。
(4)纤维状晶和串晶
纤维状晶是在流动场的作用下使高分子链的构象发生畸变,成为沿流动方向平行排列的伸展状态,在适当的条件下结晶而成。分子链取向与纤维轴平行。 晶体主要形成于高应力作用下 聚合物串晶是一种类似于串珠式的多晶体。
2、聚合物的晶态结构模型
1
2
特点:聚合物中晶区与非晶区同时存在,同一条高分子链可以是一部分结晶,一部分不结晶;并且同一高分子链可以穿透不同的晶区和非晶区。
聚合物的非晶态结构
非晶态结构是一个比晶态更为普遍存在的聚集形态,不仅有大量完全非晶态的聚合物,而且即使在晶态聚合物中也存在非晶区。 非晶态结构包括玻璃态、橡胶态、粘流态(或熔融态)及结晶聚合物中的非晶区。 由于对非晶态结构的研究比对晶态结构的研究要困难的多,因而对非晶态结构的认识还较粗浅。 目前主要有两种理论模型,即两相球粒模型和无规线团模型,两者尚存争议,无定论。

聚合物材料的结构与性能分析

聚合物材料的结构与性能分析

聚合物材料的结构与性能分析一、聚合物材料的基本概念和结构聚合物是一类由许多小分子单元组成的大分子化合物,具有多种性质,如强度、硬度、柔韧性和耐用性等,可以应用于各种领域,例如电子、医药、材料科学和纺织品等。

