2019最新高中数学 第一章 1.1.2 四种命题 1.1.3 四种命题间的相互关系学案 新人教A版选修2-1
高中数学第一章 1.1.2_1.1.3四种命题四种命题间的相互关系讲义(含解析)新人教A版选修1_1
1.1.2 & 1.1.3 四种命题四种命题间的相互关系预习课本P4~8,思考并完成以下问题1.一个命题的四种形式分别是什么?它们之间的相互关系分别是什么?2.什么样的两个命题有相同的真假性?3.两个互逆命题或互否命题,它们之间的真假性有没有关系?[新知初探]1.原命题与逆命题2.原命题与否命题3.原命题与逆否命题4.四种命题的真假性之间的关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)一个命题的否命题和逆命题有相同的真假性( )(2)原命题与逆命题之间的真假性没有关系( )答案:(1)√(2)√2.命题“若一个数是负数,则它的平方是正数”的逆命题是( )A.若一个数是负数,则它的平方不是正数B.若一个数的平方是正数,则它是负数C.若一个数不是负数,则它的平方不是正数D.若一个数的平方不是正数,则它不是负数答案:B3.命题“若x2>y2,则x>y”的否命题是________________________________________________________________________.答案:若x2≤y2,则x≤y4.命题p:若a=1,则a2=1;命题q:若a2≠1,则a≠1,则命题p与q的关系是________.答案:互为逆否命题四种命题的概念[典例]命题.(1)对顶角相等;(2)全等三角形的对应边相等.[解] (1)原命题:如果两个角是对顶角,则它们相等;逆命题:如果两个角相等,则它们是对顶角;否命题:如果两个角不是对顶角,则它们不相等;逆否命题:如果两个角不相等,则它们不是对顶角.(2)原命题:若两个三角形全等,则这两个三角形三边对应相等;逆命题:若两个三角形三边对应相等,则这两个三角形全等;否命题:若两个三角形不全等,则这两个三角形三边对应不相等;逆否命题:若两个三角形三边对应不相等,则这两个三角形不全等.四种命题的转换方法(1)逆命题:互换原命题的条件和结论,所得命题是原命题的逆命题.(2)否命题:同时否定原命题的条件和结论,所得命题是原命题的否命题.(3)逆否命题:互换原命题的条件和结论,并且同时否定,所得命题是原命题的逆否命题.[注意] 四种命题转换时关键是把命题写成“若……则……”的形式. 写出以下命题的逆命题、否命题和逆否命题.(1)如果一条直线垂直于平面内的两条相交直线,那么这条直线垂直于平面; (2)当x =2时,x 2-3x +2=0.解:(1)逆命题:如果一条直线垂直于平面,那么这条直线垂直于平面内的两条相交直线;否命题:如果直线不垂直于平面内的两条相交直线,那么这条直线不垂直于平面; 逆否命题:如果一条直线不垂直于平面,那么这条直线不垂直于平面内的两条相交直线. (2)逆命题:若x 2-3x +2=0,则x =2; 否命题:若x ≠2,则x 2-3x +2≠0; 逆否命题:若x 2-3x +2≠0,则x ≠2.四种命题真假的判断[典例] (1)“正三角形都相似”的逆命题.(2)“若x 2+y 2≠0,则x ,y 不全为零”的否命题. (3)“若m >0,则x 2+x -m =0有实根”的逆否命题.[解] (1)原命题的逆命题为“若三角形相似,则这些三角形是正三角形”.假命题. (2)原命题的否命题为“若x 2+y 2=0,则x ,y 全为零”.真命题.(3)原命题的逆否命题为“若x 2+x -m =0无实根,则m ≤0”.因为方程x 2+x -m =0无实根,所以判别式Δ=1+4m <0,解得m <-14,故m ≤0,为真命题. [一题多变]1.[变设问]若本例(3)改为判断“若m >0,则x 2+x -m =0有实根”的逆命题的真假,则结果如何?解:原命题的逆命题为“若x 2+x -m =0有实根,则m >0”.因为方程x 2+x -m =0有实根,所以判别式Δ=1+4m ≥0,所以m ≥-14,故逆命题为假命题.2.[变条件]若本例(3)改为判断“若m >0,则mx 2+x -1=0有实根”的逆否命题的真假,则结论如何?解:原命题的逆否命题为“若mx 2+x -1=0无实根,则m ≤0”.因为方程mx 2+x -1=0无实根,则m ≠0,所以判别式Δ=1+4m <0,则m <-14,故m ≤0,为真命题.解决此类题目的关键是牢记四种命题的概念,原命题与它的逆否命题同真同假,原命题的否命题与逆命题也互为逆否命题,同真同假,故只判断二者中的一个即可.等价命题的应用[典例] 证明:若f (a )+f (b )≥f (-a )+f (-b ),则a +b ≥0.[证明] 法一:原命题的逆否命题为“已知函数f (x )是(-∞,+∞)上的增函数,a ,b ∈R ,若a +b <0,则f (a )+f (b )<f (-a )+f (-b )”.若a +b <0,则a <-b ,b <-a . 又∵f (x )在(-∞,+∞)上是增函数, ∴f (a )<f (-b ),f (b )<f (-a ), ∴f (a )+f (b )<f (-a )+f (-b ). 即原命题的逆否命题为真命题. ∴原命题为真命题.法二:假设a +b <0,则a <-b ,b <-a . 又∵f (x )在(-∞,+∞)上是增函数, ∴f (a )<f (-b ),f (b )<f (-a ). ∴f (a )+f (b )<f (-a )+f (-b ).这与已知条件f (a )+f (b )≥f (-a )+f (-b )相矛盾. 因此假设不成立,故a +b ≥0.“正难则反”的处理原则(1)当原命题的真假不易判断,而逆否命题较容易判断真假时,可通过判断其逆否命题的真假来判断原命题的真假.(2)在证明某一个命题的真假性有困难时,可以证明它的逆否命题为真(假)命题,来间接地证明原命题为真(假)命题.证明:若m 2+n 2=2,则m +n ≤2.证明:将“若m 2+n 2=2,则m +n ≤2”视为原命题,则它的逆否命题为“若m +n >2,则m 2+n 2≠2”.由于m +n >2,则m 2+n 2≥12(m +n )2>12×22=2,所以m 2+n 2≠2.故原命题的逆否命题为真命题,从而原命题也为真命题.层级一 学业水平达标1.设a ,b 是向量,命题“若a =-b ,则|a |=|b |”的逆命题是( ) A .若a ≠-b ,则|a |≠|b | B .若a =-b ,则|a |≠|b | C .若|a |≠|b |,则a ≠-bD .若|a |=|b |,则a =-b解析:选D 条件“a =-b ”和结论“|a |=|b |”互换后得到逆命题:若|a |=|b |,则a =-b .故选D.2.“在△ABC 中,若C =90°,则A ,B 全是锐角”的否命题为( ) A .在△ABC 中,若C ≠90°,则A ,B 全不是锐角 B .在△ABC 中,若C ≠90°,则A ,B 不全是锐角 C .在△ABC 中,若C ≠90°,则A ,B 中必有一个是钝角 D .以上都不对解析:选 B “全是”的否定是“不全是”,故该命题的否命题为“在△ABC 中,若C ≠90°,则A ,B 不全是锐角”.3.命题“若a >-3,则a >-6”以及它的逆命题、否命题、逆否命题这四个命题中,真命题的个数为( )A .0B .1C .2D .4解析:选C “若a >-3,则a >-6”为真命题,所以其逆否命题亦为真命题.又逆命题、否命题为假命题,所以真命题的个数为2.故选C.4.若命题p 的逆命题为q ,命题q 的否命题为r ,则命题p 是命题r 的( ) A .逆命题 B .否命题 C .逆否命题D .以上都不对解析:选C 由四种命题的关系,知命题p 与命题r 互为逆否命题. 5.在下列四个命题中,为真命题的是( ) A .“x =2时,x 2-5x +6=0”的否命题 B .“若b =3,则b 2=9”的逆命题 C .若ac >bc ,则a >bD .“相似三角形的对应角相等”的逆否命题解析:选D A 中命题的否命题为“x ≠2时,x 2-5x +6≠0”,是假命题;B 中命题的逆命题为“若b 2=9,则b =3”,是假命题;C 中当c <0时,为假命题;D 中原命题与其逆否命题等价,都是真命题.6.命题“若x ≠1,则x 2-1≠0”的真假性为________.解析:可转化为判断命题的逆否命题的真假,由于原命题的逆否命题是:“若x 2-1=0,则x =1”,因为x 2-1=0,x =±1,所以该命题是假命题,因此原命题是假命题.答案:假命题7.已知命题“若m -1<x <m +1,则1<x <2”的逆命题为真命题,则m 的取值范围是________.解析:由已知得,若1<x <2成立,则m -1<x <m +1也成立.∴⎩⎪⎨⎪⎧m -1≤1,m +1≥2.∴1≤m ≤2.答案:[1,2] 8.下列命题中:①若一个四边形的四条边不相等,则它不是正方形; ②若一个四边形对角互补,则它内接于圆; ③正方形的四条边相等; ④圆内接四边形对角互补; ⑤对角不互补的四边形不内接于圆;⑥若一个四边形的四条边相等,则它是正方形.