普通高等学校招生全国统一考试数学及答案(湖南卷·文)

合集下载

(2024年高考真题)2024年普通高等学校招生全国统一考试数学(文) 试卷 全国甲卷(含部分解析)

(2024年高考真题)2024年普通高等学校招生全国统一考试数学(文) 试卷 全国甲卷(含部分解析)

2024年普通高等学校招生全国统一考试 全国甲卷数学(文) 试卷养成良好的答题习惯,是决定成败的决定性因素之一。

做题前,要认真阅读题目要求、题干和选项,并对答案内容作出合理预测;答题时,切忌跟着感觉走,最好按照题目序号来做,不会的或存在疑问的,要做好标记,要善于发现,找到题目的题眼所在,规范答题,书写工整;答题完毕时,要认真检查,查漏补缺,纠正错误。

1.集合{1,2,3,4,5,9}A =,{1}B x x A =+∈∣,则A B =( ) A.{1,2,3,4}B.{1,2,3,4}C.{1,2,3,4}D.{1,2,3,4}2.设z =,则z z ⋅=( ) A.2B.2C.2D.23.若实数x ,y 满足约束条件(略),则5z x y =-的最小值为( ) A.5B.12C.2-D.72-4.等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=( ) A.2-B.73C.1D.295.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是( ) A.14 B.13 C.12D.236.已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为12(0,4)(0,4)F F -、,且经过点(6,4)P -,则双曲线C 的离心率是( )A.135B.137C.2D.37.曲线6()3f x x x =+在 (0,1)-处的切线与坐标轴围成的面积为( )A.16B.2 C.12D.28.函数()2()e e sin x x f x x x -=-+-的大致图像为( ) 9.已知cos cos sin ααα=-an 4πt α⎛⎫+= ⎪⎝⎭( )A.3B.1-C.3-D.1310.直线过圆心,直径11.已知m n 、是两条不同的直线,αβ、是两个不同的平面:①若m α⊥,n α⊥,则//m n ;②若m αβ=,//m n ,则//n β;③若//m α,//n α,m 与n 可能异面,也可能相交,也可能平行;④若m αβ=,n 与α和β所成的角相等,则m n ⊥,以上命题是真命题的是( )A.①③B.②③C.①②③D.①③④12.在ABC △中,内角A ,B ,C 所对边分别为a ,b ,c ,若π3B =,294b ac =,则sin sin A C +=( )A.13B.13C.2D.1313.略14.函数()sin f x x x =,在[0,π]上的最大值是_______. 15.已知1a >,8115log log 42a a -=-,则a =_______. 16.曲线33y x x =-与2(1)y x a =--+在(0,)+∞上有两个不同的交点,则a 的取值范围为_______.17.已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式; (2)求数列{} n S 的通项公式. 18.题干略.19.如图,己知//AB CD ,//CD EF ,2AB DE EF CF ====,4CD =,10AD BC ==,23AE =,M 为CD 的中点.(1)证明://EM 平面BCF ; (2)求点M 到AD E 的距离. 20.已知函数()(1)ln 1f x a x x =--+. (1)求()f x 的单调区间;(2)若2a ≤时,证明:当1x >时,1()e x f x -<恒成立.21.已知椭圆2222:1(0)x y C a b a b +=>>的右焦点为F ,点3(1,)2M 在椭圆C 上,且MF x ⊥轴.(1)求椭圆C 的方程;(2)(4,0)P ,过P 的直线与椭圆C 交于A ,B 两点,N 为FP 的中点,直线NB 与MF 交于Q ,证明:AQ y ⊥轴.22.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+. (1)写出C 的直角坐标方程;(2)直线x ty t a =⎧⎨=+⎩(t 为参数)与曲线C 交于A 、B 两点,若||2AB =,求a 的值.23.[选修4-5:不等式选讲] 实数a ,b 满足3a b +≥. (1)证明:2222a b a b +>+; (2)证明:22226a b b a -+-≥.2024年普通高等学校招生全国统一考试 全国甲卷数学(文)答案1.答案:A解析:因为{}1,2,3,4,5,9A =,{1}{0,1,2,3,4,8}B x x A =+∈=∣,所以{1,2,}3,4A B =,故选A. 2.答案:D解析:因为z =,所以2z z ⋅=,故选D. 3.答案:D解析:将约束条件两两联立可得3个交点:(0,1)-、3,12⎛⎫ ⎪⎝⎭和1 3,2⎛⎫⎪⎝⎭,经检验都符合约束条件.代入目标函数可得:min 72z =-,故选D.4.答案:D解析:令0d =,则9371291,,99n n S a a a a ===+=,故选D.5.答案:B解析:甲、乙、丙、丁四人排成一列共有24种可能.丙不在排头,且甲或乙在排尾的共有8种可能,81243P ==,故选B. 6.答案:C解析:12212F F ce a PF PF ===-,故选C.7. 答案:A解析:因为563y x '=+,所以3k =,31y x =-,1111236S =⨯⨯=,故选A.8.答案:B解析:选B.9. 答案:B解析:因为cos cos sin ααα=-tan 1α=,tan 1tan 141tan πααα+⎛⎫+== ⎪-⎝⎭,故选B.10.答案:直径解析:直线过圆心,直径. 11. 答案:A解析:选A. 12.答案:C 解析:因为π3B =,294b ac =,所以241sin sin sin 93A C B ==.由余弦定理可得:22294b ac ac ac =+-=,即:22134a c ac +=,221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,sin sin 2A C +=,故选C.13. 答案:略解析: 14.答案:2解析:π()sin 2sin 23f x x x x ⎛⎫==-≤ ⎪⎝⎭,当且仅当5π6x =时取等号.15. 答案:64解析:因为28211315log log log 4log 22a a a a -=-=-,所以()()22log 1log 60a a +-=,而1a >,故2log 6a =,64a =.16. 答案:(2,1)-解析:令323(1)x x x a -=--+,则323(1)a x x x =-+-,设32()3(1)x x x x ϕ=-+-,()(35)(1)x x x ϕ+'=-,()x ϕ在(1,)+∞上递增,在(0,1)上递减.因为曲线33y x x =-与2(1)y x a =--+在(0,)+∞上有两个不同的交点,(0)1ϕ=,(1)2ϕ=-,所以a 的取值范围为(2,1)-. 17.答案:见解析解析:(1)因为1233n n S a +=-,所以12233n n S a ++=-,两式相减可得:121233n n n a a a +++=-,即:2135n n a a ++=,所以等比数列{}n a 的公比53q =,又因为12123353S a a =-=-,所以11a =,153n n a -⎛⎫= ⎪⎝⎭.(2)因为1233n n S a +=-,所以()133511223nn n S a +⎡⎤⎛⎫=-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.18.答案:见解析解析:(1)22150(70242630) 6.635965450100χ⨯-⨯=<⨯⨯⨯,没有99%的把握;(2)p p >+. 19.答案:见解析解析:(1)由题意://EF CM ,EF CM =,而CF 平面ADO ,EM 平面ADO ,所以//EM 平面BCF ;(2)取DM 的中点O ,连结OA ,OE ,则OA DM ⊥,OE DM ⊥,3OA =,OE =而AE =,故OA OE ⊥,AOE S =△因为2DE =,AD =AD DE ⊥,AOE S △DM 设点M 到平面ADE 的距离为h ,所以1133M ADE ADE AOE V S h S DM -=⋅=⋅△△,h ==,故点M到ADE 的距离为5. 20.答案:见解析解析:(1)()(1)ln 1f x a x x =--+,1()ax f x x-=,0x >. 若0a ≤,()0f x <,()f x 的减区间为(0,)+∞,无增区间; 若0a >时,当10x a <<时,()0f x '<,当1x >时,()0f x '>,所以()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,a ⎛⎫+∞ ⎪⎝⎭;(2)因为2a ≤,所以当1x >时,111e ()e (1)ln 1e 2ln 1x x x f x a x x x x ----=--+-≥-++.令1()e 2ln 1x g x x x -=-++,则11()e 2x g x x -'=-+.令()()h x g x '=.则121()e x h x x-'=-在(1,)+∞上递增,()(1)0h x h ''>=,所以()()h x g x '=在(1,)+∞上递增,()(1)0g x g ''>=,故()g x 在(1,)+∞上递增,()(1)0g x g >=,即:当1x >时,1()e x f x -<恒成立.21.答案:见解析解析:(1)设椭圆C 的左焦点为1F ,则12F F =,3||2MF =.因为MF x ⊥轴,所以152MF =,12||4a MF MF =+=,解得:24a =,2213b a =-=,故椭圆C 的方程为:22143x y +=; (2)解法1:设()11,A x y ,()22,B x y ,AP PB λ=,则12124101x x y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩,即212144x x y y λλλ=+-⎧⎨=-⎩.又由()()22112222234123412x y x y λλλ⎧+=⎪⎨+=⎪⎩可得:1212121234121111x x x x y y y y λλλλλλλλ+-+-⋅⋅+⋅=+-+-,结合上式可得:25230x λλ-+=.(4,0)P ,(1,0)F ,5,02N ⎛⎫⎪⎝⎭,则222122335252Q y y y y y x x λλλλ===-=--,故AQ y ⊥轴.解法2:设()11,A x y ,()22,B x y ,则121244y y x x =--,即:()1221214x y x y y y -=-,所以()()()2222222211*********21213444433y x y x y x y x y x y x y y y ⎛⎫-+=-=+-+ ⎪⎝⎭()()()()212121122144y y y y y y x y x y =-+=-+,即:122121x y x y y y +=+,2112253x y y y =-.(4,0)P ,(1,0)F ,5,02N ⎛⎫⎪⎝⎭,则21212112335252Q y y y y y x y y x ===--,故AQ y ⊥轴.22.答案:(1)221y x =+ (2)34解析:(1)因为cos 1ρρθ=+,所以22(cos 1)ρρθ=+,故C 的直角坐标方程为:222(1)x y x +=+,即221y x =+;(2)将x ty t a =⎧⎨=+⎩代入221y x =+可得:222(1)10t a t a +-+-=,12||2AB t =-==,解得:34a =. 23.答案:见解析解析:(1)因为3a b +≥,所以22222()a b a b a b +≥+>+. (3)222222222222()a b b a a b b a a b a b -+-≥-+-=+-+=22222()()()()(1)6a b a b a b a b a b a b +-+≥+-+=++-≥.高考质量提升是一项系统工程,涉及到多个方面、各个维度,关键是要抓住重点、以点带面、全面突破,收到事半功倍的效果。

2023年高考全国乙卷数学(文)真题(解析版)

2023年高考全国乙卷数学(文)真题(解析版)

