机械课件第11章 齿轮传动07
过程装备基础 第11章 齿轮传动与蜗杆传动
rb2 ’
ra2
2 OO 2 2
24
啮合线
点击图标播放
25
11.5
斜齿圆柱齿轮传动
11.5.1 斜齿圆柱齿轮的形成及其传动特点
(1)齿廓曲面的形成 基圆柱上的螺旋角: b 分度圆柱上的螺旋角:
发生面 K K A 发生面 发生面 K
渐开线 ?端面齿形
b
K
A
B
A B
A
直齿轮齿廓曲面的形成
40
(5)齿面塑性变形
原因:用软钢或其它较软的材料制造的齿轮在重 载下工作。 条件:低速、起动频繁和瞬时过载。 现象:渐开线形状被破坏,瞬时传动比不恒定。 措施:提高齿面硬度,采用油性好的润滑油。
41
11.6.2 齿轮材料及热处理 (1)齿轮材料
45号钢 中碳合金钢 金属材料 低碳合金钢 最常用,经济、货源充足 40Cr、40MnB、35SiMn等 20Cr、20CrMnTi等
* 齿根圆直径 d f d 2hf ( z 2ha 2c* )m
基圆直径 db d cos mzcos
p m 齿距 齿厚与槽宽 s e m / 2
基圆齿厚
pb db / z mzcos / z m cos p cos
43
(3)按齿面硬度分类
软齿面( HBS≤350)齿轮:
主要失效形式:齿面点蚀。 应用:多用于中、低速传动。 热处理:调质或正火处理,热处理后再进行轮齿的精切。
硬齿面( HBS>350)齿轮:
主要失效形式:齿根弯曲疲劳折断。 应用:高速、中载、无猛烈冲击的重要齿轮。
热处理:中碳钢经表面淬火处理或用低碳钢经表面渗碳淬火处理。
机械原理 轮系
i= 14
z2z3z4 z1z2' 3' z
传动比方向判断: 传动比方向判断:画箭头 传动比大小表示: 传动比大小表示:在传动比大小前加正负号
§11-3 周转轮系的传动比 11一、周转轮系传动比计算原理 1.反转法 1.反转法——转化轮系 反转法 转化轮系
给整个轮系加上一个假想的公共角速度(-wH),据相对 的公共角速度( 运动原理,各构件之间的相对运动关系并不改变,但此 运动原理,各构件之间的相对运动关系并不改变, 时系杆的角速度就变成了wH-wH=0,即系杆可视为静止不 =0, 动。于是,周转轮系就转化成了一个假想的定轴轮系— 于是,周转轮系就转化成了一个假想的定轴轮系— —周转轮系的转化机构。 周转轮系的转化机构。
z5 L ⇒ω3 = − ω5 L (2) z3′
3)联立(1)、(2)求解 联立(1)、(2)求解 (1)
z ω1 z2 z3 1 + 5 + 1 ⇒ i15 = = ω5 z1 z2′ z3′
33× 78 78 = 1+ +1 = 28.24 24 × 21 18
-ω H
ωH
ω H - ω H=0
周转轮系 假想定轴轮系
转化轮系
指给整个 周转轮系加上 一个“ 的 一个“-wH”的 公共角速度, 公共角速度, 使系杆H变为 相对固定后, 相对固定后,
原轮系
所得到的假想 转化轮系 的定轴轮系。 的定轴轮系。
2. 转化轮系中各构件的角速度
3. 转化轮系的传动比
在运动简图上用箭头标明两轮的转向关 在运动简图上用箭头标明两轮的转向关 箭头标明 系。
大小: 大小:
ω 从动齿轮齿数连乘积 1 = i1k = ωk 主动齿轮齿数连乘积
第十一章 齿轮传动
机械设计
用来考虑齿轮副在啮合过程中,因啮合误差(基圆齿距
误差、齿形误差和轮齿变形等)所引起的内部附加动载荷对
轮齿受载的影响
由于啮合轮齿
的基节不等,即
pb1 pb2
使第二对轮齿在尚 未进入啮合区时就 提前在点A′开始啮 合,使瞬时速比发 生变化而产生冲击 和动载荷。传动比
i 1 r2 r 2 r1 r
淬 度 芯部 — 低碳钢本身的硬度(低硬度)
火 适用钢材 — 低碳钢、低碳合金钢
应用 — 高速重载,有很大冲击齿轮,如汽车拖拉齿轮
特 点 —热处理后齿面将产生变形,一般都需要磨齿
机械设计
齿轮的热处理方法
渗氮
处理方法 — 用化学方法对齿面渗氮
齿面硬度 — 大于850 HV
适用钢材 — 38CrMoAlA 特点及应用 —热处理变形小,用于齿面硬度要求
机械设计
(3)制造、安装误差、齿面跑合性轴承及箱体的变形 等对载荷集中均有影响
当两轮均为硬齿面时:
;否则
宽径比
较小、齿轮在轴承间对称布置、轴的刚性
较大时,取小值;反之 取大值。
减小Kβ的方法:
提高齿轮制造和安装精度、提高轴承和箱体的刚度 、合理选择齿宽、把齿轮布置在远离转矩输入端的位置( 上图示)、将齿侧沿齿宽方向进行修形或将齿面做成鼓形 等,可降低轮齿上的载荷集中。
4、齿间载荷分配系数Kα
机械设计
齿轮啮合过程中,单对 齿、双对齿交替参与啮合如 右图示,在双对齿啮合区内 ,载荷在两对齿上的分布是 不均匀的。主要是因为载荷 作用点的位置在啮合线上是 不断变化的,导致轮齿的刚 度也不断的变化,刚度大者 承担载荷也大,这样就造成 了载荷在齿间分配是不均匀 的.