其中互为逆命题的有_______;互为否命题的有________;互为逆否命题的有________. 解析:命题③可改写为“若一个四边形是正方形,则它的四条边相等”;命题④可改写为“若一个四边形是圆内接四边形,则它的对角互补”;命题⑤可改写为“若一个四边形的对角不互补,则它不内接于圆”,再依据四种命题间的关系便不难判断.答案:②和④,③和⑥ ①和⑥,②和⑤ ①和③,④和⑤9.写出下列命题的逆命题、否命题和逆否命题,并判断它们的真假. (1)正数a 的立方根不等于0;(2)在同一平面内,平行于同一条直线的两条直线平行.解:(1)原命题:若a 是正数,则a 的立方根不等于0,是真命题. 逆命题:若a 的立方根不等于0,则a 是正数,是假命题. 否命题:若a 不是正数,则a 的立方根等于0,是假命题. 逆否命题:若a 的立方根等于0,则a 不是正数,是真命题.(2)原命题:在同一平面内,若两条直线平行于同一条直线,则这两条直线平行,是真命题.逆命题:在同一平面内,若两条直线平行,则这两条直线平行于同一条直线,是真命题.否命题:在同一平面内,若两条直线不平行于同一条直线,则这两条直线不平行,是真命题.逆否命题:在同一平面内,若两条直线不平行,则这两条直线不平行于同一条直线.10.判断命题“已知a,x为实数,若关于x的不等式x2+(2a+1)x+a2+2≤0的解集非空,则a≥1”的逆否命题的真假.解:原命题的逆否命题为“已知a,x为实数,若a<1,则关于x的不等式x2+(2a+1)x +a2+2≤0的解集为空集”.判断其真假如下:抛物线y=x2+(2a+1)x+a2+2的图象开口向上,判别式Δ=(2a+1)2-4(a2+2)=4a-7.因为a<1,所以4a-7<0.即抛物线y=x2+(2a+1)x+a2+2的图象与x轴无交点.所以关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集.故原命题的逆否命题为真命题.层级二应试能力达标1.命题“设a,b,c∈R,若a>b,则ac2>bc2”,以及它的逆命题、否命题、逆否命题中,真命题共有( )A.0个B.1个C.2个 D.4个解析:选C 若c=0,则ac2>bc2不成立,故原命题为假命题.由等价命题同真同假,知其逆否命题也为假命题.逆命题“设a,b,c∈R,若ac2>bc2,则a>b”为真命题,由等价命题同真同假,知原命题的否命题也为真命题,所以共有2个真命题,故选C.2.命题“对角线相等的四边形是矩形”是命题“矩形的对角线相等”的( )A.逆命题 B.否命题C.逆否命题 D.无关命题解析:选A 由于这两个命题的关系是一个命题的条件和结论分别是另一个命题的结论和条件,所以互为逆命题,故选A.3.命题“若x,y都是奇数,则x+y也是奇数”的逆否命题是( )A.若x+y是奇数,则x与y不都是奇数B.若x+y是奇数,则x与y都不是奇数C.若x+y不是奇数,则x与y不都是奇数D.若x+y不是奇数,则x与y都不是奇数解析:选C 由于“x,y都是奇数”的否定表达是“x,y不都是奇数”,“x+y是奇数”的否定表达是“x+y不是奇数”,故原命题的逆否命题为若x+y不是奇数,则x,y不都是奇数,故选C.4.有下列四个命题:①若“xy =1,则x ,y 互为倒数”的逆命题;②“面积相等的三角形全等”的否命题;③“若m ≤1,则x 2-2x +m =0有实数解”的逆否命题;④“若A ∩B =B ,则A ⊆B ”的逆否命题.其中,为真命题的是( )A .①②B .②③C .④D .①②③解析:选D ①的逆命题:“若x ,y 互为倒数,则xy =1”是真命题;②的否命题:“面积不相等的三角形不全等”是真命题;③的逆否命题:“若x 2-2x +m =0没有实数解,则m >1”是真命题;命题④是假命题,所以它的逆否命题也是假命题,如A ={1,2,3,4,5},B={4,5},显然A ⊆B 是错误的.5.在原命题“若A ∪B ≠B ,则A ∩B ≠A ”与它的逆命题、否命题、逆否命题中,真命题的个数为________.解析:逆命题为“若A ∩B ≠A ,则A ∪B ≠B ”; 否命题为“若A ∪B =B ,则A ∩B =A ”; 逆否命题为“若A ∩B =A ,则A ∪B =B ”; 全为真命题. 答案:46.若命题“若x <m -1或x >m +1,则x 2-2x -3>0”的逆命题为真、逆否命题为假,则实数m 的取值范围是________________________________________________________________________.解析:由已知,易得{x |x 2-2x -3>0}{x |x <m -1或x >m +1}.又{x |x 2-2x -3>0}={x |x <-1或x >3},∴⎩⎪⎨⎪⎧-1≤m -1,m +1<3或⎩⎪⎨⎪⎧-1<m -1,m +1≤3,∴0≤m ≤2.答案:[0,2]7.已知a ,b ,c ∈R ,证明:若a +b +c <1,则a ,b ,c 中至少有一个小于13.证明:原命题的逆否命题为:已知a ,b ,c ∈R ,若a ,b ,c 都不小于13,则a +b +c ≥1.由条件a ≥13,b ≥13,c ≥13,三式相加得a +b +c ≥1,显然逆否命题为真命题.所以原命题也为真命题.即已知a ,b ,c ∈R ,若a +b +c <1,则a ,b ,c 中至少有一个小于13.8.a,b,c为三个人,命题A:“如果b的年龄不是最大的,那么a的年龄最小”和命题B:“如果c的年龄不是最小的,那么a的年龄最大”都是真命题,则a,b,c的年龄的大小顺序是否能确定?请说明理由.解:能确定.理由如下:显然命题A和B的原命题的结论是矛盾的,因此应该从它的逆否命题来考虑.①由命题A为真可知,当b不是最大时,则a是最小的,即若c最大,则a最小,所以c>b>a;而它的逆否命题也为真,即“a不是最小,则b是最大”为真,所以b>a>c.总之由命题A为真可知:c>b>a或b>a>c.②同理由命题B为真可知a>c>b或b>a>c.从而可知,b>a>c.所以三个人年龄的大小顺序为b最大,a次之,c最小.。
高中数学- 四种命题 四种命题间的相互关系
1.1.2 四种命题1.1.3 四种命题间的相互关系(教师用书独具)●三维目标1.知识与技能初步理解原命题、逆命题、否命题、逆否命题这四种命题的概念,掌握四种命题的形式;初步理解四种命题间的相互关系并能判断命题的真假.2.过程与方法培养学生发现问题、提出问题、分析问题、有创造性地解决问题的能力;培养学生抽象概括能力和思维能力.3.情感、态度与价值观激发学生学习数学的兴趣和积极性,优化学生的思维品质,培养学生勤于思考,勇于探索的创新意识,感受探索的乐趣.●重点、难点重点:四种命题之间相互的关系.难点:正确区分命题的否定形式及否命题.通过一个生活中的场景引出逻辑在生活中必不可少的重要地位,从而引发学生学习四种命题的兴趣,然后主要通过对概念的讲解和分析,并配以适量的课堂练习,让学生掌握四种命题的概念,会写四种命题,并掌握四种命题之间的关系以及通过逆否命题来判断命题的真假;最后运用所学命题知识解决实际生活中的问题,让学生学会用理性的逻辑推理能力思考问题,从而突破重难点.(教师用书独具)●教学建议这节内容是以概念的理解和关系的思辨为主的,因此采用以讲解和练习强化为主要方法,并在讲解过程中引导和启发学生的思维,让学生充分地思考和动手演练.宜采取的教学方法:(1)启发式教学.这能充分调动学生的主动性和积极性,有利于学生对知识进行主动建构,从而发现数学规律;(2)讲练结合法.这样更能突出重点、解决难点,让学生的分析问题和解决问题的能力得到进一步的提高.学习方法:(1)由特殊到一般的化归方法:学习中学生在教师的引导下,通过具体的实例,让学生去观察、讨论、探索、分析、发现、归纳、概括;(2)讲练结合法:让学生知道数学重生在运用,从而检验知识的应用情况,找出未掌握的内容及其差距并及时加以补救.通过本节的学习,了解命题的四种形式及其关系,利用原命题与逆否命题,逆命题与否命题之间的等价性解决有关问题,渗透由特殊到一般的化归数学思想.●教学流程创设问题情境,给出四个命题,引出问题:四个命题的条件与结论有何区别与联系?⇒引导学生观察、比较、分析,得出四种命题的概念与他们之间的相互关系.⇒通过引导学生回答所提问题,层层深入地得出四种命题真假的关系.⇒通过例1及其变式训练,使学生掌握四种命题的概念及相互转化.⇒通过例2及其互动探究,使学生掌握四种命题真假的判断方法.⇒错误!⇒错误!⇒错误!(对应学生用书第4页)给出以下四个命题:(1)对顶角相等;(2)相等的两个角是对顶角;(3)不是对顶角的两个角不相等;(4)不相等的两个角不是对顶角;1.你能说出命题(1)与(2)的条件与结论有什么关系吗?【提示】它们的条件和结论恰好互换了.2.命题(1)与(3)的条件与结论有什么关系?命题(1)与(4)呢?【提示】命题(1)的条件与结论恰好是命题(3)条件的否定和结论的否定.命题(1)的条件和结论恰好是命题(4)结论的否定和条件的否定.