2023年普通高等学校招生全国统一考试(全国乙卷)文科数学一、选择题1.232i 2i ++=( )A. 1B. 2C.D. 5【答案】C 【解析】【分析】由题意首先化简232i 2i ++,然后计算其模即可. 【详解】由题意可得232i 2i 212i 12i ++=−−=−,则232i 2i 12i ++=−== 故选:C.2. 设全集{}0,1,2,4,6,8U =,集合{}{}0,4,6,0,1,6M N ==,则U M N ⋃=ð( ) A. {}0,2,4,6,8 B. {}0,1,4,6,8C. {}1,2,4,6,8D. U【答案】A 【解析】【分析】由题意可得U N ð的值,然后计算U M N ⋃ð即可. 【详解】由题意可得{}U N =ð,则{}0,2,4,6,8U M N =ð.故选:A.3. 如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )A. 24B. 26C. 28D. 30【答案】D 【解析】【分析】由题意首先由三视图还原空间几何体,然后由所得的空间几何体的结构特征求解其表面积即可. 【详解】如图所示,在长方体1111ABCD A B C D −中,2AB BC ==,13AA =,点,,,H I J K 为所在棱上靠近点1111,,,B C D A 三等分点,,,,O L M N 为所在棱的中点,则三视图所对应的几何体为长方体1111ABCD A B C D −去掉长方体11ONIC LMHB −之后所得的几何体,该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方形, 其表面积为:()()()22242321130⨯⨯+⨯⨯−⨯⨯=. 故选:D.4. 在ABC 中,内角,,A B C 的对边分别是,,a b c ,若cos cos a B b A c −=,且5C π=,则B ∠=( )A.10πB.5πC.310π D.25π 【答案】C 【解析】【分析】首先利用正弦定理边化角,然后结合诱导公式和两角和的正弦公式求得A ∠的值,最后利用三角形内角和定理可得A ∠的值.【详解】由题意结合正弦定理可得sin cos sin cos sin A B B A C −=, 即()sin cos sin cos sin sin cos sin cos A B B A A B A B B A −=+=+, 整理可得sin cos 0B A =,由于()0,πB ∈,故sin 0B >, 据此可得πcos 0,2A A ==, 则ππ3πππ2510B AC =−−=−−=. 故选:C.5. 已知e ()e 1xax x f x =−是偶函数,则=a ( )A. 2−B. 1−C. 1D. 2【答案】D 【解析】的【分析】根据偶函数的定义运算求解.【详解】因为()e e 1x ax x f x =−为偶函数,则()()()()1e e e e 0e 1e 1e 1a x x x x ax ax ax x x x f x f x −−−⎡⎤−−⎣⎦−−=−==−−−, 又因为x 不恒为0,可得()1e e 0a x x −−=,即()1e e a x x −=, 则()1x a x =−,即11a =−,解得2a =. 故选:D.6. 正方形ABCD 的边长是2,E 是AB 的中点,则EC ED ⋅=( )A.B. 3C. D. 5【答案】B 【解析】【分析】方法一:以{},AB AD 为基底向量表示,EC ED uu u r uu u r,再结合数量积的运算律运算求解;方法二:建系,利用平面向量的坐标运算求解;方法三:利用余弦定理求cos DEC ∠,进而根据数量积的定义运算求解.【详解】方法一:以{},AB AD 为基底向量,可知2,0AB AD AB AD ==⋅=uu u r uuu r uu u r uuu r,则11,22EC EB BC AB AD ED EA AD AB AD =+=+=+=−+uu u r uu r uu u r uu u r uuu r uu u r uu r uuu r uuu r uuu r ,所以22111143224EC ED AB AD AB AD AB AD ⎛⎫⎛⎫⋅=+⋅−+=−+=−+= ⎪ ⎪⎝⎭⎝⎭uu u r uu u r uu u r uuu r uu u r uuu r uu ur uuu r ;方法二:如图,以A 为坐标原点建立平面直角坐标系,则()()()1,0,2,2,0,2E C D ,可得()()1,2,1,2EC ED ==−uu u r uu u r,所以143EC ED ⋅=−+=uu u r uu u r;方法三:由题意可得:2ED EC CD ===,在CDE中,由余弦定理可得2223cos 25DE CE DC DEC DE CE +−∠===⋅,所以3cos 35EC ED EC ED DEC ⋅=∠==uu u r uu u r uu u r uu u r .故选:B.7. 设O 为平面坐标系的坐标原点,在区域(){}22,14x y xy ≤+≤内随机取一点A ,则直线OA 的倾斜角不大于π4的概率为( ) A. 18B. 16C. 14D.12【答案】C 【解析】【分析】根据题意分析区域的几何意义,结合几何概型运算求解. 【详解】因为区域(){}22,|14x y xy ≤+≤表示以()0,0O 圆心,外圆半径2R =,内圆半径1r =的圆环,则直线OA 的倾斜角不大于π4的部分如阴影所示,在第一象限部分对应的圆心角π4MON ∠=, 结合对称性可得所求概率π2142π4P ⨯==. 故选:C.8. 函数()32f x x ax =++存在3个零点,则a 的取值范围是( )A. (),2−∞−B. (),3−∞−C. ()4,1−−D. ()3,0−【答案】B 【解析】【分析】写出2()3f x x a '=+,并求出极值点,转化为极大值大于0且极小值小于0即可. 【详解】3()2f x x ax =++,则2()3f x x a '=+,若()f x 要存在3个零点,则()f x 要存在极大值和极小值,则a<0, 令2()30f x x a '=+=,解得x =,且当,,3ax ⎛⎛⎫−∈−∞+∞⎪⎪⎝⎝⎭时,()0f x '>,当x ⎛∈ ⎝,()0f x '<,故()f x 的极大值为f ⎛ ⎝,极小值为f, 若()f x 要存在3个零点,则00f f ⎧⎛>⎪ ⎪⎝⎨⎪<⎪⎩,即2020−+>+<,解得3a <−,故选:B.9. 某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为( ) A.56B.23C.12D.13【答案】A 【解析】【分析】根据古典概率模型求出所有情况以及满足题意得情况,即可得到概率. 【详解】甲有6种选择,乙也有6种选择,故总数共有6636⨯=种,若甲、乙抽到的主题不同,则共有26A 30=种,则其概率为305366=, 故选:A.10. 已知函数()sin()f x x ωϕ=+在区间π2π,63⎛⎫ ⎪⎝⎭单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条对称轴,则5π12f ⎛⎫−= ⎪⎝⎭( )A. 2−B. 12−C.12D.2【答案】D 【解析】【分析】根据题意分别求出其周期,再根据其最小值求出初相,代入5π12x =−即可得到答案. 【详解】因为()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增,所以2πππ2362T =−=,且0ω>,则πT =,2π2w T==, 当π6x =时,()f x 取得最小值,则ππ22π62k ϕ⋅+=−,Z k ∈,则5π2π6k ϕ=−,Z k ∈,不妨取0k =,则()5πsin 26f x x ⎛⎫=− ⎪⎝⎭,则5π5πsin 1232f ⎛⎫⎛⎫−=−= ⎪ ⎪⎝⎭⎝⎭, 故选:D.11. 已知实数,x y 满足224240x y x y +−−−=,则x y −的最大值是( )A. 12+B. 4C. 1+D. 7【答案】C 【解析】【分析】法一:令x y k −=,利用判别式法即可;法二:通过整理得()()22219x y −+−=,利用三角换元法即可,法三:整理出圆的方程,设x y k −=,利用圆心到直线的距离小于等于半径即可. 【详解】法一:令x y k −=,则x k y =+, 代入原式化简得()22226440y k y k k +−+−−=,因为存在实数y ,则0∆≥,即()()222642440k k k −−⨯−−≥,化简得22170k k −−≤,解得11k −≤≤+故x y − 的最大值是1,法二:224240x y x y +−−−=,整理得()()22219x y −+−=,令3cos 2x θ=+,3sin 1y θ=+,其中[]0,2πθ∈,则π3cos 3sin 114x y θθθ⎛⎫−=−+=++ ⎪⎝⎭,[]0,2θπ∈,所以ππ9π,444θ⎡⎤+∈⎢⎥⎣⎦,则π2π4θ+=,即74πθ=时,x y −取得最大值1,法三:由224240x y x y +−−−=可得22(2)(1)9x y −+−=, 设x y k −=,则圆心到直线x y k −=的距离3d =≤,解得11k −≤≤+故选:C.12. 设A ,B 为双曲线2219y x −=上两点,下列四个点中,可为线段AB 中点的是( ) A. ()1,1 B. ()1,2-C. ()1,3D. ()1,4−−【答案】D 【解析】【分析】根据点差法分析可得9AB k k ⋅=,对于A 、B 、D :通过联立方程判断交点个数,逐项分析判断;对于C :结合双曲线的渐近线分析判断.【详解】设()()1122,,,A x y B x y ,则AB 的中点1212,22x x y y M ++⎛⎫⎪⎝⎭, 可得1212121212122,2ABy y y y y y k k x x x x x x +−+===+−+,因为,A B 在双曲线上,则221122221919y x y x ⎧−=⎪⎪⎨⎪−=⎪⎩,两式相减得()2222121209y y x x −−−=, 所以221222129AB y y k k x x −⋅==−. 对于选项A : 可得1,9AB k k ==,则:98AB y x =−,联立方程229819y x y x =−⎧⎪⎨−=⎪⎩,消去y 得272272730x x −⨯+=,此时()2272472732880∆=−⨯−⨯⨯=−<, 所以直线AB 与双曲线没有交点,故A 错误; 对于选项B :可得92,2AB k k =−=−,则95:22AB y x =−−,联立方程22952219y x y x ⎧=−−⎪⎪⎨⎪−=⎪⎩,消去y 得245245610x x +⨯+=, 此时()224544561445160∆=⨯−⨯⨯=−⨯⨯<, 所以直线AB 与双曲线没有交点,故B 错误; 对于选项C :可得3,3AB k k ==,则:3AB y x =由双曲线方程可得1,3a b ==,则:3AB y x =为双曲线的渐近线, 所以直线AB 与双曲线没有交点,故C 错误; 对于选项D :94,4AB k k ==,则97:44AB y x =−,联立方程22974419y x y x ⎧=−⎪⎪⎨⎪−=⎪⎩,消去y 得2631261930x x +−=, 此时21264631930∆=+⨯⨯>,故直线AB 与双曲线有交两个交点,故D 正确; 故选:D.二、填空题13.已知点(A 在抛物线C :22y px =上,则A 到C 的准线的距离为______. 【答案】94【解析】【分析】由题意首先求得抛物线的标准方程,然后由抛物线方程可得抛物线的准线方程为54x =−,最后利用点的坐标和准线方程计算点A 到C 的准线的距离即可.【详解】由题意可得:221p =⨯,则25p =,抛物线的方程为25y x =,准线方程为54x =−,点A 到C 的准线的距离为59144⎛⎫−−= ⎪⎝⎭. 故答案为:94. 14. 若π10,,tan 22⎛⎫∈= ⎪⎝⎭θθ,则sin cos θθ−=________.【答案】5− 【解析】【分析】根据同角三角关系求sin θ,进而可得结果. 【详解】因为π0,2θ⎛⎫∈ ⎪⎝⎭,则sin 0,cos 0θθ>>,又因为sin 1tan cos 2θθθ==,则cos 2sin θθ=, 且22222cos sin 4sin sin 5sin 1+=+==θθθθθ,解得sin 5θ=或sin 5θ=−(舍去),所以sin cos sin 2sin sin 5−=−=−=−θθθθθ.故答案为:5−. 15. 若x ,y 满足约束条件312937x y x y x y −≤−⎧⎪+≤⎨⎪+≥⎩,则2z x y =−的最大值为______.【答案】8 【解析】【分析】作出可行域,转化为截距最值讨论即可. 【详解】作出可行域如下图所示:2z x y =−,移项得2y x z =−,联立有3129x y x y −=−⎧⎨+=⎩,解得52x y =⎧⎨=⎩,设()5,2A ,显然平移直线2y x =使其经过点A ,此时截距z −最小,则z 最大, 代入得8z =, 故答案为:8.16. 已知点,,,S A B C 均在半径为2的球面上,ABC 是边长为3的等边三角形,SA ⊥平面ABC ,则SA =________. 【答案】2 【解析】【分析】先用正弦定理求底面外接圆半径,再结合直棱柱的外接球以及求的性质运算求解. 【详解】如图,将三棱锥S ABC −转化为直三棱柱SMN ABC -, 设ABC 的外接圆圆心为1O ,半径为r ,则2sin 2AB r ACB ===∠,可得r =, 设三棱锥S ABC −的外接球球心为O ,连接1,OA OO ,则112,2OA OO SA ==, 因22211OA OO O A =+,即21434SA =+,解得2SA =.故答案为:2.【点睛】方法点睛:多面体与球切、接问题的求解方法(1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题求解;(2)若球面上四点P 、A 、B 、C 构成的三条线段P A 、PB 、PC 两两垂直,且P A =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,根据4R 2=a 2+b 2+c 2求解; (3)正方体的内切球的直径为正方体的棱长;(4)球和正方体的棱相切时,球的直径为正方体的面对角线长;(5)利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.三、解答题17. 某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,()1,2,,10i y i =⋅⋅⋅.试验结果如下:为记1,2,,10i i i z x y i =−=⋅⋅⋅,记1210,,,z z z ⋅⋅⋅的样本平均数为z ,样本方差为2s . (1)求z ,2s ;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥否则不认为有显著提高)【答案】(1)11z =,261s =;(2)认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高. 【解析】【分析】(1)直接利用平均数公式即可计算出,x y ,再得到所有的i z 值,最后计算出方差即可;(2)根据公式计算出的值,和z 比较大小即可.【小问1详解】545533551522575544541568596548552.310x +++++++++==,541.310y ==,552.3541.311z x y =−=−=,i i i z x y =− 的值分别为: 9,6,8,8,15,11,19,18,20,12−,故2222222222(911)(611)(811)(811)(1511)0(1911)(1811)(2011)(1211)6110s −+−+−+−−+−++−+−+−+−==【小问2详解】由(1)知:11z =,==,故有z ≥ 所以认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高. 18. 记n S 为等差数列{}n a 的前n 项和,已知21011,40a S ==. (1)求{}n a 的通项公式; (2)求数列{}n a 的前n 项和n T . 【答案】(1)152n a n =−,(2)2214,71498,8n n n n T n n n ⎧−≤=⎨−+≥⎩ 【解析】【分析】(1)根据题意列式求解1,a d ,进而可得结果; (2)先求n S ,讨论n a 的符号去绝对值,结合n S 运算求解. 【小问1详解】设等差数列的公差为d ,由题意可得211011110910402a a d S a d =+=⎧⎪⎨⨯=+=⎪⎩,即1111298a d a d +=⎧⎨+=⎩,解得1132a d =⎧⎨=−⎩, 所以()1321152n a n n =−−=−, 【小问2详解】 因为()213152142n n n S n n +−==−,令1520n a n =−>,解得152n <,且*n ∈N , 当7n ≤时,则0n a >,可得2121214n n n n T a a a a a a S n n =++⋅⋅⋅+=++⋅⋅⋅+==−; 当8n ≥时,则0n a <,可得()()121278n n n T a a a a a a a a =++⋅⋅⋅+=++⋅⋅⋅+−+⋅⋅⋅+()()()222777221477141498n n S S S S S n n n n =−−=−=−−−=−+;综上所述:2214,71498,8n n n n T n n n ⎧−≤=⎨−+≥⎩. 19. 如图,在三棱锥−P ABC 中,AB BC ⊥,2AB =,BC =PB PC ==,,BP AP BC 的中点分别为,,D E O ,点F 在AC 上,BF AO ⊥.(1)求证:EF //平面ADO ;(2)若120POF ∠=︒,求三棱锥−P ABC 的体积.【答案】(1)证明见解析(2)3【解析】【分析】(1)根据给定条件,证明四边形ODEF 为平行四边形,再利用线面平行的判定推理作答. (2)作出并证明PM 为棱锥的高,利用三棱锥的体积公式直接可求体积. 【小问1详解】连接,DE OF ,设AF tAC =,则(1)BF BA AF t BA tBC =+=−+,12AO BA BC =−+,BF AO ⊥, 则2211[(1)]()(1)4(1)4022BF AO t BA tBC BA BC t BA tBC t t ⋅=−+⋅−+=−+=−+=,解得12t =,则F 为AC 的中点,由,,,D E O F 分别为,,,PB PA BC AC 的中点, 于是11//,,//,22DE AB DE AB OF AB OF AB ==,即,//DE OF DE OF =, 则四边形ODEF 为平行四边形,//,EF DO EF DO =,又EF ⊄平面,ADO DO ⊂平面ADO ,所以//EF 平面ADO . 【小问2详解】过P 作PM 垂直FO 的延长线交于点M , 因为,PB PC O =是BC 中点,所以PO BC ⊥,在Rt PBO △中,12PB BO BC ===,所以2PO ===,因为,//AB BC OF AB ⊥,所以OF BC ⊥,又PO OF O ⋂=,,PO OF ⊂平面POF , 所以BC ⊥平面POF ,又PM ⊂平面POF , 所以BC PM ⊥,又BC FM O =,,BC FM ⊂平面ABC ,所以PM ⊥平面ABC , 即三棱锥−P ABC 的高为PM ,因为120POF ∠=︒,所以60POM ∠=︒,所以sin 6022PM PO =︒=⨯=,又11222ABC S AB BC =⋅=⨯⨯=△所以11333P ABC ABC V S PM −=⋅=⨯=△.20. 已知函数()()1ln 1f x a x x ⎛⎫=++⎪⎝⎭. (1)当1a =−时,求曲线()y f x =在点()()1,f x 处的切线方程. (2)若函数()f x 在()0,∞+单调递增,求a 的取值范围. 【答案】(1)()ln 2ln 20x y +−=; (2)1|2a a ⎧⎫≥⎨⎬⎩⎭. 【解析】【分析】(1)由题意首先求得导函数的解析式,然后由导数的几何意义确定切线的斜率和切点坐标,最后求解切线方程即可;(2)原问题即()0f x '≥在区间()0,∞+上恒成立,整理变形可得()()()21ln 10g x ax x x x =+−++≥在区间()0,∞+上恒成立,然后分类讨论110,,022a a a ≤≥<<三种情况即可求得实数a 的取值范围. 【小问1详解】当1a =−时,()()()11ln 11f x x x x ⎛⎫=−+>− ⎪⎝⎭,则()()2111ln 111x f x x x x ⎛⎫'=−⨯++−⨯ ⎪+⎝⎭, 据此可得()()10,1ln 2f f '==−,所以函数在()()1,1f 处的切线方程为()0ln 21y x −=−−,即()ln 2ln 20x y +−=. 【小问2详解】由函数的解析式可得()()()2111=ln 111f x x a x x x x ⎛⎫⎛⎫'−+++⨯>− ⎪ ⎪+⎝⎭⎝⎭, 满足题意时()0f x '≥在区间()0,∞+上恒成立. 令()2111ln 101x a x x x ⎛⎫⎛⎫−+++≥ ⎪ ⎪+⎝⎭⎝⎭,则()()()21ln 10x x x ax −++++≥, 令()()()2=1ln 1g x ax x x x +−++,原问题等价于()0g x ≥在区间()0,∞+上恒成立, 则()()2ln 1g x ax x '=−+,当0a ≤时,由于()20,ln 10ax x ≤+>,故()0g x '<,()g x 在区间()0,∞+上单调递减,此时()()00g x g <=,不合题意;令()()()2ln 1h x g x ax x '==−+,则()121h x a x −'=+, 当12a ≥,21a ≥时,由于111x <+,所以()()0,h x h x '>在区间()0,∞+上单调递增, 即()g x '在区间()0,∞+上单调递增,所以()()>00g x g ''=,()g x 在区间()0,∞+上单调递增,()()00g x g >=,满足题意. 当102a <<时,由()1201h x a x =−=+'可得1=12x a −, 当10,12x a ⎛⎫∈− ⎪⎝⎭时,()()0,h x h x '<在区间10,12a ⎛⎫− ⎪⎝⎭上单调递减,即()g x '单调递减, 注意到()00g '=,故当10,12x a ⎛⎫∈− ⎪⎝⎭时,()()00g x g ''<=,()g x 单调递减, 由于()00g =,故当10,12x a ⎛⎫∈− ⎪⎝⎭时,()()00g x g <=,不合题意.综上可知:实数a 得取值范围是1|2a a ⎧⎫≥⎨⎬⎩⎭. 【点睛】方法点睛:(1)求切线方程的核心是利用导函数求切线的斜率,求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导,合函数求导,应由外到内逐层求导,必要时要进行换元. (2)由函数的单调性求参数的取值范围的方法①函数在区间(),a b 上单调,实际上就是在该区间上()0f x '≥(或()0f x '≤)恒成立.②函数在区间(),a b 上存在单调区间,实际上就是()0f x '≥(或()0f x '≤)在该区间上存在解集.21. 已知椭圆2222:1(0)C b b x a a y +>>=的离心率是3,点()2,0A −在C 上.(1)求C 的方程; (2)过点()2,3−的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,证明:线段MN的中点为定点.【答案】(1)22194y x +=(2)证明见详解 【解析】【分析】(1)根据题意列式求解,,a b c ,进而可得结果;(2)设直线PQ 的方程,进而可求点,M N 的坐标,结合韦达定理验证2M Ny y +为定值即可. 【小问1详解】由题意可得22223b a b c c e a ⎧⎪=⎪⎪=+⎨⎪⎪==⎪⎩,解得32a b c ⎧=⎪=⎨⎪=⎩,所以椭圆方程为22194y x +=.【小问2详解】由题意可知:直线PQ 的斜率存在,设()()()1122:23,,,,PQ y k x P x y Q x y =++,联立方程()2223194y k x y x ⎧=++⎪⎨+=⎪⎩,消去y 得:()()()222498231630k x k k x k k +++++=,则()()()2222Δ64236449317280kk k k k k =+−++=−>,解得0k <,可得()()2121222163823,4949k k k k x x x x k k +++=−=++, 因为()2,0A −,则直线()11:22y AP y x x =++, 令0x =,解得1122y y x =+,即1120,2y M x ⎛⎫⎪+⎝⎭,同理可得2220,2y N x ⎛⎫⎪+⎝⎭,则()()1212121222232322222y y k x k x x x x x +++++⎡⎤⎡⎤++⎣⎦⎣⎦=+++()()()()()()12211223223222kx k x kx k x x x +++++++⎡⎤⎡⎤⎣⎦⎣⎦=++()()()()1212121224342324kx x k x x k x x x x +++++=+++()()()()()()222222323843234231084949336163162344949k k k k k k k k k k k k k k k +++−++++===++−+++,所以线段PQ 的中点是定点()0,3.【点睛】方法点睛:求解定值问题的三个步骤 (1)由特例得出一个值,此值一般就是定值;(2)证明定值,有时可直接证明定值,有时将问题转化为代数式,可证明该代数式与参数(某些变量)无关;也可令系数等于零,得出定值; (3)得出结论.【选修4-4】(10分)22. 在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为2sin 42ππρθθ⎛⎫=≤≤⎪⎝⎭,曲线2C :2cos 2sin x y αα=⎧⎨=⎩(α为参数,2απ<<π).(1)写出1C 的直角坐标方程;(2)若直线y x m =+既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围. 【答案】(1)()[][]2211,0,1,1,2x y x y +−=∈∈(2)()(),022,−∞+∞【解析】【分析】(1)根据极坐标与直角坐标之间的转化运算求解,注意,x y 的取值范围;(2)根据曲线12,C C 的方程,结合图形通过平移直线y x m =+分析相应的临界位置,结合点到直线的距离公式运算求解即可. 【小问1详解】 因2sin ρθ=,即22sin ρρθ=,可得222x y y +=,整理得()2211x y +−=,表示以()0,1为圆心,半径为1的圆,又因为2cos 2sin cos sin 2,sin 2sin 1cos 2x y ======−ρθθθθρθθθ, 且ππ42θ≤≤,则π2π2≤≤θ,则[][]sin 20,1,1cos 21,2x y =∈=−∈θθ,故()[][]221:11,0,1,1,2C x y x y +−=∈∈. 【小问2详解】因为22cos :2sin x C y αα=⎧⎨=⎩(α为参数,ππ2α<<),整理得224x y +=,表示圆心为()0,0O ,半径为2,且位于第二象限圆弧,如图所示,若直线y x m =+过()1,1,则11m =+,解得0m =;若直线y x m =+,即0x y m −+=与2C相切,则20m =>⎩,解得m =, 若直线y x m =+与12,C C均没有公共点,则m >或0m <, 即实数m 的取值范围()(),022,−∞+∞.【选修4-5】(10分)23. 已知()22f x x x =+− (1)求不等式()6x f x ≤−的解集;为(2)在直角坐标系xOy 中,求不等式组()60f x y x y ⎧≤⎨+−≤⎩所确定的平面区域的面积.【答案】(1)[2,2]−; (2)6. 【解析】【分析】(1)分段去绝对值符号求解不等式作答. (2)作出不等式组表示的平面区域,再求出面积作答. 【小问1详解】依题意,32,2()2,0232,0x x f x x x x x −>⎧⎪=+≤≤⎨⎪−+<⎩,不等式()6f x x ≤−化为:2326x x x >⎧⎨−≤−⎩或0226x x x ≤≤⎧⎨+≤−⎩或0326x x x <⎧⎨−+≤−⎩,解2326x x x >⎧⎨−≤−⎩,得无解;解0226x x x≤≤⎧⎨+≤−⎩,得02x ≤≤,解0326x x x <⎧⎨−+≤−⎩,得20x −≤<,因此22x −≤≤,所以原不等式的解集为:[2,2]− 【小问2详解】作出不等式组()60f x yx y ≤⎧⎨+−≤⎩ABC ,由326y x x y =−+⎧⎨+=⎩,解得(2,8)A −,由26y x x y =+⎧⎨+=⎩, 解得(2,4)C ,又(0,2),(0,6)B D , 所以ABC 的面积11|||62||2(2)|822ABCC A SBD x x =⨯−=−⨯−−=.。

普通高等学校招生全国统一考试数学理试题(湖南卷,解析版)

普通高等学校招生全国统一考试数学理试题(湖南卷,解析版)

普通高等学校招生全国统一考试数学理试题(湖南卷,解析版)一.选择题.1.满足iz iz =+(i 是虚数单位)的复数=z ( )A.i 2121+B. i 2121-C. i 2121+-D. i 2121--【答案】B【解析】由题可得11122z i i i z i zi z izi +-=⇒+=⇒==--,故选B. 2. 对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为321,,p p p ,则( )321p p p <= B.132p p p <= C.231p p p <= D.321p p p ==3.已知)(),(x g x f 分别是定义在R 上的偶函数和奇函数,且1)()(23++=-x x x g x f ,则=+)1()1(g f A. 3- B. 1- C. 1 D. 35122x y ⎛⎫- ⎪⎝⎭的展开式中32y x 的系数是( )20- B.5- C.5 D.20【答案】A【解析】第1n +项展开式为()55122nn n C x y -⎛⎫- ⎪⎝⎭,则2n =时, ()523512202nn n C x y x y -⎛⎫-=- ⎪⎝⎭,故选A.已知命题.,:,:22y x y x q y x y x p ><-<->则若;命题则若在命题 ①q p q p q p q p ∨⌝⌝∧∨∧)④(③②);(;;中,真命题是( ) A ①③ B.①④ C.②③ D.②④执行如图1所示的程序框图,如果输入的]2,2[-∈t ,则输出的S 属于( )]2,6[-- B.]1,5[-- C.]5,4[- D.]6,3[-一块石材表示的几何体的三视图如图2所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( )A.1B.2C.3D.4【答案】B【解析】最大球的半径为正视图直角三角形内切圆的半径r ,则2286862r r r -+-=+⇒=,故选B. 某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这 两年生产总值的年平均增长率为( )A.2p q +B.(1)(1)12p q ++-C.pq D.(1)(1)1p q ++-【答案】D【解析】设两年的平均增长率为(0)x x >,则有()()()2111x p q +=++()()111x p q ⇒=++-,故选D.已知函数()sin(),f x x ϕ=-且230()0,f x dx π=⎰则函数()f x 的图象的一条对称轴是A.56x π=B.712x π=C.3x π= D.6x π=已知函数())0(212<-+=x e x x f x 与())ln(2a x x x g ++=图象上存在关于y 轴对称的点,则a 的取值范围是()A.)1,(e-∞B.),(e-∞ C.),1(ee-D.)1,(ee-二.填空题:本大题共6小题,考生作答5小题,没小题5分,共25分.(一)选做题(请考生在第11,12,13三题中任选两题作答,如果全做,则按前两题记分)在平面直角坐标系中,倾斜角为4π的直线l与曲线2cos1sinxCyαα=+⎧⎨=+⎩:,(α为参数)交于A、B两点,且2AB=,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,则直线l的极坐标方程是________. 如图3,已知AB,BC是O的两条弦,AO BC⊥,3AB=,22BC=,则O的半径等于________.若关于x的不等式23 ax-<的解集为5133x x⎧⎫-<<⎨⎬⎩⎭,则a=________.【答案】3-【解析】由题可得52331233aa⎧--=⎪⎪⎨⎪-=⎪⎩3a⇒=-,故填3-.(二)必做题(14-16题)14.若变量yx,满足约束条件⎪⎩⎪⎨⎧≥≤+≤kyyxxy4,且yxz+=2的最小值为6-,则____=k15.如图4,正方形ABCD 和正方形DEFG 的边长分别为(),a b a b <,原点O 为AD 的中点,抛物线)0(22>=p px y 经过F C ,两点,则_____=a b.【答案】21+【解析】因为,C F 在抛物线上,所以2222a paa b p b ⎧=⎪⎨⎛⎫=+ ⎪⎪⎝⎭⎩21a b ⇒=+,故填21+.16.在平面直角坐标系中,O 为原点,()),0,3(),3,0(,0,1C B A -动点D 满足CD =1,则OA OB OD ++的最大值是_________.17.某企业甲,乙两个研发小组,他们研发新产品成功的概率分别为23和35,现安排甲组研发新产品A ,乙组研发新产品B .设甲,乙两组的研发是相互独立的. (1)求至少有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获得120万元,若新产品B 研发成功,预计企业可获得利润100万元,求该企业可获得利润的分布列和数学期望.所以ξ的分布列如下:ξ 0120100220()P ξ215 4151525则数学期望24120120100220151555E ξ=⨯+⨯+⨯+⨯322088140=++=.18.如图5,在平面四边形ABCD 中,1,2,7AD CD AC ===(1)求cos CAD ∠的值;(2)若7cos BAD ∠=,21sin 6CBA ∠=,求BC 的长.19.如图6,四棱柱1111ABCD A B C D -的所有棱长都相等,11111,ACBD O AC B D O ==,四边形11ACC A 和四边形11BDD B 为矩形.(1)证明:1O O ⊥底面ABCD ;(2)若060CBA ∠=,求二面角11C OB D--的余弦值.1OO ∴⊥底面ABCD .(2)法1::过1O 作1B O的垂线交1B O于点H ,连接11,HO HC .不妨设四棱柱1111ABCD A B C D -的边长为2a .1OO ⊥底面ABCD 且底面ABCD //面1111A B C D1O O 面ABCD,从而1,,OB OC O O 两两垂直,如图以O 为坐标原点,1,,OB OC OO 所在直线分别为x轴,y20.已知数列{}n a 满足111,n n n a a a p +=-=,*n N ∈.(1)若{}n a 为递增数列,且123,2,3a a a 成等差数列,求P 的值;(2)若12p =,且{}21n a -是递增数列,{}2n a 是递减数列,求数列{}n a 的通项公式.【答案】(1)13p = (2) 1141,33241,332n n n n a n --⎧-⎪⎪=⎨⎪+⎪⎩为奇数为偶数或()114332nn n a --=+ 【解析】解:(1)因为数列{}n a 为递增数列,所以10n n a a +-≥,则11n nn n n n a a p a a p ++-=⇒-=,分别令1,2n =可得22132,a a p a a p -=-=2231,1a p a p p ⇒=+=++,因为123,2,3a a a 成等差数列,所以21343a a a =+()()224113130p p p p p ⇒+=+++⇒-=13p ⇒=或0,当0p =时,数列n a 为常数数列不符合数列{}n a 是递增数列,所以13p =.21.如图7,O 为坐标原点,椭圆1:C ()222210x y a b a b +=>>的左右焦点分别为12,F F ,离心率为1e ;双曲线2:C 22221x y a b -=的左右焦点分别为34,F F ,离心率为2e ,已知1232e e =,且2431F F =. (1)求12,C C 的方程;(2)过1F 点作1C 的不垂直于y 轴的弦AB ,M 为AB 的中点,当直线OM 与2C 交于,P Q 两点时,求四边形APBQ 面积的最小值.22224A AB Bnx y nx y d n +++=+,因为,A B 在直线PQ 的两端,所以()()220B B A A nx y nx y ++<,22.已知常数0a >,函数()()2ln 12x f x ax x =+-+.(1)讨论()f x 在区间()0,+∞上的单调性;(2)若()f x 存在两个极值点12,x x ,且()()120f x f x +>,求a 的取值范围.(2)函数()f x的定义域为1,a⎛⎫-+∞⎪⎝⎭,由(1)可得当01a<<时,()()21'0a af x x-=⇒=±,则。

2023年高考全国甲卷数学(文)真题(含答案)

2023年高考全国甲卷数学(文)真题(含答案)
[选修4-4:坐标系与参数方程](10分)
【22题答案】
【答案】(1)
(2)
[选修4-5:不等式选讲](10分)
【23题答案】
【答案】(1)
(2)2
19.8 20.2 21.6 22.8 23.6 23.9 25.1 28.2 32.3 36.5
(1)计算试验组的样本平均数;
(2)(ⅰ)求40只小白鼠体重的增加量的中位数m,再分别统计两样本中小于m与不小于m的数据的个数,完成如下列联表
对照组
试验组
(ⅱ)根据(i)中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?
【答案】C
【9题答案】
【答案】D
【10题答案】
【答案】A
【11题答案】
【答案】A
【12题答案】
【答案】C
二、填空题:本大题共4小题,每小题5分,共20分.
【13题答案】
【答案】
【14题答案】
【答案】2
【15题答案】
【答案】15
【16题答案】
【答案】
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.
A.1B.2C.3D.4
二、填空题:本大题共4小题,每小题5分,共20分.
13.记 为等比数列 前 项和.若 ,则 的公比为________.
14.若 为偶函数,则 ________.
15.若x,y满足约束条件 ,设 的最大值为____________.
16.在正方体 中, 为 中点,若该正方体的棱与球 的球面有公共点,则球 的半径的取值范围是________.

