八年级数学下册2.5一元一次不等式与一次函数中考链接一元一次不等式与一次函数素材(新版)北师大版
初中数学八下习题与解析2-5 第1课时 一元一次不等式与一次函数的关系
2.5 一元一次不等式与一次函数 第1课时 一元一次不等式与一次函数的关系一、选择题1.已知函数y =8x -11,要使y >0,那么x 应取( )A .x >811 B .x <811C .x >0D .x <02.已知一次函数y =kx +b 的图像,如图所示,当x <0时,y 的取值范围是( •) A .y >0 B .y <0 C .-2<y <0 D .y <-23.已知y 1=x -5,y 2=2x +1.当y 1>y 2时,x 的取值范围是( )A .x >5B .x <12C .x <-6D .x >-6 4.已知一次函数y kx b =+的图象如图所示,当x <1时,y 的取值范围是( )A .-2<y <0B .-4<y <0C .y <-2D .y <-45.一次函数y 1=kx +b 与y 2=x +a 的图象如图,则下列结论①k<0;②a>0;③当x <3 时,y 1<y 2中,正确的个数是( ) A .0 B .1 C .2 D .36.如图,直线y kx b =+交坐标轴于A ,B 两点,则不等式0kx b +>的解集是( )A .x >-2B .x >3C .x <-2D .x <36题 8题7.已知关于x 的不等式ax +1>0(a ≠0)的解集是x <1,则直线y =ax +1与x 轴的yx 1-2-1y k b =+2y k x =O xyA(-2,0)B (0,3) x y O3y 2=x +ay 1=kx +b 5题-2 y O1 2题x-4 yO2 4题xOxyAy 1y 214题交点是( )A .(0,1)B .(-1,0)C .(0,-1)D .(1,0)8.直线1l :1y k x b =+与直线2l :2y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式12k x b k x +>的解为( ) A 、x >-1B 、x <-1C 、x <-2D 、无法确定二、填空题9.若一次函数y =(m -1)x -m +4的图象与y 轴的交点在x 轴的上方,则m 的取值范围是________.10.如图,某航空公司托运行李的费用与托运行李的重量的关系为一次函数,由图可知行李的重量只要不超过________千克,就可以免费托运.11.当自变量x 时,函数y =5x +4的值大于0;当x 时,函数y =5x +4的值小于0.12.已知2x -y =0,且x -5>y ,则x 的取值范围是________.13.如图,已知函数y =3x +b 和y =ax -3的图象交于点P(-2,-5),则根据图象可得不等式3x +b >ax -3的解集是_______________. 14.如图,一次函数y 1=k 1x +b 1与y 2=k 2x +b 2的图象相交于A(3,2),则不等式(k 2-k 1)x +b 2-b 1>0的解集为_________. 15.已知关于x 的不等式kx -2>0(k ≠0)的解集是x <-3,则直线y =-kx +2与x•轴的交点是__________. 16.已知不等式-x +5>3x -3的解集是x <2,则直线y =-x +5与y =3x -3•的交点坐标是_________.三、能力提升17.已知:y 1=x+3,y 2=-x+2,求满足下列条件时x 的取值范围:O 10 (千克)y (元)10题20 30 40 50300 400 500O 2 2 -2-2xyy =3x +by =ax -3 13题(1)y1<y2(2)2y1-y2≤418.在同一坐标系中画出一次函数y1=-x+1与y2=2x-2的图象,并根据图象回答下列问题:(1)写出直线y1=-x+1与y2=2x-2的交点P的坐标.(2)直接写出:当x取何值时y1>y2;y1<y2四、聚沙成塔如果x,y满足不等式组350xx yx y≤⎧⎪+≥⎨⎪-+≥⎩,那么你能画出点(x,y)所在的平面区域吗?参考答案1.A;2.D;3.C;4.C;5.B;6.A;7.D;8.B;9.m<4且m≠1;10.20;11.x>-45,x<-45;12.x<-5;13.x>-2;14.x<3;15.(-3,0);16.(2,3).17.(1)12x<-;(2)x≤0.18.(1)P(1,0);(2)当x<1时y1>y2,当x>1时y1<y2.聚沙成塔在直角坐标系画出直线x=3,x+y=0,x-y+5=0,因原点(0,0)不在直线x-y+5=0上,故将原点(0,0)代入x-y+5可知,原点所在平面区域表示x-y+5≥0部分,因原点在直线x+y=0上,故取点(0,1)代入x+y判定可知点(0,1)所在平面区域表示x+y≥0的部分,见图阴影部分.。
北师版《一元一次不等式与一元一次不等式组》2.5.1一元一次不等式与一次函数的关系(练习题课件)
12.【2019·常德】某生态体验园推出了甲、乙两种消费卡, 设入园次数为x时所需费用为y元,选择这两种卡消费时, y与x的函数关系如图所示,解答下列问题: (1)分别求出选择这两种卡消费时,y关于x的函数表达式;
解:设y甲=k1x,根据题意得5k1=100, 解得k1=20,∴y甲=20x; 设y乙=k2x+100, 将点(20,300)的坐标代入得20k2+100=300, 解得k2=10.∴y乙=10x+100.