一般地,对于两个命题,如果一个命题的条件与结论分别是另一个命题的结论和条件,那么把这两个命题叫做互逆命题,如果是另一个命题条件的否定和结论的否定,那么把两个命题叫做互否命题.如果是另一个命题结论的否定和条件的否定,那么把这样的两个命题叫做互为逆否命题.把第一个叫做原命题时,另三个可分别称为原命题的逆命题、否命题、逆否命题.1.为了书写方便常把p与q的否定分别记作“綈p”和“綈q”,如果原命题是“若p,则q”,那么它的逆命题,否命题,逆否命题该如何表示?【提示】逆命题:若q,则p.否命题:若綈p,则綈q.逆否命题:若綈q,则綈p.2.原命题的否命题与原命题的逆否命题之间是什么关系?原命题的逆命题与其逆否命题之间是什么关系?原命题的逆命题与其否命题呢?【提示】互逆、互否、互为逆否.四种命题的相互关系1.知识1的“问题导思”中四个命题的真假性是怎样的?【提示】(1)真命题,(2)假命题,(3)假命题,(4)真命题.2.如果原命题是真命题,它的逆命题是真命题吗?它的逆否命题呢?【提示】原命题为真,其逆命题不一定为真,但其逆否命题一定为真.1.在原命题的逆命题、否命题、逆否命题中,一定与原命题真假性相同的是逆否命题.2.两个命题互为逆命题或互为否命题时,它们的真假性没有关系.(对应学生用书第5页)把下列命题改写成“若p,则q”的形式,并写出它们的逆命题、否命题与逆否命题.(1)全等三角形的对应边相等;(2)当x=2时,x2-3x+2=0.【思路探究】(1)原命题的条件与结论分别是什么?(2)把原命题的条件与结论作怎样的变化就能写出它的逆命题、否命题和逆否命题?【自主解答】(1)原命题:若两个三角形全等,则这两个三角形三边对应相等.逆命题:若两个三角形三边对应相等,则两个三角形全等.否命题:若两个三角形不全等,则两个三角形三边对应不相等.逆否命题:若两个三角形三边对应不相等,则这两个三角形不全等.(2)原命题:若x=2,则x2-3x+2=0,逆命题:若x2-3x+2=0,则x=2,否命题:若x≠2,则x2-3x+2≠0,逆否命题:若x2-3x+2≠0,则x≠2.1.给出一个命题,写出该命题的其他三种命题时,首先考虑弄清所给命题的条件与结论,若给出的命题不是“若p,则q”的形式,应改写成“若p,则q”的形式.2.把原命题的结论作为条件,条件作为结论就得到逆命题;否定条件作为条件,否定结论作为结论便得到否命题;否命题的逆命题就是原命题的逆否命题.分别写出下列命题的逆命题、否命题和逆否命题.(1)负数的平方是正数;(2)若a>b,则ac2>bc2.【解】(1)原命题可以改写成:若一个数是负数,则它的平方是正数;逆命题:若一个数的平方是正数,则它是负数;否命题:若一个数不是负数,则它的平方不是正数;逆否命题:若一个数的平方不是正数,则它不是负数.(2)逆命题:若ac2>bc2,则a>b;否命题:若a≤b,则ac2≤bc2;逆否命题:若ac2≤bc2,则a≤b.写出下列命题的逆命题、否命题、逆否命题,然后判断真假.(1)菱形的对角线互相垂直;(2)等高的两个三角形是全等三角形;(3)弦的垂直平分线平分弦所对的弧.【思路探究】确定条件与结论→写出三种命题→判断真假【自主解答】(1)逆命题:若一个四边形的对角线互相垂直,则它是菱形,是假命题.否命题:若一个四边形不是菱形,则它的对角线不互相垂直,是假命题.逆否命题:若一个四边形的对角线不互相垂直,则这个四边形不是菱形,是真命题.(2)逆命题:若两个三角形全等,则这两个三角形等高,是真命题.否命题:若两个三角形不等高,则这两个三角形不全等,是真命题.逆否命题:若两个三角形不全等,则这两个三角形不等高,是假命题.(3)逆命题:若一条直线平分弦所对的弧,则这条直线是弦的垂直平分线,是假命题.否命题:若一条直线不是弦的垂直平分线,则这条直线不平分弦所对的弧,是假命题.逆否命题:若一条直线不平分弦所对的弧,则这条直线不是弦的垂直平分线,是真命题.1.本例题目中命题的条件和结论不明显,为了不出错误,可以先改写成“若p,则q”的形式,再写另外三种命题,进而判断真假.2.要判定四种命题的真假,首先,要正确理解四种命题间的相互关系;其次,正确利用相关知识进行判断推理.若由“p经逻辑推理得出q”,则命题“若p,则q”为真;确定“若p,则q”为假时,则只需举一个反例说明.3.互为逆否命题等价.当一个命题的真假不易判断时,可通过判定其逆否命题的真假来判断.下列命题中正确的是( )①“若x2+y2≠0,则x,y不全为零”的否命题;②“正三角形都相似”的逆命题;③“若m>0,则x2+x-m=0有实根”的逆否命题.A.①②③B.①③C .②③D .①【解析】 ①原命题的否命题为“若x 2+y 2=0,则x ,y 全为零”.真命题. ②原命题的逆命题为“若两个三角形相似,则这两个三角形是正三角形.”假命题. ③原命题的逆否命题为“若x 2+x -m =0无实根,则m ≤0”. ∵方程x 2+x -m =0无实根, ∴判别式Δ=1+4m <0,m <-14.故m ≤0,为真命题. 故正确的命题是①,③选B. 【答案】 B若a 2+b 2=c 2,求证:a ,b ,c 不可能都是奇数.【思路探究】 (1)a ,b ,c 不可能都是奇数包含几种情况? (2)它的反面是什么?能否考虑证它的逆否命题?【自主解答】 若a ,b ,c 都是奇数,则a 2,b 2,c 2都是奇数,所以a 2+b 2为偶数,而c 2为奇数,即a 2+b 2≠c 2.即原命题的逆否命题为真命题,故原命题为真,所以若a 2+b 2=c 2,则a 、b 、c 不可能都是奇数.1.因为“a、b、c不可能都是奇数”这一结论包含多种情况,而其否定只有一种情况,即“a、b、c都是奇数,”故应选择证明它的逆否命题为真命题,以使问题简单化.2.当判断一个命题的真假比较困难,或者在判断真假时涉及到分类讨论时,通常转化为判断它的逆否命题的真假,因为互为逆否命题的真假是等价的,也就是我们讲的“正难则反”的一种策略.3.四种命题中,原命题与其逆否命题是等价的,有相同的真假性,原命题的否命题与其逆命题也是互为逆否命题,解题时不要忽视.“已知a,x为实数,若关于x的不等式x2+(2a+1)x+a2+2≤0的解集是空集,则a <2”,判断其逆否命题的真假.【解】∵a,x∈R,且x2+(2a+1)x+a2+2≤0的解集是空集.∴Δ=(2a+1)2-4(a2+2)<0,则4a -7<0,解得a <74.因此a <2,原命题是真命题.又互为逆否命题的命题等价,故逆否命题是真命题.(对应学生用书第6页)因否定错误致误写出命题“若x 2+y 2=0,则x ,y 全为零”的逆命题、否命题,并判断它们的真假.【错解】逆命题:若x,y全为零,则x2+y2=0,是真命题;否命题:若x2+y2≠0,则x,y全不为零,是假命题.【错因分析】本题中的错解主要是对原命题中结论的否定错误.对“x,y全为零”的否定,应为“x,y不全为零”,而不是“x,y全不为零”.【防范措施】要写出一个命题的否命题,需要既否定条件,又否定结论,否定时一定要注意一些词语,如“都是”的否定是“不都是”,而不是“都不是”等等.【正解】逆命题:若x,y全为零,则x2+y2=0,是真命题;否命题:若x2+y2≠0,则x,y不全为零,是真命题.1.写出四种命题的方法:(1)交换原命题的条件和结论,所得的命题是逆命题;(2)同时否定原命题的条件和结论,所得的命题是否命题;(3)交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题.2.四种命题的真假关系:若原命题为真,它的逆命题、否命题不一定为真,它的逆否命题一定为真;互为逆否命题的两个命题的真假性相同.因此,若一个命题的真假不易判断时,我们可借助它的逆否命题进行判断.(对应学生用书第7页)1.(福州检测)已知a ,b ∈R ,命题“若a +b =1,则a 2+b 2≥12”的否命题是( )A .若a 2+b 2<12,则a +b ≠1B .若a +b =1,则a 2+b 2<12C .若a +b ≠1,则a 2+b 2<12D .若a 2+b 2≥12,则a +b =1【解析】 “a +b =1”,“a 2+b 2≥12”的否定分别是“a +b ≠1”,“a 2+b 2<12”,故否命题为:“若a +b ≠1,则a 2+b 2<12”.【答案】 C2.命题“两条对角线相等的四边形是矩形”是命题“矩形是两条对角线相等的四边形”的( )A.逆命题B.否命题C.逆否命题D.无关命题【解析】从两种命题的形式来看是条件与结论换位,因此为逆命题.【答案】 A3.命题“当x=2时,x2+x-6=0”的逆否命题是____.【解析】原命题结论的否定作条件,条件的否定作结论,写出逆否命题即可.【答案】当x2+x-6≠0时,x≠2.4.写出下列命题的逆命题、否命题和逆否命题,并判断命题的真假.(1)若mn<0,则方程mx2-x+n=0有实数根;(2)若ab=0,则a=0或b=0.【解】(1)逆命题:若方程mx2-x+n=0有实数根,则mn<0.假命题;否命题:若mn≥0,则方程mx2-x+n=0没有实数根.