2023年普通高等学校招生全国统一考试(全国甲卷)_文科数学_解析版

2023年普通高等学校招生全国统一考试(全国甲卷)_文科数学_解析版

2023年普通高等学校招生全国统一考试(全国甲卷)文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{}1,2,3,4,5U =,集合{}{}1,4,2,5M N ==,则U N M =ð()A.{}2,3,5 B.{}1,3,4 C.{}1,2,4,5 D.{}2,3,4,5【答案】A 【解析】【分析】利用集合的交并补运算即可得解.【详解】因为全集{1,2,3,4,5}U =,集合{1,4}M =,所以{}2,3,5U M =ð,又{2,5}N =,所以{2,3,5}U N M = ð,故选:A.2.()()()351i 2i 2i +=+-()A.1- B.1C.1i- D.1i+【答案】C 【解析】【分析】利用复数的四则运算求解即可.【详解】()()351i 51i 1i(2i)(2i)5+-==-+-故选:C.3.已知向量()()3,1,2,2a b ==,则cos ,a b a b +-= ()A.117B.17C.55D.255【答案】B 【解析】【分析】利用平面向量模与数量积的坐标表示分别求得()(),,a b a b a b a b +-+⋅-,从而利用平面向量余弦的运算公式即可得解.【详解】因为(3,1),(2,2)a b ==,所以()()5,3,1,1a b a b +=-=- ,则a b a b +==-== ()()()51312a b a b +⋅-=⨯+⨯-= ,所以()()cos ,17a b a b a b a b a b a b+⋅-+-==+-.故选:B.4.某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为()A.16B.13C.12D.23【答案】D 【解析】【分析】利用古典概率的概率公式,结合组合的知识即可得解.【详解】依题意,从这4名学生中随机选2名组织校文艺汇演,总的基本事件有24C 6=件,其中这2名学生来自不同年级的基本事件有1122C C 4=,所以这2名学生来自不同年级的概率为4263=.故选:D.5.记n S 为等差数列{}n a 的前n 项和.若264810,45a a a a +==,则5S =()A.25 B.22 C.20D.15【答案】C 【解析】【分析】方法一:根据题意直接求出等差数列{}n a 的公差和首项,再根据前n 项和公式即可解出;方法二:根据等差数列的性质求出等差数列{}n a 的公差,再根据前n 项和公式的性质即可解出.【详解】方法一:设等差数列{}n a 的公差为d ,首项为1a ,依题意可得,2611510a a a d a d +=+++=,即135a d +=,又()()48113745a a a d a d =++=,解得:11,2d a ==,所以515455210202S a d ⨯=+⨯=⨯+=.故选:C.方法二:264210a a a +==,4845a a =,所以45a =,89a =,从而84184a a d -==-,于是34514a a d =-=-=,所以53520S a ==.故选:C.6.执行下边的程序框图,则输出的B =()A .21B.34C.55D.89【答案】B 【解析】【分析】根据程序框图模拟运行即可解出.【详解】当1k =时,判断框条件满足,第一次执行循环体,123A =+=,325B =+=,112k =+=;当2k =时,判断框条件满足,第二次执行循环体,358A =+=,8513B =+=,213k =+=;当3k =时,判断框条件满足,第三次执行循环体,81321A =+=,211334B =+=,314k =+=;当4k =时,判断框条件不满足,跳出循环体,输出34B =.故选:B.7.设12,F F 为椭圆22:15x C y +=的两个焦点,点P 在C 上,若120PF PF ⋅= ,则12PF PF ⋅=()A.1B.2C.4D.5【答案】B 【解析】【分析】方法一:根据焦点三角形面积公式求出12PF F △的面积,即可解出;方法二:根据椭圆的定义以及勾股定理即可解出.【详解】方法一:因为120PF PF ⋅= ,所以1290FPF ∠=,从而122121tan 4512FP F S b PF PF ===⨯⋅,所以122PF PF ⋅=.故选:B.方法二:因为120PF PF ⋅= ,所以1290FPF ∠= ,由椭圆方程可知,25142c c =-=⇒=,所以22221212416PF PF F F +===,又122PF PF a +==2212121221620PF PF PF PF PF PF ++=+=,所以122PF PF ⋅=.故选:B.8.曲线e 1=+xy x 在点e 1,2⎛⎫ ⎪⎝⎭处的切线方程为()A.e 4y x =B.e 2y x =C.e e 44y x =+ D.e 3e24y x =+【答案】C 【解析】【分析】先由切点设切线方程,再求函数的导数,把切点的横坐标代入导数得到切线的斜率,代入所设方程即可求解.【详解】设曲线e 1xy x =+在点e 1,2⎛⎫ ⎪⎝⎭处的切线方程为()e 12y k x -=-,因为e 1xy x =+,所以()()()22e 1e e 11x xxx x y x x +-'==++,所以1e|4x k y ='==所以()e e124y x -=-所以曲线e 1xy x =+在点e 1,2⎛⎫ ⎪⎝⎭处的切线方程为e e 44y x =+.故选:C9.已知双曲线22221(0,0)x y a b a b-=>>22(2)(3)1x y -+-=交于A ,B 两点,则||AB =()A.B.C.355D.455【答案】D 【解析】【分析】根据离心率得出双曲线渐近线方程,再由圆心到直线的距离及圆半径可求弦长.【详解】由e =,则22222215c b a a==+=,解得2ba=,所以双曲线的一条渐近线不妨取2y x =,则圆心(2,3)到渐近线的距离5d ==,所以弦长45||5AB ===.故选:D10.在三棱锥-P ABC 中,ABC 是边长为2的等边三角形,2,PA PB PC ===,则该棱锥的体积为()A.1B.C.2D.3【答案】A 【解析】【分析】证明AB ⊥平面PEC ,分割三棱锥为共底面两个小三棱锥,其高之和为AB 得解.【详解】取AB 中点E ,连接,PE CE ,如图,ABC 是边长为2的等边三角形,2PA PB ==,,PE AB CE AB ∴⊥⊥,又,PE CE ⊂平面PEC ,PE CE E = ,AB ∴⊥平面PEC ,又322PE CE ==⨯=,PC =故222PC PE CE =+,即PE CE ⊥,所以11121332B PEC A PEC PEC V V V S AB --=+=⋅=⨯⨯=△,故选:A11.已知函数()2(1)e x f x --=.记,,222a f b f c f ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A.b c a>> B.b a c>> C.c b a>> D.c a b>>【答案】A 【解析】【分析】利用作差法比较自变量的大小,再根据指数函数的单调性及二次函数的性质判断即可.【详解】令2()(1)g x x =--,则()g x 开口向下,对称轴为1x =,因为4112222⎛⎫+---= ⎪ ⎪⎝⎭,而22491670+-=+-=->,所以41102222⎛⎫---=-> ⎪ ⎪⎝⎭,即1122->-由二次函数性质知63)22g g <,因为62624112222⎛⎫---=- ⎪ ⎪⎝⎭,而22481682)0-=+==<,即621122-<-,所以62)22g g >,综上,263222g g g <<,又e x y =为增函数,故a c b <<,即b c a >>.故选:A.12.函数()y f x =的图象由cos 26y x π⎛⎫=+⎪⎝⎭的图象向左平移6π个单位长度得到,则()y f x =的图象与直线1122y x =-的交点个数为()A.1 B.2C.3D.4【答案】C 【解析】【分析】先利用三角函数平移的性质求得()sin 2f x x =-,再作出()f x 与1122y x =-的部分大致图像,考虑特殊点处()f x 与1122y x =-的大小关系,从而精确图像,由此得解.【详解】因为πcos 26y x ⎛⎫=+⎪⎝⎭向左平移π6个单位所得函数为πππcos 2cos 2sin 2662y x x x ⎡⎤⎛⎫⎛⎫=++=+=- ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦,所以()sin 2f x x =-,而1122y x =-显然过10,2⎛⎫- ⎪⎝⎭与()1,0两点,作出()f x 与1122y x =-的部分大致图像如下,考虑3π3π7π2,2,2222x x x =-==,即3π3π7π,,444x x x =-==处()f x 与1122y x =-的大小关系,当3π4x =-时,3π3πsin 142f ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭,13π1π4284312y +⎛⎫=⨯--=-<- ⎪⎝⎭;当3π4x =时,3π3πsin 142f ⎛⎫=-= ⎪⎝⎭,13π13π412428y -=⨯-=<;当7π4x =时,7π7πsin 142f ⎛⎫=-= ⎪⎝⎭,17π17π412428y -=⨯-=>;所以由图可知,()f x 与1122y x =-的交点个数为3.故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.记n S 为等比数列{}n a 的前n 项和.若6387S S =,则{}n a 的公比为________.【答案】12-【解析】【分析】先分析1q ≠,再由等比数列的前n 项和公式和平方差公式化简即可求出公比q .【详解】若1q =,则由6387S S =得118673a a ⋅=⋅,则10a =,不合题意.所以1q ≠.当1q ≠时,因为6387S S =,所以()()6311118711a q a q qq--⋅=⋅--,即()()638171q q ⋅-=⋅-,即()()()33381171q q q ⋅+-=⋅-,即()3817q ⋅+=,解得12q =-.故答案为:12-14.若()2π(1)sin 2f x x ax x ⎛⎫=-+++ ⎪⎝⎭为偶函数,则=a ________.【答案】2【解析】【分析】根据常见函数的奇偶性直接求解即可.【详解】()()()222π1sin 1cos (2)1cos 2f x x ax x x ax x x a x x ⎛⎫=-+++=-++=+-++ ⎪⎝⎭ ,且函数为偶函数,20a ∴-=,解得2a =,故答案为:215.若x ,y 满足约束条件323,2331,x y x y x y -≤⎧⎪-+≤⎨⎪+≥⎩,则32z x y =+的最大值为________.【答案】15【解析】【分析】由约束条件作出可行域,根据线性规划求最值即可.【详解】作出可行域,如图,由图可知,当目标函数322zy x =-+过点A 时,z 有最大值,由233323x y x y -+=⎧⎨-=⎩可得33x y =⎧⎨=⎩,即(3,3)A ,所以max 332315z =⨯+⨯=.故答案为:1516.在正方体1111ABCD A B C D -中,4,AB O =为1AC 的中点,若该正方体的棱与球O 的球面有公共点,则球O 的半径的取值范围是________.【答案】【解析】【分析】当球是正方体的外接球时半径最大,当边长为4的正方形是球的大圆的内接正方形时半径达到最小.【详解】设球的半径为R .当球是正方体的外接球时,恰好经过正方体的每个顶点,所求的球的半径最大,若半径变得更大,球会包含正方体,导致球面和棱没有交点,正方体的外接球直径2R '为体对角线长1AC =,即2R R ''==,故max R =;分别取侧棱1111,,,AA BB CC DD 的中点,,,M H G N ,显然四边形MNGH 是边长为4的正方形,且O 为正方形MNGH 的对角线交点,连接MG ,则MG =MNGH 的外接圆,球的半径达到最小,即R 的最小值为.综上,R ∈.故答案为:三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.记ABC 的内角,,A B C 的对边分别为,,a b c ,已知2222cos b c aA+-=.(1)求bc ;(2)若cos cos 1cos cos a B b A ba Bb A c--=+,求ABC 面积.【答案】(1)1(2)4【解析】【分析】(1)根据余弦定理即可解出;(2)由(1)可知,只需求出sin A 即可得到三角形面积,对等式恒等变换,即可解出.【小问1详解】因为2222cos a b c bc A =+-,所以2222cos 22cos cos b c a bc A bc A A+-===,解得:1bc =.【小问2详解】由正弦定理可得cos cos sin cos sin cos sin cos cos sin cos sin cos sin a B b A b A B B A B a B b A c A B B A C ---=-++()()()()()sin sin sin sin 1sin sin sin A B A B B B A B A B A B ---=-==+++,变形可得:()()sin sin sin A B A B B --+=,即2cos sin sin A B B -=,而0sin 1B <≤,所以1cos 2A =-,又0πA <<,所以sin 2A =,故ABC 的面积为1133sin 12224ABC S bc A ==⨯⨯=△.18.如图,在三棱柱111ABC A B C -中,1A C ⊥平面,90ABC ACB ∠=︒.(1)证明:平面11ACC A ⊥平面11BB C C ;(2)设11,2AB A B AA ==,求四棱锥111A BB C C -的高.【答案】(1)证明见解析.(2)1【解析】【分析】(1)由1A C ⊥平面ABC 得1A C BC ⊥,又因为AC BC ⊥,可证BC ⊥平面11ACC A ,从而证得平面11ACC A ⊥平面11BCC B ;(2)过点1A 作11A O CC ⊥,可证四棱锥的高为1AO ,由三角形全等可证1A C AC =,从而证得O 为1CC 中点,设1A C AC x ==,由勾股定理可求出x ,再由勾股定理即可求1AO .【小问1详解】证明:因为1A C ⊥平面ABC ,BC ⊂平面ABC ,所以1A C BC ⊥,又因为90ACB ∠= ,即ACBC ⊥,1,A C AC ⊂平面11ACC A ,1AC AC C ⋂=,所以BC ⊥平面11ACC A ,又因为BC ⊂平面11BCC B ,所以平面11ACC A ⊥平面11BCC B .【小问2详解】如图,过点1A 作11A O CC ⊥,垂足为O .因为平面11ACC A ⊥平面11BCC B ,平面11ACC A 平面111BCC B CC =,1A O ⊂平面11ACC A ,所以1A O ⊥平面11BCC B ,所以四棱锥111A BB C C -的高为1AO .因为1A C ⊥平面ABC ,,AC BC ⊂平面ABC ,所以1A C BC ⊥,1A C AC ⊥,又因为1A B AB =,BC 为公共边,所以ABC 与1A BC 全等,所以1A C AC =.设1A C AC x ==,则11A C x =,所以O 为1CC 中点,11112OC AA ==,又因为1A C AC ⊥,所以22211A C AC AA +=,即2222x x +=,解得x =,所以11A O ==,所以四棱锥111A BB C C -的高为1.19.一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g ).试验结果如下:对照组的小白鼠体重的增加量从小到大排序为15.218.820.221.322.523.225.826.527.530.132.634.334.835.635.635.836.237.340.543.2试验组的小白鼠体重的增加量从小到大排序为7.89.211.412.413.215.516.518.018.819.219.820.221.622.823.623.925.128.232.336.5(1)计算试验组的样本平均数;(2)(ⅰ)求40只小白鼠体重的增加量的中位数m ,再分别统计两样本中小于m 与不小于m 的数据的个数,完成如下列联表m<m≥对照组试验组(ⅱ)根据(i )中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?附:()()()()22()n ad bc K a b c d a c b d -=++++,()2P K k ≥0.1000.0500.010k2.7063.8416.635【答案】(1)19.8(2)(i )23.4m =;列联表见解析,(ii )能【解析】【分析】(1)直接根据均值定义求解;(2)(i )根据中位数的定义即可求得23.4m =,从而求得列联表;(ii )利用独立性检验的卡方计算进行检验,即可得解.【小问1详解】试验组样本平均数为:1(7.89.211.412.413.215.516.518.018.819.219.820.220+++++++++++39621.622.823.623.925.128.232.336.5)19.820++++++++==【小问2详解】(i )依题意,可知这40只小鼠体重的中位数是将两组数据合在一起,从小到大排后第20位与第21位数据的平均数,由原数据可得第11位数据为18.8,后续依次为19.2,19.8,20.2,20.2,21.3,21.6,22.5,22.8,23.2,23.6, ,故第20位为23.2,第21位数据为23.6,所以23.223.623.42m +==,故列联表为:m<m≥合计对照组61420试验组14620合计202040(ii )由(i )可得,2240(661414) 6.400 3.84120202020K ⨯⨯-⨯==>⨯⨯⨯,所以能有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异.20.已知函数()2sin π,0,cos 2x f x ax x x ⎛⎫=-∈ ⎪⎝⎭.(1)当1a =时,讨论()f x 的单调性;(2)若()sin 0f x x +<,求a 的取值范围.【答案】(1)()f x 在π0,2⎛⎫⎪⎝⎭上单调递减(2)0a ≤【解析】【分析】(1)代入1a =后,再对()f x 求导,同时利用三角函数的平方关系化简()f x ',再利用换元法判断得其分子与分母的正负情况,从而得解;(2)法一:构造函数()()sin g x f x x =+,从而得到()0g x <,注意到()00g =,从而得到()00g '≤,进而得到0a ≤,再分类讨论0a =与a<0两种情况即可得解;法二:先化简并判断得2sin sin 0cos xx x-<恒成立,再分类讨论0a =,a<0与0a >三种情况,利用零点存在定理与隐零点的知识判断得0a >时不满足题意,从而得解.【小问1详解】因为1a =,所以()2sin π,0,cos 2x f x x x x ⎛⎫=-∈ ⎪⎝⎭,则()()22432cos cos 2cos sin sin cos 2sin 11cos cos x x x x xx xf x xx--+'=-=-()3333222cos cos 21cos coscos 2cos cos x x xx x xx---+-==,令cos t x =,由于π0,2x ⎛⎫∈ ⎪⎝⎭,所以()cos 0,1t x =∈,所以()()()23233222cos cos 22221211x x t t t t t t t t t +-=+-=-+-=-++-()()2221t t t =++-,因为()2222110t t t ++=++>,10t -<,33cos 0x t =>,所以()233cos cos 20cos x x f x x +-'=<在π0,2⎛⎫ ⎪⎝⎭上恒成立,所以()f x 在π0,2⎛⎫⎪⎝⎭上单调递减.【小问2详解】法一:构建()()2sin πsin sin 0cos 2x g x f x x ax x x x ⎛⎫=+=-+<< ⎪⎝⎭,则()231sin πcos 0cos 2x g x a x x x +⎛⎫'=-+<< ⎪⎝⎭,若()()sin 0g x f x x =+<,且()()00sin 00g f =+=,则()0110g a a '=-+=≤,解得0a ≤,当0a =时,因为22sin 1sin sin 1cos cos x x x x x ⎛⎫-=- ⎪⎝⎭,又π0,2x ⎛⎫∈ ⎪⎝⎭,所以0sin 1x <<,0cos 1x <<,则211cos x>,所以()2sin sin sin 0cos xf x x x x+=-<,满足题意;当a<0时,由于π02x <<,显然0ax <,所以()22sin sin sin sin sin 0cos cos x xf x x ax x x x x+=-+<-<,满足题意;综上所述:若()sin 0f x x +<,等价于0a ≤,所以a 的取值范围为(],0-∞.法二:因为()2232222sin cos 1sin sin cos sin sin sin cos cos cos cos x x x x x x x x x x x x---===-,因为π0,2x ⎛⎫∈ ⎪⎝⎭,所以0sin 1x <<,0cos 1x <<,故2sin sin 0cos x x x-<在π0,2⎛⎫⎪⎝⎭上恒成立,所以当0a =时,()2sin sin sin 0cos xf x x x x+=-<,满足题意;当a<0时,由于π02x <<,显然0ax <,所以()22sin sin sin sin sin 0cos cos x xf x x ax x x x x+=-+<-<,满足题意;当0a >时,因为()322sin sin sin sin cos cos x xf x x ax x ax x x+=-+=-,令()32sin π0cos 2x g x ax x x ⎛⎫=-<< ⎪⎝⎭,则()22433sin cos 2sin cos x x xg x a x +'=-,注意到()22433sin 0cos 02sin 000cos 0g a a +'=-=>,若π02x ∀<<,()0g x '>,则()g x 在π0,2⎛⎫⎪⎝⎭上单调递增,注意到()00g =,所以()()00g x g >=,即()sin 0f x x +>,不满足题意;若0π02x ∃<<,()00g x '<,则()()000g g x ''<,所以在π0,2⎛⎫⎪⎝⎭上最靠近0x =处必存在零点1π20,x ⎛⎫∈ ⎪⎝⎭,使得()10g x '=,此时()g x '在()10,x 上有()0g x '>,所以()g x 在()10,x 上单调递增,则在()10,x 上有()()00g x g >=,即()sin 0f x x +>,不满足题意;综上:0a ≤.【点睛】关键点睛:本题方法二第2小问讨论0a >这种情况的关键是,注意到()00g '>,从而分类讨论()g x '在π0,2⎛⎫⎪⎝⎭上的正负情况,得到总存在靠近0x =处的一个区间,使得()0g x '>,从而推得存在()()00g x g >=,由此得解.21.已知直线210x y -+=与抛物线2:2(0)C y px p =>交于,A B 两点,AB =(1)求p ;(2)设F 为C 的焦点,,M N 为C 上两点,且0FM FN ⋅=,求MFN △面积的最小值.【答案】(1)2p =(2)12-【解析】【分析】(1)利用直线与抛物线的位置关系,联立直线和抛物线方程求出弦长即可得出p ;(2)设直线MN :x my n =+,()()1122,,,,M x y N x y 利用0MF NF ⋅=,找到,m n 的关系,以及MNF 的面积表达式,再结合函数的性质即可求出其最小值.【小问1详解】设()(),,,A A B B A x y B x y ,由22102x y y px-+=⎧⎨=⎩可得,2420y py p -+=,所以4,2A B A B y y p y y p +==,所以A B AB y ==-==即2260p p --=,因为0p >,解得:2p =.【小问2详解】因为()1,0F ,显然直线MN 的斜率不可能为零,设直线MN :x my n =+,()()1122,,,M x y N x y ,由24y x x my n ⎧=⎨=+⎩可得,2440y my n --=,所以,12124,4y y m y y n +==-,22161600m n m n ∆=+>⇒+>,因为0MF NF ⋅=,所以()()1212110x x y y --+=,即()()1212110my n my n y y +-+-+=,亦即()()()()2212121110m y y m n y y n ++-++-=,将12124,4y y m y y n +==-代入得,22461m n n =-+,()()22410m n n +=->,所以1n ≠,且2610n n-+≥,解得3n ≥+或3n ≤-.设点F 到直线MN 的距离为d,所以d =12MN y y =-=1==-,所以MNF的面积()2111122S MN d n =⨯⨯=-=-,而3n ≥+或3n≤-,所以,当3n =-时,MNF的面积(2min 212S =-=-【点睛】本题解题关键是根据向量的数量积为零找到,m n 的关系,一是为了减元,二是通过相互的制约关系找到各自的范围,为得到的三角形面积公式提供定义域支持,从而求出面积的最小值.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](10分)22.已知点()2,1P ,直线2cos ,:1sin x t l y t αα=+⎧⎨=+⎩(t 为参数),α为l 的倾斜角,l 与x 轴正半轴、y 轴正半轴分别交于,A B ,且4PA PB ⋅=.(1)求α;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求l 的极坐标方程.【答案】(1)3π4(2)cos sin 30ραρα+-=【解析】【分析】(1)根据t 的几何意义即可解出;(2)求出直线l 的普通方程,再根据直角坐标和极坐标互化公式即可解出.【小问1详解】因为l 与x 轴,y 轴正半轴交于,A B 两点,所以ππ2α<<,令0x =,12cos t α=-,令0y =,21sin t α=-,所以21244sin cos sin 2PA PB t t ααα====,所以sin 21α=±,即π2π2k α=+,解得π1π,42k k α=+∈Z ,因为ππ2α<<,所以3π4α=.【小问2详解】由(1)可知,直线l 的斜率为tan 1α=-,且过点()2,1,所以直线l 的普通方程为:()12y x -=--,即30x y +-=,由cos ,sin x y ραρα==可得直线l 的极坐标方程为cos sin 30ραρα+-=.[选修4-5:不等式选讲](10分)23.已知()2||, 0 f x x a a a =-->.(1)求不等式()f x x <的解集;(2)若曲线()y f x =与x 轴所围成的图形的面积为2,求a .【答案】(1),33a a ⎛⎫⎪⎝⎭(2)263【解析】【分析】(1)分x a ≤和x a >讨论即可;(2)写出分段函数,画出草图,表达面积解方程即可.【小问1详解】若x a ≤,则()22f x a x a x =--<,即3x a >,解得3a x >,即3ax a <≤,若x a >,则()22f x x a a x =--<,解得3x a <,即3a x a <<,综上,不等式的解集为,33a a ⎛⎫⎪⎝⎭.【小问2详解】2,()23,x a x af x x a x a -+≤⎧=⎨->⎩.画出()f x 的草图,则()f x 与坐标轴围成ADO △与ABCABC 的高为3,(0,),,0,,022a a a D a A B ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,所以||=AB a所以21132224OAD ABC S S OA a AB a a +=⋅+⋅== ,解得263a =。