4.如图,直线y1=x+b与y2=kx-1相交于点P,点 P的横坐标为-1,则关于x的不等式x+b>kx-1 的解集在数轴上表示正确的是( A )
*5.如图,已知正比例函数 y1=ax 与一次函数 y2=12x+b 的图象交于点 P.下面有四个结论:①a<0;②b<0; ③当 x>0 时,y1>0;④当 x<-2 时,y1>y2.其中正 确的是( ) A.①② B.②③ C.①③ D.①④
(2)该药店四月份计划一次性购进两种型号的口罩共10 000 只,其中B型口罩的进货量不超过A型口罩的1.5倍,设 购进A型口罩m只,这10 000只口罩的销售总利润为W 元.该药店如何进货,才能使销售总利润最大?
解:根据题意得, W=0.5m+0.6(10 000-m)=-0.1m+6 000, 由题知10 000-m≤1.5m,解得m≥4 000. ∵-0.1<0,∴W随m的增大而减小. ∴当m=4 000时,W取最大值, W最大=-0.1×4 000+6 000=5 600, 即药店购进A型口罩4 000只、B型口罩6 000只,才能使 销售总利润最大,最大总利润为5 600元.
【点拨】由图象知,对于 y1=ax,y1 随 x 的增大而减小, ∴a<0,故①正确;直线 y2=12x+b 与 y 轴交于正半轴, ∴b>0,故②错误;当 x>0 时,y1<0,故③错误;当 x<-2 时,直线 y1=ax 在直线 y2=12x+b 的上方,
一次函数与一元一次不等式的关系
一次函数与一元一次不等式的关系一次函数和一元一次不等式是初中数学中比较基础的知识点,两者之间也有着密切的联系。
本文将从定义、性质、图像等方面探讨一次函数和一元一次不等式之间的关系。
一、一次函数的定义一次函数是指形如 $y=kx+b$ 的函数,其中 $k$ 和 $b$ 都是常数,$x$ 和 $y$ 是变量。
其中,$k$ 称为斜率,表示函数图像的倾斜程度;$b$ 称为截距,表示函数图像与 $y$ 轴的交点。
二、一元一次不等式的定义一元一次不等式是指形如 $ax+b>0$ 或 $ax+b<0$ 的不等式,其中 $a$ 和 $b$ 都是实数,$x$ 是变量。
其中,$a$ 表示不等式左侧的系数,$b$ 表示不等式右侧的常数。
三、一次函数的性质1. 斜率为正,则函数是单调递增的;斜率为负,则函数是单调递减的。
2. 截距表示函数与 $y$ 轴的交点,当 $x=0$ 时,$y=b$。
3. 一次函数的图像是一条直线,可以通过两个点来确定。
四、一元一次不等式的性质1. 当 $a>0$ 时,不等式的解集为 $x>-b/a$;当 $a<0$ 时,不等式的解集为 $x<-b/a$。
2. 如果不等式中的 $<$ 变成了 $leq$ 或 $geq$,则解集不变。
3. 如果不等式中的 $>$ 和 $<$ 交换,不等式的解集也随之交换。
五、一次函数和一元一次不等式的关系1. 一次函数的图像可以用来表示一元一次不等式的解集。
例如,不等式 $2x+3>0$ 的解集可以表示成一次函数 $y=2x+3$ 在$y>0$ 区域的图像。
2. 一元一次不等式的解集也可以用来表示一次函数的定义域或值域。
例如,不等式 $3x-1<5$ 的解集为 $x<2$,则一次函数$y=3x-1$ 的定义域为 $(-infty, 2)$。
3. 一次函数的斜率和截距也可以用来确定一元一次不等式的形式。
八年级数学下册 第二章 一元一次不等式(组)知识点归纳 (新版)北师大版.doc
