习题课(第3章)

合集下载

高等数学 第三章中值定理与导数的应用习题课

高等数学 第三章中值定理与导数的应用习题课

(5) (1 + x )α = 1 + αx +
α (α − 1)
2!
x2 + L+
α (α − 1)L (α − n + 1)
n!
x n + o( x n )
Ⅲ 导数的应用
一、函数的极值与单调性
1.函数极值的定义 . x ∈ U ( x0 , δ ), f ( x ) ≤ f ( x0 ), f ( x0 )为极大值. 为极大值.
0 ∞ 其它型: 其它型: ⋅ ∞ , ∞ − ∞ , 0 , 1 , ∞ , 转化为 “ ”型或“ ” 型 0 型或“ 型或 0 ∞
0 ∞ 0
二、泰勒公式
1.泰勒公式 .
如果函数在含有一点的开区间内具有直到(n+1)阶导数 阶导数 如果函数在含有一点的开区间内具有直到 f ′′( x0 ) f ( n) ( x0 ) 2 f ( x) = f ( x0 ) + f ′( x0 )( x − x0 ) + ( x − x0 ) + L+ ( x − x0 )n + Rn ( x) 2! n! ( n +1) f (ξ ) Rn ( x ) = ( x − x0 ) n+1 拉格朗日型余项 ( n + 1)!
x ∈ U ( x 0 , δ ), f ( x ) ≥ f ( x0 ), f ( x0 )为极小值 .
o

2.函数的驻点 .
f ′( x 0 ) = 0 则 x 0为 f ( x ) 的驻点。 的驻点。
3.函数的单调区间的判别 .
函数在[a,b]上连续 在(a,b)内可导 上连续,在 内可导. 函数在 上连续 内可导

最新数据结构习题课3讲解学习

最新数据结构习题课3讲解学习

0 50 1 10 3 -30 1 20 3 -60 35
a[0] 0 0 50 a[1] 1 0 10 a[2] 1 2 20 a[3] 3 0 -30 a[4] 3 2 -60 a[5] 3 3 5
03 10 22 31
num
00 13 23 35
pos
0
TP3[处理三元组表]
3
FOR i ← 0 TO t-1 DO
20
A[4] 3
2
-60
A[5] 3 3
5
B[4] 2
3
-60
B[5] 3 3
5
算法的关键是求出A中元素在B中的位置
Bnubmer = 0
FOR i=0 TO Cols(A) DO
FOR j=0 TO t DO
IF col(A[j])=i Then
(row(B[Bnumber])=i
col(B[Bnumber])=row(A[j])
算法: TRANSPOSE(A. B)
TP1[初始化] /*声明A的转置矩阵B,使得B的行数等于 A的列数,B的列数等于A的行数,B中非 0元素的个数等于A中非0元素的个数*/ n←Rows(B)←Cols(A). Cols (B)←Rows(A). t←Count(B)← Count(A).
TP2
row(B[k]) ←col(A[i]).
val(B[k]) ← val(A[i]).
pos[p]← pos[p]+1 ).
a[0] 0 0 50 a[1] 1 0 10 a[2] 1 2 20 a[3] 3 0 -30 a[4] 3 2 -60 a[5] 3 3 5
0 0 50 0 1 10
2 1 20

复变函数第3篇习题课

复变函数第3篇习题课

y
C2
解 设C1 : z x, x : 1 1
C1 1 O
|z|z dz C1
0 1
1
x
|x|x dx
1
C2 : z ei t , t : 0 d z eit i d t
|z|z dz
C2
ei
t
e i
t
i d t
idt i
0
0
i 原式= | z | z d z | z | z d z
解(C解3i1C)Cg自C22C:1CC:1z原C11zz2z::C22点d1dzzCz3沿xz2虚3ix•iy3iy轴,,0,1,03yx(至(i3yx::x::0i0,00i再yi))1水223dd13平((x3C至1 zCi3i21y)zd)2izd6z3019(ii原y032原)3式x62 式d2i=(d=i6yx)6232962363ii i
故 被积函数 在 | z | 1 上 处处解析
积分结果为0. 6
49页8 直接得到下列积分的结果,并说明理由
Ñ (3) ez (z2 1) d z |z|1
解 结果为 0 , 因为 被积函数 ez (z2 1) 在 | z | 1上 处处解析, 所以 积分结果为0.
Ñ (4)
|z| 1 2
1 (z2 1) (z3 1)
dz
解 结果为 0 , 由 (z2 1) (z3 1) 0 得到
z 1, z 1 3 i
2 这2些点都在圆 | z | 1 的外部。

被积函数

|
z
|
1

2
处处解析
2
积分结果为0. 7
49页9 沿指定曲线的正向计算下列积分

同济大学《高等数学》(第四版)第三章习题课

同济大学《高等数学》(第四版)第三章习题课
一 点 的 个 , 果 在 点 一 邻 , 于 邻 内 如 存 着 x0的 个 域 对 这 域 的 任 点 ,除 点 0外 f (x) < f (x0 )均 立就 何 x 了 x , 成 , 称 f (x0)是 数 (x)的 个 大 ; 函 f 一 极 值 果 在 点 一 邻 , 于 邻 内 如 存 着 x0的 个 域 对 这 域 的 何 x 了 x , 任 点 ,除 点 0外 f (x) > f (x0 )均 立就 成 , 称 f (x0)是 数 (x)的 个 小 . 函 f 一 极 值
上页 下页 返回
求极值的步骤: 求极值的步骤:
(1) 求导数 f ′( x ); ( 2) 求驻点,即方程 f ′( x ) = 0 的根; 求驻点,
( 3) 检查 f ′( x ) 在驻点左右的正负号或 f ′′( x ) 在 该点的符号 , 判断极值点;
(4) 求极值 .
上页
下页 返回
(3) 最大值、最小值问题 最大值、
做函数 f ( x )的驻点.
驻点和不可导点统称为临界点. 驻点和不可导点统称为临界点. 临界点
上页 下页 返回
定理(第一充分条件) 定理(第一充分条件) x (1)如 x∈(x0 −δ , x0),有f '(x) > 0;而 ∈(x0, x0 +δ ), 如 果 x 取 极 值 有f '(x) < 0, f (x)在 0处 得 大 . 则 x (2)如 x∈(x0 −δ , x0),有f '(x) < 0;而 ∈(x0, x0 +δ ) 如 果 x 取 极 值 有f '(x) > 0, f (x)在 0处 得 小 . 则 x (3)如 当x∈(x0 −δ , x0)及 ∈(x0, x0 +δ )时 f '(x) 符 如 果 , (x x 无 值 号 同则f (x)在 0处 极 . 相 ,则 定理(第二充分条件) 定理(第二充分条件)设f (x)在 0 处 有 阶 数 x 具 二 导 , 且f '(x0 ) = 0, f ''(x0 ) ≠ 0, 那 末 f ''(x0 ) < 0时 函 f (x)在 0 处 得 大 ; x 取 极 值 (1)当 , 数 当 '' x 取 极 值 (2)当f (x0) > 0时 函 f (x)在 0 处 得 小 . , 数 当