普通高等学校招生全国统一考试数学理试题(湖南卷,含答案)

普通高等学校招生全国统一考试数学理试题(湖南卷,含答案)

普通高等学校招生全国统一考试数学理试题(湖南卷,含答案)本试题卷包括选择题、填空题和解答题三部分,共6页,时量120分钟,满分150分。

参考公式:(1)()()()P AB P B A P A =,其中,A B 为两个事件,且()0P A >, (2)柱体体积公式V Sh =,其中S 为底面面积,h 为高。

(3)球的体积公式343V R π=,其中R 为求的半径。

一选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求的。

1.若,a b R ∈,i 为虚数单位,且()a i i b i +=+,则( )A .1,1a b ==B .1,1a b =-=C .1,1a b =-=-D .1,1a b ==- 答案:D2.设{1,2}M =,2{}N a =,则“1a =”是“N M ⊆”则( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件 答案:A3.设图一是某几何体的三视图,则该几何体的体积为( )A .9122π+B .9182π+C .942π+D .3618π+答案:B4.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由22()()()()()n ad bc K a b c d a c b d -=++++算得22110(40302020)7.860506050K ⨯⨯-⨯=≈⨯⨯⨯ 附表:参照附表,得到的正确结论是( )A .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C .有99%以上的把握认为“爱好该项运动与性别有关”D .有99%以上的把握认为“爱好该项运动与性别有关” 答案:C5.设双曲线2221(0)9x y a a -=>的渐近线方程为320x y ±=,则a 的值为( ) A .4 B .3 C .2 D .1答案:C 6. 由直线,,033x x y ππ=-==与曲线cos y x =所围成的封闭图形的面积为( )A .12B .1C .3D .3答案:D7. 设1m >,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为( )A .(1,12)+B .(12,)++∞C .(1,3)D .(3,)+∞ 答案:A8.设直线x t =与函数2(),()ln f x x g x x ==的图像分别交于点,M N ,则当||MN 达到最小时t 的值为( )A .1B .12C .5D .2答案:D二填空题:本大题共8小题,考生作答7小题,每小题5分,共35分,把答案填在答题卡中对应题号的横线上。

2023年普通高等学校招生全国统一考试数学(文)试卷 全国甲卷(含解析)

2023年普通高等学校招生全国统一考试数学(文)试卷 全国甲卷(含解析)

2023____________________________________________1{1,2,3,4,5}U ={1,4}M ={2,5}N =UN M =()A.{2,3,5}B.{1,3,4}C.{1,2,4,5}D.{2,3,4,5}235(1i )(2i)(2i)+=+-()A.1-B.1C.1i -D.1i+3(3,1)=a (2,2)=b cos ,+-=a b a b () A.117B.1717C.55D.255442.422()A.16B.13C.12D.235nS {}n a n.2610a a +=4845a a =5S =()A.25B.22C.20D.156B =()A.21B.34C.55D.8971F 2F C2215x y +=PC120PF PF ⋅= 12||||PF PF ⋅=()A.1B.2C.4D.58e 1xy x =+e (1,)2()A.e 4y x = B.e2y x = C.e e 44y x =+ D.e 3e 24y x =+9C22221(0,0)x y a b a b -=>>C22(2)(3)1x y -+-=A B ||AB =()A.5B.5C.5D.510P ABC -ABC 22PA PB ==PC =()A.1C.2D.3112(1)()e x f x --=.22a f =32b f =6(2c f =()A.b c a >>B.b a c >>C.c b a>> D.c a b>>12()y f x =πcos(2)6y x =+π6()y f x =1122y x =-()A.1B.2C.3D.413nS {}n a n .6387S S ={}n a ________.142π()(1)sin(2f x x ax x =-+++a =________.15x y323,233,1,x y x y x y -≤⎧⎪-+≤⎨⎪+≥⎩32z x y =+________.161111ABCD A B C D -4AB =O1AC OO ________.17ABC A B C a b c2222cos b c a A+-=.(1)bc(2)cos cos 1cos cos a B b A ba Bb A c--=+ABC .18111ABC A B C -1A C ⊥ABC 90ACB ∠=︒.(1)11ACC A ⊥11BB C C(2)1AB A B=12AA =111A BB C C-.19402020(g).15.218.820.221.322.523.225.826.527.530.132.634.334.835.635.635.836.237.340.543.27.89.211.412.413.215.516.518.018.819.219.820.221.622.823.623.925.128.232.336.5(1)(2)()40mmm.m <m≥()()95%22()()()()()n ad bc K a b c d a c b d -=++++()2P K k ≥0.1000.0500.010k2.7063.8416.635202sin ()cos x f x ax x =-π(0,2x ∈.(1)1a =()f x (2)()sin 0f x x +<a.21210x y -+=C22(0)y px p =>A B ||AB =.(1)p (2)FC M NCFM FN ⋅= MFN .22[44](2,1)P l2cos ,1sin x t y t αα=+⎧⎨=+⎩(t )αl l xy A B ||||4PA PB ⋅=.(1)α(2)xl .23[45]0a >()2||f x x a a =--.(1)()f x x <(2)()y f x =x 2a .1A{2,3,5}UM ={2,5}N ={2,3,5}UN M =A.2C()32251i 5(1i)5(1i)1i (2i)(2i)2i 5+--===-+-- C.3B(5,3)+=a b (1,1)-=-a b ()()17cos ,||||17+⋅-〈+-〉==+-a b a b a b a b a b a b B.4D21a 2a 21b 2b 42()12,a a ()11,a b ()12,a b ()21,a b ()22,a b ()12,b b 62()11,a b ()12,a b ()21,a b ()22,a b 424263P == D.5C2610a a +=4210a =45a =4845a a =89a =.{}n a d84951844a a d --===-45a =12a =51545202S a d ⨯=+⨯= C.{}n a d2610a a +=135a d +=4845a a =()()113745a d a d ++=12a =1d =51545202S a d ⨯=+⨯= C.6B13≤123A =+=325B =+=2k =23≤358A =+=8513B =+=3k =33≤81321A =+=211334B =+=4k =43≤34B = B.7B120PF PF ⋅= 12PF PF ⊥12212121tan 22PF F F PF SPF PF b ∠=⋅=121901tan 22PF PF ︒⋅=⨯122PF PF ⋅= B.120PF PF ⋅=12PF PF ⊥22221212(2)16PF PF F F c +===.122PF PF a +==()21220PF PF +=221212220PF PF PF PF ++⋅=122PF PF ⋅= B.8C22e (1)e 1e (1)(1)x x x x x y x x +-⋅'==++e 1xy x =+e 1,2⎛⎫ ⎪⎝⎭1e4x k y ='==e 1xy x =+e 1,2⎛⎫ ⎪⎝⎭e e(1)24y x -=-e e 44y x =+ C.9Dc e a==c =225c a =2225a b a +=224b a=224b a =2y x=±2y x=.222,(2)(3)1,y x x y =⎧⎨-+-=⎩2516120x x -+=.11)(,A x y ()22,B x y 12165x x +=12125x x =.12||5AB x x =-==D.(2,3)2y x=55d ==||5AB=== D.10AAB D PD CD ABC22PA PB==PD AB⊥CD AB⊥PD CD==PC= 222PD CD PC+=PD CD⊥AB CD D=AB CD⊂ABC PD⊥ABC11121332P ABC ABCV S PD-=⨯⨯=⨯⨯=A.11A2(1)()e xf x--=e uy=2(1)u x=--e uy= R2(1)u x=--(,1)-∞(1,)+∞()f x(,1)-∞(1,)+∞.()f x1x=222c f f⎛⎫⎛⎫==-⎪ ⎪⎪ ⎪⎝⎭⎝⎭21222<-<<2222f f f⎛⎫⎛⎫⎛⎫<-<⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭b c a>> A.12Ccos26y xπ⎛⎫=+⎪⎝⎭6π()cos2cos2sin2662f x x x x⎡ππ⎤π⎛⎫⎛⎫=++=+=-⎪⎢⎥⎝⎭⎝⎭⎣⎦.()f x1122y x=-.3. C.1312-6387S S ={}n a 1q ≠()()6311118711a q a q qq--⨯=⨯--()63)8(171q q -=-()3817q +=12q =-.142()f x ()()f x f x -=22(1)sin((1)sin 22x ax x x ax x ππ⎛⎫---+-+=-+++ ⎪⎝⎭2a =.()f x 22f f ππ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭22112222a a ππππ⎛⎫⎛⎫---=-+ ⎪ ⎪⎝⎭⎝⎭2a =.1515320x y +=Az .323,233,x y x y -=⎧⎨-+=⎩3,3,x y =⎧⎨=⎩max 332315z =⨯+⨯=.16[22,23]O O().r4AB =24r =r =R4AB =2222(2)444R =++R =O.17(1)1bc =(2)4(1)222cos 2b c a A bc+-=2222cos b c a A+-=22bc =1bc =.(2)cos cos 1cos cos a B b A ba Bb A c--=+sin cos sin cos sin 1sin cos sin cos sin A B B A BA B B A C--=+sin()sin 1sin()sin A B BA B C--=+.A B C +=π- sin()sin A B C∴+=sin()sin sin sin()A B B C A B ∴--==+sin cos cos sin sin sin cos cos sin A B A B B A B A B ∴--=+2cos sin sin A B B ∴-=.(0,)B ∈π sin 0B ∴≠1cos 2A ∴=-.(0,)A ∈π sin 2A ∴==.(1)1bc =ABC1133sin 12224S bc A ==⨯⨯=.18(1)(2)111A BB C C-1(1)1A C ⊥ABC BC ⊂ABC1A C BC ⊥90ACB ∠=︒BC AC⊥1A C AC C= 1AC AC ⊂11ACC ABC ⊥11ACC A BC ⊂11BB C C 11ACC A ⊥11BB C C .(2)1A 11A H CC ⊥1CCH(1)11ACC A ⊥11BB C C 11ACC A 111BB C C CC =1A H ⊂11ACC A 1A H ⊥11BB C C111A BB C C -1A H .1AB A B =BC BC=190A CB ACB ∠=∠=︒1ACB A CB1CA CA =.12AA =190ACA ∠=︒111AC CA ==.11111111122CA C SCA A C A H CC =⋅⋅=⋅⋅1111112CA A C A H CC ⋅===.111A BB C C- 1.11CA C 1A H11112A H CC ==111A BBC C- 1.19(1)19.8(2)()()95%(1)1(7.89.211.412.413.220⨯+++++15.516.518.018.819.219.820.221.622.823.6++++++++++23.925.128.232.336.5)19.8++++=.(2)()40202123.223.64023.223.623.42m +==.m <m≥614146()222()40(661414) 6.4 3.841()()()()20202020n ad bc K a b c d a c b d -⨯⨯-⨯===>++++⨯⨯⨯95%.20(1)1a =()f x 0,2π⎛⎫⎪⎝⎭(2)a(,0]-∞(1)()2cos (cos cos )sin cos cos (sin )2sin cos x x x x x x x x x''==-+⋅-=-24cos cos sin (2sin cos )()cos x x x x x f x a x ⋅-⋅-'=-22233cos 2sin 2cos cos cos x x x a a x x+-=-=-.1a =232332cos cos cos 2()1cos cos x x x f x x x-+-'=-=.0,2x π⎛⎫∈ ⎪⎝⎭cos (0,1)x ∈32cos cos 2x x +<()0f x '<1a =()f x 0,2π⎛⎫ ⎪⎝⎭.(2)2sin ()sin cos xF x ax x x=-+(0)0F =.242332cos cos cos 2()cos cos cos x x x F x a x a x x -+-'=-+=+.(0)0F '=0a =.0a >(0)0F a '=>2x +π⎛⎫→ ⎪⎝⎭()F x '→-∞00,2x π⎛⎫∈ ⎪⎝⎭()00F x '=()00,x x ∈()0F x '>()F x ()00,x x ∈()(0)0F x F >=.a ≤()233222sin 1cos sin sin ()sin cos cos cos x x x x f x x ax ax xx x -+=-=-≤-0,2x π⎛⎫∈ ⎪⎝⎭()sin 0f x x +<0,2π⎛⎫ ⎪⎝⎭32sin 0cos x x-<0,2π⎛⎫ ⎪⎝⎭.2cos x0,2π⎛⎫ ⎪⎝⎭03sin x0,2π⎛⎫ ⎪⎝⎭32sin 0cos x x-<0,2π⎛⎫ ⎪⎝⎭.a (,0]-∞.22sin 1()sin sin sin 1cos cos x f x x ax x ax x x x ⎛⎫+=-+=+- ⎪⎝⎭0,2x π⎛⎫∈ ⎪⎝⎭.0a ≤()sin 0f x x +<0a >0,2x π⎛⎫∈ ⎪⎝⎭sin x x<2211()sin sin 1sin sin 1cos cos f x x ax x a x x x x ⎛⎫⎛⎫+=+->+- ⎪ ⎪⎝⎭⎝⎭21sin 1cos x a x ⎛⎫=+- ⎪⎝⎭210,cos 2y x x ⎛π⎫⎛⎫=∈ ⎪ ⎪⎝⎭⎝⎭(1,)+∞11a +>0a00,2x π⎛⎫∈ ⎪⎝⎭2011cos a x <+00,2x π⎛⎫∈ ⎪⎝⎭()00sin 0f x x +>0a >()sin 0f x x +<0a >.a (,0]-∞.21(1)2p =(2)MFN 4(3-(1)()11,A x y ()22,B x y 21x y =-22y px=2420y py p -+=211680p p ∆=->12p >.124y y p+=122y y p=||4AB =2p =32p =-()2p =.(2)()33,M x y ()44,N x y (1)2:4C y x =(1,0)F .FM FN ⋅=90MFN ∠=︒()()()343434111||||111(*)222MFNS MF NF x x x x x x ==++=+++.MN MN x90MFN ∠=︒MF NF1-1.MF1:1MF y x =-21,4,y x y x =-⎧⎨=⎩2610x x -+=3433x x ⎧=-⎪⎨=-⎪⎩3433x x ⎧=+⎪⎨=+⎪⎩(*)343x x ==-MFN4(3-.MNMNy kx m =+.2,4,y kx m y x =+⎧⎨=⎩222(42)0k x km x m --+=2222(42)40km m k ∆=-->342234242,,km x x k m x x k -⎧+=⎪⎪⎨⎪=⎪⎩()()()22343434344my y kx m kx m k x x mk x x m k=++=+++=.()()()33443434341,1,10FM FN x y x y x x x x y y ⋅=-⋅-=-+++=22242410m km m k k k --++=2264m k km ++=.()2234342124122MFNm k km Sx x x x k +-+=+++=2222221m k km m m k k k ++⎛⎫⎛⎫==++ ⎪ ⎪⎝⎭⎝⎭.m t k=221MFNSt t =++2264m k km ++=224610m m k k k ⎛⎫⎛⎫++=> ⎪ ⎪⎝⎭⎝⎭2610t t ++>3t >-+3t <--221124(3MFNS t t =++>-=-.MFN 4(3-.22(1)34απ=(2)cos sin 30ρθρθ+-=(1)A B1t 2t .0x =22cos t α=-y =11sin t α=-2124||||4cos sin sin cos sin 2PA PB ααααα⋅=--===sin 21α=±[0,)α∈π4απ=34απ=.lxy34απ=.(2)(1)l2,212x y ⎧=-⎪⎪⎨⎪=+⎪⎩(t )30x y +-=cos x ρθ=sin y ρθ=l cos sin 30ρθρθ+-=.23(1),33a a ⎛⎫ ⎪⎝⎭(2)2a =(1)()f x x <2||x a a x--<2||x a x a-<+()2222422x ax a x ax a -+<++2231030x ax a -+<(3)(3)0x a x a --<0a >33ax a <<,33a a ⎛⎫⎪⎝⎭.(2)()y f x =x1x 2x 12x x >.()0f x =2||x a a -=22x a a-=22x a a-=-132a x =22a x =()y f x =x12d x x a=-=x(,)a a -211||222S d a a =⋅-==24a =2a =2a =-()2a =.(1)x a ≤()22f x a x a x =--<3x a >3a x >3ax a <≤(0a >)x a >()22f x x a a x=--<3x a<3a x a <<.,33a a ⎛⎫ ⎪⎝⎭.(2)2,()23,x a x af xx a x a-+≤⎧=⎨->⎩()f x()y f x=x ABC,02aA⎛⎫⎪⎝⎭3,02aB⎛⎫⎪⎝⎭(,)C a a-||AB a=ABC AB a211||222ABCS AB a a=⋅==2a=2a=-()2a=.。

2010年湖南高考数学文科试卷(带标准答案)

2010年湖南高考数学文科试卷(带标准答案)