第二章 一元一次不等式与一元一次不等式组1. 不等关系2. 不等式的基本性质3. 不等式的解集4.一元一次不等式5.一元一次不等式与一次函数6.一元一次不等式组 一.不等关系※1. 一般地,用符号“<”(或“≤”), “>”(或“≥”)连接的式子叫做不等式. ¤2. 要区别方程与不等式: 方程表示的是相等的关系;不等式表示的是不相等的关系. ※3. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数 <===> 大于等于0(≥0) <===> 0和正数 <===> 不小于0 非正数 <===> 小于等于0(≤0) <===> 0和负数 <===> 不大于0 二.不等式的基本性质※1. 掌握不等式的基本性质,并会灵活运用:(1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c, a-c>b-c.(2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,并且c>0,那么ac>bc,c b c a >. (3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac<bc,cb c a < ※2. 比较大小:(a 、b 分别表示两个实数或整式)一般地:如果a>b,那么a-b 是正数;反过来,如果a-b 是正数,那么a>b;如果a=b,那么a-b 等于0;反过来,如果a-b 等于0,那么a=b; 如果a<b,那么a-b 是负数;反过来,如果a-b 是正数,那么a<b; 即:a>b <===> a-b>0 a=b <===> a-b=0 a<b <===> a-b<0 (由此可见,要比较两个实数的大小,只要考察它们的差就可以了.三.不等式的解集※1.能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.※2.不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同. ¤3.不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向: ①边界:有等号的是实心圆圈,无等号的是空心圆圈; ②方向:大向右,小向左 四.一元一次不等式※1.只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式.※2.解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向. ※3.解一元一次不等式的步骤:①去分母; ②去括号; ③移项; ④合并同类项; ⑤系数化为1(不等号的改变问题)※4.一元一次不等式基本情形为ax>b(或ax<b)①当a>0时,解为abx >;②当a=0时,且b<0,则x 取一切实数; 当a=0时,且b ≥0,则无解;③当a<0时, 解为abx <;¤5.不等式应用的探索(利用不等式解决实际问题)列不等式解应用题基本步骤与列方程解应用题相类似,即:①审: 认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义;②设: 设出适当的未知数;③列: 根据题中的不等关系,列出不等式;④解: 解出所列的不等式的解集;⑤答: 写出答案,并检验答案是否符合题意. 五. 一元一次不等式与一次函数 六. 一元一次不等式组※1.定义: 由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.※2.一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集.如果这些不等式的解集无公共部分,就说这个不等式组无解.几个不等式解集的公共部分,通常是利用数轴来确定. ※3.解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集. 两个一元一次不等式组的解集的四种情况(a 、b 为实数,且a<b)。
一元一次方程一元一次不等式一次函数之间的关系
一元一次方程一元一次不等式一次函数之间的关系随着数学的学习深入,我们会发现一元一次方程、一元一次不等式和一次函数之间有着紧密的联系。