第十一章 齿轮传动
强度计算方法
当量齿轮法,强度当量。 接触强度计算公式
校核公式
H
ZEZH Z
KT 1 u 1 bd 1
2
u
H
H lim
N / mm
2
设计公式
d1 2 KT
3 1
SH
2
d
u 1 ZEZ u
H
Z
H
mm
Z
cos 螺旋角系数
H
[
H
]
σH ——齿面啮合点最大接触应力 [σH]——齿轮材料的许用接触应力
圆柱面的最大接触应力σH的计算
赫兹公式:
H
4
Fn 2 ab
Fn
1
1
1 1 E1
2
1
2
1 21 E2
2
b
σH ——最大接触应力
与法向力Fn成正比; 与接触变形宽度2a成反比 与曲率半径ρ1 、ρ2成反比。 与宽度b成反比。
增加中心距a; 减小外载荷T1; 选σHlim高的材料和热处理。
336 ( u 1) u
3
提高许用接触应力[σH] :
KT 1 ba
2
H
H
H lim
SH
11-6 直齿圆柱齿轮传动的轮 齿弯曲强度计算
轮齿相当于一个悬臂 梁,受载后会发生弯 曲。 两个问题:
计算时载荷的作用点 及大小 危险截面的位置
公差配合与检测技术 第11章 圆柱齿轮传动的公差及齿轮测量.ppt
其合格条件为:齿距累积公差Fp≥齿距累积误差ΔFp;K 个齿距累积公差Fpk≥K个齿距累积误差ΔFpk。
齿距累积误差的测量可分为绝对测量和相对测量。其 中,以相对测量应用最广。
相对测量按其定位基准的不同,可分为以齿顶圆、 齿根圆和孔为定位基准三种,如图11-5所示。
图11-2 切向综合误差曲线
切向综合总偏差反映齿轮一转的转角误差,说明齿 轮运动的不均匀性。
切向综合总偏差反映出齿轮的径向误差、切向误差, 基圆齿距偏差、齿廓形状偏差等综合结果在转角误差上, 通过分度圆切线方向反映出来。
如图11-3所示为光栅式齿轮单啮仪的测量原理图。
图11-3 光栅式齿轮单啮仪的测量原理图
基础知识 齿轮及齿轮副的评定指标 重点知识 渐开线圆柱齿轮精度标准 难点知识 齿轮公差检验组及齿轮精度等级的选用
11.1齿轮的使用要求及三个公差组
11.1.1 齿轮传动的使用要求
齿轮传动装置是指齿轮、轴、轴承、箱体等零件的总和。 归纳起来,齿轮传动的使用要求可分为传动精度和齿
侧间隙两个方面,一般有如下要求:
1.传递运动的准确性
传递运动的准确性就是要求齿轮一转范围内,转角 误差的最大值应限制在一定范围内。
齿轮作为传动的主要元件,要求它能准确地传递运 动,即保证主动轮转过一定转角时,从动轮按传动比关 系转过一个相应的转角。如图11-1a)、b)所示。
图11-1 齿轮传 动比的 变化
5
为保证传递运动的准确性,应限制齿轮一转过程中的
单啮仪测量的主要优点:测量过程较接近齿轮的实 际工作状态,故齿轮综合测量能较好地反映齿轮的使用 质量,能连续测量被测齿轮全部啮合点的误差,是一种 综合测量,各单项误差可以相互抵消,避免把合格品当 作废品的失误,且测量效率高,便于实现测量自动化。
齿轮传动(第11章)
K F FtYFa1YSa1Y F1 F 1 bm K F FtYFa 2YSa 2Y F2 F 2 bm
② 应力和许用应力的关系 两齿轮弯曲应力是否相同?许用应力呢?