计算机组成原理第三章习题课

计算机组成原理第三章习题课
– 地址线和控制线共用 – 数据线单独分开连接。
3
RAM:1K×4位—>1K×8位
D7-D0
D7-D4 RAM1 1K×4 CS CS
D3-D0 RAM2 1K×4 CS
A9-A0 A9-A0
A9-A0
2、字存储容量扩展
• 增加地址线,使得存储器单元数增加 • 连接方式:三组信号线中
– 地址总线和数据总线公用 – 多余的地址线用来片选
1、20位地址,32位字长
(2)由512K×8位的芯片构成,需要多少片 存储器:1M×32位 512K →1M:说明有容量扩展 8位→32位:说明有字长扩展 8 →32 需要: (1M/512K)×(32位/ 8位) = 2×4 =8
1、20位地址,32位字长
(3)需要多少位地址作为芯片选择 512K×8位→1M×32位 芯片选择只和地址线相关 512K=2 512K 219,即有19根地址线 19 1M =220,即有20根地址线 多余的一根地址线一定是做片选的 ∴需要1根地址线作为片选
3、16K×8位—>64K×32位
RAM1 RAM2 RAM3 RAM4 CS CS CS CS
字长扩展 16K×8位—>16K×32位
16K×32位 16K×32位 16K×32位
容量扩展 16K×32位—>64K×32位
A15 A14 A13-A0
3、16K×8位—>64K×32位
错误: 1、只看到了A13-A0,缺少A15、A14 2、数据总线、地址总线,一定要标明起止符 号,例如A13-A0, D7-D0 3、三组信号线要全部标明
7. 某机器中,已知配有一个地址空间为(0000—1FFF)16 的ROM区域,现在用一个 用一个SRAM芯片(8K×8位)形 芯片( × 位 用一个 芯片 成一个16K×16位的 位的RAM区域 区域,起始地址为(2000) 成一个 × 位的 区域 16 。假设SRAM芯片有CS和WE控制端,CPU地址总 线A15-A0 ,数据总线为D15-D0 ,控制信号为R / W (读 / 写),MREQ(当存储器读或写时,该信号 指示地址总线上的地址是有效的)。 分析:一个RAM区,一个ROM区 RAM ROM 其中RAM需要容量扩展 由8K×8位芯片构成1—>16K×16位(容量扩展) 共需要4片芯片,每两片构成8K×16位单元 字长扩展不改变地址分配,容量扩展才会改变

【步步高】-高中数学 第3章 习题课空间向量的应用同步训练 苏教版选修2-1

【步步高】-高中数学 第3章 习题课空间向量的应用同步训练 苏教版选修2-1

习题课 空间向量的应用一、基础过关 1.如图所示,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,∠BAD =∠FAB =90°,BC 綊12AD ,BE 綊12FA ,G 、H 分别为FA 、FD 的中点.(1)证明:四边形BCHG 是平行四边形; (2)C 、D 、F 、E 四点是否共面?为什么? (3)设AB =BE ,证明:平面ADE ⊥平面CDE . 2.如图所示,在四棱锥P —ABCD 中,底面ABCD 是一直角梯形,∠BAD =90°,AD ∥BC ,AB =BC =a ,AD =2a ,且PA ⊥底面ABCD ,PD 与底面成30°角. (1)若AE ⊥PD ,E 为垂足,求证:BE ⊥PD ; (2)求异面直线AE 与CD 所成角的余弦值. 3.如图所示,在四棱锥O —ABCD 中,底面ABCD 是边长为1的菱形,∠ABC =π4,OA ⊥底面ABCD ,OA =2,M为OA 的中点,N 为BC 的中点. (1)证明:直线MN ∥平面OCD ; (2)求异面直线AB 与MD 所成角的大小. 二、能力提升 4.如图所示,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,AC ⊥AD ,AB ⊥BC ,∠BAC =45°,PA =AD =2,AC =1. (1)证明:PC ⊥AD ;(2)求二面角A -PC -D 的正弦值;(3)设E 为棱PA 上的点,满足异面直线BE 与CD 所成的角为30°,求AE 的长. 5.等边△ABC 中,D ,E 分别是AC ,AB 的中点,沿DE 将△ADE 折起,使平面ADE ⊥平面BCDE (如图所示). (1)求证:平面ABC ⊥平面ABE ;(2)求直线AC 与平面ABE 所成角的正弦值. 三、探究与拓展 6.如图,四棱锥S —ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点. (1)求证:AC ⊥SD ;(2)若SD ⊥平面PAC ,求二面角P —AC —D 的大小;(3)在(2)的条件下,侧棱SC 上是否存在一点E ,使得BE ∥平面PAC .若存在,求SE ∶EC 的值;若不存在,试说明理由.答案1. (1)证明 由题设知,FA 、AB 、AD 两两互相垂直.以A 为坐标原点,射线AB 为x 轴正方向,以射线AD 为y 轴正方向,以射线AF 为z 轴正方向,建立如图所示的空间直角坐标系. 设AB =a ,BC =b ,BE =c ,则由题设得A (0,0,0),B (a,0,0),C (a ,b,0),D (0,2b,0),E (a,0,c ),G (0,0,c ),H (0,b ,c ).所以GH →=(0,b,0),BC →=(0,b,0),于是GH →=BC →.又点G 不在直线BC 上, 所以四边形BCHG 是平行四边形.(2)解 C 、D 、F 、E 四点共面.理由如下:由题设知,F (0,0,2c ),所以EF →=(-a,0,c ),CH →=(-a,0,c ),EF →=CH →.又C ∉EF ,H ∈FD , 故C 、D 、F 、E 四点共面.(3)证明 由AB =BE ,得c =a ,所以CH →=(-a,0,a ),AE →=(a,0,a ). 又AD →=(0,2b,0),因此CH →·AE →=0, CH →·AD →=0,即CH ⊥AE ,CH ⊥AD . 又AD ∩AE =A ,所以CH ⊥平面ADE . 由CH ⊂平面CDE , 得平面ADE ⊥平面CDE . 2. (1)证明 ∵PA ⊥底面ABCD ,∴PA ⊥AB .又∵AB ⊥AD , ∴AB ⊥平面PAD .∴AB ⊥PD . 又∵AE ⊥PD ,∴PD ⊥平面ABE . 故BE ⊥PD . (2)解 如图所示,以A 为原点,AB 、AD 、AP 所在直线为坐标轴,建立空间直角坐标系,则点C 、D 的坐标分别为(a ,a,0)、(0,2a,0).∵PA ⊥底面ABCD ,∠PDA 是PD 与底面ABCD 所成的角,∴∠PDA =30°. 于是,在Rt△AED 中,由AD =2a , 得AE =a .过E 作EF ⊥AD ,垂足为F ,在Rt△AFE 中,由AE =a ,∠EAF =60°,得AF =12a ,EF =32a .∴E ⎝ ⎛⎭⎪⎫0,12a ,32a .于是AE →=⎝ ⎛⎭⎪⎫0,12a ,32a ,CD →=(-a ,a,0).设异面直线AE 与CD 所成角为θ,则cos θ=|AE →·CD →||AE →||CD →|=12a 2a ·2a =24.∴AE 与CD 所成角的余弦值为24. 3. (1)证明作AP ⊥CD 于点P ,连结OP .如图,分别以AB 、AP 、AO 所在直线为x 、y 、z 轴建立空间直角坐标系.A (0,0,0),B (1,0,0),P ⎝ ⎛⎭⎪⎫0,22,0,D ⎝⎛⎭⎪⎫-22,22,0,O (0,0,2),M (0,0,1),N ⎝ ⎛⎭⎪⎫1-24,24,0. MN →=⎝ ⎛⎭⎪⎫1-24,24,-1,OP →=⎝ ⎛⎭⎪⎫0,22,-2, OD →=⎝ ⎛⎭⎪⎫-22,22,-2.设平面OCD 的法向量为n =(x ,y ,z ),则n ·OP →=0,n ·OD →=0. 即⎩⎪⎨⎪⎧22y -2z =0,-22x +22y -2z =0.取z =2,解得n =(0,4,2).∵MN →·n =⎝ ⎛⎭⎪⎫1-24,24,-1·(0,4,2)=0,又MN ⊄平面OCD ,∴MN ∥平面OCD .(2)解 设AB 与MD 所成角为θ. ∵AB →=(1,0,0),MD →=⎝ ⎛⎭⎪⎫-22,22,-1,∴cos θ=|AB →·MD →||AB →|·|MD →|=12,∴θ=π3.∴AB 与MD 所成角的大小为π3.4. (1)证明如图,以点A 为原点建立空间直角坐标系,依题意得A (0,0,0),D (2,0,0),C (0,1,0),B ⎝ ⎛⎭⎪⎫-12,12,0,P (0,0,2).易得PC →=(0,1,-2),AD →=(2,0,0),于是PC →·AD →=0,所以PC ⊥AD .(2)解 PC →=(0,1,-2), CD →=(2,-1,0).设平面PCD 的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·PC →=0,n ·CD →=0,即⎩⎪⎨⎪⎧y -2z =0,2x -y =0.不妨令z =1,可得n =(1,2,1). 可取平面PAC 的法向量m =(1,0,0).于是cos 〈m ,n 〉=m ·n |m |·|n |=16=66,从而sin 〈m ,n 〉=306. 所以二面角A -PC -D 的正弦值为306. (3)解 设点E 的坐标为(0,0,h ), 其中h ∈[0,2].由此得BE →=⎝ ⎛⎭⎪⎫12,-12,h .由CD →=(2,-1,0),故cos 〈BE →,CD →〉=BE →·CD →|BE →|·|CD →|=3212+h 2×5=310+20h 2, 所以310+20h2=cos 30°=32, 解得h =1010,即AE =1010. 5. (1)证明 取DE 的中点O ,取BC 的中点G ,连结AO ,OG ,则AO ⊥DE ,OG ⊥DE .∵平面ADE ⊥平面BCDE ,平面ADE ∩平面BCDE =DE , ∴AO ⊥平面BCDE ,∴AO ⊥OG . 建立如图所示的空间直角坐标系, 设BC =4,则DE =2,AO =OG = 3.所以A (0,0,3),D (1,0,0),E (-1,0,0),B (-2,3,0),C (2,3,0). 设平面ABE 的法向量为m =(x 1,y 1,z 1), ∵EA →=(1,0,3),EB →=(-1,3,0), 由⎩⎪⎨⎪⎧ m ⊥EA →,m ⊥EB→,得⎩⎨⎧x 1+3z 1=0,-x 1+3y 1=0.令y 1=1,得m =(3,1,-1), 设平面ABC 的法向量为n =(x 2,y 2,z 2), ∵BC →=(4,0,0),AC →=(2,3,-3), 由⎩⎪⎨⎪⎧n ⊥BC →,n ⊥AC→ 得⎩⎨⎧x 2=0,2x 2+3y 2-3z 2=0.令y 2=1,得n =(0,1,1),∵m·n =(3,1,-1)·(0,1,1)=0, ∴平面ABC ⊥平面ABE .(2)解 由(1)得cos 〈AC →,m 〉=AC →·m |AC →||m |=23+3+34+3+3·3+1+1=265.∴直线AC 与平面ABE 所成角的正弦值为265.6. (1)证明 连结BD ,设AC 交BD 于点O ,由题意知SO ⊥平面ABCD ,以O 点为坐标原点,OB →、OC →、OS →的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系O —xyz 如图所示.设底面边长为a ,则高SO =62a . 于是S (0,0,62a ),D ⎝ ⎛⎭⎪⎫-22a ,0,0, C ⎝ ⎛⎭⎪⎫0,22a ,0,B ⎝ ⎛⎭⎪⎫22a ,0,0, OC →=⎝ ⎛⎭⎪⎫0,22a ,0, SD →=⎝ ⎛⎭⎪⎫-22a ,0,-62a ,∴OC →·SD →=0.故OC ⊥SD , 因此AC ⊥SD .(2)解 由题意知,平面PAC 的一个法向量DS →=⎝ ⎛⎭⎪⎫22a ,0,62a ,平面DAC 的一个法向量OS →=⎝⎛⎭⎪⎫0,0,62a ,设所求二面角为θ,则cos θ=OS →·DS →|OS →||DS →|=32,故所求二面角P —AC —D 的大小为30°. (3)解 在棱SC 上存在一点E 使BE ∥平面PAC .由(2)知DS →是平面PAC 的一个法向量,且DS →=⎝ ⎛⎭⎪⎫22a ,0,62a ,CS →=⎝⎛⎭⎪⎫0,-22a ,62a , BC →=⎝ ⎛⎭⎪⎫-22a ,22a ,0,设CE →=tCS →,则BE →=BC →+CE →=BC →+tCS →=⎝ ⎛⎭⎪⎫-22a ,22a 1-t ,62at .由BE →·DS →=0,得t =13,即当SE ∶EC =2∶1时,BE →⊥DS →. 而BE 不在平面PAC 内, 故BE ∥平面PAC .。