在本文中,我将对这三者之间的关系进行探讨。
一元一次方程一元一次方程是数学中非常基础的概念,它表达的是一个未知数的值需要满足的条件。
一元一次方程的一般形式为ax+b=0(其中a和b为已知数,x为未知数)。
它有且只有一个解,解为x=-b/a。
我们可以通过将未知数表示出来,来解决各种各样的问题。
比如:“丽丽现在的年龄是小明的三倍,而小明现在的年龄是5岁,那么请问丽丽现在的年龄是多少岁?”这个问题可以表示成x=3*5,即x=15岁。
一元一次不等式一元一次不等式也可以表示为类似于ax+b≥0或者ax+b<0的形式,它要求未知数满足一定的条件。
比如:“一个小卖部卖饮料,每一瓶饮料的成本是1元,销售价格是3元,如果要利润不少于4元,那么至少需要卖出几瓶饮料?”这个问题可以表示成x*2≥4,即x≥2瓶。
一次函数一次函数是以一次方程(即y=kx+b)为基础,表示为y=f(x)的函数。
事实上,一次函数可以通过一元一次方程的解析式来表示出来。
(y-y1)=k(x-x1)对应解析式为y=kx+(y1-kx1)。
因为一次函数中的k的值表示的是斜率,所以通过一次函数可以得到许多信息。
比如:两点之间的距离公式(d=√(x1-x2)²+(y1-y2)²)就可以表示为一次函数的形式。
如果我们要获得两个点的连线的斜率,那么只需要除以偏移量(即两个点在x轴上的距离)即可。
三者之间的关系可以看到,这三个数学概念之间有着紧密的联系。
具体而言,一元一次不等式可以看成在直线上面的点构成的区域,这个区域里面的点都是满足不等式的,而不在这个区域内的点则不满足这个不等式。
一元一次方程和一次函数则可以在二维坐标系上表示。
其中,一元一次方程对应的是一条直线,而一次函数则对应的是一条斜率为k,截距为b的直线。
一元一次不等式与一次函数(第2课时)(课件)八年级数学下册(北师大版)
探究新知
解:设该单位参加这次旅游的人数是 x 人,选择甲旅行 社时,所需的费用为 y 1 元,选择乙旅行社时,所需的费 用为 y 2 元,则 y 1 = 200 × 0.75 x, 即 y 1 = 150 x; y 2 = 200 × 0.8(x - 1),即 y 2 = 160 x - 160.
探究新知
例 3 : 为绿 化 校园 , 某校 计 划购 进 A, B两 种 树苗 , 共 21 棵.已知A种树苗每棵90元,B种树苗每棵70元.设购买B种 树苗x棵,购买两种树苗所需费用为y元. (1)y与x的函数关系式为________; (2)若购买B种树苗的数量少于A种树苗的数量,请给出一种
千米收取的费用比乙租赁公司多 D.除去月固定租赁费,甲租赁公司平均每
千米收取的费用比乙租赁公司少
随堂练习
4.某电信公司有甲、乙两种手机收费业务.甲种业务规定 月租费10元,每通话1 min收费0.3元;乙种业务不收月 租费,但每通话1 min收费0.4元.你认为何时选择甲种业 务对顾客更合算?何时选择乙种业务对顾客更合算?
情境导入
一次函数与一元一次不等式的关系是什么? 一次函数与一元一次不等式的关系: 任何一元一次不等式都可以化为ax+b>0或ax+b<0(a,b为 常数,a≠0)的形式,所以解一元一次不等式就可以看成当一次 函数的值大于或小于0时,求相应的自变量的取值范围. 从 图 象 上 看 , ax + b > 0 或 ax + b < 0 的 解 集 是 使 直 线 y = ax + b(a≠0)位于x轴的上方或下方的部分对应的x的取值范围.
探究新知
核心知识点一: 一元一次不等式与一次函数的综合应用
例1:某电信公司有甲、乙两种手机收费业务.甲种业务规 定月租费10元,每通话1min收费0.3 元;乙种业务不收月租 费,但每通话1min收费0.4 元. 你认为何时选择甲种业务对 顾客更合算?何时选择乙种业务对顾客更合算?