假命题;逆否命题:若方程mx2-x+n=0没有实数根,则mn≥0.真命题.(2)逆命题:若a=0或b=0,则ab=0.真命题;否命题:若ab≠0,则a≠0且b≠0.真命题;逆否命题:若a≠0且b≠0,则ab≠0.真命题.一、选择题1.命题“若綈p,则q”是真命题,则下列命题一定是真命题的是( )A.若p,则綈q B.若q,则綈pC.若綈q,则p D.若綈q,则綈p 【解析】若“綈p,则q”的逆否命题是“若綈q,则p”,又互为逆否命题真假性相同.∴“若綈q,则p”一定是真命题.【答案】 C2.若命题p的否命题为q,命题p的逆否命题为r,则q与r的关系是( )A.互逆命题B.互否命题C.互为逆否命题D.以上都不正确【解析】设p为“若A,则B”,那么q为“若綈A,则綈B”,r为“若綈B,则綈A”,故q与r为互逆命题.【答案】 A3.(台州检测)已知命题p:若a>0,则方程ax2+2x=0有解,则其原命题、否命题、逆命题及逆否命题中真命题的个数为( )A.3 B.2 C.1 D.0【解析】易知原命题和逆否命题都是真命题,否命题和逆命题都是假命题.故选B.【答案】 B4.(大庆检测)下列判断中不正确的是( )A.命题“若A∩B=B,则A∪B=A”的逆否命题为真命题B.“矩形的两条对角线相等”的逆否命题为真命题C.“已知a,b,m∈R,若am2<bm2,则a<b”的逆命题是真命题D.“若x∈N*,则(x-1)2>0”是假命题【解析】若A∩B=B,则有B⊆A,从而有A∪B=A,∴A正确;B中的逆否命题:“若一个四边形两条对角线不相等,则它不是矩形”为真命题∴B正确.C中的逆命题为:“已知a,b,m∈R,若a<b,则am2<bm2为假命题,故C不正确.D中x=1时,(x-1)2=0显然是假命题.故D正确.【答案】 C5.下列命题中,不是真命题的为( )A.“若b2-4ac≥0,则关于x的一元二次方程ax2+bx+c=0(a≠0)有实根”的逆否命题B.“四边相等的四边形是正方形”的逆命题C.“若x2=9,则x=3”的否命题D.“对顶角相等”的逆命题【解析】A中命题为真命题,其逆否命题也为真命题;B中命题的逆命题为“正方形的四边相等”,为真命题;C 中命题的否命题为“若x 2≠9,则x ≠3”为真命题;D 中命题的逆命题为“相等的角为对顶角”是假命题.【答案】 D 二、填空题6.命题“若A ∪B =B ,则A ⊆B ”的否命题是________. 【答案】 若A ∪B ≠B ,则A ⃘B .7.已知命题“若m -1<x <m +1,则1<x <2”的逆命题为真命题,则m 的取值范围是________.【解析】 由已知得,若1<x <2成立,则m -1<x <m +1也成立.∴⎩⎪⎨⎪⎧m -1≤1m +1≥2,∴1≤m ≤2.【答案】 [1,2]8.(菏泽检测)给定下列命题: ①若a >0,则方程ax 2+2x =0有解. ②“等腰三角形都相似”的逆命题;③“若x -32是有理数,则x 是无理数”的逆否命题;④“若a >1且b >1,则a +b >2”的否命题. 其中真命题的序号是________.【解析】 显然①为真,②为假.对于③中,原命题“若x -32是有理数,则x 是无理数”为假命题,∴逆否命题为假命题.对于④中,“若a >1且b >1,则a +b >2”的否命题是“若a ≤1或b ≤1,则a +b ≤2”为假命题.【答案】 ① 三、解答题9.设原命题是“当c >0时,若a >b ,则ac >bc ”,写出它的逆命题、否命题、逆否命题,并分别判断它们的真假.【解】 原命题是真命题.逆命题是“当c >0时,若ac >bc ,则a >b ”,是真命题. 否命题是“当c >0时,若a ≤b ,则ac ≤bc ”,是真命题. 逆否命题是“当c >0时,若ac ≤bc ,则a ≤b ”,是真命题.10.已知命题p :“若ac ≥0,则二次方程ax 2+bx +c =0没有实根”. (1)写出命题p 的否命题;(2)判断命题p的否命题的真假,并证明你的结论.【解】(1)命题p的否命题为:“若ac<0,则二次方程ax2+bx+c=0有实根”.(2)命题p的否命题是真命题,证明如下:∵ac<0,∴-ac>0⇒Δ=b2-4ac>0⇒二次方程ax2+bx+c=0有实根.∴该命题是真命题.11.已知奇函数f(x)是定义域为R的增函数,a,b∈R,若f(a)+f(b)≥0,求证:a +b≥0.【证明】假设a+b<0,则a<-b.∵f(x)在R上是增函数.∴f(a)<f(-b),又∵f(x)为奇函数.∴f(-b)=-f(b),∴f(a)<-f(b).即f(a)+f(b)<0.∴原命题的逆否命题为真,故原命题为真.(教师用书独具)判断命题“若m>0,则方程x2+2x-3m=0有实数根”的逆否命题的真假.【解】∵m>0,∴12m>0,∴12m+4>0.∴方程x2+2x-3m=0的判别式Δ=22-4×1×(-3m)=4+12m>0,∴原命题“若m >0,则方程x2+2x-3m=0有实数根”为真.又∵原命题与它的逆否命题等价,∴“若m>0,则方程x2+2x-3m=0有实数根”的逆否命题为真.已知ad-bc=1,求证:a2+b2+c2+d2+ab+cd≠1.【证明】设a2+b2+c2+d2+ab+cd=1,则2a2+2b2+2c2+2d2+2ab+2bc+2cd-2ad -2bc+2ad=2,即(a+b)2+(b+c)2+(c+d)2+(a-d)2+2ad-2bc=2,若(a+b)2+(b+c)2+(c+d)2+(a-d)2=0,则a=b=c=d=0,于是ad-bc<1;若(a+b)2+(b+c)2+(c+d)2+(a-d)2≠0,则(a+b)2+(b+c)2+(c+d)2+(a-d)2为正数,所以必有ad-bc<1.综上,命题“若a2+b2+c2+d2+ab+cd=1,则ad-bc≠1”成立,由原命题与它的逆否命题等价,知原命题也成立,从而原命题得证.21。
高中数学第一章常用逻辑用语1.1命题及其关系1.1.2四种命题1.1.3四种命题间的相互关系课件新人教A版选修1_1
1
2
3
对于两个命题,如果其中一个命题的条件和结论恰好是另一个命 题的结论的否定和条件的否定,我们把这样的两个命题叫做互为逆 否命题.如果把其中的一个命题叫做原命题,那么另一个叫做原命 题的逆否命题. 也就是说,如果原命题为“若p,则q”,那么它的逆否命题为“若������ q, 则������ p”.
1
2
3
2.四种命题间的相互关系
1
2
3
归纳总结 1.写四种命题时,要把原命题改写成“若p,则q”的形式, 一定要记清条件和结论的位置的变化.写否命题和逆否命题时,条 件和结论要同时否定. 2.写命题时,为了使句子更通顺,可适当添加一些词语,但不能改 变条件和结论的意思.
1
2
3
【做一做1-1】 命题“若a>b,则a-8>b-8”的逆否命题是( ) A.若a<b,则a-8<b-8 B.若a-8>b-8,则a>b C.若a≤b,则a-8≤b-8 D.若a-8≤b-8,则a≤b 答案:D 【做一做1-2】 若命题p的逆命题为q,命题q的否命题为r,则p是r 的( ) A.逆命题 B.否命题 C.逆否命题 D.以上判断都不对 解析:设p为:“若m,则n”,则q为:“若n,则m”,所以r为:“若������ n,则������ m”.故p是r的逆否命题. 答案:C
题型一
题型二
题型三
题型一
判断四种命题的真假
【例1】 分别写出下列命题的逆命题、否命题、逆否命题,并判 断它们的真假: (1)矩形的对角线相等; (2)正偶数不是质数. 分析将原命题改写成“若p,则q”的形式,再分别写出其逆命题、否 命题、逆否命题.在判定各种形式命题的真假时,要注意利用等价 命题的原理和规律.
1.1.2~1.1.3 四种命题 四种命题间的相互关系
2.由原命题“若p,则q”写其他三种命题的方法:
(1)“换位”(即交换命题的条件与结论)得到“若q,则p”,即为逆命题;
(2)“换质”(即将原命题的条件与结论分别否定后作为条件和结论)
得到“若������ p,则������ q”,即为否命题;
(3)既“换位”又“换质”(即把原命题的结论否定后作为新命题的条
答案C (2)解法பைடு நூலகம்:原命题的逆否命题:若x2+x-a=0无实根,则a<0. ∵x2+x-a=0无实根,∴Δ=1+4a<0,解得a<- 1 ,
4
∴原命题的逆否命题为真命题. 法二:∵a≥0,∴4a≥0,∴对于方程x2+x-a=0,根的判别式 Δ=1+4a>0,∴方程x2+x-a=0有实根,故原命题为真命题. ∵原命题与其逆否命题等价,∴原命题的逆否命题为真命题.
原命题
逆命题
否命题
逆否命题
真
真
真
真
真
假
假
真
假
真
真
假
假
假
假
假
(2)四种命题的真假性之间的关系: ①两个命题互为逆否命题,它们的真假性相同; ②两个命题互为逆命题或互为否命题,它们的真假性没有关系.
课前篇自主预习
【做一做3】 命题“若a>-3,则a>-6”以及它的逆命题、否命题、 逆否命题中,真命题的个数为( )
探究一
探究二
当堂检测
课堂篇探究学习
延伸探究若将本例改为:判断命题“若a≥0,则x2+x-a>0恒成立”的
真假.