第3章 信道模型和信道容量 习题课(2)

第3章 信道模型和信道容量 习题课(2)

3、解: (1)已知二元对称信道的传递矩阵,又已知输入的
3 1 概率分布 P (0) , P (1) , 就可以计算得出 Y 的概率 4 4
分布如下:
P ( y 0) P ( x ) P ( y 0 | x )
x
P( x 0) P( y 0 | x 0) P( x 1) P( y 0 | x 1)
0
1
0


1

1
1
(a)
2

( a ) 图,由信道线图可得转移概率矩阵如下:
1
1
该矩阵为行列排列阵,信道为准对称信道,可以把按列分 成两个子矩阵如下:
1
1
PS 10 log10 1 20 PN
得到
PS 1 100 PN
信道传送的最大信息速率
PS Ct W log(1 ) 3 103 log 2 100 19.93 103 bit/s PN
(1)
信道不变, Ct 仍应为 19.93 10 (比特/秒) ,而
21s?121lognkkkskmmcshppprr??????????????????????11222loglog1222211loglog12hh????????????????????????????????????设在平均功率受限高斯可加波形信道中信道带宽为3khz又设信号功率噪声功率噪声功率20db
•设在平均功率受限高斯可加波形信道 中,信道带宽为3kHz,又设(信号功 率+噪声功率)/噪声功率=20 dB。
(1)试计算该信道传送的最大信息率 (单位时间)19.93*103(bit/s)。 (2)若功率信噪比降为5dB,要达到 相同的最大信息传输率,信道带宽应 是多少(12KHz)。