一元一次不等式与一次函数整理
一元一次不等式与一次函数整理一元一次不等式和一次函数是初中数学中的重要内容,它们在实际生活中有着广泛的应用。
本文将从概念、性质、解法和应用四个方面来介绍一元一次不等式和一次函数。
一、概念一元一次不等式是指只含有一个未知数的一次不等式,例如:ax+b>c,其中a、b、c为已知数,x为未知数。
一次函数是指函数的表达式为y=kx+b,其中k、b为常数,x、y为自变量和因变量。
二、性质1. 一元一次不等式的解集是一个区间,可以用数轴表示出来。
2. 一次函数的图像是一条直线,斜率k表示函数的增长速度,截距b表示函数的起点。
3. 一元一次不等式和一次函数都具有可加性和可减性,即若a>b,则a+c>b+c,a-c>b-c。
三、解法1. 一元一次不等式的解法有两种:图像法和代数法。
图像法是将不等式转化为数轴上的图形,通过观察图形来确定解集。
代数法是通过移项、化简等代数运算来求解。
2. 一次函数的解法是通过求出函数的斜率和截距,然后画出函数的图像,根据图像来确定函数的性质和解析式。
四、应用1. 一元一次不等式和一次函数在经济学中有着广泛的应用,例如:利润、成本、收益等问题都可以用一次函数来描述。
2. 一元一次不等式和一次函数在物理学中也有着重要的应用,例如:速度、加速度、力等问题都可以用一次函数来描述。
3. 一元一次不等式和一次函数在生活中也有着实际的应用,例如:购物打折、优惠券等问题都可以用一元一次不等式来描述,而房价、工资等问题都可以用一次函数来描述。
一元一次不等式和一次函数是初中数学中的重要内容,它们在实际生活中有着广泛的应用。
掌握一元一次不等式和一次函数的概念、性质、解法和应用,对于提高数学素养和解决实际问题都有着重要的意义。
北师大版八年级下册数学《2.5 第2课时 一元一次不等式与一次函数的综合应用》说课稿
北师大版八年级下册数学《2.5 第2课时一元一次不等式与一次函数的综合应用》说课稿一. 教材分析北师大版八年级下册数学《2.5 第2课时一元一次不等式与一次函数的综合应用》这一节,是在学生已经掌握了一次函数和一元一次不等式的知识基础上进行教学的。
本节课的主要内容是让学生掌握一元一次不等式与一次函数的综合应用,通过解决实际问题,让学生学会如何将数学知识运用到生活中。
本节课的教学内容主要包括两个方面:一是理解一元一次不等式与一次函数的关系;二是学会如何运用一元一次不等式和一次函数解决实际问题。
在教材的处理上,我将以学生已有的知识为基础,通过引导学生的思考,让学生自主探究,从而达到对知识的理解和应用。
二. 学情分析在进入八年级下册的学习之前,学生已经学习了一次函数和一元一次不等式的相关知识,对于如何解一元一次不等式,以及如何绘制一次函数的图像,学生都已经有了初步的了解。
然而,对于如何将这两个知识点结合起来,解决实际问题,学生可能还比较陌生。
因此,在教学过程中,我将以学生的实际需求为导向,引导学生进行探究和学习。
三. 说教学目标本节课的教学目标主要有以下几点:1.让学生理解一元一次不等式与一次函数之间的关系,掌握如何将一元一次不等式和一次函数结合起来解决实际问题。
2.提高学生的数学思维能力,培养学生的解决问题的能力。
3.通过解决实际问题,让学生感受到数学的价值,提高学生学习数学的兴趣。
四. 说教学重难点本节课的教学重难点主要是让学生理解一元一次不等式与一次函数之间的关系,以及如何运用这两个知识点解决实际问题。
其中,如何将一元一次不等式和一次函数结合起来,解决实际问题,是本节课的教学难点。
五. 说教学方法与手段在教学过程中,我将采用引导探究法、案例教学法和小组合作法等教学方法,以学生已有的知识为基础,通过设置问题和案例,引导学生进行自主探究和学习。
同时,我还将运用多媒体教学手段,以直观的图像和动画,帮助学生更好地理解和掌握知识。
一次函数一元一次方程和一元一次不等式讲解
一次函数一元一次方程和一元一次不等式讲解1.什么是一次函数一次函数,也称为一次多项式函数或线性函数,是指形如$y=a x+b$的函数,其中$a$和$b$是常数,$x$是自变量,$y$是因变量。
一次函数的图像为一条直线,具有特定的斜率和截距。