解若x2+x-a>0恒成立,则Δ=1+4a<0,解得a<-
高中数学第一章常用逻辑术语1.1命题及其关系1.1.2四种命题1.1.3四种命题间的相互关系讲义新人教A版
1.1.2 四种命题 1.1.3 四种命题间的相互关系1.四种命题的定义2.四种命题的结构形式和关系3.四种命题的真假性之间的关系(1)两个命题互为逆否命题,它们有□10相同的真假性. (2)两个命题互为逆命题或互为否命题,它们的真假性□11没有关系.1.判一判(正确的打“√”,错误的打“×”)(1)有的命题没有逆命题.( )(2)对于一个命题的四种命题,可以一个真命题也没有.( )(3)原命题的否命题的逆命题就是原命题的逆否命题.( )答案(1)×(2)√(3)√2.做一做(1)(教材改编P6T(3))命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是( )A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数(2)若a=0,则ab=0的逆命题是_____________________________________.(3)若命题r的否命题为“若綈p,则q”,那么原命题r为________.(4)若a=b,则|a|=|b|的逆否命题是__________________________________.答案(1)B (2)若ab=0,则a=0 (3)“若p,则綈q”(4)若|a|≠|b|,则a≠b解析(1)原命题的条件是f(x)是奇函数,结论是f(-x)是奇函数,同时否定条件和结论即得否命题为若f(x)不是奇函数,则f(-x)不是奇函数.探究1 写出一个命题的其他三种命题例1 把下列命题写成“若p,则q”的形式,并写出它们的逆命题、否命题与逆否命题.(1)正数的平方根不等于0;(2)当x=2时,x2+x-6=0;(3)对顶角相等;(4)在△ABC中,当AB=AC时,∠B=∠C.[解] (1)原命题:“若a是正数,则a的平方根不等于0”.逆命题:“若a的平方根不等于0,则a是正数”.否命题:“若a不是正数,则a的平方根等于0”.逆否命题:“若a的平方根等于0,则a不是正数”.(2)原命题:“若x=2,则x2+x-6=0”.逆命题:“若x2+x-6=0,则x=2”.否命题:“若x≠2,则x2+x-6≠0”.逆否命题:“若x2+x-6≠0,则x≠2”.(3)原命题:“若两个角是对顶角,则它们相等”.逆命题:“若两个角相等,则它们是对顶角”.否命题:“若两个角不是对顶角,则它们不相等”.逆否命题:“若两个角不相等,则它们不是对顶角”.(4)原命题:“在△ABC中,若AB=AC,则∠B=∠C”.逆命题:“在△ABC中,若∠B=∠C,则AB=AC”.否命题:“在△ABC中,若AB≠AC,则∠B≠∠C”.逆否命题:“在△ABC中,若∠B≠∠C,则AB≠AC”.拓展提升写出一个命题的其他三种命题的步骤(1)分析命题的条件和结论;(2)将命题写成“若p,则q”的形式;(3)根据逆命题、否命题、逆否命题各自的结构形式写出这三种命题.注意:如果原命题含有大前提,在写出原命题的逆命题、否命题、逆否命题时,必须注意各命题中的大前提不变.【跟踪训练1】写出下列命题的逆命题、否命题与逆否命题:(1)若x>-2,则x+3>0;(2)两条对角线相等的四边形是矩形.解(1)逆命题:若x+3>0,则x>-2;否命题:若x≤-2,则x+3≤0;逆否命题:若x+3≤0,则x≤-2.(2)原命题可写为:若一个四边形的两条对角线相等,则这个四边形是矩形.逆命题:若一个四边形是矩形,则其两条对角线相等;否命题:若一个四边形的两条对角线不相等,则这个四边形不是矩形;逆否命题:若一个四边形不是矩形,则其两条对角线不相等.探究2 四种命题的真假判断例2 命题:已知a ,b 为实数,若x 2+ax +b ≤0有非空解集,则a 2-4b ≥0,写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.[解] 逆命题:已知a ,b 为实数,若a 2-4b ≥0,则x 2+ax +b ≤0有非空解集. 否命题:已知a ,b 为实数,若x 2+ax +b ≤0解集为空集,则a 2-4b <0.逆否命题:已知a ,b 为实数,若a 2-4b <0,则x 2+ax +b ≤0解集为空集.原命题、逆命题、否命题、逆否命题均为真命题.[条件探究] 如果把例2中的“x 2+ax +b ≤0”改为“x 2+(2a +1)x +a 2+2≤0”,试写出一个正确的原命题,写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.解 原命题:已知a 为实数,若关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集非空,则a ≥74,是真命题. 逆命题:已知a 为实数,若a ≥74,则关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集非空,是真命题.否命题:已知a 为实数,若关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集为空集,则a <74,是真命题.逆否命题:已知a 为实数,若a <74,则关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集为空集,是真命题.拓展提升命题真假的判断方法(1)由原命题写出其他三种命题,依次直接判断这四种命题的真假.(2)也可根据命题间的等价关系来判断命题的真假,注意:原命题和逆否命题同真同假,逆命题和否命题同真同假.(3)四种命题中,真命题的个数只可能为0个、2个、4个.【跟踪训练2】 判断下列命题的真假:(1)命题“若A ∩B =B ,则A ⊆B ”的逆否命题;(2)“若a >b ,则a +c >b +c ”的否命题;(3)“矩形的对角线相等”的逆命题;(4)“若xy =0,则x ,y 中至少有一个为0”的否命题.解 (1)由A ∩B =B ,知B ⊆A ,原命题为假命题,故逆否命题为假命题.(2)否命题为“若a ≤b ,则a +c ≤b +c ”,是真命题.(3)逆命题为“对角线相等的四边形是矩形”,是假命题.(4)否命题为“若xy ≠0,则x ,y 都不为零”,是真命题.探究3 等价命题的应用例3 判断命题“已知a ,x 为实数,若关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集不是空集,则a ≥1”的逆否命题的真假.[解] 解法一:原命题的逆否命题:已知a ,x 为实数,若a <1,则关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集为空集.真假判断过程如下:抛物线y =x 2+(2a +1)x +a 2+2开口向上,Δ=(2a +1)2-4(a 2+2)=4a -7.若a <1,则4a -7<0.∴抛物线y =x 2+(2a +1)x +a 2+2与x 轴无交点.∴关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集为空集.故逆否命题为真命题. 解法二:先判断原命题的真假.∵a ,x 为实数,且关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集不是空集,∴Δ=(2a +1)2-4(a 2+2)≥0,∴4a -7≥0,得a ≥74,从而a ≥1成立. ∴原命题为真命题.又∵原命题与其逆否命题等价,∴逆否命题为真命题.拓展提升“正难则反”的处理原则(1)当原命题的真假不易判断,而逆否命题较容易判断真假时,可通过判断其逆否命题的真假来判断原命题的真假.(2)四种命题中,原命题与其逆否命题是等价的,有相同的真假性,否命题与其逆命题也是互为逆否命题,解题时不要忽视.【跟踪训练3】已知函数f(x)在(-∞,+∞)上是增函数,a,b∈R,对命题“若a+b≥0,则f(a)+f(b)≥f(-a)+f(-b)”,写出其逆否命题,判断其真假,并证明你的结论.解逆否命题:若f(a)+f(b)<f(-a)+f(-b),则a+b<0.它为真命题.可通过证明原命题为真命题来证明它,证明如下:∵a+b≥0,则a≥-b,b≥-a.∵函数f(x)在(-∞,+∞)上是增函数,∴f(a)≥f(-b),f(b)≥f(-a).∴f(a)+f(b)≥f(-a)+f(-b),即原命题为真命题.∴它的逆否命题为真命题.1.正确写一个命题的逆命题、否命题和逆否命题(1)写出一个命题的逆命题、否命题和逆否命题的关键是正确找出原命题的条件和结论,然后按照定义写出命题,但要注意命题中的量词与它的否定词语的正确转换.(2)对于不是“若p,则q”形式的命题,要写出其他三种命题,应先把它改写成“若p,则q”的形式,以分清原命题的条件与结论.(3)当一个命题有大前提而要写出其他三种命题时,必须保留大前提,也就是大前提始终不变.2.四种命题中真命题个数的探究因为原命题与逆否命题有相同的真假性,逆命题与否命题有相同的真假性,所以四种命题中真命题的个数一定为偶数,即真命题的个数只可能为0,2,4.可依据此结论,检验写出的逆命题、否命题、逆否命题是否正确.3.逆否证法互为逆否命题的两个命题同真同假,也称为等价命题,所以在直接证明某一命题为真命题有困难时,可以通过证明它的逆否命题为真命题来间接证明原命题为真命题.1.命题“若A ∪B =A ,则A ∩B =B ”的否命题是( )A .若A ∪B ≠A ,则A ∩B ≠BB .若A ∩B =B ,则A ∪B =AC .若A ∩B ≠B ,则A ∪B ≠AD .若A ∪B ≠A ,则A ∩B =B答案 A解析 命题“若p ,则q ”的否命题为“若綈p ,则綈q ”,故A 正确.2.命题“若m =10,则m 2=100”与其逆命题、否命题、逆否命题这四个命题中,真命题是( )A .原命题、否命题B .原命题、逆命题C .原命题、逆否命题D .逆命题、否命题答案 C解析 显然原命题是真命题,所以其逆否命题也是真命题,若m 2=100,则m =±10,所以逆命题是假命题,其否命题也是假命题.3.若命题A 的否命题为B ,命题A 的逆否命题为C ,则B 与C 的关系是( )A .互逆命题B .互否命题C .互为逆否命题D .以上都不正确 答案 A解析 交换否命题的条件与结论就是逆否命题,符合互逆命题的定义.4.命题“若α=π4,则tan α=1”的逆否命题是________. 答案 若tan α≠1,则α≠π4 解析 交换原命题的条件和结论,同时进行否定可得逆否命题为“若tan α≠1,则α≠π4”. 5.将命题“正偶数不是素数”改写为“若p ,则q ”的形式,写出它的逆命题、否命题、逆否命题,并判断它们的真假.解 原命题:若一个数是正偶数,则这个数不是素数.是假命题;逆命题:若一个数不是素数,则这个数是正偶数.是假命题;否命题:若一个数不是正偶数,则这个数是素数.是假命题;逆否命题:若一个数是素数,则这个数不是正偶数.是假命题.。
四种命题 四种命题间的相互关系
否命题:若 m·n≥0,则方程 mx2-x+n=0 没有实数 根,假命题.
逆否命题:若方程 mx2-x+n=0 没有实数根,则 m·n ≥0,真命题.
(2)逆命题:若一条直线经过圆心,且平分弦所对的 弧,则这条直线是弦的垂直平分线,真命题.
否命题:若一条直线不是弦的垂直平分线,则这条直 线不过圆心或不平分弦所对的弧,真命题.
3.四种命题真假性之间的关系 (1)两个命题互为逆否命题时,它们有相同的真假性; (2)两个命题为互逆命题或互否命题时,它们的真假 性没有关系.
温馨提示 在四种命题中,真命题的个数可能为 0,2,4 个,不 会出现奇数个.