高等数学第三章习题课答案

高等数学第三章习题课答案

第三章 微分中值定理习题课一、判断题(每题3分)1.函数)(x f 在0x 点处可导,且在0x 点处取得极值,那么0)(0='x f .( √ )2.函数)(x f 在0x 点处可导,且0)(0='x f ,那么)(x f 在0x 点处取得极值.( × )3.若0x 是()f x 的极值点,则0x 是()f x 的驻点. ( × )4.函数()x f 在区间()b a ,内的极大值一定大于极小值 . ( × )5.若()0,(,)f x x a b ''>∈,则()f x '在(,)a b 内单调增加 .( √ )6.0()0f x '=且0()0f x ''<是函数()y f x =在0x 处取得极大值的充要条件. ( × )7.函数()arctan f x x x =的图形没有拐点. ( √ )8.因为函数y =0x =点不可导,所以()0,0点不是曲线y =.( × )二、选择题(每题3分)1.下列函数中,在闭区间[-1,1]上满足罗尔定理条件的是( D ). A .xe B .ln x C .x D .21x - 2.对于函数()211f x x=+,满足罗尔定理全部条件的区间是( D ). (A )[]2,0-;(B )[]0,1;(C );[]1,2-(D )[]2,2-3. 设函数()()()12sin f x x x x =--,则方程()0f x '=在 (0,)π内根的个数( D )(A) 0个 ; (B)至多1个; (C) 2个; (D)至少3个.4.已知函数3()2f x x x =+在区间[0,1]上满足拉格朗日中值定理的条件,使得该定理成立的ξ=( D ).(A )13 (B (C )12 (D 5.若函数)(),(x g x f 在区间),(b a 上的导函数相等,则该两函数在),(b a 上( C ). A.不相等 B .相等 C.至多相差一个常数 D.均为常数6.arcsin y x x =- 在定义域内( B ).A. 单调减函数B.单调增函数C. 有单调增区间也有单调减区间D. 没有单调性7. 函数2129223-+-=x x x y 的单调减少区间是 ( C ). (A )),(+∞-∞ (B ))1,(-∞(C ))2,1((D )),2(+∞8.设(),a b 内()0f x ''>,则曲线()y f x =在(),a b 内的曲线弧位于其上任一条切线的( A ). (A )上方;(B )下方; (C )左方; (D )右方.9.曲线32y ax bx =+的拐点为(1,3),则 ( A ). (A )3,30a b a b +=+= (B )0,30a b a b +=+= (C )2,320a b a b +=+=(D )0,340a b a b +<+=10. 设函数()y f x =在开区间(,)a b 内有()'0f x <且()"0f x <,则()y f x =在(,)a b 内( C )A.单调增加,图像是凹的B.单调减少,图像是凹的C.单调减少,图像是凸的D. 单调增加,图像是凸的11.函数2y ax c =+在区间()0,+∞内单调增加,则a 和c 应满足( C ).(A )0a <且0c =; (B )0a >且c 是任意实数; (C )0a <且0c ≠;(D )0a <且c 是任意实数.12. 函数23++=x x y 在其定义域内( B ) (A )单调减少 (B) 单调增加 (C) 图形是凹的(D) 图形是凸的13.若()()00,x f x 为连续曲线()y f x =上凹弧与凸弧的分界点,则( A ). (A )()()00,x f x 必为曲线的拐点; (B )()()00,x f x 必为曲线的驻点; (C )0x 点必为曲线的极值点;(D )0x x =必为曲线的拐点.14.函数()2ln f x x x =-的驻点是( B ).(A )1x = (B )12x =(C )(1,2) (D) 1(,1ln 2)2+15.函数2ln(1)y x x =-+的极值( D ). A .是1ln 2-- B .是0D.不存在 C.是1ln216.设()[0,1]()f x x f x ''=在上有<0,则下述正确的是( A )( A ) (1)f '<)0()1(f f -<(0)f '; ( B ) (0)f '<)0()1(f f -<(1)f '; ( C ) (1)f '<(0)f '<)0()1(f f -; ( D ) (0)f '<(1)f '<)0()1(f f -17.设()f x 具有二阶连续的导数,且20()lim3,ln(1)x f x x →=-+则(0)f 是()f x 的( A )(A )极大值; (B )极小值; (C )驻点; (D )拐点.18.设函数()y f x =在0x x =处有()0f x '=0,在1x x =处导数不存在,则( C ). A. 0x x =,1x x =一定都是极值点 B.只有0x x =可以是极值点C. 0x x =, 1x x =都可能不是极值点D. 0x x =,1x x =至少有一个是极值点三、解答题(求极限每题4分其余每题 8分) 1.求极限220000011sin sin 1cos 2(1)lim lim lim lim lim 0sin sin 22→→→→→---⎛⎫-===== ⎪⎝⎭x x x x x x x x x x x x x x x x x x (2)11lim 1ln x xx x →⎛⎫⎪⎝⎭-- =()()11ln 1ln 11limlim 11ln ln x x x x x x x x x x x→→--+-=--+11ln ln 11limlim ln 1ln 22x x x x x x x x x →→+===+-+0(3)11lim 1→⎛⎫ ⎪⎝⎭--x x x e 01lim (1)→--=-xx x e x x e 0011lim lim 12xxx x x x x x x e e e xe e e xe →→-===-+++ (4)200011ln(1)ln(1)lim()lim lim ln(1)ln(1)x x x x x x x x x x x x →→→-+-+-==++0011111limlim lim 22(1)2(1)2x x x x x x x x x →→→-+====++20sin (5)limtan →-x x xx x 2200sin 1cos lim limtan 3x x x x x x x x →→--==0sin 1lim 66x x x →==222201(6)lim(1)→---x x x e xx e 22401lim→--=x x e xx 2232002211lim lim 42x x x x xe x e x x →→--==12=2223220000tan tan sec 1tan 1(7)lim lim lim lim ln(1)333→→→→---====+x x x x x x x x x x x x x x x1ln 1(8)lim cot →+∞⎛⎫+ ⎪⎝⎭x x arc x 1lim cot →+∞=x x arc x 222211lim lim 111x x x x x x x →+∞→+∞-+===+-+sin sin cos (9)limlim cos 1→→-==-x a x a x a xa x a22200021sec 77ln tan 7tan 2sec 77tan 7(10)lim lim lim 11ln tan 2tan 7sec 22sec 22tan 2+++→→→⋅⋅⋅===⋅⋅⋅x x x x x x x x x x x x x(11)lim arctan 2→+∞⎛⎫- ⎪⎝⎭x x x π22221arctan 12lim limlim 1111→+∞→+∞→+∞--+====+-x x x x x x x xxπ2lim ln(arctan )2(12)lim arctan →+∞→+∞⎛⎫= ⎪⎝⎭x xx x x x e ππ2lim ln(arctan )→+∞x x x π222211ln arctan lnln arctan arctan 1limlimlim 111→+∞→+∞→+∞+⋅+===-x x x x x x x xxxππ2222lim 1x x x ππ→+∞=-=-+ 22lim arctan -→+∞⎛⎫∴= ⎪⎝⎭xx x e ππ .()tan 21(13)lim 2→-x x x π解:()()()11sin ln 22limlim tan ln 2cos tan 2221lim 2x x x x x x xx x x eeππππ→→--→-==1122sinlim22x xx e eπππ→---⋅==tan 0(14)1lim +→⎛⎫⎪⎝⎭xx x 0011lim tan lnlim ln++→→⋅⋅==x x x x xxee2001110ln limlim1x x x xx xe ee++→→---====2. 验证罗尔中值定理对函数32452y x x x =-+-在区间[]0,1上的正确性.解:()f x 在闭区间[]0,1上连续,在开区间()0,1内可导,()()012f f ==-满足罗尔定理条件.(3分)令()2121010f x x x '=-+=,得()0,1x =,满足罗尔定理结论.3. 试证明对函数2y px qx r =++应用拉格朗日中值定理时所求得的点ξ总是位于区间的正中间.证明:在区间[],a b 上,()()()f b f a f b aξ-'=- 代入:()()222pb qb r pa qa r p q b aξ++-++=+-解得:2a bξ+=. 4. 证明方程531xx -=在()1,2之间有且仅有一个实根.证明:令()531f x x x =--,()11310f =--<, ()522610f =-->所以 ()0f x =在()1,2上至少一个根,又()4'53f x x =-,当()1,2x ∈时()'0f x >,所以单增,因此在()1,2上至多有一个根.()0f x =在()1,2上有且仅有一个根.5. 