F
K F Ft YFaYSaY [ F ] bm
39
③
设计计算时,因为 m 3
8
§11.2
齿轮传动的失效形式
1.轮齿折断
原因: • 齿根弯曲应力大; • 齿根应力集中。
9
1、轮齿折断
★ 疲劳折断 ★ 过载折断
全齿折断—常发生于齿宽较小的直齿轮
局部折断—常发生于齿宽较大的直齿轮,和斜齿轮
措施:选用合适的材料及热处理方法,使齿根芯部 有足够的韧性;采用正变位齿轮以增大齿根的厚度; 增大齿根圆角半径,消除齿根加工刀痕;对齿根进 行喷丸、碾压等强化处理; 提高齿面精度、增大 模数等
d1 sin 2
cos d1 d1 cos
O2
d N 2C 2 2 sin 2
1 1 1 2
d 2 z2 2 d2 u 1 d1 d1 z1
②
d'2 2
'
(从动)
2
②
u 1 1 2 d1 cos tan u
23
§11.4 齿轮传动的计算载荷
名义载荷:
Fn p L
pca K Fn L
计算载荷:
载荷系数:K K A Kv K K
24
1.使用系数KA
考虑齿以外的其他因素对齿轮传动 的影响,主要考虑原动机和工作机的影响
原动机 载荷状况 均匀平稳 轻微冲击 中等冲击 严重冲击 工作机器 … … … … 电机 1.0 … 1.1 … 1.25 1.5 1.75 2.0 内燃 机… 1.5 1.75 2.0 2.25 25
2024年机械设计基础课件齿轮传动
机械设计基础课件齿轮传动机械设计基础课件:齿轮传动1.引言齿轮传动是机械设计中的一种基本传动方式,广泛应用于各种机械设备的运动和动力传递。
齿轮传动具有结构简单、传动效率高、可靠性好、寿命长等优点,因此在工业生产和日常生活中得到广泛应用。
本课件将介绍齿轮传动的基本原理、分类、设计方法和应用。
2.齿轮传动的基本原理齿轮传动是利用齿轮副的啮合来传递动力和运动的一种传动方式。
齿轮副由两个或多个齿轮组成,其中主动齿轮通过旋转驱动从动齿轮,从而实现动力和运动的传递。
齿轮副的啮合是通过齿轮齿廓的接触来实现的,齿廓的形状和尺寸决定了齿轮传动的性能和精度。
3.齿轮传动的分类齿轮传动根据齿轮的形状和布置方式可分为直齿圆柱齿轮传动、斜齿圆柱齿轮传动、直齿圆锥齿轮传动和蜗轮蜗杆传动等。
直齿圆柱齿轮传动是应用最广泛的一种齿轮传动方式,具有结构简单、制造容易、精度高等优点。
斜齿圆柱齿轮传动具有传动平稳、噪声低、承载能力强等优点,适用于高速和重载的传动场合。
直齿圆锥齿轮传动适用于空间狭小和角度传动的场合。
蜗轮蜗杆传动具有大传动比、自锁性和精度高等特点,适用于低速、大扭矩的传动场合。
4.齿轮传动的设计方法齿轮传动的设计主要包括齿轮的几何设计、强度设计和精度设计。
齿轮的几何设计是根据传动比、工作条件、材料等因素确定齿轮的齿数、模数、压力角等参数。
强度设计是保证齿轮传动在规定的工作条件下具有足够的承载能力和寿命,主要包括齿面接触强度和齿根弯曲强度的计算。
精度设计是保证齿轮传动的精度和运动平稳性,主要包括齿轮的加工精度和装配精度的控制。
5.齿轮传动的应用齿轮传动在工业生产和日常生活中得到广泛应用。
在机床、汽车、船舶、飞机等机械设备中,齿轮传动用于传递动力和运动,实现各种复杂的运动轨迹和速度变化。
在风力发电、水力发电等能源领域,齿轮传动用于传递高速旋转的动力,实现能源的转换和利用。
在、自动化设备等高科技领域,齿轮传动用于实现精确的运动控制和动力传递,提高设备的性能和效率。
11章-齿轮传动解析
材料、热处理、精度 1、设计 模数、齿数
2、准则:
闭式软齿面——按齿面接触强度设计, 后按轮齿弯曲强度校核
解: 1.选择材料并确定许用应力
小齿轮:40MnB、调质—— HB241-286,σHlim=680-760 ,σFE=580-610 取: σHlim=730 ,σFE=600 大齿轮:ZG35SiMn、调质—— HB241-269,σHlim=590-640 ,σFE=500-520 取: σHlim=620 ,σFE=510
模数: m=d1/z1=2.8(取m=3mm) 中心距: a=m( z1+z2)/2=225mm 齿宽:b=dd1=71.8mm(取b2=75, b1=80) 其它几何参数:……