2010年普通高等学校招生全国统一考试(湖南卷)数学(文科)一、选择题:本小题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求的. 1. 复数21i-等于 ( ) A .1+i B . 1-i C . -1+i D . -1-i 【测量目标】复数代数的四则运算. 【考查方式】复数分数形式的化简. 【参考答案】A【试题解析】22(1i)2(1i)1i 1i (1i)(1i)2++===+--+,故选A . 2. 下列命题中的假命题...是 ( ) A . ,lg 0x x ∃∈=R B . ,tan 1x x ∃∈=R C . 3,0x x ∀∈>R D . ,20x x ∀∈>R【测量目标】函数值域定义域的判断【考查方式】给出对数函数,三角函数,幂函数和指数函数求函数在某定义域下的值域. 【参考答案】C【试题解析】易知A 、B 、D 都对,而对于C ,当0x …时有30x …,不对,故选C . 3. 某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是 ( ) A .^10200y x =-+ B . ^10200y x =+ C . ^10200y x =-- D . ^10200y x =-【测量目标】线性回归方程.【考查方式】给出生活实例判断回归方程的正确性. 【参考答案】A【试题解析】由正、负相关概念可排除B 、D ,而对于C ,显然与实际生活不符!故选A .4. 极坐标cos ρθ=和参数方程12x t y t=--⎧⎨=+⎩(t 为参数)所表示的图形分别是 ( )A . 直线、直线B . 直线、圆C . 圆、圆D .圆、直线 【测量目标】极坐标和参数方程的图象【考查方式】给出两个函数判断函数的图象. 【参考答案】D【试题解析】由极坐标方程cos ρθ=可得222cos ,0x y x ρρθ=∴+-=表示的是圆;由参数方程1,2x t y t=--⎧⎨=+⎩推得直线10x y+-=,故选D.5.设抛物线28y x=上一点P到y轴的距离是4,则点P到该抛物线焦点的距离是( ) A. 4 B. 6 C.8 D.12【测量目标】抛物线的简单几何性质,抛物线的焦点和准线.【考查方式】给定抛物线和抛物线上点到y轴的距离求点到焦点的距离.【参考答案】B【试题解析】易知抛物线的准线方程是2x=-,由抛物线的定义可知点P到该抛物线焦点的距离就是点P到该抛物线准线的距离,即426d=+=,故选B.6.若非零向量a,b满足||||,(2)0=+⋅=a b a b b,则a与b的夹角为( )A.30o B.60o C.120o D.150o 【测量目标】向量夹角的计算【考查方式】已知两向量模相等且给出关于两向量的等式求两向量的夹角.【参考答案】C【试题解析】令1==a b,由()2020+=⇒+=a b b a b bg g,得12=-a b g,又112cos,||||112-<>===-⨯gga ba ba b,则其夹角为120o,故选C7.在△ABC中,角A,B,C所对的边长分别为a,b,c,若∠C=120°,c=2a,则( ) A.a>b B.a<bC.a=b D.a与b的大小关系不能确定【测量目标】利用余弦定理判断边的关系.【考查方式】给出三角形的一角和角所对应的边求另外两边的关系.【参考答案】A【试题解析】由余弦定理得2222222cos2c a b ab C a a b ab=+-⇒=++,则有22a b ab=+,而△ABC的边长a,b均大于零,因而有a b>,故选A.8.函数y=ax2+ bx与y=||logbax(ab≠0,| a |≠| b |)在同一直角坐标系中的图象可能是( )A BC D【测量目标】含未知数函数图象的判断.【考查方式】给出二次函数和对数函数判断在同一坐标系上的图片是否正确. 【参考答案】D【试题解析】由二次函数图象的对称轴为2bx a=-逐一观察得,对于A 、B 、D ,有对称轴2b x a =-1(0,)100||12b ba a∈⇒-<<⇒<<,对于C有对称轴2b x a =-1(1,)121||22b ba a ∈--⇒<<⇒<<;由数函数||log (0,||||)b ay x ab a b =≠≠的单调性,逐一观察得,对于A 、B 有||1b a >,对于C 、D 有||1b a <.在同一图形中||ba的范围应该是一致的只有D 符合.故选D .二、填空题:本大题共7小题,每小题5分,共35分,把答案填在答题卡中对应的题号后的横线上.9.已知集合A ={1,2,3},B ={2,m ,4},A ∩B ={2,3},则m = 【测量目标】集合的交集运算.【考查方式】用列举法表示两集合和交集求集合中的未知元素. 【参考答案】3【试题解析】由集合的交集概念易知3m =,故填3.10.已知一种材料的最佳加入量在100g 到200g 之间,若用0.618法安排试验,则第一次试点的加入量可以是 g 【测量目标】黄金分割点【考查方式】给出一区间求该区间上的黄金分割点 【参考答案】161.8或138.2【试题解析】本题考查了黄金分割点的有关知识.由0.618法求得第一次试点的加入量为1001000.618161.8+⨯=g 或2001000.618138.2-⨯=g .11.在区间[-1,2]上随即取一个数x ,则x ∈[0,1]的概率为 . 【测量目标】几何概率的计算【考查方式】给定一区间,求x 出现在一子区间的概率. 【参考答案】13【试题解析】由几何概型得长度比:101213P -==+. 12.如图是求实数x 的绝对值的算法程序框图,则判断框①中可填【测量目标】选择结构的程序框图.【考查方式】给定程序框图求判断框中应该填写的内容. 【参考答案】x >0?或0x …?【试题解析】由实数x 的绝对值的几何意义得①中可填: x>0 ? 或 x ≥0 ? 第12题图 13.如图中的三个直角三角形是一个体积为203cm 的几何体的三视图,则h = cm【测量目标】三棱锥的体积公式和三视图【考查方式】给出三棱锥的体积和三视图求三角形的高. 【参考答案】4【试题解析】原图为一个三棱锥,其底面是一个边长分别为5、6的直角三角形,高为h , 1120(56),432V h h ==⨯⨯⨯∴=Q g .14.若不同两点P ,Q 的坐标分别为(a ,b ),(3-b ,3-a ),则线段PQ 的垂直平分线l 的斜率为 ,圆()()23231x y -+-=关于直线对称的圆的方程为 . 【测量目标】直线的斜率和圆的方程确定. 【考查方式】给出线段的两点求线段垂直平分线的斜率,给出圆的方程求关于直线对称的圆的方程.【参考答案】-1,()2211x y +-=【试题解析】特取0a b ==,则(0,0),(3,3)1PQ P Q k ⇒=,其垂直平分线l 的斜率为-1; l 的方程为30x y +-=,已知圆心(2,3)关于l 对称的点为(0,1),可由以下变化得到:33(2,3)(2,0)(0,2)(0,1)y x=-↓↑→↔-→,故其对称圆的方程为()2211x y +-=.另解:31,13PQ l a b k k b a --⇒==∴=---;又,P Q 的中点坐标为33(,)22a b a b+--+,则l 的方程为33()3022a b a by x x y -++--=--⇒+-=,设点(2,3)关于l 对称的点为(,)m n ,解方程组可求得(0,1),故其对称圆的方程为()2211x y +-=.15.若规定E ={}1,210...a a a 的子集{}12...,nk k k aa a 为E 的第k 个子集,其中k =1211122+2n k k k ---++… ,则 (1){}1,3,a a 是E 的第__个子集;(2)E 的第211个子集是_______【测量目标】数学新定义,集合和子集.【考查方式】给出集合和子集的表示形式,求子集与集合的关系. 【参考答案】5,{}12578,,,,a a a a a 【试题解析】(1){}13,a a 是E 的第113122145k --=+=+=个子集;(2) 从023456721,22,28,216,232,264,2128=======且0122++L 72255+=的取值中,考虑255-211=44,观察532442223284=++=++,即从{}1210,,,E a a a =L 中选取元素{}12578,,,,a a a a a ,故E 的第211个子集是{}12578,,,,a a a a a ,检验得0146722222121664128211++++=++++=.故填{}12578,,,,a a a a a .三、解答题:本大题共6小题,共75分,解答应写出文字说明、说明过程或演算步骤. 16. (本小题满分12分) 已知函数2()sin 22sin f x x x =- (I )求函数()f x 的最小正周期.(II) 求函数()f x 的最大值及()f x 取最大值时x 的集合.【测量目标】三角函数的周期性和二倍角.【考查方式】给出三角函数的表达式,求函数的最小正周期和函数最大值和最小值时x 的集合.【试题解析】(Ⅰ)因为π()sin 2(1cos 2))1,4f x x x x =--=+-所以函数()f x 的最小正周期为2ππ2T ==.(步骤1) (II )由(Ⅰ)知,当ππ22π,42x k +=+即ππ()8x k k =+∈Z 时,()f x 1.(步骤2)因此()f x 取最大值时x 的集合为π|π,8x x k k ⎧⎫=+∈⎨⎬⎩⎭Z .(步骤3)17. (本小题满分12分)为了对某课题进行研究,用分层抽样方法从三所高校A ,B ,C 的相关人员中,抽取若干人组成研究小组、有关数据见下表(单位:人)高校 相关人数 抽取人数 A 18 x B 36 2 C54y(Ⅰ)求x ,y ;( II )若从高校B 、C 抽取的人中选2人作专题发言,求这二人都来自高校C 的概率. 【测量目标】分层抽样和事件发生的概率. 【考查方式】给出三层的相关人数和某一层中的抽取人数求另外两层应该抽取的人数,在两层中抽取两样本,求样本来自一层的概率. 【试题解析】(Ⅰ)由题意可得,2183654x y==,所以1,3x y ==.(步骤1) (II )记从高校B 抽取的2人为12,b b ,记从高校C 抽取的3人为123,,c c c , 则从高校,B C 抽取的5人中选2人作专题发言的基本事件有1211121321(,),(,),(,),(,),(,),b b b c b c b c b c 2223121323(,),(,),(,),(,),(,)b c b c c c c c c c 共10种.(步骤2)设选中的2人都来自高校C 的事件为X ,则X 包含的基本事件有12(,),c c 13(,),c c 23(,)c c 共3种.因此3()10P X =. 故选中的2人都来自高校C 的概率为310.(步骤3) 18.(本小题满分12分)如图所示,在长方体1111ABCD A B C D -中,AB =AD =1,AA 1=2,M 是棱CC 1的中点 (Ⅰ)求异面直线A 1M 和C 1D 1所成的角的正切值; (Ⅱ)证明:平面ABM ⊥平面11A B M【测量目标】两条直线的位置关系和面面垂直的判定. 【考查方式】给出长方体的底边和侧棱的长度和棱中点求长方体中线与线的夹角正切值和线面垂直推导面面垂直.【试题解析】(Ⅰ)如图,因为1111//C D B A ,所以11MA B ∠为异面直线1A M 与11C D 所成的角.因为11A B ⊥平面11BCC B ,所以1190A B M ∠=o . (步骤1)221111111,2A B B M B C MC ==+= ,故 11111tan 2.B MM A B A B ∠==即异面直线1A M 和11C D 所成的角的正切值为2. (步骤 2) 第18题图 (II )由11A B ⊥平面11BCC B ,BM ⊂平面11BCC B ,得11A B BM ⊥.① (步骤3) 由(Ⅰ)知,12B M =,又222BM BC CM =+=,12B B =,所以22211B M BM B B +=,从而1BM B M ⊥ ②. (步骤4)又1111A B B M B =I ,再由①,②得BM ⊥平面11A B M .而BM ⊂平面ABM ,因此平面ABM ⊥平面11A B M . (步骤5)19.(本小题满分13分)为了考察冰川的融化状况,一支科考队在某冰川山上相距8km 的A 、B 两点各建一个考察基地,视冰川面为平面形,以过A 、B 两点的直线为x 轴,线段AB 的垂直平分线为y 轴建立平面直角坐标系(图4).考察范围到A 、B 两点的距离之和不超过10km 的区域.( 1 )求考察区域边界曲线的方程:( 2 )如图所示,设线段12P P 是冰川的部分边界线(不考虑其他边界),当冰川融化时,边界线沿与其垂直的方向朝考察区域平行移动,第一年移动0.2km ,以后每年移动的距离为前一年的2倍.问:经过多长时间,点A 恰好在冰川边界线上?第19题图 【测量目标】椭圆的定义和点到直线的距离公式,等比数列前n 项和.【考查方式】给出椭圆的焦点和长轴长求椭圆方程和给出直线方程求直线到椭圆的距离. 【试题解析】(1)设边界曲线上点P的坐标为(,)x y ,则由||||10PA PB +=知,点P在以,A B 为焦点,长轴长为210a =的椭圆上.此时短半轴长22543b =-=.所以考察区域边界曲线(如图)的方程为221259x y +=.(步骤1) (2)易知过点12,P P 的直线方程为43470x y -+=.因此点A到直线12P P 的距离为 223154(3)d ==+-.(步骤2)设经过n 年,点A 恰好在冰川边界线上,则利用等比数列求和公式可得0.2(21)21n --315=.解得5n =,即经过5年点A 恰好在冰川边界线上.(步骤3) 20.(本小题满分13分)给出下面的数表序列:其中表n (n =1,2,3 L )有n 行,第1行的n 个数是1,3,5,L 2n -1,从第2行起,每行中的每个数都等于它肩上的两数之和.(I )写出表4,验证表4各行中数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n (n ≥3)(不要求证明);(II )每个数列中最后一行都只有一个数,它们构成数列1,4,12L ,记此数列为{}n b 求和:32412231n n n bb b b bb b b b ++++L ()n *∈N 【测量目标】归纳推理和等比数列证明和求和.【考查方式】给出一组数表归纳推理求表4,每个表去一个数组成数列,求数列的和, 【试题解析】(Ⅰ)表4为 1 3 5 7 4 8 12 12 2032 (步骤1)它的第1,2,3,4行中的数的平均数分别为4,8,16,32,它们构成首项为4,公比为2的等比数列.将结这一论推广到表n (n ≥3),即表n 各行中的数的平均数按从上到下的顺序构成首项为n ,公比为2的等比数列. (步骤2)简证如下(对考生不作要求)首先,表(3)n n …的第1行1,3,5,,21n -L 是等差数列,其平均数为135(21)n n n++++-=L ; (步骤3)其次,若表n 的第(11)k kn -剟行121,,,n k a a a -+L 是等差数列,则它的第1k +行12231,,,n k n k a a a a a a --++++L 也是等差数列. (步骤4)由等差数列得性质知,表n 的第k 行中的数的平均数与第1k +行中的数的平均数分别是112n k a a -++,121112n k n k n k a a a a a a --+-++++=+.(步骤5)由此可知,表(3)n n …各行中的数都成等差数列,且各行中的数的平均数按从上到下的顺序构成首项为n ,公比为2的等比数列. (步骤6)(Ⅱ)表n 的第1行是1,3,5,,21n -L ,其平均数是135(21)n n n++++-=L .由(Ⅰ)知,它的各行中的数的平均数按从上到下的顺序构成首项为n ,公比为2的等比数列(从而它的第k 行中的数的平均数是12k n -⋅),于是,表n 中最后一行的唯一一个数为12n n b n -=⋅.因此121221(2)222(1)2(1)2(1)2(1)2k k k k k k k k b k k k kb b k k k k k k ++---++++-===⋅⋅++⋅+⋅ 3211.(1,2,3,,)2(1)2k k k n k k --=-=⋅+⋅L故3242110122311111()()12222232n n n b b b b b b b b b +---++++=-+-+⨯⨯⨯⨯L L 3222211111[]4.2(1)212(1)2(1)2n n n n n n n n -----+-=-=-⨯+⨯⨯+⨯+⨯21.(本小题满分13分) 已知函数()(1)ln 15,af x x a x a x=++-+其中a <0,且a ≠-1. (Ⅰ)讨论函数()f x 的单调性;(Ⅱ)设函数322(23646)e ,1e (),1(){x x ax ax a a x f x x g x -++-->=g …(e 是自然数的底数).是否存在a ,使()g x 在[a ,-a ]上为减函数?若存在,求a 的取值范围;若不存在,请说明理由. 【测量目标】利用导数判断函数的单调区间.【考查方式】给出函数,讨论函数的单调性,分段函数给出函数的单调性求解函数表达式中未知数的范围.【试题解析】(Ⅰ)()f x 的定义域为(0,)+∞.221()(1)()1a a x a x f x x x x -+-'=-++=. (1)若10a -<<,则当0x a <<-时,()0f x '>;当1a x -<<时,()0f x '<;当1x >时,()0f x '>.故()f x 分别在(0,)a -,(1,)+∞上单调递增,在(,1)a -上单调递减. (步骤1)(2)若1a <-,仿(1)可得()f x 分别在(0,1),(,)a -+∞上单调递增,在(1,)a -上单调递减. (步骤2)(Ⅱ)存在a ,使()g x 在[,]a a -上为减函数.事实上,设322()(23646)e (),x h x x ax ax a a x =-++--∈R 3()[23(2h x x a '=-+-2)12x ax+24]e .x a -再设322()23(2)124()m x x a x ax a x R =-+-+-∈,则当()g x 在[,]a a -上单调递减时,()h x 必在[,0]a 上单调递减,所以()0h a '….(步骤3)由于e 0x>,因此()0m a ….而2()(2)m a a a =+,所以2a -….此时,显然有()g x 在[,]a a -上为减函数,当且仅当()f x 在[1,]a -上为减函数,()h x 在[,1]a 上为减函数,且(1)e (1)h f g ….(步骤4) 由(Ⅰ)知,当2a -…时,()f x 在[1,]a -上为减函数①又(1)e (1)h f g (21)413303.4a a a ⇔++⇔--剟? ②不难知道,[,1]x a ∀∈,()0[,1],()0h x x a m x '⇔∀∈剟.(步骤5) 因2()66(2)126(2)()m x x a x a x x a '=-+-+=-+-,令()0m x '=,则x a =或2x =-.而2a -…,于是(1)当2a <-时,若2a x <<-,则()0m x '>;若21x -<<,则()0m x '<.因而()m x 在(,2)a -上单调递增,在(2,1)-上单调递减.(步骤6)(2)当2a =-时, ()0m x '…,()m x 在(2,1)-上单调递减.综合(1)、(2)知,当2a -…时,()m x 在[,1]a 上的最大值为2(2)4128m a a -=---.[,1],()0(2)0x a m x m ∀∈⇔-⇔-剟24a 12a -80-…2a ⇔-….(步骤7)③又对[,1],()0x a m x ∈=只有当2a =-时在2x =-时取得,亦即()0h a '=只有当2a =-时在2x =-时取得.因此,当2a -…时,()h x 在[,1]a 上为减函数.(步骤8) 从而由①,②,③知,32a--剟.综上所述,存在a ,使()g x 在[,]a a -上为减函^.--.(步骤9)数,且a的取值范围为[3,2]。

普通高等学校招生全国统一考试湖南卷文科数学试题及解答

普通高等学校招生全国统一考试湖南卷文科数学试题及解答

2019年一般高等学校招生湖南卷文史类数学试题一、选择题:本大题共12小题,每题5分,共60分,在每题给出的四个选项中,只有一项切合要求的1.函数ylg(11)的定义域为()xA.x|x0}B.x|x1}C.x|0x1}D.x|x0或1} 2.设直线ax+by+c=0的倾斜角为,且sin+cos=0,则a,b知足()A.ab1B.ab1C.ab0D.ab0 3.设f1(x)是函数f(x)=x的反函数,则以下不等式中恒建立的是()A.f1(x)2x1B.f1(x)2x1C.f1(x)2x1D.f1(x)2x14.假如双曲线x2y21上一点P到右焦点的距离为13,那么点P到右准线的距离是()131213B.13C.55A.D.5135.把正方形ABC D 沿对角线AC折起,当A、B C、D四点为极点的三棱锥体积最大时,直线BD 与平面ABC所成的角的大小为()A.90°B.60°C.45°D.30°6.某企业甲、乙、丙、丁四个地域分别有150个、120个、180个、150个销售点.企业为了检查产品的状况,需从这600个销售点中抽取一个容量为100的样本,记这项检查为①;在丙地域中有20个特大型销售点,要从中抽取7个检查其收入和售后服务等状况,记这项检查为②.则达成这两项检查宜采纳的抽样方法挨次为()A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法7.若f(x)=-x2+2ax与g(x)a在区间[1,2]上都是减函数,则a的值范围是()x1A.(1,0)(0,1)B.(1,0)(0,1]C.(0,1)D.(0,1]8.已知向量a(cos,sin),向量b(3,1)则|2ab|的最大值,最小值分别是()A.42,0B.4,42C.16,0D.4,09.若函数2/()f(x)=x+bx+c的图象的极点在第四象限,则函数f(x)的图象是y y y yo x o x o x o x AB C D10.从正方体的八个极点中任取三个点作为三角形,直角三角形的个数为()A.56B.52C.48D.4011.农民收入由薪资性收入和其余收入两部分组成.2003年某地域农民人均收入为3150元(其中薪资性收入为1800元,其余收入为1350元),估计该地域自2019年起的5年内,农民的薪资性收入将以每年6%的年增添率增添,其余收入每年增添160元依据以上数据,2008年该地域农民人均收入介于()A.4200元~4400元B.4400元~4600元C.4600元~4800元D.4800元~5000元12.设会合U={(x,y)|x∈R,y∈R},A={(x,y)|2x-y+m>0},B={(x,y)|x+y-n≤0},那么点P(2,3)A(C U B)的充要条件是()A.m1,n5B.m1,n5C.m1,n5D.m1,n5二、填空题:本大题共4小题,每题4分,共16分,把答案填在题中横线上.13.过点P(-1,2)且与曲线y=3x2-4x+2在点M(1,1)处的切线平行的直线方程是__________.14.(x21)9的睁开式中的常数项为___________(用数字作答) x,F是椭圆C:x2x21的焦点,在C上知足PF⊥PF的点P的个数为__________.15.F12841216.若直线y=2a与函数y=|a x-1|(a>0,且a≠1)的图象有两个公共点,则a的取值范围是_______.三、解答题:本大题共6 小题,共 74分.解答应写出必需的文字说明、证明过程或运算步骤.17.(本小题满分 12分)1已知 tan() 2, 求的值.42sincoscos218.(本小题满分12分)如图,在底面 是菱形的四棱锥 P —ABC D中,∠ABC=600,PA=AC=a,PB=PD=2a ,点E 是PD 的中点.I )证明PA ⊥平面ABCD ,PB ∥平面EAC ;(II )求以AC 为棱,EAC 与DAC 为面的二面角 的正切值.PE ADBC19.(本小题满分 12分) 甲、乙、丙三台机床各自独立地加工同一种部件, 已知甲机床加工的部件是一等品而乙机床加工的部件不是一等品的概率为1 ,乙机床加工的部件是一等品而丙机床加工的部件不142是一等品的概率为,甲、丙两台机床加工的部件都是一等品的概率为.12 9(Ⅰ)分别求甲、乙、丙三台机床各自加工部件是一等品的概率;(Ⅱ)从甲、乙、丙加工的部件中各取一个查验,求起码有一个一等品的概率.20.(本小题满分12分)已知数列{a n}是首项为a且公比q不等于1的等比数列,S n是其前n项的和,a1,2a7,3a4成等差数列. I)证明12S3,S6,S12-S6成等比数列;II)乞降T n=a1+2a4+3a7++na3n-2.21.(本小题满分12分)如图,已知曲线33C1:y=x(x≥0)与曲线C2:y=-2x+3x(x≥0)交于O,A,直线x=t(0<t<1)与曲线C1,C2分别交于B,D.(Ⅰ)写出四边形ABOD的面积S与t的函数关系式S=f(t);(Ⅱ)议论f(t)的单一性,并求f(t)的最大值.yC1DAC2BxO22.(本小题满分14分)t如图,过抛物线x2=4y的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A,B两点,点Q是点P对于原点的对称点(I)设点P分有向线段AB所成的比为,证明:QP(QAQB)(II)设直线AB的方程是x-2y+12=0,过A,B两点的圆C与抛物线在点A处有共同的切线,求圆C的方程.2019年一般高等学校招生湖南卷文史类类数学试题参照答案113.2x -y+4=0 14.8415.216.(0, )17.(本小题满分 12分)2解:由tan(4)1 tan 2,得tan1.1 tan3(1)21sin 2221 12于是costan3coscos22sin coscos 22tan11.2sin1 32318.(Ⅰ)证法一 由于底面ABCD 是菱形,∠ABC=60°,P因此AB=AD=AC= a , 在△PAB 中,由PA 2+AB 2=2a 2=PB 2 知PA ⊥AB. 同理,PA ⊥AD ,因此PA ⊥平面ABCD.由于PB PD DC CB 2ED DC DAE(ED DA) (ED DC) EA EC.AD因此 PB 、EA 、EC 共面.又PB 平面EAC ,因此PB//平面EAC. 证法二 同证法一得 PA ⊥平面ABCD. 连接BD ,设BD AC=O ,则O 为BD 的中点. 连接OE ,由于E 是PD 的中点,因此 PB//OE. 又PB 平面EAC ,OE 平面EAC ,故PB//平面EAC. (Ⅱ)解 作EG//PA 交AD 于G ,由PA ⊥平面ABCD. 知EG ⊥平面ABCD.作GH ⊥AC 于H ,连接EH ,则EH ⊥AC ,∠EHG 即为二面角平面角.BP的CE又E 是PD 的中点,进而G 是AD 的中点,AEG11 a,GHAGsin603BHa,AGa.224因此tanEG 2 3.GH319.(本小题满分 12分)解:(Ⅰ)设A 、B 、C 分别为甲、乙、丙三台机床各自加工的部件是一等品的事件P(A B)1 ,P(A) (1 P(B))1 4 ,①4由题设条件有P(B C)1, 即P(B)(1 P(C))1, ②1212P(AC)2. P(A)P(C)2. ③99由①、③得P(B) 19P(C) 代入②得27[P(C)]2-51P(C)+22=0.G DC.8解得P(C) 2 11(舍去).3 或9将P(C)2 分别代入③、②可得P(A)1,P(B)1.334即甲、乙、丙三台机床各加工的部件是一等品的概率分别是1 , 1 , 2.3 4 3(Ⅱ)记D 为从甲、乙、丙加工的部件中各取一个查验,起码有一个一等品的事件,则P(D)1P(D)1(1P(A))(1P(B))(1 P(C))1 2 3 1 5.34 3 6故从甲、乙、丙加工的部件中各取一个查验,起码有一个一等品的概率为5.620.(Ⅰ)证明由a 1,2a 7,3a 4成等差数列, 得4a 7 a 1 3a 4,即4aq 6 a 3aq 3.变形得(4q 31)(q 3 1)0,因此q 31 或q 3 1(舍去).4a 1(1 q 6)由S 61 q1q 3 1 .12S 312a 1(1 q 3)12161 qa 1(1 q 12)S12S 6S121 1q1 1 q 6 1q61S 6S 6.a 1(1q 6)161 q得S 6S12S6.因此12S 3 ,S ,S-S 成等比数列.12S 3S 66126(Ⅱ)解:T na 12 a 4 3na 3n2a23 36 na q3(n1).a 7aqaq即T na2(1)a3(1)2an(1)n1a.① ①×(1)得:4441 112 a3(1 3an(1 n1an(1n a44T n4a2(4) 4)4)4)a[1 ( 1)n ]1n 4414n(a(n a.1)a5n)()1 ( )4544因此T n16a(164n)(1)na.25 255421.(本小题满分12分)解:(Ⅰ)由y x 3得交点O 、A 的坐标分别是(0,0),(1,1).2x 3y3x,f(t)SABOSOBD1|BD||10|1|BD|1(3t 33t),3(t 3222 即f(t)t).(0 t 1).2(Ⅱ)f(t)9t 2 3.令f(t)解得t3.2 23当0t3时,f(t)0,进而f(t)在区间(0, 3)上是增函数;33当3 t 1时,f(t)0,进而f(t)在区间(3,1)上是减函数.33因此当t3 时,f(t)有最大值为f(3) 3.333。