设()f x 在[,]a b 上连续,在(,)a b 内可导,且()()0f a f b ==,证明:至少存在一个(,)a b ξ∈,使得()()0f f ξξ'+=. 提示:令()()x F x e f x =证明:令()()xF x e f x =,显然()F x 在[,]a b 上连续,在(,)a b 内可导, 且()()()()x F x e f x f x ''=+ (3分)由Larange 中值定理,则至少(,)a b ξ∈,使得()()()F b F a F b aξ-'=-又()()0f a f b == ∴()()0f f ξξ'+=6. 设()f x 在[0,]a 上连续,在(0,)a 内可导,且()0f a =,证明存在一点(0,)a ξ∈,使得()()0f f ξξξ'+=.提示:令 ()()F x xf x =.证明:构造辅助函数()()F x xf x =, ()f x 在[0,]a 上连续,在(0,)a内可导∴()F x 在[0,]a 上连续,在(0,)a 内可导,()()()F x f x xf x ''=+且(0)()0F F a ==由Rolle 定理,至少(0,)a ξ∃∈,有()0F ξ'= 即()()0f f ξξξ'+=7. 证明:不论b 取何值,方程033=+-b x x 在区间[]1,1-上至多有一个实根证:令()()()()323,33311f x x x b f x x x x '=-+=-=+-()1,1x ∈-时,0,,f f'<故()f x 在区间[]1,1-上至多有一个实根.8. 证明:当1x >时,xe x e >⋅.证明: 令()xf x e x e =-⋅,显然()f x 在[1,]x 上满足Lagrange 中值定理的条ξ∈,使得件,由中值定理,至少存在一点(1,)x()(1)(1)()(1)()f x f x f x e e ξξ'-=-=--即()(1)0f x f >=又即x e x e >⋅9. 证明:当0x >时,112x +>证:()()111022f x x f x '=+==>()()00f x f >=,即有112x +>10. 求证:1,(0,)>+∈+∞xex x证明:令()1,,[0,)xf x e x x =--∈+∞当(0,)x ∈+∞时,()10x f x e '=->故在区间[0,)+∞上,()f x 单调递增从而当(0,)x ∈+∞时,()(0)0f x f >=即1x e x >+或者:证明:()221112!2xf e e x x x x x ξξ''=++=++>+……8分11. 当1>x 时,证明:13>-x. 答案参看课本p148 例6 12. 证明:当0x >时, ln(1).1xx x x<+<+ 答案参看课本P132 例1 13. 设0,1a b n >>>, 证明:11()()n n n n nba b a b na a b ---<-<-.证明:令()nf x x =,显然()f x 在[,]b a 上满足lagrange 定理条件,故至少存在一点(,)b a ξ∈,使得()()()()f a f b f a b ξ'-=- 即1()n n n a b n a b ξ--=-又由b a ξ<<及1(1)n n n ξ->的单增性,得11()()n n n n nba b a b na a b ---<-<-14. 设0a b >>,证明:ln a b b a ba a b--<< 证明:令()ln f x x =,在区间[],b a 上连续,在区间(,)b a 内可导,有拉格朗日中值定理,至少存在一点(),b a ξ∈,使得1ln ln ()a b a b ξ-=-,又因为1110,a b ξ<<<因此,ln a b a a ba b b--<<. 15. 证明恒等式()arcsin arccos ,112x x x π+=-≤≤.证:令()arcsin arccos f x x x =+ 则()f x 在[]1,1-上连续.在()1,1-内有:()0,f x f C '=≡≡令0,,arcsin arccos 22x C x x ππ==+=在()1,1-内成立.再根据()f x 在[]1,1-上的连续性,可知上式在[]1,1-上成立.16. 求函数2y x =的极值点和单调区间. 解:132(1)y x-'=-因此,2y x =在定义域(,)-∞+∞内有不可导点10x =和驻点21x =17. 求函数32535y x x x =-++的单调区间,拐点及凹或凸的区间. 解:23103y x x '=-+,易得函数的单调递增区间为1(,)(3,)3-∞+∞,单调减区间1(,3)3.610y x ''=-,令0y ''=,得53x =. 当53x -∞<<时,0y ''<,因此曲线在5(,]3-∞上是凸的;当53x <<+∞时,0y ''>,因此曲线在5[,)3+∞上是凹的,故520(,)327是拐点18. 试确定,,a b c 的值,使曲线32y x ax bx c =-++在(1,1-)为一拐点,在0x =处有极值,并求曲线的凹凸区间.解:232y x ax b '=-+ 62y x a ''=-(1,1)-为拐点,则062a =- 3a ∴=由0y '=,则2360x x b -+= , 代入0x =,则0b =.11,1a b c c -++=-=曲线为3231y x x =-+, 66y x ''=-. 凸区间为(,1)-∞-, 凹区间为(1,)+∞.19. 求函数()7ln 124-=x x y 的单调区间,拐点及凹或凸的区间.解: 34314(12ln 7)124(12ln 4)y x x x x x x'=-+⋅⋅=-, 易得函数的单调递增区间为13(,)e +∞,单调减区间13(0,)e . ()232112(12ln 4)412144ln 0y x x x x x x x''=-+⋅⋅=>, 令0y ''=,得1x =.当01x <<时,0y ''<,因此曲线在(0,1]上是凸的;当1x <<+∞时,0y ''>,因此曲线在[1,)+∞上是凹的,故(1,7)-是拐点 20. 求函数arctan xy e=的单调区间,拐点及凹或凸的区间.解:arctan 211x y e x '=⋅+>0,因此单调增区间是R , arctan arctan arctan 2222221212(1)(1)(1)xx x x x y e e e x x x ⎡⎤⎡⎤-''=+-=⎢⎥⎢⎥+++⎣⎦⎣⎦, 令0y ''=,得12x =. 当12x -∞<<时,0y ''>,因此曲线在1(,]2-∞上是凹的; 当12x <<+∞时,0y ''<,因此曲线在1[,)2+∞上是凸的,故1arctan 21(,)2e是拐点 21. 求函数1234+-=x x y 的拐点和凹凸区间. 解:3246y x x '=- 2121212(1)y x x x x ''=-=- 令0y ''=,得10x =,21x = 列表 (4分)22. 求函数32391=+-+y x x x 的极值.解:2'3693(1)(3)y x x x x =+-=-+ ''66y x =+ 令0'=y 得驻点:121,3x x ==-.当21x =时,''0,y >取得极小值,其值为4-. 当33x =-时,''0y <,取得极大值,其值为28.23. 求函数23(1)1=-+y x 的极值.解: 226(1)y x x '=-22226(1)24(1)y x x x ''=-+-令0y '=,得1231,0,1x x x =-==(0)60y ''=>,故20x =是极小值点.(1)0y ''±=, 无法用第二充分条件进行判定.在11x =-的附近的左右两侧取值均有0y '<,故11x =-不是极值点. 在21x =的附近的左右两侧取值均有0y '>,故21x =不是极值点. 极小值(0)0y =24. 求函数32(1)(23)=-+y x x 的极值点和单调区间.解:22323(1)(23)4(1)(23)(1)(23)(105)0y x x x x x x x '=-++-+=-++=所以,驻点11x =,232x =-,312x =- 列表∴()f x 在32x =-处取得极大值3()02f -= ()f x 在12x =-处取得极小值127()22f -=- 单调递增区间31(,],[,)22-∞--+∞,单调递增区间31[,]22-- 25. 试问a 为何值时,函数1()sin sin 23=+f x a x x 在3π处取得极值?它是极大值还是极小值?并求此极值.解:2()cos cos23f x a x x '=+()f x在3π处取得极值22121()coscos 03333232f a a πππ'∴=+=⋅-⋅= 23a ∴=即 ()2()cos cos 23f x x x '=+ ()2()sin 2sin 23f x x x ''∴=--222()sin 2sin 2033333f πππ⎛⎫''∴=--=-⋅+< ⎪⎝⎭⎝⎭所以它是极大值,极大值为212()sin sin 33333f πππ∴=+=26. 求函数3223y x x =-在区间[]1,4上的最大值与最小值.解:212660,0,1y x x x x '=-===(舍去x =)()()11,480,f f =-=,故最大值为80,最小值为-1.27.、某车间靠墙壁要盖一间长方形小屋,现有存砖只够砌20m 长的墙壁.问应围成怎样的长方形才能使这间小屋的面积最大?解:设小屋长 x m ,宽 y m ,220,102xx y y +==-.2101022x x S x x ⎛⎫=-=- ⎪⎝⎭,100,10S x x '=-==故小屋长10米,宽5米时,面积最大.28.某厂每批生产产品x 单位的总费用为()5200C x x =+(元), 得到的收入是()2100.01R x x x =-(元).问每批生产多少个单位产品时总利润()L x 最大?解:()()()22100.0152000.015200L x x x x x x =--+=-+-()0.0250,250L x x x '=-+==(单位)()0.020L x ''=-<,故250x =单位时总利润最大.-----精心整理,希望对您有所帮助!。