一次函数的基本形式为$y=ax+b$,其中$a$表示斜率,决定了函数图像的倾斜程度,$b$表示截距,决定了函数图像与$y$轴的交点。
2.一元一次方程的求解等式性质一元一次方程是指只含有一个变量的一次方程。
解一元一次方程的核心思想是通过运用和**方程统一变形原则**,将方程逐步化简,最终得到变量的解。
求解一元一次方程的一般步骤如下:1.对方程中的项进行整理和合并,使得方程成为$a x+b=0$的形式;2.根据方程统一变形原则,将方程中的常数项移至方程的右侧,得到$a x=-b$;3.利用解方程的等式性质,将方程两边同时乘以$\fr ac{1}{a}$,得到$x=\f ra c{-b}{a}$;4.化简得到最终解,即$x$的值。
通过以上步骤,可以求得一元一次方程的解。
3.一元一次不等式的求解等式性质一元一次不等式是指只含有一个变量的一次不等式。
求解一元一次不等式的方法与求解一元一次方程类似,同样可以运用和**不等式统一变形原则**。
求解一元一次不等式的一般步骤如下:1.对不等式中的项进行整理和合并,使得不等式成为$a x+b<c$或$a x+b>c$的形式;2.根据不等式的性质,将常数项移至不等式的右侧;3.根据不等式统一变形原则,将不等式两边同时乘以正数或除以负数,注意在乘或除的过程中要考虑到反号问题;4.根据不等式的性质,得到不等式的最终解。
需要注意的是,在进行不等式符号的翻转时,需要根据乘或除的正负进行对应,以确保不等式符号的方向正确。
4.总结一次函数、一元一次方程和一元一次不等式在数学中起着重要的作用。
掌握了一次函数的概念和性质,以及求解一元一次方程和不等式的方法,能帮助我们更好地理解和解决数学问题。
八年级下册数学 2.5一元一次不等式与一次函数
课题 2.5 一元一次不等式与一次函数备课日期讲课日期知识目标1.一元一次不等式与一次函数的关系;会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较.2. 体会不等式的知识在现实生活中的运用.能力目标通过一元一次不等式与一次函数的图象之间的结合,培养学生的数形结合意识;训练大家能利用数学知识去解决实际问题的能力.教学目标德育目标体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用.知识点1.一元一次不等式与一次函数的关系。
2. 根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较.3. 不等式的知识在现实生活中的运用.教学重点1.了解一元一次不等式与一次函数之间的关系.2.利用不等式及等式有关知识解决现实生活中的实际问题.教学难点1.自己根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答.2.认真审题,找出题中的等量或不等关系,全面地考虑问题是本节的难点.教材分析能力培养通过一元一次不等式与一次函数的图象之间的结合,培养学生的数形结合意识;训练大家能利用数学知识去解决实际问题的能力.课时安排共 2 课时课型新授课教学方法研讨法,即主要由学生自主交流合作来解决问题,老师只起引导作用.教具PPT课件,直尺教学过程(时间分配)主要教学内容师生活动设计一、情景引入(5分)二、探究新知(20分)第一课时:(一)创设问题情境,引入新课上节课我们学习了一元一次不等式的解法,那么,是不是不等式的知识是孤立的呢?本节课我们来研究不等式的有关应用.(二)新课讲授1.一元一次不等式与一次函数之间的关系.在一次函数y=2x-5中,当y=0时,有方程2x-5=0;当y>0时,有不等式2x-5>0;当y<0时,有不等式2x-5<0.由此可见,一次函数与一元一次方程、一元一次不等式之间有密切关系,当函数值等于0时即为方程,当函数值大于或小于0时即为不等式.下面我们来探讨一下一元一次不等式与一次函数的图象之间的关系.2.做一做:(多媒体)作出函数y=2x-5的图象,观察图象回答下列问题.(1)x取哪些值时,2x-5=0?(2)x取哪些值时,2x-5>0?(3)x取哪些值时,2x-5<0?4)x取哪些值时,2x-5>3?3.试一试:如果y =-2x-5,那么当x取何值时,y>0?4.议一议:(多媒体)兄弟俩赛跑,哥哥先让弟弟跑9 m,然后自己才开始跑,已知弟弟每秒跑3 m,哥哥每秒跑4 m,列出函数关系式,画出函数图象,观察图象回答下列问题:(1)何时弟弟跑在哥哥前面?(2)何时哥哥跑在弟弟前面?(3)谁先跑过20 m?谁先跑过100 m?(4)你是怎样求解的?与同伴交流.(三)课堂练习:P50页 1(四)课堂小结:本节课讨论了一元一次不等式与一次函数的关系,并且能根据一次函数的图象求解不等式.(五)课后作业:习题2.6 的1,2题。