1.下列判断中不正确的是( ) A.命题“若 A∩B=B,则 A∪B=A”的逆否命题 为真命题 B.“矩形的两条对角线相等”的否命题为假命题 C.“已知 a,b,m∈R,若 am2<bm2,则 a<b”的逆 命题是真命题 D.“若 x∈N*,则(x-1)2>0”是假命题
解析:A 中,逆否命题“若 A∪B≠A,则 A∩B≠B” 是真命题,正确;B 中,否命题“不是矩形的四边形的两 条对角线不相等”是假命题,正确;C 中,逆命题“已知 a,b,m∈R,若 a<b,则 am2<bm2”是假命题.所以 C 错误,符合题意.D 中,因为 x=1 时,(1-1)2=0,所以 是假命题,正确.
答案:C
2.命题“若 a>b,则 2a>2b-1”的否命题为 ___________________________________________. 解析:否命题为“若¬ p,则¬ q”,则否命题为“若 a≤b,则 2a≤2b-1”. 答案:“若 a≤b,则 2a≤2b-1”
3.下列命题: ①“等边三角形三内角都为 60°”的逆命题; ②“若 k>0,则 x2+2x-k=0 有实根”的逆否命题; ③“全等三角形的面积相等”的否命题; ④“若 ab≠0,则 a≠0”的否命题; 其中真命题的序号为________. 解析:①逆命题“三内角都为 60°的三角形为等边 三角形”,真命题;②逆否命题“若 x2+2x-k=0 没有实 根,则 k≤0”,因为Δ=4+4k<0,所以 k<-1,满足 k
2018_2019学年高中数学第一章常用逻辑用语1.1.2四种命题1.1.3四种命题间的相互关系课件新人教A版选修1_1
互逆命题 或互否命题 ②两个命题为__________ _________,其真假性没
有关系.
核心要点探究
知识点一 四种命题之间的关系
探究1:结合四种命题间的关系图,思考下列问题: (1)判断两个命题之间的关系关键看命题的条件与结
论的哪方面?
提示 判断两个命题之间的关系关键看两个命题的 条件和结论之间是否互换了,是否都否定了.
等价于 “对于任意 x∈R, x2 + ax + 1≥0成立 ” 是真命
题. 由于函数 f(x) = x2 + ax + 1 是开口向上的抛物线,由 二 次 函 数 的 图 像 易 知 : Δ = a2 - 4≤0 , 解 得 : - 2≤a≤2.
所以实数a的取值范围是[-2,2].
内部文件,请勿外传
答案
A
题型三
逆否命题的应用
(1)命题:“已知a,x为实数,若关于 x的不等
例3
式 x2 + (2a + 1)x + a2 + 2≤0 的解集为空集,则 a<2”的
逆否命题是________命题(填“真”或“假”). (2)证明:如果p2+q2=2,则p+q≤2.
【解析】
(1)先判断原命题的真假.
因为关于 x 的不等式 x2+(2a+1)x+a2+2≤0 的 解集为空集,所以相应二次方程的判别式Δ=(2a+1)2 7 -4(a +2)=4a-7<0,所以 a< <2.所以原命题为真命 4
2
题.又因为原命题和它的逆否命题是等价命题,所以 此命题的逆否命题为真命题.
(2)该命题的逆否命题为:若p+q>2,则p2+q2≠2.因 为原命题与其逆否命题的真假相同,故只需证明其逆 否命题为真命题即可. 因为p+q>2,所以(p+q)2>4.因为p2+q2≥2pq,所以
高中数学 第一章 常用逻辑用语 1.1.2-1.1.3 四种命题、四种命题间的相互关系教案 新人教
内蒙古开鲁县高中数学第一章常用逻辑用语1.1.2-1.1.3 四种命题、四种命题间的相互关系教案新人教A版选修2-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(内蒙古开鲁县高中数学第一章常用逻辑用语1.1.2-1.1.3 四种命题、四种命题间的相互关系教案新人教A版选修2-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为内蒙古开鲁县高中数学第一章常用逻辑用语1.1.2-1.1.3 四种命题、四种命题间的相互关系教案新人教A版选修2-1的全部内容。
1。
1。
2四种命题 1.1.3四种命题间的相互关系教学目标知识目标了解原命题、逆命题、否命题、逆否命题这四种命题的概念,掌握四种命题的形式和四种命题间的相互关系,会用等价命题判断四种命题的真假。
能力目标多让学生举命题的例子,并写出四种命题,培养学生发现问题、提出问题、分析问题、有创造性地解决问题的能力;培养学生抽象概括能力和思维能力。
情感目标通过学生的参与,激发学生学习数学的兴趣和积极性,培养他们的辨析能力以及培养他们的分析问题和解决问题的能力。
高考知识点扫描四种命题形式及命题的真假判断教学重点会写四种命题并会判断命题的真假;四种命题之间的相互关系.教学难点1.分清命题的条件、结论和判断命题的真假2.命题的否定与否命题的区别;写出原命题的逆命题、否命题和逆否命题;3.分析四种命题之间相互的关系并判断命题的真假.教学方法启发式教学,问题引领,自主学习教具多媒体课件第课时教学设计教学内容教学过程一.四种命题原命题逆命题否命题逆否命题〈一>复习引入1.回顾初中已学过命题与逆命题的知识,什么叫做命题的逆命题?2.思考、分析问题:下列四个命题中,命题(1)与命题(2)、(3)、(4)的条件与结论之间分别有什么关系?(1)若)(xf是正弦函数,则)(xf是周期函数;(2)若)(xf是周期函数,则)(xf是正弦函数;(3)若)(xf不是正弦函数,则)(xf不是周期函数;(4)若)(xf不是周期函数,则)(xf不是正弦函数.3.归纳总结学生分析、讨论,给出四个命题的概念,(1)和(2)这样的两个命题叫做互逆命题,(1)和(3)这样的两个命题叫做互否命题,(1)和(4)这样的两个命题叫做互为逆否命题.<二〉讲授新知1.基本定义:定义1:互逆命题.定义2:互否命题.定义3:互为逆否命题.强调:原命题与逆命题、原命题与否命题、原命题与逆否命题是相对的。
1.1.2-1.1.3四种命题、四种命题间的相互关系
2.四种命题的相互关系
第一章 常用逻辑用语
做一做 1.命题:“当a>1时,函数y=ax在R上是增函数”的逆否 命题是__若__函__数__y_=__a_x_在__R_上__不__是__增__函__数__,_则__a_≤_1__.
栏目 导引
第一章 常用逻辑用语
3.四种命题的真假性 (1)四种命题的真假性,有且仅有下面四种情况
原命题 真
真 假 假
逆命题 真
假 真 假
否命题 __真__ _假___
_真___ _假___
逆否命题 _真___
_真___ _假___ _假___
(2)四种命题的真假性之间的关系 ①两个命题互为逆否命题,它们有__相__同__的真假性;
②两个命题为互逆命题或互否命题,它们的真假性 _没__有__关__系____.
栏目 导引
第一章 常用逻辑用语
做一做 2.判断“若x2+y2=0,则x=y=0”的真假? 解:利用逆否命题判断. 若x,y不全为0,则x2+y2≠0是真命题, ∴x2+y2=0,则x=y=0是真命题.
栏目 导引
第一章 常用逻辑用语
典题例证技法归纳
题型探究 题型一 四种命题的概念
例1 把下列命题写成“若 p,则 q”的形式,并写出它们的 逆命题、否命题与逆否命题: (1)当 x=2 时,x2-3x+2=0; (2)内错角相等.
栏目 导引
第一章 常用逻辑用语
【解】 (1)原命题:若x=2,则x2-3x+2=0. 逆命题:若x2-3x+2=0,则x=2. 否命题:若x≠2,则x2-3x+2≠0. 逆否命题:若x2-3x+2≠0,则x≠2. (2)原命题:若两个角是内错角,则它们相等. 逆命题:若两个角相等,则它们是内错角. 否命题:若两个角不是内错角,则它们不相等. 逆否命题:若两个角不相等,则它们不是内错角. 【名师点评】 写出原命题的逆命题、否命题及逆否 命题的关键是要分清条件p和结论q,对于语言形式的命 题一定先写成“若p,则q”的形式,叙述时要注意语句的 通顺性与逻辑性,并力求简洁.
2019_2020学年高中数学第一章常用逻辑用语1.1.2四种命题1.1.3四种命题间的相互关系课件新人教A版选修1_1
命题.
否命题:若 m·n>14,则方程 mx2-x+n=0 没有实数根.真
命题.
逆否命题:若4.
真命题.
(3)逆命题:若 a=0 或 b=0,则 ab=0.真命题.
否命题:若 ab≠0,则 a≠0 且 b≠0.真命题.
逆否命题:若 a≠0 且 b≠0,则 ab≠0.真命题.
1.1.2 四种命题 1.1.3 四种命题间的相互关系
目标定位
1.了解命题的逆命题、否命 题、逆否命题,能写出原命 题的其他三种命题 2.能利用四种命题间的相互 关系判断命题的真假
重点难点
重点:正确分析四种命题的 相互关系 难点:正确写出原命题的否 命题
1.四种命题的概念 一般地,对于两个命题,如果一个命题的条件与结论分别 是另一个命题的结论和条件,那么把这样的两个命题叫作 ________;如果一个命题的条件与结论分别是另一个命题的条 件的否定和结论的否定,那么把这样的两个命题叫作 ________;如果一个命题的条件与结论分别是另一个命题结论 的否定和条件的否定,那么把这样的两个命题叫作________.
关键词的否定易出错
【示例】x,y∈R,写出命题“若x2+y2=0,则x,y全为 零”的逆命题、否命题、逆否命题,并判断真假.
【错解】逆命题为:若x,y全为零,则x2+y2=0,是真命 题.否命题为:若x2+y2≠0,则x,y全不为零,是假命题.逆 否命题为:若x,y全不为零,则x2+y2≠0,是真命题.
8
1.由原命题写出其他三种命题,关键要分清原命题的条 件和结论.如果原命题含有大前提,在写出原命题的逆命题、 否命题、逆否命题时,必须注意各命题中的大前提不变.