自动控制原理黄坚 第二版 第三章习题答案

自动控制原理黄坚  第二版 第三章习题答案

e
-1.8
第三章习题课 (3-6)
3-6 已知系统的单位阶跃响应: -60t -10t c(t)=1+0.2e -1.2e (1) 求系统的闭环传递函数。 (2) 求系统的阻尼比和无阻尼振荡频率。 1 + 0.2 - 1.2 = 600 解: C(s)= s s+60 s+10 s(s+60)(s+10) 1 C(s)= 600 R(s)= s R(s) s2+70s+600 ω n=24.5 ζ 2 ω n=70 ω n2 =600 ζ=1.43
s(s+1)
10
C(s)
1 1 b31 10
τ 10 10
10( s+1) τ Φ(s)= s3 +s2+10 s+10 τ 10 -10 >0 τ b31= 1 τ >1
第三章习题课 (3-16)
3-16 已知单位反馈系统的开环传递函数, 试求K p、Kv和Ka .并求稳态误差ess. 1+ 2+ 2 2 R(s)= s r(t)=I(t)+2t+t s 2 s3 10 10(2s+1) = 解: (1) G(s)=200 20= 2 (2s+1) (2) G(s)= s(s+2)(s+10) s(0.5s+1)(0.1s+1) (3) G(s)= s2(s2(0.1s+1)(0.2s+) 2+0.4s+1) +4s+10) s (0.1s R0 1 Kp=20=∞ ess1=ss1=0 =21 eess1=0 Kpp K=∞ 1+K υ=1 υ=0 υ=2 K =0υ=10 ess2=∞ = 2 = 2 eess2=0 10 ss2 K K υ K υ=∞ =∞=∞ K =1 ess3eess3=2 Ka=0aa=0 ss3 K essess=∞=2 =∞ess

3章习题课

3章习题课
p − p0 u 2 − u 0 ∂u ∫s0 ∂t ds + g ( z − z 0 ) + ρ + 2 = 0
s1 2
z − z 0 = 2 x, p = p 0 , u = u 0
设杯中速度为V,管中速度为u,
V d ⇒ V = u ( )2 , 4 4 D ∂V ∂u (h − x + h + x) + l + 2 gx = 0 ∂t ∂t =u
p + ρ ′g ∆h = p0 + ρ g ∆h, 则 p0 − p = ( ρ ′ − ρ)g ∆h, 2 ( ρ ′ − ρ ) g ∆h = (
∴u =
ρ
ρ′ − 1)2 g ∆h ρ
ρ ′ / ρ = 13600 / 800, ∆h = 60mm = 0.06m,
∴ u = 4.3391m / s
2 p1 + ρ (v1
2 − v2 ) / 2
= 17.6×103 +1000 (1.422 − 3.182 ) / 2 ×
= 17.2 ×10 3
(Pa)
3.所取控制体受力分析 进、出口控制面上得总压力:
P2 = p 2 A2 = 17.2 × 10 3 ×
P = p1 A1 = 17.6×10 × ×0.32 = 12.43 1 4 π
2 根据射出水流轨迹: x = Vt 1 x 1 2 ⇒ h − y = g h − y = gt 2 V 2
整理得: 解得:
4 y (h − y ) = x 2 ,即 y (4 − y ) = 1
y = 2± 3
3-18解:
u = u m (1 −
r 1 r n r ) ⇒ Q = ∫ u 2πrdr = um 2πR 2 ∫ (1 − η ) nηdη (令:η = ) 0 0 R R

第三章 存储系统 习题课

第三章  存储系统 习题课

• 可以将图中的A15与A10接线颠倒一下, 可以将图中的A15与A10接线颠倒一下, A15 接线颠倒一下 原来的7C00H~7FFFH 原来的7C00H~7FFFH A15~A10=011111) (A15~A10=011111)就变为 • F800H~FBFFH(A15~A10=111110), F800H~FBFFH(A15~A10=111110), 与另一部分FC00H~FFFFH FC00H~FFFFH成为地址连 与另一部分FC00H~FFFFH成为地址连 续的存储器。 续的存储器。 • 6、试用Intel 2116构成64K X 8bit的存储 试用Intel 2116构成 构成64K 8bit的存储 该存储器采用奇偶校验。 器,该存储器采用奇偶校验。 • (1)求共需要多少片2116芯片? 求共需要多少片2116芯片? 2116芯片 • (2)画出存储体连接示意图; 画出存储体连接示意图; • (3)写出各芯片RAS*和CAS*的形成条 写出各芯片RAS* CAS*的形成条 RAS*和 件;
• 6、RAM中的任何一个单元都可以随时 RAM中的任何一个单元都可以随时 访问。 访问。 • 7、ROM中的任何一个单元不能随机访 ROM中的任何一个单元不能随机访 问。 一般情况下,ROM和RAM在主存储 8、一般情况下,ROM和RAM在主存储 器中是统一编址的。 器中是统一编址的。 在当今的计算机系统中, • 9、在当今的计算机系统中,存储器是数 据传送的中心, 据传送的中心,但访问存储器的请求是 CPU或I/O发出的 发出的。 由CPU或I/O发出的。 • 10、EPROM是可改写的,因而也是随机 10、EPROM是可改写的 是可改写的, 存储器的一种。 存储器的一种。 • 11、DRAM和SRAM都是易失性半导体存 11、DRAM和SRAM都是易失性半导体存 储器。 储器。

哈工大集合论习题课-第三章 关系习题课(学生)

哈工大集合论习题课-第三章 关系习题课(学生)

习 题 课例1设{,,}A a b c =,给出A 上的一个二元关系,使其同时不满足自反性、反自反性、对称性、反对称和传递性的二元关系,并画出R 的关系图。

解:{(,),(,),(,),(,)}R a a b c c b a c =,关系图如图所示。

例2 设X 是一个集合,X =n ,求:1.X 上的二元关系有多少?()22n 2. X 上的自反的二元关系有多少? 3. X 上的反自反的二元关系有多少?解:因为把所有的反自反的二元关系的每个都加上对角线上的序对,就变成了自反的关系,因此,自反的与反自反的个数一样多。

即22nn-4. X 上的对称的二元关系有多少?2222n n n nn -++=,故共有222n n+个对称的关系。

5. X 上的反对称的二元关系有多少?22(32)n n n -∙6. X 上既是自反的也是反自反的二元关系的个数;(0)个7.X 上既不是自反的也不是反自反的二元关系有多少?2(2(22))n nn --解:解:可用容斥原理来计算设B 表示所有自反关系构成的集合,C 表示所有反自反关系构成的集合,则22nnB C -==。