数学文●全国甲卷丨2024年普通高等学校招生全国统一考试数学文试卷及答案

数学文●全国甲卷丨2024年普通高等学校招生全国统一考试数学文试卷及答案

绝密★启用前2024年普通高等学校招生全国统一考试全国甲卷文科数学使用范围:陕西、宁夏、青海、内蒙古、四川注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,只将答题卡交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B = ()A.{}1,2,3,4 B.{}1,2,3 C.{}3,4 D.{}1,2,92.设z =,则z z ⋅=(A.-iB.1C.-1D.23.若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为()A.5B.12C.2- D.72-4.等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=()A.2- B.73 C.1 D.295.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是()A.14B.13C.12D.236.已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为()A.4B.3C.2D.7.曲线()631f x x x =+-在()0,1-处的切线与坐标轴围成的面积为()A.16B.2C.12D.328.函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的大致图像为()A.B.C. D.9.已知cos cos sin ααα=-πtan 4α⎛⎫+= ⎪⎝⎭()A.1+B.1- C.2D.1原10题略10.设αβ、是两个平面,m n 、是两条直线,且m αβ= .下列四个命题:①若//m n ,则//n α或//n β②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n⊥其中所有真命题的编号是()A .①③B.②④C.①②③D.①③④11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=()A.32B.C.72D.2二、填空题:本题共4小题,每小题5分,共20分.原13题略12.函数()sin f x x x =在[]0,π上的最大值是______.13.已知1a >,8115log log 42a a -=-,则=a ______.14.曲线33y x x =-与()21y x a =--+在()0,∞+上有两个不同的交点,则a 的取值范围为______.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.15.已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式;(2)求数列{}n S 的通项公式.16.如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD的中点.(1)证明://BM 平面CDE ;(2)求点M 到ABF 的距离.17.已知函数()()1ln 1f x a x x =--+.(1)求()f x 的单调区间;(2)若2a ≤时,证明:当1x >时,()1ex f x -<恒成立.18.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.(二)选考题:共10分.请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.19.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x ty t a =⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.20.实数,a b 满足3a b +≥.(1)证明:2222a b a b +>+;(2)证明:22226a b b a -+-≥.绝密★启用前2024年普通高等学校招生全国统一考试全国甲卷文科数学使用范围:陕西、宁夏、青海、内蒙古、四川注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,只将答题卡交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B = ()A.{}1,2,3,4 B.{}1,2,3 C.{}3,4 D.{}1,2,9【答案】A 【解析】【分析】根据集合B 的定义先算出具体含有的元素,然后根据交集的定义计算.【详解】依题意得,对于集合B 中的元素x ,满足11,2,3,4,5,9x +=,则x 可能的取值为0,1,2,3,4,8,即{0,1,2,3,4,8}B =,于是{1,2,3,4}A B ⋂=.故选:A 2.设z =,则z z ⋅=()A.-iB.1C.-1D.2【答案】D 【解析】【分析】先根据共轭复数的定义写出z ,然后根据复数的乘法计算.【详解】依题意得,z=,故22i2zz=-=.故选:D3.若实数,x y满足约束条件43302202690x yx yx y--≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y=-的最小值为()A.5B.12C.2-D.7 2-【答案】D【解析】【分析】画出可行域后,利用z的几何意义计算即可得.【详解】实数,x y满足43302202690x yx yx y--≥⎧⎪--≤⎨⎪+-≤⎩,作出可行域如图:由5z x y=-可得1155y x z=-,即z的几何意义为1155y x z=-的截距的15-,则该直线截距取最大值时,z有最小值,此时直线1155y x z=-过点A,联立43302690x yx y--=⎧⎨+-=⎩,解得321xy⎧=⎪⎨⎪=⎩,即3,12A⎛⎫⎪⎝⎭,则min375122z=-⨯=-.故选:D.4.等差数列{}n a的前n项和为n S,若91S=,37a a+=()A.2-B.73 C.1 D.29【答案】D【解析】【分析】可以根据等差数列的基本量,即将题目条件全转化成1a 和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【详解】方法一:利用等差数列的基本量由91S =,根据等差数列的求和公式,911989193612S a d a d ⨯=+=⇔+=,又371111222628(936)99a a a d a d a d a d +=+++=+=+=.故选:D方法二:利用等差数列的性质根据等差数列的性质,1937a a a a +=+,由91S =,根据等差数列的求和公式,193799()9()122a a a a S ++===,故3729a a +=.故选:D方法三:特殊值法不妨取等差数列公差0d =,则9111199S a a ==⇒=,则371229a a a +==.故选:D5.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是()A.14B.13C.12D.23【答案】B 【解析】【分析】分类讨论甲乙的位置,得到符合条件的情况,然后根据古典概型计算公式进行求解.【详解】当甲排在排尾,乙排第一位,丙有2种排法,丁就1种,共2种;当甲排在排尾,乙排第二位或第三位,丙有1种排法,丁就1种,共2种;于是甲排在排尾共4种方法,同理乙排在排尾共4种方法,于是共8种排法符合题意;基本事件总数显然是44A 24=,根据古典概型的计算公式,丙不在排头,甲或乙在排尾的概率为81243=.故选:B6.已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为()A.4B.3C.2D.【答案】C【解析】【分析】由焦点坐标可得焦距2c ,结合双曲线定义计算可得2a ,即可得离心率.【详解】设()10,4F -、()20,4F 、()6,4-P ,则1228F F c ==,110PF ==,26PF ==,则1221064a PF PF =-=-=,则28224c e a ===.故选:C.7.曲线()631f x x x =+-在()0,1-处的切线与坐标轴围成的面积为()A.16B.32C.12D.【答案】A 【解析】【分析】先求出切线方程,再求出切线的截距,从而可求面积.【详解】()563f x x ='+,所以()03f '=,故切线方程为3(0)131y x x =--=-,故切线的横截距为13,纵截距为1-,故切线与坐标轴围成的面积为1111236⨯⨯=故选:A.8.函数()()2e esin xxf x x -=-+-在区间[ 2.8,2.8]-的大致图像为()A.B.C. D.【答案】B 【解析】【分析】利用函数的奇偶性可排除A 、C ,代入1x =可得()10f >,可排除D.【详解】()()()()()22ee sin e e sin xx x x f x x x x x f x ---=-+--=-+-=,又函数定义域为[]2.8,2.8-,故该函数为偶函数,可排除A 、C ,又()11πe 11111e sin11e sin 10e e 622e 42e f ⎛⎫⎛⎫=-+->-+-=-->-> ⎪ ⎪⎝⎭⎝⎭,故可排除D.故选:B.9.已知cos cos sin ααα=-πtan 4α⎛⎫+= ⎪⎝⎭()A.1+B.1- C.32D.1【答案】B 【解析】【分析】先将cos cos sin αα-α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos cos sin ααα=-,所以11tan =-α,tan 13⇒α=-,所以tan 1tan 11tan 4α+π⎛⎫==α+ ⎪-α⎝⎭,故选:B .原10题略10.设αβ、是两个平面,m n 、是两条直线,且m αβ= .下列四个命题:①若//m n ,则//n α或//n β②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n⊥其中所有真命题的编号是()A.①③B.②④C.①②③D.①③④【答案】A 【解析】【分析】根据线面平行的判定定理即可判断①;举反例即可判断②④;根据线面平行的性质即可判断③.【详解】对①,当n ⊂α,因为//m n ,m β⊂,则//n β,当n β⊂,因为//m n ,m α⊂,则//n α,当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,故①正确;对②,若m n ⊥,则n 与,αβ不一定垂直,故②错误;对③,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t ,因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s ,同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β,因为s ⊂平面α,m αβ= ,则//s m ,又因为//n s ,则//m n ,故③正确;对④,若,m n αβ⋂=与α和β所成的角相等,如果//,//αβn n ,则//m n ,故④错误;综上只有①③正确,故选:A.11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=()A.32B.C.72D.2【答案】C 【解析】【分析】利用正弦定理得1sin sin 3A C =,再利用余弦定理有22134a c ac +=,再利用正弦定理得到22sin sin A C +的值,最后代入计算即可.【详解】因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A CB ==.由余弦定理可得:22294b ac ac ac =+-=,即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin 2A C +=.故选:C.二、填空题:本题共4小题,每小题5分,共20分.原13题略12.函数()sin f x x x =在[]0,π上的最大值是______.【答案】2【解析】【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可.【详解】()πsin 2sin 3f x x x x ⎛⎫==- ⎪⎝⎭,当[]0,πx ∈时,ππ2π,333x ⎡⎤-∈-⎢⎥⎣⎦,当ππ32x -=时,即5π6x =时,()max 2f x =.故答案为:213.已知1a >,8115log log 42a a -=-,则=a ______.【答案】64【解析】【分析】将8log ,log 4a a 利用换底公式转化成2log a 来表示即可求解.【详解】由题28211315log log log 4log 22a a a a -=-=-,整理得()2225log 60log a a --=,2log 1a ⇒=-或2log 6a =,又1a >,所以622log 6log 2a ==,故6264a ==故答案为:64.14.曲线33y x x =-与()21y x a =--+在()0,∞+上有两个不同的交点,则a 的取值范围为______.【答案】()2,1-【解析】【分析】将函数转化为方程,令()2331x x x a -=--+,分离参数a ,构造新函数()3251,g x x x x =+-+结合导数求得()g x 单调区间,画出大致图形数形结合即可求解.【详解】令()2331x x x a -=--+,即3251a x x x =+-+,令()()32510,g x x x x x =+-+>则()()()2325351g x x x x x =+-=+-',令()()00g x x '=>得1x =,当()0,1x ∈时,()0g x '<,()g x 单调递减,当()1,x ∞∈+时,()0g x '>,()g x 单调递增,()()01,12g g ==-,因为曲线33y x x =-与()21y x a =--+在()0,∞+上有两个不同的交点,所以等价于y a =与()g x 有两个交点,所以()2,1a ∈-.故答案为:()2,1-三、解答题:共7017题第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.15.已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式;(2)求数列{}n S 的通项公式.【答案】(1)153n n a -⎛⎫= ⎪⎝⎭(2)353232n ⎛⎫- ⎪⎝⎭【解析】【分析】(1)利用退位法可求公比,再求出首项后可求通项;(2)利用等比数列的求和公式可求n S .【小问1详解】因为1233n n S a +=-,故1233n n S a -=-,所以()12332n n n a a a n +=-≥即153n n a a +=故等比数列的公比为53q =,故1211523333533a a a a =-=⨯-=-,故11a =,故153n n a -⎛⎫= ⎪⎝⎭.【小问2详解】由等比数列求和公式得5113353523213n n n S ⎡⎤⎛⎫⨯-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==- ⎪⎝⎭-.16.如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD的中点.(1)证明://BM 平面CDE ;(2)求点M 到ABF 的距离.【答案】(1)证明见详解;(2)31313【解析】【分析】(1)结合已知易证四边形BCDM 为平行四边形,可证//BM CD ,进而得证;(2)作FO AD ⊥,连接OB ,易证,,OB OD OF 三垂直,结合等体积法M ABF F ABM V V --=即可求解.【小问1详解】因为//,2,4,BC AD BC AD M ==为AD 的中点,所以//,BC MD BC MD =,四边形BCDM 为平行四边形,所以//BM CD ,又因为BM ⊄平面CDE ,CD ⊂平面CDE ,所以//BM 平面CDE ;【小问2详解】如图所示,作BO AD ⊥交AD 于O ,连接OF ,因为四边形ABCD 为等腰梯形,//,4,BC AD AD =2AB BC ==,所以2CD =,结合(1)BCDM 为平行四边形,可得2BM CD ==,又2AM =,所以ABM 为等边三角形,O 为AM 中点,所以OB =,又因为四边形ADEF 为等腰梯形,M 为AD 中点,所以,//EF MD EF MD =,四边形EFMD 为平行四边形,FM ED AF ==,所以AFM △为等腰三角形,ABM与AFM △底边上中点O 重合,OF AM ⊥,3OF ==,因为222OB OF BF +=,所以OB OF ⊥,所以,,OB OD OF 互相垂直,由等体积法可得M ABF F ABM V V --=,211113323323242F ABM ABM V S FO -=⋅⋅=⋅⋅⋅⋅=△,2222222cos2FA AB FB FAB FAB FA AB +-+-∠==∠=⋅1139sin 2222FAB S FA AB FAB =⋅⋅∠=⋅⋅△,设点M 到FAB 的距离为d ,则113933322M FAB F ABM FAB V V S d d --==⋅⋅=⋅⋅=△,解得31313d =,即点M 到ABF 的距离为31313.17.已知函数()()1ln 1f x a x x =--+.(1)求()f x 的单调区间;(2)若2a ≤时,证明:当1x >时,()1e x f x -<恒成立.【答案】(1)见解析(2)见解析【解析】【分析】(1)求导,含参分类讨论得出导函数的符号,从而得出原函数的单调性;(2)先根据题设条件将问题可转化成证明当1x >时,1e 21ln 0x x x --++>即可.【小问1详解】()f x 定义域为(0,)+∞,11()ax f x a x x '-=-=当0a ≤时,1()0ax f x x -'=<,故()f x 在(0,)+∞上单调递减;当0a >时,1,x a ∞⎛⎫∈+ ⎪⎝⎭时,()0f x '>,()f x 单调递增,当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 单调递减.综上所述,当0a ≤时,()f x 在(0,)+∞上单调递减;0a >时,()f x 在1,a ∞⎛⎫+ ⎪⎝⎭上单调递增,在10,a ⎛⎫ ⎪⎝⎭上单调递减.【小问2详解】2a ≤,且1x >时,111e ()e (1)ln 1e 21ln x x x f x a x x x x ----=--+-≥-++,令1()e 21ln (1)x g x x x x -=-++>,下证()0g x >即可.11()e 2x g x x -'=-+,再令()()h x g x '=,则121()e x h x x-'=-,显然()h x '在(1,)+∞上递增,则0()(1)e 10h x h ''>=-=,即()()g x h x ='在(1,)+∞上递增,故0()(1)e 210g x g ''>=-+=,即()g x 在(1,)+∞上单调递增,故0()(1)e 21ln10g x g >=-++=,问题得证18.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.【答案】(1)22143x y +=(2)证明见解析【解析】【分析】(1)设(),0F c ,根据M 的坐标及MF ⊥x 轴可求基本量,故可求椭圆方程.(2)设:(4)AB y k x =-,()11,A x y ,()22,B x y ,联立直线方程和椭圆方程,用,A B 的坐标表示1Q y y -,结合韦达定理化简前者可得10Q y y -=,故可证AQ y ⊥轴.【小问1详解】设(),0F c ,由题设有1c =且232b a =,故2132a a -=,故2a =,故b =,故椭圆方程为22143x y +=.【小问2详解】直线AB 的斜率必定存在,设:(4)AB y k x =-,()11,A x y ,()22,B x y,由223412(4)x y y k x ⎧+=⎨=-⎩可得()2222343264120k x k x k +-+-=,故()()422Δ102443464120k k k =-+->,故1122k -<<,又22121222326412,3434k k x x x x k k -+==++,而5,02N ⎛⎫ ⎪⎝⎭,故直线225:522y BN y x x ⎛⎫=- ⎪⎝⎭-,故22223325252Q y y y x x --==--,所以()1222112225332525Q y x y y y y y x x ⨯-+-=+=--()()()12224253425k x x k x x -⨯-+-=-()222212122264123225825834342525k k x x x x k k k k x x -⨯-⨯+-++++==--2222212824160243234025k k k k k x --+++==-,故1Q y y =,即AQ y ⊥轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意∆的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.(二)选考题:共10分.请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.19.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x t y t a=⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.【答案】(1)221y x =+(2)34a =【解析】【分析】(1)根据ρρθ⎧⎪=⎨=⎪⎩可得C 的直角方程.(2)将直线的新的参数方程代入C 的直角方程,法1:结合参数s 的几何意义可得关于a 的方程,从而可求参数a 的值;法2:将直线的直角方程与曲线的直角方程联立,结合弦长公式可求a 的值.【小问1详解】由cos 1ρρθ=+,将ρρθ⎧⎪=⎨=⎪⎩cos 1ρρθ=+,1x =+,两边平方后可得曲线的直角坐标方程为221y x =+.【小问2详解】对于直线l 的参数方程消去参数t ,得直线的普通方程为y x a =+.法1:直线l 的斜率为1,故倾斜角为π4,故直线的参数方程可设为2222x s y a s ⎧=⎪⎪⎨⎪=+⎪⎩,s ∈R .将其代入221y x =+中得()221)210s a s a +-+-=设,A B 两点对应的参数分别为12,s s,则)()212121,21s s a s s a +=--=-,且()()22Δ818116160a a a =---=->,故1a <,12AB s s ∴=-=2==,解得34a =.法2:联立221y x a y x =+⎧⎨=+⎩,得22(22)10x a x a +-+-=,()22Δ(22)41880a a a =---=-+>,解得1a <,设()()1122,,,A x y B x y ,2121222,1x x a x x a ∴+=-=-,则AB ==2=,解得34a =20.实数,ab 满足3a b +≥.(1)证明:2222a b a b +>+;(2)证明:22226a b b a -+-≥.【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)直接利用22222()a b a b +≥+即可证明.(2)根据绝对值不等式并结合(1)中结论即可证明.【小问1详解】因为()()2222222022a b a ab b a b b a -+=--++=≥,当a b =时等号成立,则22222()a b a b +≥+,因为3a b +≥,所以22222()a b a b a b +≥+>+;【小问2详解】222222222222()a b b a a b b a a b a b -+-≥-+-=+-+22222()()()()(1)326a b a b a b a b a b a b =+-+≥+-+=++-≥⨯=。

2006年普通高等学校招生全国统一考试(湖南卷.文)含详解

2006年普通高等学校招生全国统一考试(湖南卷.文)含详解

2006年湖南高考试卷科目:数学(文史类)(试题卷)注意事项:1.答题前,考生务必将自己的姓名、准考证号写在答题卡和该试题卷的封面上,并认真核对条形码上的姓名、准考证号和科目。

2.考生作答时,选择题和非选择题均须作在答题卡上,在草稿纸和本试卷上答题无效。

考生在答题卡上按如下要求答题:(1)选择题部分请用2B铅笔把应题目的答案标号所在方框涂黑,修改时用橡皮擦干净,不留痕迹。

(2)非选择题部分(包括填空题和解答题)请按题号用0.5毫米黑色墨水签字笔书写,否则作答无效。

(3)保持字体工整、笔迹清晰、卡面清洁、不折叠。

3.考试结束后,将本试题卷和答题卡一并交回。

4. 本试卷共5页。

如缺页,考生须声明,否则后果自负。

姓名准考证号绝密★启用前数 学(文史类)本试题卷他选择题和非选择题(包括填空题和解答题)两部分. 选择题部分1至2页. 非选择题部分3至5页. 时量120分钟. 满分150分. 参考公式: 如果事件A 、B 互斥,那么()()()P A B P A P B +=+ 如果事件A 、B 相互独立,那么)()()(B P A P AB P ⋅=如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率是()(1)k k n kn n P k C P P -=-球的体积公式 343V R π=,球的表面积公式24S R π=,其中R 表示球的半径一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.函数x y 2log =的定义域是A .(0,1]B . (0,+∞) C. (1,+∞) D . [1,+∞)2.已知向量),2,1(),,2(==b t a 若1t t =时,a ∥b;2t t =时,b a ⊥,则A .1,421-=-=t tB . 1,421=-=t t C. 1,421-==t t D . 1,421==t t 3. 若5)1(-ax 的展开式中3x 的系数是80,则实数a 的值是A .-2B . 22 C. 34 D . 24.过半径为2的球O 表面上一点A 作球O 的截面,若OA 与该截面所成的角是60°则该截面的面积是A .πB . 2π C. 3π D . π32 5.“a =1”是“函数a x x f -=)(在区间[1,+∞)上为增函数”的A .充分不必要条件B . 必要不充分条件C. 充要条件 D . 既不充分也不必要条件6.在数字1,2,3与符号+,-五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是A .6B . 12 C. 18 D . 24 7.圆0104422=---+y x y x 上的点到直线014=-+y x 的最大距离与最小距离的差是A .36B . 18 C. 26 D . 25 8.设点P 是函数x x f ωsin )(=的图象C 的一个对称中心,若点P 到图象C 的对称轴上的距离的最小值4π,则)(x f 的最小正周期是 A .2π B . π C. 2π D . 4π 9.过双曲线M :1222=-hy x 的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于点B 、C ,且BC AB =,则双曲线M 的离心率是A .25 B . 310C. 5 D . 10 10. 如图1:OM ∥AB ,点P 由射线OM 、线段OB 及AB 的延长线围成的阴影区域内(不含边界).且OB y OA x OP +=,则实数对(x ,y )可以是A .)43,41(B . )32,32(-C. )43,41(- D . )57,51(-二.填空题:本大题共5小题,每小题4分,共20分,把答案填在答题上部 对应题号的横上.11. 若数列{}n a 满足:1.2,111===+n a a a n n ,2,3….则=+++n a a a 21 . 12. 某高校有甲、乙两个数学建模兴趣班. 其中甲班有40人,乙班50人. 现分析两个班的一次考试成绩,算得甲班的平均成绩是90分,乙班的平均成绩是81分,则该校数学建模兴趣班的平均成绩是 分.13. 已知⎪⎩⎪⎨⎧≤--≤+-≥022011y x y x x 则22y x +的最小值是 .14. 过三棱柱 ABC -A 1B 1C 1 的任意两条棱的中点作直线,其中与平面ABB 1A 1平行的直线共有 条.15. 若)4sin(3)4sin()(ππ-++=x x a x f 是偶函数,则a = .A图1三.解答题:本大题共6小题,共80分. 解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)已知),,0(,1cos )cos()22sin(sin 3πθθθπθπθ∈=⋅+--求θ的值.17.(本小题满分12分) 某安全生产监督部门对5家小型煤矿进行安全检查(简称安检). 若安检不合格,则必须整改. 若整改后经复查仍不合格,则强制关闭. 设每家煤矿安检是否合格是相互独立的,且每家煤矿整改前安检合格的概率是0.5,整改后安检合格的概率是0.8,计算(结果精确到0.01):(Ⅰ)恰好有两家煤矿必须整改的概率; (Ⅱ)某煤矿不被关闭的概率; (Ⅲ)至少关闭一家煤矿的概率.18.(本小题满分14分) 如图2,已知两个正四棱锥P -ABCD 与Q -ABCD 的高都是2,AB =4. (Ⅰ)证明PQ ⊥平面ABCD ;(Ⅱ)求异面直线AQ 与PB 所成的角; (Ⅲ)求点P 到平面QAD 的距离.Q BCPAD图219.(本小题满分14分) 已知函数ax ax x f 313)(23-+-=. (I)讨论函数)(x f 的单调性;(Ⅱ)若曲线)(x f y =上两点A 、B 处的切线都与y 轴垂直,且线段AB 与x 轴有公共点,求实数a 的取值范围.20.(本小题满分14分) 在m (m ≥2)个不同数的排列P 1P 2…P n 中,若1≤i <j ≤m 时P i >P j (即前面某数大于后面某数),则称P i 与P j 构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数. 记排列321)1()1( -+n n n 的逆序数为a n ,如排列21的逆序数11=a ,排列321的逆序数63=a . (Ⅰ)求a 4、a 5,并写出a n 的表达式;(Ⅱ)令n n n n n a aa ab 11+++=,证明32221+<++<n b b b n n ,n =1,2,….21.(本小题满分14分)已知椭圆C 1:13422=+y x ,抛物线C 2:)0(2)(2>=-p px m y ,且C 1、C 2的公共弦AB 过椭圆C 1的右焦点.(Ⅰ)当x AB ⊥轴时,求p 、m 的值,并判断抛物线C 2的焦点是否在直线AB 上;(Ⅱ)若34=p 且抛物线C 2的焦点在直线AB 上,求m 的值及直线AB 的方程.参考答案:1-10:DCDAABCBCDC11.12-n , 12. 85, 13. 5 ,14. 6 ,15. -3 .1.函数x y 2log =的定义域是2log x ≥0,解得x ≥1,选D.2.向量),2,1(),,2(==b t a 若1t t =时,a ∥b,∴ 14t =;2t t =时,b a ⊥,21t =-,选C.3.5)1-ax (的展开式中3x 的系数332335()(1)10C ax a x ⋅-=80x 3, 则实数a 的值是2,选D 4.过半径为2的球O 表面上一点A 作球O 的截面,若OA 与该截面所成的角是60°,则截面圆的半径是21R=1,该截面的面积是π,选A. 5.若“1=a ”,则函数||)(a x x f -==|1|x -在区间),1[+∞上为增函数;而若||)(a x x f -=在区间),1[+∞上为增函数,则0≤a ≤1,所以“1=a ”是“函数||)(a x x f -=在区间),1[+∞上为增函数”的充分不必要条件,选A.6.在数字1,2,3与符号“+”,“-”五个元素的所有全排列中,先排列1,2,3,有336A =种排法,再将“+”,“-”两个符号插入,有222A =种方法,共有12种方法,选B.7.圆0104422=---+y x y x 的圆心为(2,2),半径为32,圆心到到直线014=-+y x 的距=2,圆上的点到直线的最大距离与最小距离的差是2R =62,选C.8.设点P 是函数x x f ωsin )(=的图象C 的一个对称中心,若点P 到图象C 的对称轴上的距离的最小值4π,∴ 最小正周期为π,选B. 9.过双曲线1:222=-b y x M 的左顶点A (1,0)作斜率为1的直线l :y=x -1, 若l 与双曲线M的两条渐近线2220y x b-=分别相交于点1122(,),(,)B x y C x y , 联立方程组代入消元得22(1)210b x x -+-=,∴ 1221222111x x b x x b ⎧+=⎪⎪-⎨⎪⋅=⎪-⎩,x 1+x 2=2x 1x 2,又||||BC AB =,则B 为AC 中点,2x 1=1+x 2,代入解得121412x x ⎧=⎪⎪⎨⎪=-⎪⎩,∴ b 2=9,双曲线M 的离心率e=c a = D.10.如图,OM ∥AB ,点P 由射线OM 、线段OB 及AB 的延长线围成的阴影区域内(不含边界).且OB y OA x OP +=,由图知,x<0,当x=-41时,即OC =-41OA ,P 点在线段DE 上,CD =41OB ,CE =45OB ,而41<43<45,∴ 选C.二.填空题:11.12-n ; 12. 85; 13. 5 ; 14. 6 ; 15. -3 .11.数列{}n a 满足:111,2, 1n n a a a n +===,2,3…,该数列为公比为2的等比数列,∴=+++n a a a 21212121n n -=--. 12.某高校有甲、乙两个数学建模兴趣班. 其中甲班有40人,乙班50人. 现分析两个班的一次考试成绩,算得甲班的平均成绩是90分,乙班的平均成绩是81分,则该校数学建模兴趣班的平均成绩是409050818590⨯+⨯=分.13.已知⎪⎩⎪⎨⎧≤--≤+-≥022011y x y x x ,如图画出可行域,得交点A(1,2),B(3,4),则22y x +的最小值是5.14.过三棱柱 ABC -A 1B 1C 1 的任意两条棱的中点作直线,其中与平面ABB 1A 1平行的直线共有6条。