2.原命题与它的逆否命题同真同假,原命题的否命题与 逆命题也互为逆否命题,同真同假,故只判断二者中的一个即 可.
高中数学 第一章1.1.2~1.1.3 四种命题、四种命题间的
1.1.2~1.1.3 四种命题、四种命题间的相互关系问题导学一、四种命题活动与探究1写出下列命题的逆命题、否命题与逆否命题:(1)若x>-2,则x+3>0;(2)两条对角线相等的四边形是矩形.迁移与应用1.写出命题“如果一个数列中各项都相等,那么这个数列是等差数列”的逆命题、否命题和逆否命题,并说明它们的真假.2.已知命题:“负数的平方是正数”,试写出其逆命题、否命题、逆否命题.1.给出一个命题写它的另外三个命题时,应先将命题整理成“若p,则q”的形式,然后根据定义写出另外三个命题.2.在写命题时,为了使句子更加通顺,可以适当地添加一些词语,但不能改变条件和结论.二、四种命题之间的关系活动与探究2下列命题:①“若xy=1,则x,y互为倒数”的逆命题;②“四边相等的四边形是正方形”的否命题;③“梯形不是平行四边形”的逆否命题;④“若ac2>bc2,则a>b”的逆命题.其中的真命题是__________.迁移与应用1.有下列四个命题:①“若x+y=0,则x,y互为相反数”的否命题;②“若a≥b,则a2≥b2”的逆否命题;③“若x≤3,则x2-x-6>0”的否命题;④“对顶角相等”的逆命题.其中真命题的个数是( ).A.0 B.1 C.2 D.32.把命题“当x=2时,x2-3x+2=0”写成“若p,则q”的形式,并写出它们的逆命题、否命题与逆否命题,并判断真假.在判断一个命题的真假时,可以有两种方法:一是分清原命题的条件和结论,直接对原命题的真假进行判断;二是不直接写出命题,而是根据命题之间的关系进行判断,即原命题和逆否命题同真同假,逆命题和否命题同真同假.答案:课前·预习导学【预习导引】1.(1)结论条件原命题逆命题若q,则p(2)条件的否定结论的否定否命题若⌝p,则⌝q(3)结论的否定条件的否定逆否命题若⌝q,则⌝p预习交流1:提示:原命题:若一个数是正偶数,则这个数不是素数.逆命题:若一个数不是素数,则这个数是正偶数.否命题:若一个数不是正偶数,则这个数是素数.逆否命题:若一个数是素数,则这个数不是正偶数.2.(2)逆否命题没有关系预习交流2:提示:(1)逆命题:若方程x2+2x+q=0有实根,则q≤1.真命题.否命题:若q>1,则方程x2+2x+q=0无实根.真命题.逆否命题:若方程x2+2x+q=0无实根,则q>1.真命题.(2)逆命题:若a=0或b=0,则ab=0.真命题.否命题:若ab≠0,则a≠0且b≠0.真命题.逆否命题:若a≠0且b≠0,则ab≠0.真命题.(3)逆命题:若x,y全为零,则x2+y2=0,真命题.否命题:若x2+y2≠0,则x,y不全为零,真命题.逆否命题:若x,y不全为零,则x2+y2≠0,真命题.课堂·合作探究【问题导学】活动与探究1:思路分析:首先分清命题的条件和结论,再按照定义写出逆命题、否命题、逆否命题;对于(2),则应先将命题改写为“若p,则q”的形式.解:(1)逆命题:若x+3>0,则x>-2;否命题:若x≤-2,则x+3≤0;逆否命题:若x+3≤0,则x≤-2.(2)原命题可写为:若一个四边形的两条对角线相等,则这个四边形是矩形.所以:逆命题:若一个四边形是矩形,则其两条对角线相等;否命题:若一个四边形的两条对角线不相等,则这个四边形不是矩形;逆否命题:若一个四边形不是矩形,则其两条对角线不相等.迁移与应用:1.解:原命题是一个真命题.逆命题:如果一个数列是等差数列,那么这个数列中各项都相等.它是一个假命题.否命题:如果一个数列中各项不都相等,那么这个数列不是等差数列.它是一个假命题.逆否命题:如果一个数列不是等差数列,那么这个数列中各项不都相等.它是一个真命题.2.解:原命题可以改写成:若一个数是负数,则它的平方是正数.逆命题:若一个数的平方是正数,则它是负数.否命题:若一个数不是负数,则它的平方不是正数.逆否命题:若一个数的平方不是正数,则它不是负数.活动与探究2:思路分析:先正确地写出对应的命题,再进行判断,或根据互为逆否命题同真或同假进行判断.①②③解析:①“若xy=1,则x,y互为倒数”的逆命题是“若x,y互为倒数,则xy=1”,是真命题;②“四边相等的四边形是正方形”的否命题是“四边不都相等的四边形不是正方形”,是真命题;③“梯形不是平行四边形”本身是真命题,所以其逆否命题也是真命题;④“若ac2>bc2,则a>b”的逆命题是“若a>b,则ac2>bc2”,是假命题.所以真命题是①②③.迁移与应用:1.B 解析:①否命题是“若x+y≠0,则x,y不互为相反数”.真命题.②原命题为假命题,从而逆否命题为假命题.③否命题为“若x>3,则x2-x-6≤0”.假命题.④逆命题为“若两个角相等,则这两个角为对顶角”.假命题.2.解:原命题:若x=2,则x2-3x+2=0.逆命题:若x2-3x+2=0,则x=2,假命题.否命题:若x≠2,则x2-3x+2≠0,假命题.逆否命题:若x2-3x+2≠0,则x≠2,真命题.当堂检测1.有下列四个命题,其中真命题是( ).①“若xy=1,则x,y互为倒数”的否命题;②“相似三角形的周长相等”的否命题;③“若m≤1,则x2-2x+m=0有实根”的逆否命题;④“若A∪B=B,则A⊇B”的逆否命题.A.①② B.②③ C.①③ D.③④答案:C2.在命题“若抛物线y=ax2+bx+c的开口向下,则不等式ax2+bx+c<0的解集不是∅”的逆命题、否命题、逆否命题中,对于真假性的判断正确的是( ).A.都真 B.都假C.否命题真 D.逆否命题真答案:D 解析:原命题是真命题,所以逆否命题一定也为真命题.3.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为( ).A.1 B.2 C.3 D.4答案:B 解析:原命题显然为真命题,故其逆否命题为真命题,而其逆命题为“若a >-6,则a>-3”,这是假命题,从而否命题也是假命题,因此只有两个真命题.4.与命题“若a·b=0,则a⊥b”等价的命题是( ).A.若a·b≠0,则a不垂直于bB.若a⊥b,则a·b=0C.若a不垂直于b,则a·b≠0D.若a·b≠0,则a⊥b答案:C5.给出以下命题:①“若x2+y2≠0,则x,y不全为零”的否命题;②“正多边形都相似”的逆命题;③“若m>0,则x2+x-m=0有实根”的逆否命题.其中为真命题的是__________.答案:①③解析:①否命题是“若x2+y2=0,则x,y全为零”.真命题.②逆命题是“若两个多边形相似,则这两个多边形为正多边形”.假命题.③∵Δ=1+4m,若m>0,则Δ>0,∴x2+x-m=0有实根,即原命题为真命题.∴逆否命题也为真命题.提示:用最精练的语言把你当堂掌握的核心知识的精华部。
2019高中数学 第一章 1.1.2 四种命题 1.1.3 四种命题间的相互关系学案 新人教A版选修2-1
1.1.2 四种命题1.1.3 四种命题间的相互关系学习目标:1.了解四种命题的概念,能写出某命题的逆命题、否命题和逆否命题.(重点)2.知道四种命题之间的相互关系以及真假性之间的联系.(易混点)3.会利用命题的等价性解决问题.(难点)[自 主 预 习·探 新 知]1.四种命题的概念及表示形式(1)四种命题之间的关系(2)四种命题间的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题为互逆命题或互否命题,它们的真假性没有关系.思考:(1)“a=b=c=0”的否定是什么?(2)在原命题,逆命题、否命题和逆否命题四个命题中.真命题的个数会是奇数吗?[提示](1)“a=b=c=0”的否定是“a,b,c至少有一个不等于0”.(2)真命题的个数只能是0,2,4,不会是奇数.[基础自测]1.思考辨析(1)命题“若﹁p,则q”的否命题为“若﹁p,则﹁q”.( )(2)同时否定原命题的条件和结论,所得的命题是否命题.( )(3)命题“若A∩B=A,则A∪B=B”的逆否命题是“若A∪B≠B,则A∩B≠A”.( )[答案](1)×(2)√(3)√2.命题“若一个数是负数,则它的相反数是正数”的逆命题是( )A.“若一个数是负数,则它的相反数不是正数”B.“若一个数的相反数是正数,则它是负数”C.“若一个数不是负数,则它的相反数不是正数”D.“若一个数的相反数不是正数,则它不是负数”B[根据逆命题的定义知,选B.]3.命题“若m=10,则m2=100”与其逆命题、否命题、逆否命题这四个命题中,真命题是( )【导学号:46342008】A.原命题、否命题B.原命题、逆命题C.原命题、逆否命题D.逆命题、否命题C[原命题正确,则逆否命题正确,逆命题不正确,从而否命题不正确.故选C.][合作探究·攻重难]否命题.(1)相似三角形对应的角相等;(2)当x>3时,x2-4x+3>0;(3)正方形的对角线互相平分.[解] (1)原命题:若两个三角形相似,则这两个三角形的三个角对应相等;逆命题:若两个三角形的三个角对应相等,则这两个三角形相似;否命题:若两个三角形不相似,则这两个三角形的三个角对应不相等;逆否命题:若两个三角形的三个角对应不相等,则这两个三角形不相似.(2)原命题:若x>3,则x2-4x+3>0;逆命题:若x2-4x+3>0,则x>3;否命题:若x≤3,则x2-4x+3≤0;逆否命题:若x2-4x+3≤0,则x≤3.