3.验算轮齿弯曲强度
F
2KT1YFaYSa bm2 z1
[ F ]
齿形系数:YFa1=2.56,YFa2=1.63 应力校正系数:YSa1=2.13,YSa2=1.81
矩。
O1
Fn
γ
P
rb
O
O2
危险截面:齿根圆角30˚ 切线两切点连线处。
Fn
F1
γ
FF21
Fn Fn
cos sin
弯矩:M=F1 ·hF
= Fn cos ·hF
Fn
F2
hF
= KFn cos ·hF
A 30˚ 30˚ B
弯曲截面系数:W = b ·sF2/6
弯曲应力:
SF
F
M W
KFn coshF
齿宽系数d:
d=b/d1: d越大,则b越大
若结构的刚性不够,齿轮制造、安装不准确, 则容易发生载荷集中现象,使轮齿折断。
对称布置取大值; 刚性大时取大值; 齿面软时取大值;
第11章齿轮传动
一对钢制齿轮:
弹性模量:E1=E2=2.06×105 MPA 泊松比:μ 1=μ 2= 0.3, α=20
(u(u )3 3 KT1 11) KT1 H 285 335 335 [ H ] 代入赫兹公式得: H250 22 uba uba
引入齿宽系数:ψa=b/a
285 KT1 335 250 a (u 1) 3 得设计公式: [ ] u H a
d2 2
中心距 : a=(d2 ± d1)/2 = d1(u ±1)/2 或 : d1 = 2a /(u ±1)
1 1 ( 2 1 )
得: 1 2
1 2
2(d 2 d1 ) u 1 2 (u 1) 2 d1d 2 sin u d1 sin ua sin
Ft 2T1 F 在节点处,载荷由一对轮齿来承担: n cos d1 cos
轮齿折断 齿面点蚀 齿面胶合 齿面磨损
跑合磨损,磨粒磨损.
跑合磨损 磨粒磨损
设计:潘存云
措施:1.减小齿面粗糙度
2.改善润滑条件
§11-1 轮齿的失效形式
失效形式
轮齿折断 齿面点蚀 齿面胶合 齿面磨损 齿面塑性变形
主动齿
设计:潘存云
从动齿
§11-2
齿轮材料及热处理
优质碳素钢 常用齿轮材料 合金结构钢 铸钢 铸铁 表面淬火 ----高频淬火,火焰淬火 渗碳淬火 调质 热处理方法 正火 渗氮 1.表面淬火 一般用于中碳钢和中碳合金钢,如45,40Cr等.表面 淬火后轮齿变形小,可不磨齿,硬度可达52~56HRC, 面硬芯软,能承受一定冲击载荷.
公式中:"+"用于外啮合,"-"用于内啮合. 计算时取: 且m≥ 1.5
第十一章 齿轮传动PPT课件
影响载荷分布的均匀性 如:齿向误差
引起载荷分布不均匀
渐开线圆柱齿轮精度标准(GB10095-88)中规定了12个精度 等级。其中,1,2等级为远景级;
3,4,5级为高精度级; 6,7,8为中精度级,常用; 9,10,11,12级为低精度级。
常用6-9级
§11-4 直齿圆柱齿轮传动的作用力及计算载荷
措施:提高齿面硬度、 减小粗糙度;低速时采用 粘度大的润滑油;高速时 油中加抗胶合添加剂。
4、齿面磨损 原因:齿面进入磨料 后果:齿形破坏、变薄引起冲击
、振动,甚至断齿
措施:改善润滑、提高齿面硬度 、改用闭式传动
5 、轮齿塑性变形 齿体塑性变形:突然过载,引起齿体歪斜 齿面塑性变形:齿面表层材料沿摩擦力方向流动 原因:齿面软,润滑失效、摩擦变大 后果:齿廓形状变化,不能正确啮合 措施:提高齿面硬度、提高润滑油粘度
齿轮传动除需运转平稳外,还必须具有足够的承载能力。 本章讨论标准齿轮传动的强度计算。
齿轮传动的分类
开式:齿轮外露,不能防尘,周期润滑,精度低;
按工作条件
闭式:封闭在箱体内,安装精度高,润滑条件好。
按齿面硬度
软齿面: HBS<350 硬齿面: HBS>350
齿轮各部分的名称和符号
§11-1 轮齿的失效形式
最常用的材料:优质碳素钢,合金结构钢; 其次:铸钢、铸铁,还有非金属材料。
多采用锻件或轧制钢材。当直径大、不易 锻造时采用铸钢。低速传动可用灰铸铁。
二、齿轮的热处理 1. 表面淬火 表面淬火后再低温回火。