八年级下册数学一次函数与不等式
八年级下册数学一次函数与不等式一、一次函数的基本概念一次函数是指函数的最高次项的次数为1的函数,也叫线性函数。
一次函数的一般形式为:y = kx + b,其中k和b为常数,k称为斜率,表示直线的倾斜程度;b称为截距,表示直线与y轴的交点。
二、一次函数的图像及特点1. 斜率k的意义:斜率k决定了直线的倾斜程度。
如果k>0,则表示图像从左下往右上倾斜;如果k<0,则表示图像从左上往右下倾斜;如果k=0,则表示图像为水平直线。
2. 截距b的意义:截距b表示直线与y轴的交点,在直线上任意一点的纵坐标与y轴的距离为|b|。
3. 直线的平行与垂直关系:如果两个直线的斜率相等,则这两条直线平行;如果两个直线的乘积为-1,则这两条直线相互垂直。
4. 直线与x轴和y轴的交点:直线与x轴的交点可以通过令y=0来求得;直线与y轴的交点可以通过令x=0来求得。
三、一次函数的性质与应用1. 函数解析式:一次函数的解析式应包含斜率k和截距b的具体值。
2. 函数的单调性:当斜率k>0时,函数为增函数;当斜率k<0时,函数为减函数。
3. 函数的图像与方程的关系:通过函数的解析式,可以得到一次函数的图像,并通过图像可以找到一次函数的方程。
4. 函数的应用:一次函数在实际问题中有着广泛的应用,如直线运动问题、经济问题、几何问题等。
四、一次不等式的基本概念和求解方法1. 不等式的定义:不等式是由带有不等号的数学式构成的命题。
2. 不等式的解集:不等式的解集是使不等式成立的所有实数的集合。
3. 不等式的性质:不等式在进行等价变形时需要注意保持不等式方向的一致性,也就是说不能对不等号进行改变。
4. 不等式的求解方法:一次不等式可以利用一次函数的性质求解。
可以通过构建一次函数的图像,在图上找出满足不等式的区间。
也可以通过移项、合并同类项、化简等方式对不等式进行等式变形,然后求解等式得到解集。
五、一次函数与一次不等式的联立解法1. 联立方程和不等式的基本概念:联立方程是将两个或多个方程放在一起进行求解的方法;联立不等式是将两个或多个不等式放在一起进行求解的方法。
[配套K12]八年级数学下册 2.5 一元一次不等式与一次函数 中考链接 一元一次不等式与一次函数素材 (新版)
不等式与一次函数由于任何一个一次不等式都可以转化为0ax b +>或0ax b +<(a ,b 是常数,a ≠0)的形式,所以解一元一次不等式0ax b +>或0ax b +<,可以看作是求一次函数y = ax +b 的图象在x 轴的上方(或下方)自变量x 的取值范围.例1(连云港)如图,直线y kx b =+交坐标轴于A B ,两点,则不等式0kx b +>的解集是( )A .2x >-B .3x >C .2x <-D .3x <解法一 本题以图象的形式给出了一次函数b kx y +=的x 与y 的对应值,由此可求出函数的解析式,再求出0>+b kx 解集.解法二 由一次函数与一元一次不等式的关系,要求0>+b kx 的解集,实际上是要求当x 为何值时,一次函数y = kx +b 的图象在x 轴的上方,观察图象可知0>+b kx 的解集是2x >-,故选A .例2(黄石市)已知一次函数y kx b =+(k 、b 是常数,且k ≠0),x 与y 的部分对应值如下表所示,那么不等式kx+b <0的解集是( )A 、x<0B 、x >0C 、x <1D 、x >1 解法一:本题以表格形式给出了一次函数y kx b =+的x 与y 的部分对应值,由此可求出函数的解析式为1y x =-+,所以不等式kx+b <0,即10x -+<的解集x >1.解法二:如果你对一次函数与一元一次不等式的关系有充分理解,通过认真阅读表格不难发现:求不等式0ax b +<的解集,实质就是求当一次函数y ax b =+的函数值小于0时,对应的自变量x 的取值范围为1x >,故选D .