而B C φ=,故B C B C =+,从而CC B C S B C S B C =-=--2222222222222(22)n n n n n n n n n n n ----=--=-=-于是,既不是自反的,也不是反自反关系共有22(22)n nn --个。

8.自反的且对称的关系有多少?[此结果与“反自反的且对称的关系有多少?”是一样多]即有222n n -(对角线上全去掉)9.自反的或对称的关系有多少?解:设B 表示自反关系的集合,C 表示对称关系的集合,则自反或对称关系的集合为:22222222n n n n nnB C B C B C +--=+-=+-。

10.X 上既是反自反的也是反对称的二元关系的个数为:223n n -;11.X 上既是对称的也是反对称的关系个数;解:X 上既是对称的也是反对称的关系X R I ⊆,故有2n 。

第三章微机原理习题课

第三章微机原理习题课

.第三章习题课一、选择题1、在汇编语言程序的开发过程中使用宏功能的顺序是()。

A、宏定义,宏调用B、宏定义,宏展开C、宏定义,宏调用,宏展开D、宏定义,宏展开,宏调用2、汇编语言源程序中,每个语句由四项组成,如语句要完成一定功能,那么该语句中不可省略的项是()。

A、名字项B、操作项C、操作数项D、注释项3、下列叙述正确的是()A.对两个无符号数进行比较采用CMP指令,对两个有符号数比较用CMPS指令B.对两个无符号数进行比较采用CMPS指令,对两个有符号数比较用CMP指令C.对无符号数条件转移采用JAE/JNB指令,对有符号数条件转移用JGE/JNL指令D.对无符号数条件转移采用JGE/JNL指令,对有符号数条件转移用JAE/JNB指令4、编写分支程序,在进行条件判断前,可用指令构成条件,其中不能形成条件的指令有().A、CMPB、SUBC、ANDD、MOV5、测试BL寄存器容是否与数据4FH相等,若相等则转NEXT处执行,可实现的方法是()。

A TEST BL,4FHJZ NEXTB XOR BL,4FHJZ NEXTC AND BL,4FHJZ NEXTD OR BL,4FHJZ NEXT6、检查BUF的容是否为正偶数,如是正偶数,则令AL=0。

下面程序段正确的是( )。

A、MOV AL,BUF JS K1SHR AL,1JNC K1MOV AL,0K1:……B、MOV AL,BUF AND AL,11 JNZ K2MOV AL,0K2:……C 、MOV AL ,BUF TEST AL ,81H JNZ K3 MOV AL ,0 K3:……7、下列描述中,执行循环的次数最多的情况是()。

A .MOV CX ,0B .MOV CX ,1 LOP :LOOP LOP LOP :LOOP LOPC .MOV CX ,0FFFFHD .MOV CX ,256 LOP :LOOP LOP LOP :LOOP LOP8、在下列指令中,指令的执行会影响条件码中的CF 位。

第3章习题课 正弦交流电路

第3章习题课 正弦交流电路

3.5 将以下相量转化为正弦量 (1) U 50 j50V (2) Im 30 j40A (3) Um 100 2e j30V (4) I 1 30A
解:(1) u(t) 50 2 2 sin(t 45) 100sin(t 45)V (2) i( t ) 50 sin(t 126.9 )A (3) u(t) 100 2 sin(t 30)V (4) i(t ) 2 sin(t 30)A
3.6 相量图如图所示,已知频率ƒ=50Hz。写出它们对
应的相量式和瞬时值式。
100V
解:
I 100 i( t ) 10 2 sin 314t A
U1 10090 u1( t ) 100 2 sin( 314t 90 )V U2 80 60 u2 ( t ) 80 2 sin( 314t 60 )V Um 3100 u( t ) 310 sin 314tV I1m 10 45 i1( t ) 10 sin( 314t 45 )A I2m 1260 i2 ( t ) 12 sin( 314t 60 )A
(1)求电压uR、uL、 uC和电流i。 (2)求电路的有功功率P、无功功率Q和视在功率S。 (3)画出相量图。
解:
i 10 2 sin(100t)A uR 100 2 sin(100t)V uL 100 2 sin(100t 90)V uC 100 2 sin(100t 90)V P 1000W,Q 0var,S 1000VA
(b) Z2、Z3不能正常工作,Z2上电压仅为126.7V, 低于额定电压,而Z3上电压253.3V,高于额定电压。
解: (1) u1超前于u2 45 。
(2) 60,u 滞后于 i 60 。
(3)由于u 、 i 不同频,故无法比较相位。

大学物理课后习题答案第三章

大学物理课后习题答案第三章

第3章 力学基本定律与守恒律 习题及答案1.作用在质量为10 kg 的物体上的力为i t F)210(+=N ,式中t 的单位是s ,(1)求4s 后,这物体的动量和速度的变化.(2)为了使这力的冲量为200 N ·s ,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度j6-m ·s -1的物体,回答这两个问题. 解: (1)若物体原来静止,则i t i t t F p t 1401s m kg 56d )210(d -⋅⋅=+==∆⎰⎰,沿x 轴正向,ip I imp v111111s m kg 56s m 6.5--⋅⋅=∆=⋅=∆=∆ 若物体原来具有6-1s m -⋅初速,则⎰⎰+-=+-=-=t tt F v m t m F v m p v m p 000000d )d (,于是⎰∆==-=∆t p t F p p p 0102d,同理, 12v v ∆=∆,12I I=这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量(亦即冲量)就一定相同,这就是动量定理. (2)同上理,两种情况中的作用时间相同,即⎰+=+=tt t t t I 0210d )210(亦即 0200102=-+t t 解得s 10=t ,(s 20='t 舍去)2.一颗子弹由枪口射出时速率为10s m -⋅v ,当子弹在枪筒内被加速时,它所受的合力为 F =(bt a -)N(b a ,为常数),其中t 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量. 解: (1)由题意,子弹到枪口时,有0)(=-=bt a F ,得ba t =(2)子弹所受的冲量⎰-=-=tbt at t bt a I 0221d )(将bat =代入,得 ba I 22= (3)由动量定理可求得子弹的质量202bv a v I m == 3.如图所示,一质量为m 的球,在质量为M 半径为R 的1/4圆弧形滑槽中从静止滑下。

必修2化学 第三章 习题课(优秀经典公开课比赛课件)

必修2化学 第三章  习题课(优秀经典公开课比赛课件)

答案:B
人教版化学·必修2
2.分子式为 C5H11Cl 的同分异构体共有(不考虑立体异构)( A. 6 种 C. 8 种
断。戊烷的同分异构体情况如下:
返回导航
上页
下页
)
B.7 种 D. 9 种
解析:C5H11Cl 属于戊烷的一氯代烃,可从戊烷同分异构体中的氢原子类型进行判
①CH3CH2CH2CH2CH3, ②
A.戊烷共有 4 种同分异构体,它们的熔点、沸点各不相同 B.在一定条件下,苯与液溴、硝酸、硫酸作用生成溴苯、硝基苯、苯磺酸的反应 都属于取代反应 C.氯乙烯分子的结构简式:CH2===CHCl D.等质量的乙烯和丙烯中含有的共用电子对数相等
人教版化学·必修2
返回导航
上页
下页
解析:A 项,戊烷有 3 种同分异构体,错误。B 项,苯在一定条件下与液溴、硝酸、 硫酸反应生成溴苯、硝基苯及苯磺酸的反应均属于取代反应,正确。C 项,氯乙烯 中有一个碳碳双键,结构简式为 CH2===CHCl,正确。D 项,1 mol CH2===CH2 含 有 6 mol 共用电子对,1 mol CH3—CH===CH2 含有 9 mol 共用电子对,设乙烯、丙 m 3m m 3m 烯的质量均为 m g,则共用电子对数分别为 ×6×NA= NA、 ×9×NA= NA, 28 14 42 14 正确。
项中,乙酸和溴乙烷都不能发生加成反应。D 项中,丙烯中含有 生加成反应,丙烷中没有不饱和键,不能发生加成反应。
键,能发
[答案]
B
人教版化学·必修2
返回导航
上页
下页
有机物的分子式、有机物的结构、官能团的性质,是考查的主要内容。官能团 决定了物质的性质。
人教版化学·必修2