常用材料:中碳钢、中碳合金钢(45、40Gr) 齿面硬度52~56 HRC,齿变形不大,可不磨齿。 高频淬火、火焰淬火。 表面硬,芯部韧。
机械设计第十一章 齿轮传动PPT课件
齿轮常用的热处理方法
调 质 改善机械性能,增大强度和韧性; 正 火 ( HBS≤350)软齿面。
表面淬火
渗碳淬火
接触强度高、耐磨性好、可抗冲击; ( HBS>350)硬齿面。
原因: (1)轮齿在节线处啮合时,同时参与啮合的齿较少,表面
接触应力较大; (2)齿面滑动速度较小且速度方向有变化,齿面间不易形
成油膜,摩擦力大。
措施: 提高材料的硬度; 加强润滑,提高油的粘度
3、齿面胶合
措施: 减小模数,降低齿高; 抗胶合能力强的润滑油; 材料的硬度及配对。
※ 高速重载:散热不良,滑动速度大,齿面粘连后撕脱 ——热胶合。 ※ 低速重载:一般没有很大的摩擦热,两接触齿面间的 表面膜被刺破而产生粘着后撕脱 ——冷胶合。
Fr Fttg
单位:KW
T19.55 16 0P n (Nm)m
单位:r/min
★ 两 个 力 的 方 向:
指向齿轮的中心
主动轮 阻碍主动轮转动
作用在主动轮上的:
圆周力Ft1 :与n1的方向相反;
作用在从动轮上的:
圆周力Ft2 :与n2的方向相同; 既: Ft1, Ft2 大小相等,方向相反;
径向力Fr1 :指向O1 ; Fr2 :指向O2 ;
18
齿轮传动精度
《机械设计课程设计》 P170 GB10095—1988对圆柱齿轮及齿轮副规定了12个精度等级 1级的精度等级最高,12级的精度等级最低; 机械工程中常用的是: 6~9 级精度; 在铣床上加工齿轮(成形法):经济精度为:8、9级精度; 滚齿机加工齿轮: 经济精度为:7、8级精度;
《机械设计基础》课件 第11章 齿轮传动
H
2
bd1
u
Zβ cos
32
§11-8 斜齿圆柱齿轮传动
2 KT1
F
YFaYSa F
bd1mn
2 KT1 YFaYSa
2
mn 3
cos
2
d z1 F
z
zv
3
cos
33
§11-9 直齿圆锥齿轮传动
34
§11-9 直齿圆锥齿轮传动
35
轴向力:
Fa Ft tan
29
§11-8 斜齿圆柱齿轮传动
力的方向:
圆周力t :主动轮与运动方向相反,
从动轮与运动方向相同
径向力r :两轮都是指向各自的轴心
轴向力a :主动轮的左(右)手法则
30
根据主动轮轮齿的齿向(左旋或右旋)伸左手或右手,四指
沿着主动轮的转向握住轴线,大拇指所指即为主动轮所受的
轮齿会变形,需要磨齿。
二、主要参数
1. 齿数比:一般≤7,同要求的传动比误差≤ (3~5)%
2. 齿数:一般z1>17
3. 齿宽:过大,宽度方向载荷分布不均匀
28
§11-8 斜齿圆柱齿轮传动
一、轮齿上的作用力
轮齿所受总法向力
可分解为:
2T1
圆周力:Ft
d1
Ft tan n
径向力:Fr
cos
开式传动的主要失效形式为齿面磨粒磨损和轮齿的弯曲疲劳
折断。
由于目前齿面磨粒磨损尚无完善的计算方法,因此通常只对
其进行抗弯曲疲劳强度计算,并采用适当加大(10%~20%)
模数(或降低许用弯曲应力)的方法来考虑磨粒磨损。
机械设计第11章斜齿与圆锥齿轮传动
2a
2 135
d1
mn z1
cos
2 27 cos15.642
mm 56.08mm 47
d2
mn z1
cos
2 1.3 mm 213.92mm cos15.642 47
b d d1 1.1 56.08mm 61.69mm
圆整取b2=65 mm,b1=70mm。
(3) 用式(8-43)校核
[
]F1
F2
F2
YFS 2 YFS1
51.37
3.95 4.1
M
Pa
49.49Mpa
[
]F
2
6. 确定齿轮的传动精度 齿轮的圆周速度
v d1n1 56.081450 4.25m / s
601000 601000
由表8-11综合评价,确定齿轮为8级精度。
8.12
1.
图8-49(a)所示为直齿圆锥齿轮传动的受力情况。设法向力
2. 实心式齿轮 图8-51 实心结构的齿轮
图8-52 齿轮轴
图8-53 腹板式齿轮
3.