聚合物的结构由氢键、静电作用和范德华力等相互作用力所决定,其中最常见的聚合物有:线性聚合物、分支聚合物、交联聚合物和共聚聚合物。

其中,线性聚合物的分子链呈直线状,是由相同或不同的单体按照一定的顺序结合形成的。

例如,聚乙烯、聚丙烯、聚苯乙烯等都是线性聚合物。

分支聚合物的分子链在聚合过程中出现了分支点,导致分子链变得不规则或多面体。

例如,高密度聚乙烯、聚偏二氯乙烯、聚碳酸酯等都是分支聚合物。

交联聚合物是由两个或多个线性聚合物交叉连接而成,分子链形成空间网络。

例如,聚氨酯、聚丙烯酰胺凝胶、聚酰亚胺等都是交联聚合物。

共聚聚合物是由两个或多个不同的单体按照一定的比例结合形成的,分子链呈分支和交联的结构。

例如,苯乙烯-丁二烯共聚物、乙烯-乙酸乙烯酯共聚物等都是共聚聚合物。

二、聚合物材料的性能分析聚合物材料的性能分析是研究聚合物材料特性和性能的过程,包括物理性质、力学性质、化学性质和热学性质等。

1. 物理性质聚合物材料物理性质包括密度、折射率、吸水率、透明度、能量水平等指标。

这些指标经常是描述聚合物材料的基本性质和应用过程中需要考虑的专业参数。

2. 力学性质弹性模量(E)和拉伸强度(σm)是识别聚合物材料的力学性质的关键指标。

弹性模量是衡量材料对外部力的抗性,而拉伸强度是测量材料在拉伸压缩条件下的最大强度。

3. 化学性质化学性质是指聚合物材料与其他物质相互作用的能力,例如与溶剂、酸或碱进行反应的能力。

聚合物材料的化学性质通常由分子结构、原子组成和基团相互作用影响。

4. 热学性质热学性质是指聚合物材料在通过加热和冷却来改变密度和体积时,出现的性质。

这些性质包括热膨胀系数、热导率和热膨胀等。

三、聚合物材料的应用领域由于聚合物材料的特殊性质,使其可以应用于许多领域,例如:1. 医学领域聚合物材料可用于医疗器械、人工心脏瓣膜、骨接合和缝合等。

聚合物结构与性能

聚合物结构与性能

聚合物结构与性能聚合物是由一种或多种单体分子经聚合反应形成的巨大分子链。

它们在自然界和人工合成中广泛存在,并且在许多领域中都有重要的应用。

聚合物的结构对其性能具有关键影响。

在本文中,我们将讨论聚合物结构与性能之间的关系,并举例说明它们在不同应用中的作用。

首先,聚合物的结构受到单体分子的类型和链的排列方式的影响。

单体分子的结构决定了聚合物的基本化学性质,如溶解度、化学稳定性等。

例如,聚乙烯是由乙烯单体聚合而成的线性聚合物,具有良好的化学稳定性和机械性能,广泛用于塑料制品的制造。

另一方面,丙烯腈和丙烯酸单体共聚合生成的聚丙烯腈-丙烯酸共聚物具有较高的气体渗透性,适用于膜分离和半导体行业。

其次,链的规则排列方式对聚合物的性能产生重要影响。

聚合物可以采用直链、支链或交联结构。

直链聚合物通常具有较低的熔点和玻璃化转变温度,并且易于加工成纤维和薄膜。

支链聚合物的分枝结构可以增加分子间的交叉作用,提高聚合物的机械强度和耐热性。

例如,聚丙烯可以通过引入丙烯酸甲酯单体来制备聚酯,其中酯基分子作为分枝点,提高了聚合物的强度和热稳定性。

交联聚合物是通过交联剂将聚合物链交联在一起形成的三维网络结构,具有优异的强度、硬度和耐用性,广泛应用于胶粘剂、涂料和橡胶制品中。

此外,聚合物的分子量和分子量分布也对其性能产生重要的影响。

高分子量的聚合物通常具有较高的强度和刚性,但是加工性能较差。

相比之下,低分子量的聚合物容易溶解和加工,但其力学性能较低。

分子量分布越窄,聚合物的性能越均匀,反之则性能差异较大。

因此,在聚合反应过程中,控制反应条件以获得所需的分子量和分子量分布是至关重要的。

最后,聚合物的结晶性和玻璃化转变温度也对其性能产生重要影响。

结晶性聚合物具有有序的结晶区域,具有较高的刚性和强度,也具有较低的渗透性。

玻璃化转变温度是聚合物从玻璃态(高强度、高刚性)转变为橡胶态(高延展性、高韧性)的临界温度。

这种转变对聚合物的工程应用至关重要,例如在低温环境下,玻璃化转变温度较低的聚合物通常更具韧性。

聚合物材料的结构和性能研究

聚合物材料的结构和性能研究

聚合物材料的结构和性能研究聚合物材料是指由单体经过聚合反应形成的高分子化合物,具有许多种类和广泛的应用领域。

随着科学技术的不断发展,对聚合物材料的性能和结构研究越来越深入,对于提高材料的性能和开发新材料具有重要意义。

一、聚合物的结构聚合物的结构对于材料的性能有着决定性的影响。

从宏观上来看,聚合物材料一般是由线性、支化、交联和网状四种结构组成。

其中,线性结构是指聚合物链呈直线状排列;支化结构是指聚合物链呈分支状排列;交联结构是指聚合物链之间通过交联作用连接在一起;网状结构是指聚合物链互相连接形成一个三维网状结构。