E01--2005年普通高等学校招生全国统一考试数学及详细解析(湖南卷

E01--2005年普通高等学校招生全国统一考试数学及详细解析(湖南卷

2005年普通高等学校招生全国统一考试(湖南卷)数学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择)题两部分,满分150分.考试用时120分钟.第Ⅰ卷(选择题)一、选择题:本大题共10小,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={-2,-1,0,1,2},A={-2,-1,0},B={0,1,2},则( U A )∩B= ( ) A .{0}B .{-2,-1}C .{1,2}D .{0,1,2}2.tan600°的值是 ( ) A .33-B .33 C .3-D .33.函数f (x )=x21-的定义域是( )A .(-∞,0]B .[0,+∞)C .(-∞,0)D .(-∞,+∞)4.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 是A 1B 1的中点,则E 到平面AB C 1D 1的距离为( ) A .23 B .22C .21 D .335.已知数列}{n a 满足)(133,0*11N n a a a a n n n ∈+-==+,则20a =( )A .0B .3-C .3D .236.设集合A ={x |11+-x x <0},B ={x || x -1|<a },若“a =1”是“A ∩B ≠ ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件7.设直线的方程是0=+By Ax ,从1,2,3,4,5这五个数中每次取两个不同的数作为A 、B 的值,则所得不同直线的条数是 ( )A .20B .19C .18D .168.已知双曲线22ax -22by =1(a >0,b >0)的右焦点为F ,右准线与一条渐近线交于点A ,△OAF 的面积为22a(O 为原点),则两条渐近线的夹角为 ( )A .30ºB .45ºC .60ºD .90º9.P 是△ABC 所在平面上一点,若PA PC PC PB PB PA ⋅=⋅=⋅,则P 是△ABC 的( ) A .外心B .内心C .重心D .垂心10.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L 1=5.06x -0.15 x2和L 2=2 x ,其中x 为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最 大利润为( )A .45.606B .45.6C .45.56D .45.51第Ⅱ卷(非选择题)二、填空题:本大题共5小题,每小题4分(第15小题每空2分),共20分,把答案填在答题卡中对应题号后的横线上.11.设直线0132=++y x 和圆03222=--+x y x 相交于点A 、B ,则弦AB 的垂直平分线方程是 .12.一工厂生产了某种产品16800件,它们来自甲、乙、丙3条生产线.为检查这批产品的质量,决定采用分层抽样的方法进行抽样.已知从甲、乙、丙3条生产线抽取的个体数组成一个等差数列,则乙生产线生产了 件产品.13.在(1+x )+(1+x )2+…+(1+x )6的展开式中,x 2项的系数是 .(用数字作答)14.设函数f (x )的图象关于点(1,2)对称,且存在反函数f -1(x ),f (4)=0,则f -1(4)= . 15.已知平面βα,和直线,给出条件:①α//m ;②α⊥m ;③α⊂m ;④βα⊥;⑤βα//. (i )当满足条件 时,有β//m ;(ii )当满足条件 时,有β⊥m .(填所选条件的序号)三、解答题:本大题共6小题,共80分. 解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)已知数列))}1({log *2N n a n ∈-为等差数列,且.9,331==a a(Ⅰ)求数列}{n a 的通项公式; (Ⅱ)证明.111112312<-++-+-+nn a a a a a a17.(本小题满分12分) 已知在△ABC 中,sinA (sinB +cosB )-sinC =0,sinB +cos2C =0,求角A 、B 、C 的大小.18.(本小题满分14分)如图1,已知ABCD 是上.下底边长分别为2和6,高为3的等腰梯形,将它沿对称轴OO 1折成直二面角,如图2. (Ⅰ)证明:AC ⊥BO 1;(Ⅱ)求二面角O -AC -O 1的大小.19.(本小题满分14分)设0≠t ,点P (t ,0)是函数c bx x g ax x x f +=+=23)()(与的图象的一个公共点,两函数的图象在点P 处有相同的切线.(Ⅰ)用t 表示a ,b ,c ;(Ⅱ)若函数)()(x g x f y -=在(-1,3)上单调递减,求t 的取值范围.图1 图220.(本小题满分14分)某单位组织4个部门的职工旅游,规定每个部门只能在韶山、衡山、张家界3个景区中任选一个,假设各部门选择每个景区是等可能的. (Ⅰ)求3个景区都有部门选择的概率; (Ⅱ)求恰有2个景区有部门选择的概率.21.(本小题满分14分) 已知椭圆C :22ax +22by =1(a >b >0)的左.右焦点为F 1、F 2,离心率为e. 直线l :y =e x +a 与x 轴.y 轴分别交于点A 、B ,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设AM =λAB . (Ⅰ)证明:λ=1-e 2; (Ⅱ)若43=λ,△PF 1F 2的周长为6;写出椭圆C 的方程;(Ⅲ)确定λ的值,使得△PF 1F 2是等腰三角形.2005年普通高等学校招生全国统一考试(湖南卷)数学(文史类)参考答案1.答案:C[评述]:本题考查集合有关概念,补集,交集等知识点。

2008年普通高等学校招生全国统一考试(湖南卷)文科数学试题及详解

2008年普通高等学校招生全国统一考试(湖南卷)文科数学试题及详解

yx绝密 ★ 启用前2008年普通高等学校招生全国统一考试 (湖南卷)文科数学一.选择题1.已知{}7,6,5,4,3,2=U ,{}7,5,4,3=M ,{}6,5,4,2=N ,则( )A .{}6,4=⋂N M .B MN U =C .U M N C u = )( D. N N M C u = )( 【答案】B【解析】由{}7,6,5,4,3,2=U ,{}7,5,4,3=M ,{}6,5,4,2=N ,易知B 正确. 2.“21<-x ”是“3<x ”的( )A .充分不必要条件 B.必要不充分条件C .充分必要条件 D.既不充分也不必要条件 【答案】A【解析】由21<-x 得13x -<<,所以易知选A.3.已条变量y x ,满足⎪⎩⎪⎨⎧≤-≤≥,0,2,1y x y x 则y x +的最小值是( )A .4 B.3 C.2 D.1 【答案】C【解析】如图得可行域为一个三角形,其三个顶点分别为(1,1),(1,2),(2,2),代入验证知在点(1,1)时,x y +最小值是11 2.+=故选C.4.函数)0()(2≤=x x x f 的反函数是( ))0()(.1≥=-x x x f A )0()(.1≥-=-x x x fB)0()(.1≤--=-x x x fC )0()(.21≤-=-x x x fD【答案】B【解析】用特殊点法,取原函数过点(1,1),-则其反函数过点(1,1),-验证知只有答案B 满足.也可用1直接法或利用“原函数与反函数的定义域、值域互换”来解答。

5.已知直线m,n 和平面βα,满足βα⊥⊥⊥,,a m n m ,则( ).A n β⊥ ,//.βn B 或β⊂n α⊥n C . ,//.αn D 或α⊂n【答案】D【解析】易知D 正确.6.下面不等式成立的是( )A .322log 2log 3log 5<<B .3log 5log 2log 223<<C .5log 2log 3log 232<<D .2log 5log 3log 322<< 【答案】A【解析】由322log 21log 3log 5<<< , 故选A.7.在ABC ∆中,AB=3,AC=2,BC=10,则AB AC ⋅= ( ) A .23-B .32-C .32D .23 【答案】D【解析】由余弦定理得1cos ,4CAB ∠=所以1332,42AB AC ⋅=⨯⨯=选D. 8.某市拟从4个重点项目和6个一般项目中各选2个项目作为本年度启动的项目,则重点项目A 和一般项目B 至少有一个被选中的不同选法种数是( ) A .15 B .45 C .60 D .75 【答案】C【解析】用直接法:11122135353515301560,C C C C C C ++=++=或用间接法:22224635903060,C C C C -=-=故选C.9.长方体1111ABCD A B C D -的8个顶点在同一个球面上,且AB=2,AD=3,11=AA ,则顶点A 、B 间的球面距离是( )A .42π B .22π C .π2D .2π2 【答案】 B【解析】112BD AC R ===R ∴=设11,BD AC O =则OA OB R ===,2AOB π⇒∠=,2l R πθ∴==故选B.10.双曲线)0,0(12222>>=-b a by a x 的右支上存在一点,它到右焦点及左准线的距离相等,则双曲线离心率的取值范围是( )A .B .)+∞C .1]D .1,)+∞ 【答案】C【解析】200a ex a x c -=+20(1)a e x a c ⇒-=+2(1),a a e a c⇒+≥- 1111,a e c e∴-≤+=+2210,e e ⇒--≤11e ⇒-≤≤而双曲线的离心率1,e >1],e ∴∈故选C.二.填空题11.已知向量)3,1(=,)0,2(-=,则b a +=_____________________. 【答案】2 【解析】由(1,3),||13 2.a b a b +=-∴+=+=12.从某地区15000位老人中随机抽取500人,其生活能否自理的情况如下表所示:则该地区生活不能自理的老人中男性比女性约多_____________人。

2021年全国统一高考真题数学试卷(文科)(含答案及解析)

2021年全国统一高考真题数学试卷(文科)(含答案及解析)

2021年普通高等学校招生全国统一考试(全国乙卷) 数学(文)一、选择题1.已知全集{1,2,3,4,5}U =,集合{1,2}M =,{3,4}N =,则)(U C M N =( )A.{5}B.{1,2}C.{3,4}D.{1,2,3,4} 2.设43iz i =+,则z =( )A.34i --B.–34i +C.34i -D.34i +3.已知命题:,sin 1p x R x ∃∈<;命题||:,1x q x R e ∈∀≥,则下列命题中为真命题的是( ) A.p q ∧ B.p q ⌝∧ C.p q ∧⌝ D.()p q ⌝∨4.函数()sincos 33x xf x =+的最小正周期和最大值分别是( ) A.3πB.3π和2C.6πD.6π和25.若,x y 满足约束条件2,3,4,y x y x y ≤≤+≥⎧⎪-⎨⎪⎩则3z x y =+的最小值为( )A.18B.10C.6D.46.225coscos 1212ππ-=( ) A.12B.3C.2D.27.在区间1(0,)2随机取1个数,则取到的数小于13的概率为( ) A.34 B.23 C.13 D.168.下列函数中最小值为4的是( )A.224y x x =++ B.4|sin ||sin |y x x =+C.222x xy -=+ D.4n ln l y x x=+9.设函数1(1)xf x x-=+,则下列函数中为奇函数的是( ) A.1()1f x -- B.1()1f x -+ C.1()1f x +- D.1()1f x ++10.在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为A.2π B.3π C.4π D.6π 11.设B 是椭圆C :2215x y +=的上顶点,点P 在C 上,则PB 的最大值为A.52212.设0a ≠,若x a =为函数2()()()f x a x a x b =--的极大值点,则A.a b <B.a b >C.2ab a <D.2ab a > 二、填空题13.已知向量(2,5)a =,(,4)b λ=,若//a b ,则λ= .14.双曲线22145x y -=的右焦点到直线280x y +-=的距离为 .15.记ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,面积为,60B =︒,223a c ac +=,则b = .16.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为 (写出符合要求的一组答案即可).17.某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下: 旧设备 9.810.310.0 10.2 9.9 9.8 10.0 10.1 10.2 9.7 新设备 10.1 10.410.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为x 和y ,样本方差分别记为21s 和22s .(1)求x ,y ,21s ,22s ;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果2212210s s y x +-≥不认为有显著提高).18.如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ﹔(2)若1PD DC ==,求四棱锥P ABCD -的体积.19.设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a ,成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S ,和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 20.已知抛物线C :22(0)y px p =>的焦点F 到准线的距离为2. (1)求C 的方程,(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值. 21.已知函数32()1f x x x ax =-++. (1)讨论()f x 的单调性;(2)求曲线()y f x =过坐标原点的切线与曲线()y f x =的公共点的坐标. 22.在直角坐标系xOy 中,C 的圆心为)(2,1C ,半径为1.(1)写出C 的一个参数方程;(2)过点)(4,1F 作C 的两条切线.以坐标原点为极点,x 轴正半轴为极轴建立坐标系,求这两条切线的极坐标方程. 23.已知函数()|||3|f x x a x =-++. (1)当1a =时,求不等式()6f x ≥的解集; (2)若()f x a >-,求a 的取值范围.答案及解析一、选择题1.已知全集{1,2,3,4,5}U =,集合{1,2}M =,{3,4}N =,则)(U C M N =( )A.{5}B.{1,2}C.{3,4}D.{1,2,3,4}2.设43iz i =+,则z =( ) A.34i -- B.–34i + C.34i - D.34i +3.已知命题:,sin 1p x R x ∃∈<;命题||:,1x q x R e ∈∀≥,则下列命题中为真命题的是( ) A.p q ∧B.p q ⌝∧C.p q ∧⌝D.()p q ⌝∨答案: A 解析:根据正弦函数的值域sin [1,1]x ∈-,sin 1x <,故x R ∃∈,p 为真命题,而函数||x y e =为偶函数,且0x ≥时,1x y e =≥,故x R ∀∈,||1x y e =≥恒成立.则q 也为真命题,所以p q∧为真,选A. 4.函数()sin cos 33x xf x =+的最小正周期和最大值分别是( )A.3πB.3π和2C.6πD.6π和2 答案: C 解析:()sin()34x f x π=+max ()f x =,2613T ππ==. 故选C.5.若,x y 满足约束条件2,3,4,y x y x y ≤≤+≥⎧⎪-⎨⎪⎩则3z x y =+的最小值为( )A.18B.10C.6D.4答案: C 解析:根据约束条件可得图像如下,3z x y =+的最小值,即3y x z =-+,y 轴截距最小值.根据图像可知3y x z =-+过点(1,3)B 时满足题意,即min 336z =+=.6.225cos cos 1212ππ-=( ) A.12B.33 C.22 3 答案: D 解析:2222223()sin cos 25cos cos cos cos cos 12121212121262ππππππππ-=-=--==∴选D. 7.在区间1(0,)2随机取1个数,则取到的数小于13的概率为( ) A.34 B.23 C.13 D.16答案: B解析:在区间1(0,)2随机取1个数,可知总长度12d =,取到的数小于13,可知取到的长度范围13d '=,根据几何概型公式123132d p d '===,∴选B.8.下列函数中最小值为4的是( ) A.224y x x =++ B.4|sin ||sin |y x x =+C.222x xy -=+D.4n ln l y x x=+答案: C 解析:对于A ,22224213(1)33y x x x x x =++=+++=++≥.不符合, 对于B ,4|sin ||sin |y x x =+,令|sin |[0,1]t x =∈,∴4y t t=+,根据对勾函数min 145y =+=不符合, 对于C ,242222x x x xy -==++,令20xt =>,∴4224y t t =+≥=⨯=, 当且仅当2t =时取等,符合,对于D ,4n ln l y x x =+,令ln t x R =∈,4y t t=+. 根据对勾函数(,4][4,)y ∈-∞-+∞,不符合.9.设函数1(1)xf x x-=+,则下列函数中为奇函数的是( ) A.1()1f x --B.1()1f x -+C.1()1f x +-D.1()1f x ++答案: B 解析:12()111x f x x x-==-+++, ()f x 向右平移一个单位,向上平移一个单位得到2()g x x=为奇函数. 所以选B.10.在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为A.2πB.3πC.4πD.6π 答案: D 解析:做出图形,11//AD BC ,所以1PBC ∠为异面直线所成角,设棱长为1.1BC,12B P =,12PC =,BP =. 2221111312cos 22BC BP C P PBC BP BC +-+-∠===⋅,即16PBC π∠=,故选D.11.设B 是椭圆C :2215x y +=的上顶点,点P 在C 上,则PB 的最大值为 A.526 5D.2 答案: A 解析:方法一:由22:15x C y +=,(0,1)B 则C 的参数方程:5sin x y θθ⎧=⎪⎨=⎪⎩.22||(sin 1)(5cos )PB θθ=-+24sin 2sin 6θθ=--+212554(sin )442θ=-++≥.∴max 5||2PB =,故选A. 方法二:设00(,)P x y ,则220001([1,1])5x y y +=∈-①,(0,1)B . 因此22200||(1)PB x y =+-②将①式代入②式化简得:22012525||4()444PB y =-++≥,当且仅当014y =-时||PB 的最大值为52,故选A.12.设0a ≠,若x a =为函数2()()()f x a x a x b =--的极大值点,则A.a b <B.a b >C.2ab a <D.2ab a > 答案: D 解析:2()2()()()()(32)f x a x a x b a x a a x a x b a '=--+-=---当0a >时,原函数先增再减后增.原函数在()0f x '=的较小零点时取得极大值. 即23a b a +<,即a b <,∴2a ab <. 当0a <时,原函数先减再增后减.原函数在()0f x '=的较大零点时取得极大值. 即23a b a +>,a b >,2a ab <,故选D. 二、填空题13.已知向量(2,5)a =,(,4)b λ=,若//a b ,则λ= . 答案:85解析:由已知//a b 可得82455λλ⨯=⇒=. 14.双曲线22145x y -=的右焦点到直线280x y +-=的距离为 . 答案:5解析:22145x y -=的右焦点为(3,0),到直线280x y +-=的距离22|38|512d -==+. 15.记ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,面积为3,60B =︒,223a c ac +=,则b = .答案:22解析: 由面积公式1sin 32S ac B ==,且60B =︒,解得4ac =, 又由余弦定理2222cos b a c ac B =+-,223a c ac +=,且0b > 解得22b =.16.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为 (写出符合要求的一组答案即可).答案: ②⑤或③④ 解析:由高度可知,侧视图只能为②或③.侧视图为②,如图(1),平面PAC ⊥平面ABC ,2PA PC ==5BA BC ==2AC =,俯视图为⑤.俯视图为③,如图(2),PA ⊥平面ABC ,1PA =,5AC AB ==,2BC =,俯视图为④.17.某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下: 旧设备 9.810.310.0 10.2 9.9 9.8 10.0 10.1 10.2 9.7 新设备 10.1 10.4 10.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为x 和y ,样本方差分别记为21s 和22s .(1)求x ,y ,21s ,22s ;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果2212210s s y x +-≥不认为有显著提高). 答案:见解析 解析:9.810.31010.29.99.81010.110.29.71010x ++++++++==+;10.110.410.11010.110.310.610.510.410.510.310y ++++++++==+.211(0.040.090.040.010.040.010.040.09)10s =+++++++10.360.03610=⨯= 221(0.040.010.040.090.040.090.040.010.04)10s =++++++++10.40.0410=⨯=. (2)10.3100.3y x -=-=22120.0360.04221010s s ++=20.0076=. ∵则0.30.0920.0760.0304=>=,所以可判断新设备生产产品的该项指标的均值较旧设备有显著提高; 没有显著提高.18.如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ﹔(2)若1PD DC ==,求四棱锥P ABCD -的体积.答案: 见解析 解析:19.设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a ,成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S ,和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 答案: 见解析 解析:设{}n a 的公比为q ,则1n n a q -=,因为1a ,23a ,39a 成等差数列,所以21923q q +=⨯,解得13q =, 故11()3n n a -=,11313(1)12313n n n S -==--. 又3n n n b =,则1231123133333n n n n nT --=+++++,两边同乘13,则234111231333333n n n n nT +-=+++++,两式相减,得23412111113333333n n n nT +=+++++-,即1111(1)1133(1)332333121n n n n n n n T ++-=-=---, 整理得31323(1)4323423n n n nn n T +=--=-⨯⨯, 323314322()(1)04232323n n n n nn n T S ++-=---=-<⨯⨯,故2n n S T <.20.已知抛物线C :22(0)y px p =>的焦点F 到准线的距离为2. (1)求C 的方程,(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值. 答案:见解析 解析:(1)由焦点到准线的距离为p ,则2p =. 抛物线c 的方程:24y x =.(2)设点200(,)4y P y ,(,)Q Q Q x y ,(1,0)F .∵9PQ QF =.∴222000009499(,)9(1,)4104910Q Q Q Q Q Q Q Q Q Q y y x x x y x y y x y y y x y y ⎧+⎪⎧-=-=⎪⎪--=--⇒⇒⎨⎨⎪⎪-=-⎩=⎪⎩则020001193944Q OQ Qy y k y y x y ===≤=++. ∴直线OQ 斜率的最大值为13. 21.已知函数32()1f x x x ax =-++. (1)讨论()f x 的单调性;(2)求曲线()y f x =过坐标原点的切线与曲线()y f x =的公共点的坐标. 答案: 见解析 解析:(1)2()32f x x x a '=-+(i )当4120a ∆=-≤,即13a ≥时,()0f x '≥恒成立,即()f x 在()f x 在x ∈R 上单调递增.(ii )当4120∆=->,即13a <时,()0f x '=解得,113x =,213x +=.∴()f x 在113(,)3a --∞,113()3a -+∞单调递增,在113113(33a a-+单调递减,综上所述:当13a ≥时,()f x 在R 上单调递增;当13a <时,()f x 在113113(,33a a-++单调递减.(2)设可原点切线的切点为32(,1)t t t at -++,切线斜率2()32k f t t t a '==-+.又321t t at k t -++=,可得322132t t at t t a t-++=-+.化简得2(1)(21)0t t t -++=,即1t =.∴切点为(1,1)a +,斜率1k a =+,切线方程为(1)y a x =+,将(1)y a x =+,321y x x ax =-++联立可得321(1)x x ax a x -++=+,化简得2(1)(1)0x x -+=,解得11x =,21x =-.∴过原点的切线与()y f x =公共点坐标为(1,1)a +,(1,1)a ---.22.在直角坐标系xOy 中,C 的圆心为)(2,1C ,半径为1.(1)写出C 的一个参数方程;(2)过点)(4,1F 作C 的两条切线.以坐标原点为极点,x 轴正半轴为极轴建立坐标系,求这两条切线的极坐标方程. 答案: 见解析 解析: (1)C 的参数方程为2cos 1sin x y θθ=+⎧⎨=+⎩(θ为参数)(2)C 的方程为22(2)(1)1x y -+-=①当直线斜率不存在时,直线方程为4x =,此时圆心到直线距离为2r >,舍去;②当直线斜率存在时,设直线方程为1(4)y k x -=-,化简为410kx y k --+=, 此时圆心(2,1)C 到直线的距离为1d r ===,化简得2||k =,两边平方有2241k k =+,所以k =代入直线方程并化简得40x -+=或40x +-=化为极坐标方程为5cos sin 4sin()46πρθθρθ=⇔+=或cos sin 4sin()46πρθθρθ+=⇔+=+23.已知函数()|||3|f x x a x =-++.(1)当1a =时,求不等式()6f x ≥的解集; (2)若()f x a >-,求a 的取值范围. 答案: 见解析 解析:当1a =时,()6|1||3|6f x x x ≥⇔-++≥,当3x ≤-时,不等式136x x ⇔---≥,解得4x ≤-; 当31x -<<时,不等式136x x ⇔-++≥,解得x ∈∅; 当1x ≥时,不等式136x x ⇔-++≥,解得2x ≥. 综上,原不等式的解集为(,4][2,)-∞-+∞. (2)若()f x a >-,即min ()f x a >-,因为()|||3||()(3)||3|f x x a x x a x a =-++≥--+=+(当且仅当()(3)0x a x -+≤时,等号成立),所以min ()|3|f x a =+,所以|3|a a +>-,即3a a +<或3a a +>-,解得3(,)2a ∈-+∞.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