当齿顶圆直径da≤500 mm时,为了减少质量和节约材料, 通常要用腹板式结构。应用最广泛的是锻造腹板式齿轮,对以 铸铁或铸钢为材料的不重要齿轮,则采用铸造腹板式齿轮。
4. 轮辐式齿轮
当齿轮直径较大,如da=400~1000 mm,多采用轮辐式的 铸造结构(如图8-54)。 轮辐剖面形状可以是椭圆形(轻载)、T字 形(中载)及工字形(重载)等,圆锥齿轮的轮辐剖面形状只用T字 形。
T1
9.55 106
P1 n1
9.55 106 7.5 1450
N
mm
4.94 104 N
mm
机械设计基础 第十一章
11.2.3 惰轮
如图11-7所示的定轴齿轮系中,运动由齿轮1经齿 轮2传给齿轮3。总的传动比为:
i13
n1 n3
z2 z3 z1z2
z3 z1
图11-7 惰轮的应用
【例11-1】如图11-2所示空间定轴轮系,蜗杆的头数 z1 2, 右旋;蜗轮的齿数z2 60,z2 20,z3 24,z3 20,z4 24, z4 30,z5 35,z5 28,z6 135 。若蜗杆为主动轮,其转速 n1 900 r / min ,试求齿轮 6 的转速n6 的大小和转向(用画箭头
14.8
r
/
min
负号表示末轮5的转向与首轮1相反,顺时针转动。
11.3 行星齿轮系的传动比计算
行星齿轮系传动比的计算方法有许多种,最常用的是转化 机构法,即设想将周转轮系转化为假想的定轴轮系,借用定 轴轮系传动比计算公式来求解周转轮系中有关构件的转速及 传动比。
如图11-8所示,现假想给行星齿轮系加一个与行星架
相同。
iH1
nH n1
600 120
5
11.4 混合齿轮系的传动比计算
既包含定轴齿轮系又包含行星齿轮系的齿轮系,称为混 合齿轮系,如图11-10所示。
图11-10 混合齿轮系
计算混合齿轮系传动比的一般步骤如下:
① 区分轮系中的定轴齿轮系部分和行星齿轮系部分。 ② 分别列出定轴齿轮系部分和行星齿轮系部分的传动比公式, 并代入已知数据。 ③ 找出定轴齿轮系部分与行星齿轮系部分之间的运动关系,并 联立求解即可求出混合轮系中两轮之间的传动比。
传动比 iGHK 也不等于绝对传动比 iGK 。
【例11-3】在图11-8(a) 所示的差动齿轮系中,已知n1 100 r / min n3 60 r / min,n1与 n3 转向相同;齿数z1 17,z2 29,z3 75
第十一章机械传动与连接
1.蜗杆传动的特点 ①可以用较紧凑的一级传动得到很大的传动比。②传动平稳无噪声。③具有自 锁性。④效率低。⑤有轴向分力。⑥制造蜗轮需用贵重的青铜,成本较高。
第三节 蜗杆传动
2.蜗杆传动的类型及应用场合 根据蜗杆的形状,蜗杆传动分为圆柱蜗杆传动、环面蜗杆传动等。圆柱蜗杆传 动又分为普通圆柱蜗杆传动和圆弧圆柱蜗杆传动。 常用的普通圆柱蜗杆是用车刀加工的(图11-21),轴向齿廓(在通过轴线的轴向AA剖面内的齿廓)为齿条形的直线齿廓,法向齿廓(在法向N-N截面内的齿廓)为曲线齿 廓,而垂直于轴线的平面与齿廓的交线为阿基米德螺旋线,故称为阿基米德蜗杆。其 蜗轮是一具有凹弧齿槽的斜齿轮。由于这种蜗杆加工简单,所以应用广泛。
目录
1 带传动 2 齿轮传动 3 蜗杆传动 4 轴与联轴器 5 轴承 6 螺纹联接、键联接、销联接
第一节 带传动
一、带传动及分类 1.带传动原理图11-1 带传动
带传动由主动带轮、从动带轮和紧套在 两带轮上的传动带所组成(图11-1),利用传动 带把主动轴的动力传递给从动轴。
带安装时必须张紧,这使得带在运转之 前就有初拉力。因此,在带与带轮的接触面 之间有正压力。当主动带轮转动时,带与带 轮的接触面之间产生摩擦力,于是主动带轮 靠摩擦力驱动传动带运动,带又靠摩擦力驱 动从动带轮转动。所以,带传动是靠带与带 轮之间的摩擦力来进行工作的。
外伸端。
③安装时,主动带轮与从动带轮的轮槽应对正,
如图11-10(a)所示,不要出现图11-10(b)和(c)的情况,
使带的侧面受损。
④带的张紧程度应适当,使初拉力不过大或过小。
过大会降低带的寿命,过小则将导致摩擦力不足而出
现打滑现象。
⑤带传动通常同时使用同一型号的V带3-5根, 应注意新旧不同的V带不得混用,以避免载荷分配 不均,加速带的损坏。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钢----铸铁 取:285 ,铸铁----铸铁 取: 250
根据接触强度条件 : 接触应力小于许用接触应力, 得 : H [ H ]
得到一对钢制标准齿轮传动的齿面接触强度验算校验公式为
(u 1)3 KT1 H 335 [ H ] ( MPa) 2 uba 齿宽 b 取齿宽系数 a ,则上式变为如下设计公式 : 中心距 a 335 2 KT1 a (u 1)3 ( ) mm [ H ] a u 注意:
§11-10 齿轮传动的润滑和效率
第11章
齿轮传动
作用: 不仅用来传递运动、而且还要传递动力。 要求: 运转平稳、足够的承载能力。
分类
开式传动
闭式传动
----裸露、灰尘、易磨损,适于 低速传动。 ----润滑良好、适于重要应用;
§11-1 轮齿的失效形式
轮齿折断
一般发生在齿根处,严重 过载突然断裂、疲劳折断。
第11章 齿轮传动
§11-1 §11-2 §11-3 轮齿的失效形式 齿轮材料及热处理 齿轮传动的精度
§11-4
§11-5 §11-6 §11-7 §11-8 §11-9
直齿圆柱齿轮传动的作用力及计算载荷
直齿圆柱齿轮传动的齿面接触强度计算 直齿圆柱齿轮传动的弯曲强度计算 斜齿圆柱齿轮传动 直齿圆锥齿轮传动 齿轮的构造
4. 正火 正火能消除内应力、细化晶粒、改善力学性能和切削
性能。机械强度要求不高的齿轮可用中碳钢正火处理。
大直径的齿轮可用铸钢正火处理。
5. 渗氮
渗氮是一种化学处理。渗氮后齿面硬度可达60~62HRC。 如内齿轮。材料为:38CrMoAlA.