从微观结构来看,聚合物的化学结构和形态也会对材料的性能产生影响。

例如,在聚合物链的化学结构方面,聚合物可以分为有机聚合物和无机聚合物两大类。

在形态方面,可以分为均聚物和共聚物。

其中,均聚物是指由同一种单体聚合而成的聚合物,而共聚物则是由两种或两种以上不同的单体聚合而成的聚合物。

二、聚合物的性能聚合物材料的性能包括力学性质、热学性质、光学性质、电学性质、气体渗透性和水合性等方面。

其中,力学性质是指聚合物材料对力的响应能力和承受力的极限能力。

对于高分子材料而言,力学性质是其中最为重要的性质之一。

在热学性质方面,聚合物材料的热稳定性能和耐热性能对于材料的应用也具有重要的意义。

在光学性质方面,聚合物材料主要表现为透明或半透明和不同颜色的吸光特性。

在电学性质方面,聚合物材料常常用来制作电池、电容器、传感器等电子器件。

气体渗透性是聚合物材料在化学工业、环保等方面被广泛应用的领域之一,而水合性也对于有机高分子材料的制备具有重要的影响。

三、聚合物材料的研究方向随着社会科技的发展,聚合物材料的研究方向也发生了明显的变化。

目前,聚合物材料的研究重点已经从传统的结构与性能关系研究转向功能化、加工性能改善和绿色可持续发展方向。

在功能化方面,科学家们正在努力研制具有特定功能的聚合物材料,例如具有生物相容性、耐磨性、阻燃性、自修复性等特点的聚合物材料。

聚 合 物 的 结 构 与 性 能

聚 合 物 的 结 构 与 性 能

第四章
聚合物的结构
聚合物的结构与性能
聚合物是由许多单个的高分子链聚集而成,因而其结构有 两方面的含义:(1)单个高分子链的结构;(2)许多高分子 链聚在一起表现出来的聚集态结构。可分为以下几个层次: 聚 合 物 的 结 构 链结构 一级结构 近程结构 二级结构 远程结构 结构单元的化学组成、连接顺序、 立体构型,以及支化、交联等 高分子链的形态(构象)以及 高分子的大小(分子量)
II. 高分子的柔顺性
高分子链能够通过内旋转作用改变其构象的性能称为高分 子链的柔顺性。 高分子链能形成的构象数越多,柔顺性越大。 ①静态柔顺性:又称为平衡态或热力学柔性,是指高分子链 处在较稳定状态时的卷曲程度。 ②动态柔顺性:指在外界条件的影响下,从一种构象向另一 种构象转变的容易程度,这是一个速度过程,又称动力学柔 性。 高分子的柔性是静态柔性和动态柔性的综合效应 。
极性聚合物 非极性聚合物
100
200
300
400
500
聚 合 度
高聚物的分子量愈大, 则机械强度愈大。然而, 高聚物分子量增加后, 分子间作用力也增强, 使高聚物的高温流动粘 度增加,给加工成型带 来困难。高聚物的分子 量应兼顾使用和加工两 方面的要求。
机 械 强 度
分子量和分子量分布是影响材料性能的因素之一。
高聚物的特点(与小分子物质相比)




高分子是由很大数目(103——105 数量级)的结构单 元组成的,每一个结构单元相当于一个小分子 一般高分子的主链都有一定的内旋转自由能,可 以使主链弯曲而具有柔性 高分子结构具有不均一性 各结构单元间的相互作用对其聚集态结构和物理 性能有很重要的影响 高分子聚集态有晶态和非晶态之分,且晶态存在 很多缺陷