物理化学第三章-习题课

物理化学第三章-习题课
V P S S
P
V
T
T
( ), ( )。 4.卡诺热机在T1=500K和T2=300K的热源之 间工作,则热机效率η=( ),当热机 向低温热源放热200kJ时,系统从高温热源 吸热( )。
5. 某体系由状态A及经不可逆过程到B,再经可逆 过程到A,则体系的状态函数U,H,S,G,的变化值是 ( )0。(填=,>,<) 6.水在100℃、标准压力下沸腾的过程,下列各量 何者增加?何者不变? (1)蒸汽压 (2)摩尔汽化热 (3)摩尔熵 (4)摩尔热力学能 (5)摩尔吉布斯函数 (6)温度
(1)如果是可逆膨胀;(2)如果是在外压恒定为
105Pa的条件下进行。试计算此两过程的Q、W、
ΔU、ΔH。
2.1mol理想气体依次经历以下过程:
(1)恒容下从25℃加热到100℃;
(2)再绝热可逆膨胀至2倍体积; (3)最后恒压下冷却至25℃。 已知该气体的Cv,m=1.5R, Cp,m=2.5R。计算 整个过程的Q、W、∆U、 ∆ H。
填空题
1. 330kPa压力时,冰在-2.5oC时熔化,冰的 溶解热为6003 J· mol-1,此时冰的溶解过程 中△G =( ), △S =( )。
2.将1L水放入一密闭的绝热真空容器中,令 其蒸发,以水作为体系,则系统△ S( ), 环境的△ S( )。

( 3.写出 ( S ) 、( S ) 、 V ) 、( P ) 这四个 量之间的等量关系:
3.100kPa压力下,1mol甲苯在其沸点 110℃时蒸发为蒸汽,再将此气体在外压保 持为50kPa下恒温膨胀至平衡态。已知 110℃时甲苯的蒸发热为33.30kJ· -1。求 mol 该过程的Q、W、ΔU、ΔH。(甲苯蒸汽可 视为理想气体)

第三章 习题课

第三章 习题课

例3. 已知调和函数 u ( x, y ) = x − y + xy ,求共轭调
2 2
和函数 v ( x, y )及解析函数 f ( z ) = u ( x, y ) + iv ( x, y ) 解
u ( x, y ) = x − y + xy ⇒ u x = 2 x + y, u y = −2 y + x
二. 习题解答 例1
f ( z ) 在区域D内解析, 在 D = D + ∂D
上连续, C = ∂D, z0 ∈ D 则

C
f ( z) dz = 0?( F ) z − z0

C
f ( z) dz = f ( z0 ) ?( F ) z − z0
例2. (1) 设 C : z = 2 , f ( z ) 在 I ( C ) 上解析,求
f ( z) 1 1 1 dz C1 : z − 1 = , C2 : z − = 或者 ∫C 1 6 2 6 ( z − 1) z − 2 f ( z) f ( z) 1 z− ( z − 1) dz 2 = ∫ dz + ∫ C1 C2 1 ( z − 1) z− 2 1 f f (1) 2 = 4π i f 1 − f 1 = 2π i + 2π i ( ) 1 1 2 − 1 1− 2 2
2ζ 2 − ζ + 1 (2). g ( z ) = ∫ dζ ζ =2 ζ −z
求 g (1), g ( z0 ) z0 > 2 解
2ζ 2 − ζ + 1 g (1) = ∫ dζ ζ =2 ζ −1 = 2π i 2ζ 2 − ζ + 1 = 4π i

数字电路 第3章习题课

数字电路 第3章习题课

题3-15
A B C D
F 0 0 1 1 1 1 0 0 0 0 × × × × × ×
× ×
题3-15
解: F BC D0 0
F
四选一MUX D1 1 D2 1 D3 0 E
题3-16
用74LS138和与非门实现下列逻辑函数。
Y1 ABC A( B C )
+5V
0 0 1 F3 F 5 F 61 F 7 04 F 0 0 1 0 0 1 74138 1 1 1 0 A0 1 1 12 A1 A 0 0 0 0X0 0 X1 0 X2
题3-13
试用 74138 和 74151 构成两个四位二进制数相同 比较器。其功能为两个二进制数相等时输出为 1, 否则为 0。 解:74138 和 74151 地址端均为三变量输入,要 实现四位二进制数相同比较器,必须分别用两个芯 片级联扩展输入端,并分别将待比较的两个四位二 进制数输入到扩展后的输入端,就可得到两个四位 二进制数相同时,输出为 1 的功能。逻辑图如图 3-36 所示。
1 0 B F= A B+ A B 1 1 B 0 0 0 0 1 B F= AB
G1 G0 A
A2 F F A1 MUX A0 D D D D D D D 0 1 2 3 4 5 6 D7 1 1
B
1
1 1
1 0 B F= A B+A 1 1 1 = A +B
题3-5
列出图 3-58 所示电路的真值表。图中芯片为 8421 码二-十进制译码器,输出低电平有效。
0 1
D
题3-3
解:
F F0 F4 F5 F6 F8 F10 F12 F15 F0 F4 F5 F6 F8 F10 F12 F15 (0,4,5,6,8,10,12,15)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年8月7日 数据结构习题 7
2013年8月7日 数据结构习题 3
2. 设以数组se[m]存放循环队列的元素,同时设 变量rear 和front分别作为队头队尾指针,且队头 指针指向队头前一个位置 , 写出这样设计的循
环队列入队出队的算法。
2013年8月7日
数据结构习题
4
㈠ int in_queue(datatype se[m],int rear,int front,datatype e) { if ((rear+1)%m==front) return(-1); rear=(rear+1)%m; s[rear]=e; return(1); }
1. 假设称正读和反读都相同的字符序列为“回 文”,例如,“abcddcba”、 “qwerewq”是回文, “ashgash”不是回文。是写一个算法判断读入的
一个以‘@’为结束符的字符序列是否为回文。
2013年8月7日
数据结构习题
2
int process() { init_stack(s); init_queue(Q); scanf("%c",&c); while(c!='@') { push_stack(s,c); in_queue(Q,c); scanf("%c",&c); } while (!empty_stack(s)) { pop_stack(s,&a); out_queue(Q,&b); if (a!=b) return(0); } if (empty_stack(s)) return(1); }
3. 假设以数组se[m]存放循环队列的元素,同时
设变量rear 和num分别作为队尾指针和队中元素
个数记录,试给出判别此循环队列的队满条件, 并写出相应入队和出队的算法。
2013年ueue(datatype se[m],int rear,int num,datatype e) { if (num==m) return(-1); rear=(rear+1)%m; se[rear]=e; num++; return(1); } ㈡ int out_queue(datatype se[m],int rear,int num,datatype *e) { if (num==0) return(-1); *e=se[(rear-num+1)%m]; num--; return(1); }
㈡ int out_queue(datatype se[m],int rear,int front,datatype e) { if (rear==front) return(-1); front=(front+1)%m; *e=se[front]; return(1); }
2013年8月7日 数据结构习题 5
相关文档
最新文档