例3 (临沂市)直线1l :1y k x b =+与直线2l :2y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式12k x b k x +>的解为( )A .1x >-B .1x <-C .2x <-D .无法确定解析 由一次函数与一元一次不等式的关系,要求12k x b k x +>的解集,实际上是要求当x 为何值时,一次函数1y k x b =+的图象在2y k x =的上方,观察图象可知不等式12k x b k x +>的解集为1x <-,故选择B .同y = kx +b 的图象在x 轴的上方,观察图象可知0>+b kx 的解集是2x >-,故选A .例4 (乐山市)已知一次函数y kx b =+的图象如图所示,当1x <时,y 的取值范围是( )A .20y -<<B .40y -<<C .2y <-D .4y <-例5 (武汉)如图,已知函数y =3x +b 和y =ax -3的图象交于点P(-2,-5),则根据图象可得不等式3x +b >ax -3的解集是_______________.ax-3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式与一次函数
由于任何一个一次不等式都可以转化为0
ax b
+>或0
ax b
+<(a,b是常数,a≠0)的形式,所以解一元一次不等式0
ax b
+>或0
ax b
+<,可以看作是求一次函数y = ax +b 的图象在x轴的上方(或下方)自变量x的取值范围.
例1(连云港)如图,直线y kx b
=+交坐标轴于A B
,两点,则不等式0
kx b
+>的解集是()
A.2
x>-B.3
x>C.2
x<-D.3
x<解法一本题以图象的形式给出了一次函数b
kx
y+
=的x与y的对应值,由此可求出函数的解析式,再求出0
>
+b
kx解集.
解法二由一次函数与一元一次不等式的关系,要求0
>
+b
kx的解集,实际上是要求当x为何值时,一次函数y = kx +b的图象在x轴的上方,观察图象可知0
>
+b
kx的解集是2
x>-,故选A.
例2(黄石市)已知一次函数y kx b
=+(k、b是常数,且k≠0),x与y的部分对应值如下表所示,那么不等式kx+b<0的解集是()
A、x<0
B、x >0
C、x <1
D、x >1
解法一:本题以表格形式给出了一次函数y kx b
=+的x与y的部分对应值,由此可求出函数的解析式为1
y x
=-+,所以不等式kx+b<0,即10
x
-+<的解集x >1.解法二:如果你对一次函数与一元一次不等式的关系有充分理解,通过认真阅读表格不难发现:求不等式0
ax b
+<的解集,实质就是求当一次函数y ax b
=+的函数值小于0
x -2 -1 0 1 2 3
y 3 2 1 0 -1 -2
时,对应的自变量x 的取值范围为1x >,故选D .
例3 (临沂市)直线1l :1y k x b =+与直线2l :2y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式12k x b k x +>的解为( )
A .1x >-
B .1x <-
C .2x <-
D .无法确定
解析 由一次函数与一元一次不等式的关系,要求12k x b k x +>的解集,实际上是要求当x 为何值时,一次函数1y k x b =+的图象在2y k x =的上方,观察图象可知不等式12k x b k x +>的解集为1x <-,故选择B .
同y = kx +b 的图象在x 轴的上方,观察图象可知0>+b kx 的解集是2x >-,故选A .
例4 (乐山市)已知一次函数y kx b =+的图象如图所示,当1x <时,y 的取值范围是( )
A .20y -<<
B .40y -<<
C .2y <-
D .4y <-
例5 (武汉)如图,已知函数y =3x +b 和y =ax -3的图象交于点P(-2,-5),则根据图象可得不等式3x +b >ax -3的解集是_______________.
ax-3。