聚合物的结构与性能

聚合物的结构与性能

第七章 聚合物的结构与性能
V. 结晶对聚合物性能的影响
结晶使高分子链规整排列,堆砌紧密,因而增强了分子 链间的作用力,使聚合物的密度、强度、硬度、耐热性、 耐溶剂性、耐化学腐蚀性等性能得以提高,从而改善塑料 的使用性能。 但结晶使高弹性、断裂伸长率、抗冲击强度等性能下降, 对以弹性、韧性为主要使用性能的材料是不利的。如结晶 会使橡胶失去弹性,发生爆裂。
聚合物的结构与性能
II. 聚合物的晶态结构模型
聚合物晶态结构模型有两 种:
缨状胶束模型:认为结晶 聚合物中晶区与非晶区互相 穿插,同时存在。在晶区分 子链相互平行排列成规整的 结构,而在非晶区分子链的 堆砌完全无序。该模型也称 两相结构模型。
两相结构模型
聚合物的结构与性能
折叠链模型:聚合物晶体中,高分 子链以折叠的形式堆砌起来的。
II. 高分子的柔顺性
高分子链能够通过内旋转作用改变其构象的性能称为高分 子链的柔顺性。 高分子链能形成的构象数越多,柔顺性越大。 由于分子内旋转是导致分子链柔顺性的根本原因,而高 分子链的内旋转又主要受其分子结构的制约,因而分子链的 柔顺性与其分子结构密切相关。分子结构对柔顺性的影响主 要表现在以下几方面:
聚合物的结构与性能
虽然高分子的链结构对高分子材料性能有显著影响,但由 于聚合物是有许多高分子链聚集而成,有时即使相同链结构的 同一种聚合物,在不同加工成型条件下,也会产生不同的聚集 态,所得制品的性能也会截然不同,因此聚合物的聚集态结构 对聚合物材料性能的影响比高分子链结构更直接、更重要。 研究掌握聚合物的聚集态结构与性能的关系,对选择合适的 加工成型条件、改进材料的性能,制备具有预期性能的聚合物 材料具有重要意义。
(3)氢键 如果高分子链的分子内或分子间可以形成氢键,氢键 的影响比极性更显著,可大大增加分子链的刚性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作用。 已证明PEG在PET分子中并不结晶,那么为 什么PET的结晶度反而增加哪?其原因是PEG的重
量分数虽大,因为其分子量较大,所以其摩尔分
数较小,对 PET 大分子链的规整性破坏不大, 再 加上柔性的PEG对PET分子的增塑作用,从而使得 在一定条件下所得 PET 纤维的结晶度反而加大。 (在5%-10%时的反常现象)
4.1.3影响结晶度大小的因素 (1) 影响wc的链结构因素 一般说来,高聚物分子链的结构越简单,侧基的 体积越小,分子链越柔顺,结晶速率越快,可达到 的最大结晶度也越大。结晶速率与结晶度的经验关 系:lnυmax∝wc lnυmax ≈ 0.2093Xc-12.56 例如, PE比PET的链结构即简单又规整,结晶速率 快,PE的wc可达80%以上,PET的wc 一般在50%左 右。
0.60 0.55 0.50 0.45 0.40
drawn PET fibers
wc
0.35 0.30 0.25 0.20 0.15 0.10 80 100 120 140 160 180 200 220 240 260 280
0
as-spun fibers
T ( C)
Fig. Effects of annealing and drawing on degree of crystallinity
4.1.2 Relationships between properties and crystallinity degree 4.1.2 结晶度与性能的关系
(1) 增强的性质
1. melting temperature (Tm) 2. tensile strength (a) 3. hardness
4.1 Degree of crystallinity
4.1.3 The factors affecting degree of crystallinity
为了获得一定的结晶度,赋予纤维强度、尺寸稳
定性等性能,纤维一般要在一定的温度下热定型。
热定型温度提高,Xc增大,热定型温度接近熔点 时Xc增大,热定型温度接近熔点时Xc才下降。另
第四章 结晶高聚物超分子结构参数
The parameters of superstructure for crystalline polymers 超分子结构:高分子链之间通过强的或弱 的相互作用所形成的聚集体。
4.1 结晶度(degree of crystallinity) 4.2 取向度(oriention factor)
4.1 Degree of crystallinity
4.1.4 Measurement method of the degree of crystallinity 4.1.4.1 X-ray diffraction
l 体积结晶度 用X-射线衍射法体积结晶度。根据微原纤 结构模型:
L
c,x
D L
式中, K为比例常数。晶区的衍射强度Ic和非晶区的散射强度Ia则 表示在一定角度范围内收集到的X射线衍射的积分强度。 对有些 高聚物,晶区和非晶区对衍射强度的贡献集中在一定的角度范围 内,可近似取K值为1。为计算方便,有时用衍射峰的面积代替积 分强度。 主要计算方法有:作图法, Ruland 法(考虑晶格畸变的影响), 拟合分峰法(Hindeleh),回归线法 (1) 晶峰和非晶峰可以分开的样品 (作图法) (2) 非晶峰和晶峰重叠的样品 (Hindeleh, Farrow, Ruland, 回归线法)
式中,D为晶片厚度(height of lamellar crystal),L为 长周期(long spacing, long period)。
4.1 Degree of crystallinity
4.1 Degree of crystallinity
4.1.3 The factors affecting degree of crystallinity