氮化处理温度低,轮齿变形小,适用于难以磨齿的场合,
特点及应用: 调质、正火处理后的硬度低,HBS ≤ 350,属软齿面, 工艺简单、用于一般传动。当大小齿轮都是软齿面时, 因小轮齿根薄,弯曲强度低,故在选材和热处理时, 小轮比大轮硬度高: 20~50HBS 表面淬火、渗碳淬火、渗氮处理后齿面硬度高,属硬 齿面。其承载能力高,但一般需要磨齿。常用于结构 紧凑的场合。
2. 渗碳淬火 渗碳钢为含碳量0.15~0.25%的低碳钢和低碳合金钢, 如20、20Cr等。齿面硬度达56~62HRC,齿面接触强 度高,耐磨性好,齿芯韧性高。常用于受冲击载荷的 重要传动。通常渗碳淬火后要磨齿。 3.调质 调质一般用于中碳钢和中碳合金钢,如45、40Cr、 35SiMn等。调质处理后齿面硬度为: 220~260HBS 。因为硬度不高,故可在热处理后精 切齿形,且在使用中易于跑合。
误差的影响: 1.转角与理论不一致,影响运动的不准确性; 2.瞬时传动比不恒定,出现速度波动,引起震动、 冲击和噪音影响运动平稳性; 3.齿向误差导致轮齿上的载荷分布不均匀,使轮齿提 前损坏,影响载荷分布的不均匀性。 国标GB10095-88给齿轮副规定了12个精度等级。其中1 级最高,12级最低,常用的为6~9级精度。 按照误差的特性及它们对传动性能的主要影响,将齿
失效形式
轮齿折断 齿面点蚀 齿面胶合 齿面磨损
跑合磨损、磨粒磨损。
跑合磨损 磨粒磨损
设计:潘存云
措施:1.减小齿面粗糙度
2.改善润滑条件
§11-1 轮齿的失效形式
失效形式
轮齿折断 齿面点蚀 齿面胶合 齿面磨损 齿面塑性变形
§11-2
齿轮材料及热处理
优质碳素钢 常用齿轮材料 合金结构钢 铸钢 铸铁 表面淬火 ----高频淬火、火焰淬火 渗碳淬火 调质 热处理方法 正火 渗氮 1.表面淬火 一般用于中碳钢和中碳合金钢,如45、40Cr等。表面 淬火后轮齿变形小,可不磨齿,硬度可达52~56HRC, 面硬芯软,能承受一定冲击载荷。
200
200 100 300 HBS
200 HBS
齿轮的接触疲劳极限σHlim
1500
1400
σHlim(N/mm) 1300
σHlim(N/mm)
合金钢 渗碳淬火
1500 1400 1300 1200 1100 调质钢氮化 1000 900 800 30 40 50 60 HRC
轻型减速器取 a 0.2 ~ 0.4,中型减速器取 a 0.4 ~ 0.6,重型减速器取 a 0.8
4 由接触应力性质可知:
H1 H 2 H
5 由于大、小齿轮一般材料不同,所以: H 1 H 2 ,若按齿面接触强度设
计齿轮传动,应将 [ H ]1 和 H 2 的较小值代入设计公式。
一、轮齿上的作用力及计算载荷 各作用力的方向如图
2T1 圆周力: Ft d 1
d2 2 t N1 Fn
O2 α ω2 (从动)
O2
α Fn N2 Fr α t c Ft d1 T1 2 ω1 α (主动) O1
设计:潘存云
径向力: Fr1 Fr 2 Ft tg 法向力: Fn Ft / cos
引入齿宽系数:ψa=b/a
285 KT1 335 250 a 得设计公式: (u 1) [ H ] a u
3 2
mm
模数m不能成为衡量齿轮接触强度的依据。
当一对齿轮的材料,传动比 以及齿宽系数一定时,由齿 面接触强度所决定的承载能 力,仅与中心距a或齿轮得 分度圆有关。分度圆直径分 别相等的两对齿轮,不论其 模数是否相等,具有相同的 承载能力。 当配对齿轮的材料不同时, 公式中的系数也不同。
优质碳素钢
45
50
40Cr 合金结构钢 铸 钢 灰铸铁
35SiMn 40MnB
……
……
ZG270-500
…… ……
140~170 HBS
……
170~230 HBS
HT200 QT500-5
……
147~241 HBS
球墨铸铁
……
……
详细数据见P161或机械设计手册
§11-3
齿轮传动的精度等级
制造和安装齿轮传动装置时,不可避免会产生齿形误 差、齿距误差、齿向误差、两轴线不平行误差等。.