普通高等学校招生全国统一考试(湖南卷)数学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择)题两部分,满分150分.考试用时120分钟.第Ⅰ卷(选择题)一、选择题:本大题共10小,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={-2,-1,0,1,2},A={-2,-1,0},B={0,1,2},则( U A )∩B= ( ) A .{0} B .{-2,-1} C .{1,2} D .{0,1,2} 2.tan600°的值是( )A .33-B .33C .3-D .33.函数f (x )=x21-的定义域是( )A .(-∞,0]B .[0,+∞)C .(-∞,0)D .(-∞,+∞)4.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 是A 1B 1的中点,则E 到平面AB C 1D 1的距离为( ) A .23 B .22C .21 D .335.已知数列}{n a 满足)(133,0*11N n a a a a n n n ∈+-==+,则20a =( )A .0B .3-C .3D .236.设集合A ={x |11+-x x <0},B ={x || x -1|<a },若“a =1”是“A ∩B ≠ ”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分又不必要条件7.设直线的方程是0=+By Ax ,从1,2,3,4,5这五个数中每次取两个不同的数作为A 、B 的值,则所得不同直线的条数是 ( )A .20B .19C .18D .168.已知双曲线22ax -22by =1(a >0,b >0)的右焦点为F ,右准线与一条渐近线交于点A ,△OAF 的面积为22a(O 为原点),则两条渐近线的夹角为 ( )A .30ºB .45ºC .60ºD .90º9.P 是△ABC 所在平面上一点,若PA PC PC PB PB PA ⋅=⋅=⋅,则P 是△ABC 的( ) A .外心B .内心C .重心D .垂心10.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L 1=5.06x -0.15 x 2和L 2=2 x ,其中x 为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为( )A .45.606B .45.6C .45.56D .45.51第Ⅱ卷(非选择题)二、填空题:本大题共5小题,每小题4分(第15小题每空2分),共20分,把答案填在答题卡中对应题号后的横线上. 11.设直线0132=++y x 和圆03222=--+x y x 相交于点A 、B ,则弦AB 的垂直平分线方程是 .12.一工厂生产了某种产品16800件,它们来自甲、乙、丙3条生产线.为检查这批产品的质量,决定采用分层抽样的方法进行抽样.已知从甲、乙、丙3条生产线抽取的个体数组成一个等差数列,则乙生产线生产了 件产品.13.在(1+x )+(1+x )2+…+(1+x )6的展开式中,x 2项的系数是 .(用数字作答)14.设函数f (x )的图象关于点(1,2)对称,且存在反函数f -1(x ),f (4)=0,则f -1(4)= . 15.已知平面βα,和直线,给出条件:①α//m ;②α⊥m ;③α⊂m ;④βα⊥;⑤βα//. (i )当满足条件 时,有β//m ;(ii )当满足条件 时,有β⊥m .(填所选条件的序号)三、解答题:本大题共6小题,共80分. 解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)已知数列))}1({log *2N n a n ∈-为等差数列,且.9,331==a a(Ⅰ)求数列}{n a 的通项公式; (Ⅱ)证明.111112312<-++-+-+nn a a a a a a17.(本小题满分12分) 已知在△ABC 中,sinA (sinB +cosB )-sinC =0,sinB +cos2C =0,求角A 、B 、C 的大小.如图1,已知ABCD 是上.下底边长分别为2和6,高为3的等腰梯形,将它沿对称轴OO 1折成直二面角,如图2. (Ⅰ)证明:AC ⊥BO 1;(Ⅱ)求二面角O -AC -O 1的大小.19.(本小题满分14分)设0≠t ,点P (t ,0)是函数c bx x g ax x x f +=+=23)()(与的图象的一个公共点,两函数的图象在点P 处有相同的切线.(Ⅰ)用t 表示a ,b ,c ;(Ⅱ)若函数)()(x g x f y -=在(-1,3)上单调递减,求t 的取值范围.图1 图2某单位组织4个部门的职工旅游,规定每个部门只能在韶山、衡山、张家界3个景区中任选一个,假设各部门选择每个景区是等可能的. (Ⅰ)求3个景区都有部门选择的概率; (Ⅱ)求恰有2个景区有部门选择的概率.21.(本小题满分14分) 已知椭圆C :22ax +22by =1(a >b >0)的左.右焦点为F 1、F 2,离心率为e. 直线l :y =e x +a 与x 轴.y 轴分别交于点A 、B ,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设AM =λAB . (Ⅰ)证明:λ=1-e 2; (Ⅱ)若43=λ,△PF 1F 2的周长为6;写出椭圆C 的方程;(Ⅲ)确定λ的值,使得△PF 1F 2是等腰三角形.2005年普通高等学校招生全国统一考试(湖南卷)数学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择)题两部分,满分150分.考试用时120分钟.第Ⅰ卷(选择题)一、选择题:本大题共10小,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={-2,-1,0,1,2},A={-2,-1,0},B={0,1,2},则( U A )∩B= ( ) A .{0} B .{-2,-1} C .{1,2} D .{0,1,2} 2.tan600°的值是( )A .33-B .33C .3-D .33.函数f (x )=x21-的定义域是( )A .(-∞,0]B .[0,+∞)C .(-∞,0)D .(-∞,+∞)4.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 是A 1B 1的中点,则E 到平面AB C 1D 1的距离为( ) A .23 B .22C .21 D .335.已知数列}{n a 满足)(133,0*11N n a a a a n n n ∈+-==+,则20a =( )A .0B .3-C .3D .236.设集合A ={x |11+-x x <0},B ={x || x -1|<a },若“a =1”是“A ∩B ≠ ”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分又不必要条件7.设直线的方程是0=+By Ax ,从1,2,3,4,5这五个数中每次取两个不同的数作为A 、B 的值,则所得不同直线的条数是 ( )A .20B .19C .18D .168.已知双曲线22ax -22by =1(a >0,b >0)的右焦点为F ,右准线与一条渐近线交于点A ,△OAF 的面积为22a(O 为原点),则两条渐近线的夹角为 ( )A .30ºB .45ºC .60ºD .90º9.P 是△ABC 所在平面上一点,若PA PC PC PB PB PA ⋅=⋅=⋅,则P 是△ABC 的( ) A .外心B .内心C .重心D .垂心10.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L 1=5.06x -0.15 x 2和L 2=2 x ,其中x 为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为( )A .45.606B .45.6C .45.56D .45.51第Ⅱ卷(非选择题)二、填空题:本大题共5小题,每小题4分(第15小题每空2分),共20分,把答案填在答题卡中对应题号后的横线上. 11.设直线0132=++y x 和圆03222=--+x y x 相交于点A 、B ,则弦AB 的垂直平分线方程是 .12.一工厂生产了某种产品16800件,它们来自甲、乙、丙3条生产线.为检查这批产品的质量,决定采用分层抽样的方法进行抽样.已知从甲、乙、丙3条生产线抽取的个体数组成一个等差数列,则乙生产线生产了 件产品.13.在(1+x )+(1+x )2+…+(1+x )6的展开式中,x 2项的系数是 .(用数字作答)14.设函数f (x )的图象关于点(1,2)对称,且存在反函数f -1(x ),f (4)=0,则f -1(4)= . 15.已知平面βα,和直线,给出条件:①α//m ;②α⊥m ;③α⊂m ;④βα⊥;⑤βα//. (i )当满足条件 时,有β//m ;(ii )当满足条件 时,有β⊥m .(填所选条件的序号)三、解答题:本大题共6小题,共80分. 解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)已知数列))}1({log *2N n a n ∈-为等差数列,且.9,331==a a(Ⅰ)求数列}{n a 的通项公式; (Ⅱ)证明.111112312<-++-+-+nn a a a a a a17.(本小题满分12分) 已知在△ABC 中,sinA (sinB +cosB )-sinC =0,sinB +cos2C =0,求角A 、B 、C 的大小.18.(本小题满分14分)如图1,已知ABCD 是上.下底边长分别为2和6,高为3的等腰梯形,将它沿对称轴OO 1折成直二面角,如图2.(Ⅰ)证明:AC ⊥BO 1;(Ⅱ)求二面角O -AC -O 1的大小.19.(本小题满分14分)设0≠t ,点P (t ,0)是函数c bx x g ax x x f +=+=23)()(与的图象的一个公共点,两函数的图象在点P 处有相同的切线.(Ⅰ)用t 表示a ,b ,c ;(Ⅱ)若函数)()(x g x f y -=在(-1,3)上单调递减,求t 的取值范围.图1 图220.(本小题满分14分)某单位组织4个部门的职工旅游,规定每个部门只能在韶山、衡山、张家界3个景区中任选一个,假设各部门选择每个景区是等可能的. (Ⅰ)求3个景区都有部门选择的概率; (Ⅱ)求恰有2个景区有部门选择的概率.21.(本小题满分14分) 已知椭圆C :22ax +22by =1(a >b >0)的左.右焦点为F 1、F 2,离心率为e. 直线l :y =e x +a 与x 轴.y 轴分别交于点A 、B ,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设AM =λAB . (Ⅰ)证明:λ=1-e 2; (Ⅱ)若43=λ,△PF 1F 2的周长为6;写出椭圆C 的方程;(Ⅲ)确定λ的值,使得△PF 1F 2是等腰三角形.2005年普通高等学校招生全国统一考试(湖南卷)数学(文史类)参考答案一、选择题:1—5:CDABB 6—10: ACDDB 二、填空题:11.0323=--y x 12.5600 13.35 14.-2 15.③⑤ ②⑤ 三、解答题:16.(I )解:设等差数列)}1({log 2-n a 的公差为d . 由,8log2log)2(log29,322231+=+==d a a 得即d =1.所以,)1(1)1(log 2n n a n =⨯-+=-即.12+=n n a (II )证明因为nnn nn aa a 2121111=-=-++,所以nnn a a a a a a 2121212111132112312++++=-++-+-+.1211211212121<-=-⨯-=nn17.解法一 由0sin )cos (sin sin =-+C B B A 得.0)sin(cos sin sin sin =+-+B A B A B A所以.0sin cos cos sin cos sin sin sin =--+B A B A B A B A 即.0)cos (sin sin =-A A B因为),,0(π∈B 所以0sin ≠B ,从而.sin cos A A = 由),,0(π∈A 知.4π=A 从而π43=+C B .由.0)43(2cos sin 02cos sin =-+=+B B C B π得即.0cos sin 2sin .02sin sin =-=-B B B B B 亦即由此得.125,3,21cos ππ===C B B 所以,4π=A .125,3ππ==C B解法二:由).223sin(2cos sin 02cos sin C C B C B -=-==+π得由B <0、π<c ,所以.22223ππ-=-=C B C B 或即.22232ππ=-=+B C C B 或由0sin )cos (sin sin =-+C B B A 得 .0)sin(cos sin sin sin =+-+B A B A B A 所以.0sin cos cos sin cos sin sin sin =--+B A B A B A B A 即.0)cos (sin sin =-A A B因为0sin ≠B ,所以.sin cos A A =由.4),,0(ππ=∈A A 知从而π43=+C B ,知B+2C=23π不合要求.再由π212=-B C ,得.125,3ππ==C B 所以,4π=A .125,3ππ==C B18.解法一(I )证明 由题设知OA ⊥OO 1,OB ⊥OO 1所以∠AOB 是所折成的直二面角的平面角,即OA ⊥OB. 故可以O 为原点,OA 、OB 、OO 1所在直线分别为x 轴、y 轴、z 如图3,则相关各点的坐标是A (3,0,0), B (0,3,0),C (0,1,3) O 1(0,0,3).从而.0333),3,3,0(),3,1,3(11=⋅+-=⋅-=-=BO AC BO AC所以AC ⊥BO 1.(II )解:因为,03331=⋅+-=⋅OC BO 所以BO 1⊥OC ,由(I )AC ⊥BO 1,所以BO 1⊥平面OAC ,1BO 是平面OAC 的一个法向量. 设),,(z y x n =是0平面O 1AC 的一个法向量,由,3.0,033001=⎩⎨⎧==++-⇒⎪⎩⎪⎨⎧=⋅=⋅z y z y x C O n AC n 取得)3,0,1(=n .设二面角O —AC —O 1的大小为θ,由n 、1BO 的方向可知=<θn ,1BO >,所以cos <=cos θn ,1BO .4311=即二面角O —AC —O 1的大小是.43arccos解法二(I )证明 由题设知OA ⊥OO 1,OB ⊥OO 1, 所以∠AOB 是所折成的直二面角的平面角, 即OA ⊥OB. 从而AO ⊥平面OBCO 1, OC 是AC 在面OBCO 1内的射影. 因为3tan11==∠OO OB B OO33t a n 111==∠OO C O OC O ,所以∠OO 1B=60°,∠O 1OC=30°,从而OC ⊥BO 1 由三垂线定理得AC ⊥BO 1.(II )解 由(I )AC ⊥BO 1,OC ⊥BO 1,知BO 1⊥平面AOC.设OC ∩O 1B=E ,过点E 作EF ⊥AC 于F ,连结O 1F (如图4),则EF 是O 1F 在平面AOC 内的射影,由三垂线定理得O 1F ⊥AC. 所以∠O 1FE 是二面角O —AC —O 1的平面角. 由题设知OA=3,OO 1=3,O 1C=1,所以13,3221212121=+==+=CO A O AC OO OAA O ,从而1332111=⋅=ACCO A O F O , 又O 1E=OO 1·sin30°=23,所以.413sin 111==∠FO E O FE O 即二面角O —AC —O 1的大小是.43arcsin19.解:(I )因为函数)(x f ,)(x g 的图象都过点(t ,0),所以0)(=t f , 即03=+at t .因为,0≠t 所以2t a -=..,0,0)(2ab c c btt g ==+=所以即ABOCO 1D图4FE又因为)(x f ,)(x g 在点(t ,0)处有相同的切线,所以).()(t g t f '=' 而.23,2)(,3)(22bt a t bx x g a x x f =+='+='所以将2t a -=代入上式得.t b = 因此.3t ab c -==故2t a -=,t b =,.3t c -=(II )解法一))(3(23,)()(223223t x t x t tx x y t tx x t x x g x f y -+=--='+--=-=.当0))(3(<-+='t x t x y 时,函数)()(x g x f y -=单调递减. 由0<'y ,若t x t t <<->3,0则;若.3,0t x t t -<<<则由题意,函数)()(x g x f y -=在(-1,3)上单调递减,则).3,()3,1(),3()3,1(t t t t -⊂--⊂-或所以.39.333≥-≤≥-≥t t t t 或即或又当39<<-t 时,函数)()(x g x f y -=在(-1,3)上单调递减. 所以t 的取值范围为).,3[]9,(+∞⋃--∞解法二:))(3(23,)()(223223t x t x t tx x y t tx x t x x g x f y -+=--='+--=-= 因为函数)()(x g x f y -=在(-1,3)上单调递减,且))(3(t x t x y -+='是(-1,3)上的抛物线,所以⎩⎨⎧≤'≤'=-=.0|,0|31x x y y 即⎩⎨⎧≤-+≤--+-.0)3)(9(.0)1)(3(t t t t 解得.39≥-≤t t 或所以t 的取值范围为).,3[]9,(+∞⋃--∞20.解:某单位的4个部门选择3个景区可能出现的结果数为34.由于是任意选择,这些结果出现的可能性都相等.(I )3个景区都有部门选择可能出现的结果数为!324⋅C (从4个部门中任选2个作为1组,另外2个部门各作为1组,共3组,共有624=C 种分法,每组选择不同的景区,共有3!种选法),记“3个景区都有部门选择”为事件A 1,那么事件A 1的概率为 P (A 1)=.943!3424=⋅C(II )解法一:分别记“恰有2个景区有部门选择”和“4个部门都选择同一个景区”为事件A 2和A 3,则事件A 3的概率为P (A 3)=271334=,事件A 2的概率为P (A 2)=1-P (A 1)-P (A 3)=.2714271941=--解法二:恰有2个景区有部门选择可能的结果为).!2(32414C C +⋅(先从3个景区任意选定2个,共有323=C 种选法,再让4个部门来选择这2个景区,分两种情况:第一种情况,从4个部门中任取1个作为1组,另外3个部门作为1组,共2组,每组选择2个不同的景区,共有!214⋅C 种不同选法.第二种情况,从4个部门中任选2个部门到1个景区,另外2个部门在另1个景区,共有24C 种不同选法).所以P (A 2)=.27143)!2(342424=+⋅C C21.(Ⅰ)证法一:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B的坐标分别是2222222.,,1,).,0(),0,(ba c ab yc x b y ax a ex y a e a +=⎪⎩⎪⎨⎧=-=⎪⎩⎪⎨⎧=++=-这里得由.所以点M 的坐标是(a bc 2,-). 由).,(),(2a eaa b e a c AB AM λλ=+-=得 即221e a ab e ac e a-=⎪⎪⎩⎪⎪⎨⎧==-λλλ解得证法二:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是).,0(),0,(a ea -设M 的坐标是),,(),(),,(0000a e a y ea x AB AM y x λλ=+=得由所以⎪⎩⎪⎨⎧=-=.)1(0a y ea x λλ 因为点M 在椭圆上,所以 ,1220220=+b y a x 即.11)1(,1)()]1([22222222=-+-=+-eeba aeaλλλλ所以,0)1()1(2224=-+--λλe e 解得.1122e e -=-=λλ即(Ⅱ)当43=λ时,21=c ,所以.2c a = 由△MF 1F 2的周长为6,得.622=+c a所以.3,1,2222=-===c a b c a 椭圆方程为.13422=+yx(Ⅲ)解法一:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|,即.||211c PF =设点F 1到l 的距离为d ,由,1||1|0)(|||21221c eec a ea c e d PF =+-=+++-==得.1122e ee=+- 所以.321,3122=-==e eλ于是即当,32时=λ△PF 1F 2为等腰三角形.解法二:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|,设点P 的坐标是),(00y x ,则⎪⎪⎩⎪⎪⎨⎧+-=+-=⎪⎪⎩⎪⎪⎨⎧+-=+-=+-.1)1(2,13.22102202200000e a e y c e e x a c x e y e c x y 解得 由|PF 1|=|F 1F 2|得,4]1)1(2[]1)3([2222222c e a e c e c e =+-+++-两边同时除以4a 2,化简得.1)1(2222e e e =+- 从而.312=e于是32112=-=e λ. 即当32=λ时,△PF 1F 2为等腰三角形.。

相关文档
最新文档