(2) 影响结晶度的外界因素 a. 热定型温度和拉伸(annealing and drawing) 以PET纤维为例 Xc(密度法) 热处理温度℃ 未拉伸 拉伸 100 0.13 0.23 140 0.23 0.26 180 0.30 0.35 220 0.39 0.53 250 0.46 0.56 255 0.43 0.54 260 0.36 0.40
4. elastic modulus (E)
5. density (ρ) 6. stability in size (尺寸稳定 性) 7 . glass transition temperature (Tg)
4.1 Degree of crystallinity
4.1.3 The factors affecting degree of crystallinity
4.1 Degree of crystallinity
4.1.4 Measurement method of the degree of crystallinity 4.1.4.1 X-ray diffraction
ma Ia k mc Ic
wc , x
mc Ic mc ma I c kI a
外,在相同温度下,拉伸纤维的Xc比未拉伸纤维
的Xc高。其原因可解释为拉伸可提高纤维的有序 性,使结晶速率加快。
4.1 Degree of crystallinity
4.1.3 The factors affecting degree of crystallinity
b. 添加剂 有些添加剂可能诱发成核,使得表观结晶速率增 加,这些添加剂可称为成核剂。 例如: PET的催化剂对结晶速率有很大影响, 从 而影响到结晶度,例 Sb2O3 作催化剂时结晶速率 较快,钛酸四丁酯作催化剂时,结晶速率慢。 有些添加剂可能使链段的运动能力增加,这些添 加剂可称为增塑剂。 例如:PET中添加40%以上PEG时,可诱发PET在 室温下结晶。
4.1 Degree of crystallinity
4.1.4 Measurement method of the degree of crystallinity
ቤተ መጻሕፍቲ ባይዱ
(1) X-ray diffraction method 可测定质量结晶度和体积结晶度。 假设: X- 射线被高聚物中原子散射的强度与原子 所处的状态无关,原子的聚集状态只决定衍射线的 位置与形状,不影响总强度。因此可以认为非晶部 分的质量与结晶部分的质量之比,等于非晶部分的 衍 射 强 度 与 结 晶 部 分 的 衍 射 强 度 之 比 。 即 ( I∝m, Ic∝mc, Ia∝ma)
4.1 Degree of crystallinity
4.1.3 The factors affecting degree of crystallinity
共聚对高聚物结晶度的影响比较复杂要根据具 体情况具体分析。 以ES(癸二酸) 和PEG对PET的改 性纤维为例给予说明。
ES mol% content wc (X-ray) PEG wt% wc (X-ray 相对)
4.1 Degree of crystallinity
4.1.1 Definition
• 表观结晶度: 共混物中以体系的总量为基准的结
晶度。 共混物中某一组分的结晶度:热分析法为例
H m wc 0 H m
为表观结晶度。但某一组分的实际结晶度是:
wc/(可结晶组分的重量分数)。
4.1 Degree of crystallinity
在一些资料中直接用crystallinity做为结晶度,但 从字典可查出,crystallinity有两个含义:结晶度 和结晶性。IUPAC推荐cystallinity为结晶(性),其 定义如下:
4.1 Degree of crystallinity
4.1.1 Definition degree of crystallinity: The fractional amount of crystallinity in the polymer sample. crystallinity: The presence of three-dimensional
order on the level of atomic dimensions.
要注意结晶度(degree of crystallinity)和结晶
(性)(crystallinity)的区别。前者代表结晶的量的多
少,后者代表是否能结晶。
4.1 Degree of crystallinity
4.1.1 Definition 还有一个概念值得注意,就是相对结晶度 (relative degree of crystallinity): relative volume degree of crystallinity(relative volume fraction) and relative mass degree of crystallinity(relative mass fraction). 其 符号用的也最混乱。在论文中常用的符号是a。 definition: a=wc/wc∞ or a=c/c∞ 式中,wc∞ 和c∞分别代表结晶结速时,体系的质 量结晶度和体积结晶度。
数。(注意符号) mc和m分别代表试样的晶区的质量
和总质量。
mc wc m
4.1 Degree of crystallinity
4.1.1 Definition
体积结晶度(volume degree of crystallinity):表示结
晶部分在总体中所占的体积百分数或体积分数。
Vc c V
4.3 晶粒尺寸(size of crystallites)
4.4长周期
4.1 Degree of crystallinity
4.1.1 Definition 结晶高聚物一般是部分结晶的,结晶的量的多少用
相关文档
最新文档