6 一般 b1=b2+(5 ─ 10) b1 1
2 b2
许用接触应力:[ H ]
H lim
SH
MPa
σHlim ----接触疲劳极限, 由实验确定,
SH ----为安全系数,查表11-4 确定。
表11-4 安全系数SH和SF
安全系数 软齿面 (HBS≤ 350) 重要的传动、渗 硬齿面 碳淬火齿轮或铸 (HBS> 350) 造齿轮 1.1~1.2 1.4~1.6 1.3 1.6~2.2
1 上式只适用一对钢制标准齿轮,材料改变时,系数335要改变. 2 由上式可见,当一对齿轮的材料、中心矩a,传动比u及齿宽系数Ψa一定时, σH模数m无关。 例:Z1=40,Z2=120,m=5 ▬ a=400,u=3 Z1=20,Z2=60,m=10 ▬ a=400,u=3 3 由于齿宽过大容易发生载荷集中现象,使轮齿折断。 σH相同
1.8~2.0
1.9~2.1 2.2~2.4
§11-5
直齿圆柱齿轮传动的齿面接触强度计算
齿轮强度计算是根据齿轮可能出现的失效形式来进行的。在一般闭式齿轮传动中,轮齿的失效主要是齿 面接触疲劳点蚀和轮齿弯曲疲劳折断。齿面疲劳点蚀与齿面接触应力的大小有关,而齿面的最大接触应 2 力可近似用赫兹公式进行计算。
SH SF
1.0~1.1
1.3~1.4
600
σHlim(N/mm) 500
球墨铸铁
σHlim(N/mm)
600
800 700 σHlim(N/mm)
普通碳素 500 钢正火
400
合金钢调质
400
300 200 100
灰铸铁
300
铸钢 正火
优质碳素钢 600 调质或正火 合金铸 钢调质 500 铸钢调质 400 100 200 300 HBS
表11-1
类 别 牌 号
35
常用的齿轮材料
热处理
正火 调质 表面淬火 正火 调质 表面淬火 正火 调质 表面淬火 调质 表面淬火 调质 …… 正火 ……
设计:潘存云
硬度(HBS或HRC)
150~180 HBS 180~210 HBS 40~45 HRC 170~210 HBS 210~230 HBS 43~48 HRC 180~220 HBS 240~285 HBS 52~56 HRC 200~260 HBS 40~45 HRC 240~280 HBS
计算齿轮强度时,采用
上述法向力为名义载荷,理论上沿齿宽均匀分 布,但由于轴和轴承的变形,传动装置制造和 安装误差等原因载荷并不是均匀分布,出现载 荷集中的现象。图示轴和轴承的刚度越小,齿 宽b越宽,载荷集中越严重。
设计:潘存云
此外轮齿变形和误差还会引起附加动载荷,且 精度越低,圆周速度越高,动载荷越大。
轮的各项公差分成三组,分别反映传递运动的准确性,
传动的平稳性和载荷分布的均匀性。
表11-2 齿轮传动精度等级的选择及其应用
精度等级 圆周速度 v(m/s)
直齿圆 柱齿轮 斜齿圆 柱齿轮 直齿圆 锥齿轮
应
用
6级
≤ 15
≤ 25
≤9
高速重载齿轮传动,如飞机、 汽车和机床中的重要齿轮;分 度机构的齿轮传动。
2T1 Ft 在节点处,载荷由一对轮齿来承担:Fn cos d1 cos
一对钢制齿轮:
弹性模量:E1=E2=2.06×105 MPA 泊松比:μ 1=μ 2= 0.3, α=20˚
(u(u )3 3 KT1 11) KT1 335 335 [ H ] 代入赫兹公式得: H 285 H250 22 uba uba
失效形式
轮齿折断 齿面点蚀 齿面胶合