(3)原命题:若一个四边形是正方形,则它的对角线互相平分;逆命题:若一个四边形对角线互相平分,则它是正方形;否命题:若一个四边形不是正方形,则它的对角线不互相平分;逆否命题:若一个四边形对角线不互相平分,则它不是正方形.[跟踪训练]1.(1)命题“若y=kx,则x与y成正比例关系”的否命题是( )【导学号:46342009】A.若y≠kx,则x与y成正比例关系B.若y≠kx,则x与y成反比例关系C.若x与y不成正比例关系,则y≠kxD.若y≠kx,则x与y不成正比例关系D[条件的否定为y≠kx,结论的否定为x与y不成比例关系,故选D.](2)命题“若ab ≠0,则a ,b 都不为零”的逆否命题是________.若a ,b 至少有一个为零,则ab =0 [“ab ≠0”的否定是“ab =0”,“a ,b 都不为零”的否定是“a ,b 中至少有一个为零”,因此逆否命题为“若a ,b 至少有一个为零,则ab =0”.]否命题、逆否命题,在这4个命题中,真命题的个数为( )A .0个B .1个C .2个D .4个(2)判断命题“若a ≥0,则x 2+x -a =0有实根”的逆否命题的真假. [思路探究] (1)只需判断原命题和逆命题的真假即可. (2)思路一 写出原命题的逆否命题→判断其真假 思路二原命题与逆否命题同真同假(即等价关系)→判断原命题的真假→得到逆否命题的真假[解析] (1)当c =0时,ac 2>bc 2不成立,故原命题是假命题,从而其逆否命题也是假命题;原命题的逆命题为“若ac 2>bc 2,则a >b ”是真命题,从而否命题也是真命题,故选C .[答案] C(2)法一:原命题的逆否命题:若x 2+x -a =0无实根,则a <0. ∵x 2+x -a =0无实根,∴Δ=1+4a <0,解得a <-14<0,∴原命题的逆否命题为真命题.法二:∵a ≥0,∴4a ≥0,∴对于方程x 2+x -a =0,根的判别式Δ=1+4a >0,∴方程x 2+x -a =0有实根,故原命题为真命题.∵原命题与其逆否命题等价,∴原命题的逆否命题为真命题.2.判断下列四个命题的真假,并说明理由. (1)“若x +y =0,则x ,y 互为相反数”的否命题; (2)“若x >y ,则x 2>y 2”的逆否命题;(3)“若x ≤3,则x 2-x -6>0”的否命题; (4)“对顶角相等”的逆命题.[解] (1)命题“若x +y =0,则x ,y 互为相反数”的逆命题为“若x ,y 互为相反数,则x +y =0”,则逆命题为真命题,因为原命题的逆命题和否命题具有相同的真假性,所以“若x +y =0,则x ,y 互为相反数”的否命题是真命题.(2)令x =1,y =-2,满足x >y ,但x 2<y 2,所以“若x >y ,则x 2>y 2”是假命题,因为原命题与其逆否命题具有相同的真假性,所以“若x >y ,则x 2>y 2”的逆否命题也是假命题.(3)该命题的否命题为“若x >3,则x 2-x -6≤0”,令x =4,满足x >3,但x 2-x -6=6>0,不满足x 2-x -6≤0,则该否命题是假命题.(4)该命题的逆命题为“相等的角是对顶角”是假命题,如等边三角形的任意两个内角都相等,但它们不是对顶角.[1.当一个命题的条件与结论以否定形式出现时,为了研究方便,我们可以研究哪一个命题?提示:一个命题与其逆否命题等价,我们可研究其逆否命题.2.在证明“若m 2+n 2=2,则m +n ≤2”时,我们也可以证明哪个命题成立. 提示:根据一个命题与其逆否命题等价,我们也可以证明“若m +n >2,则m 2+n 2≠2”成立.(1)命题“对任意x ∈R ,ax 2-2ax -3>0不成立”是真命题,则实数a 的取值范围是________.(2)证明:已知函数f (x )是(-∞,+∞)上的增函数,a ,b ∈R ,若f (a )+f (b )≥f (-a )+f (-b ),则a +b ≥0.【导学号:46342010】[思路探究] (1)根据其逆否命题求解.(2)证明其逆否命题成立. [解析] (1)∵命题“对任意x ∈R ,ax 2-2ax -3>0不成立” 等价于“对任意x ∈R ,ax 2-2ax -3≤0恒成立”, 若a =0,则-3≤0恒成立,∴a =0符合题意.若a ≠0,由题意知⎩⎪⎨⎪⎧a <0Δ=4a 2+12a ≤0,即⎩⎪⎨⎪⎧a <0-3≤a ≤0,∴-3≤a <0综上知,a 的取值范围是-3≤a ≤0.[答案][-3,0](2)证明原命题的逆否命题为“已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若a+b<0,则f(a)+f(b)<f(-a)+f(-b)”.若a+b<0,则a<-b,b<-a.又∵f(x)在(-∞,+∞)上是增函数,∴f(a)<f(-b),f(b)<f(-a),∴f(a)+f(b)<f(-a)+f(-b).即原命题的逆否命题为真命题.∴原命题为真命题.3.证明:若a2-4b2-2a+1≠0,则a≠2b+1.[证明]“若a2-4b2-2a+1≠0,则a≠2b+1”的逆否命题为“若a=2b+1,则a2-4b2-2a+1=0”.∵a=2b+1,∴a2-4b2-2a+1=(2b+1)2-4b2-2(2b+1)+1=4b2+1+4b-4b2-4b-2+1=0.∴命题“若a=2b+1,则a2-4b2-2a+1=0”为真命题.由原命题与逆否命题具有相同的真假性可知,原命题得证.[当堂达标·固双基]1.命题“若a∈/A,则b∈B”的逆命题是( )A.若a∈/A,则b∈/B B.若a∈A,则b∈/BC.若b∈B,则a∈/A D.若b∈/B,则a∈/AC[“若p,则q”的逆命题是“若q,则p”,所以本题的逆命题是“若b∈B,则a∈/ A”.]2.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是( ) A.若a+b+c≠3,则a2+b2+c2<3B.若a+b+c=3,则a2+b2+c2<3C.若a+b+c≠3,则a2+b2+c2≥3D.若a2+b2+c2≥3,则a+b+c=3A[同时否定命题的条件与结论,所得命题就是原命题的否命题,故选A.]3.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为 ( )A.1 B.2 C.3 D.4B[原命题是真命题,从而其逆否命题是真命题,其逆命题是“若a>-6,则a>-3”,是假命题,从而其否命题也是假命题,故真命题的个数是2.]4.命题“若m>1,则mx2-2x+1=0无实根”的等价命题是________.【导学号:46342011】若mx2-2x+1=0有实根,则m≤1[原命题的等价命题是其逆否命题,由定义可知其逆否命题为:“若mx2-2x+1=0有实根,则m≤1”.]5.已知命题p:“若ac≥0,则二次不等式ax2+bx+c>0无解”.(1)写出命题p的否命题;(2)判断命题p的否命题的真假.[解] (1)命题p的否命题为:“若ac<0,则二次不等式ax2+bx+c>0有解”.(2)命题p的否命题是真命题.判断如下:因为ac<0,所以-ac>0⇒Δ=b2-4ac>0⇒二次方程ax2+bx+c=0有实根⇒ax2+bx+c>0有解,所以该命题是真命题.。
2019_2020学年高中数学第一章1.1.2四种命题1.1.3四种命题间的相互关系课后训练案巩固提升新人教A版选修1_1
1.1.2 四种命题 1.1.3 四种命题间的相互关系课后训练案巩固提升一、A组1.命题“若a n=2n-1,则数列{a n}是等差数列”的逆否命题是()A.若a n≠2n-1,则数列{a n}不是等差数列B.若数列{a n}不是等差数列,则a n≠2n-1C.若a n=2n-1,则数列{a n}不是等差数列{a n}是等差数列,则a n≠2n-1() A.逆命题 B.否命题D.以上均不对A.a>1,则lg a>0”及其逆命题、否命题和逆否命题这四个命题中,真命题的个数为() A.0 B.2D.4,则逆否命题为真;又当lg a>0时,必有a>1,所以逆命题为真,否命题也为真,故一个命题是真命题.r:“若p,则 q”的逆命题是真命题,那么下列命题一定为真命题的是()A.若 p,则qB.若 q,则pp,则 q D.若q,则pp,则 q”的否命题“若 p,则q”一定是真命题.:“若α+β≠π2,则sin α≠cos β”,则下列说法正确的是()A.与逆命题同为假命题B.与否命题同为假命题C.与否命题同为真命题sinα=cosβ,则α+β=π2”,显然是假命题,故原命题也为假命题.其否命题是“若α+β=π2,则sinα=cosβ”,显然是真命题,故D项正确.:①“已知函数y=f(x),x∈D,若D关于原点对称,则函数y=f(x),x∈D为奇函数”的逆命题;②“对应边平行的两角相等”的否命题;③“若a≠0,则关于x的方程ax+b=0有实根”的逆否命题;④“若A∪B=B,则A≠B”的逆否命题.其中的真命题是()A.①②B.②③D.③④逆命题:“若函数y=f(x),x∈D为奇函数,则定义域D关于原点对称”,为真命题;否命题:“对应边不平行的两角不相等”,为假命题;③逆否命题:“若关于x的方程ax+b=0无实根,则a=0”,为真命题;逆否命题:“若A=B,则A∪B≠B”,是假命题.α=β,则sin α=sin β”的等价命题是.,所以命题“若α=β,则sinα=sinβ”的等价命题是“若sinβ,则α≠β”.sin α≠sin β,则α≠β ABC 中,若∠C=90°,则∠A ,∠B 都是锐角”的否命题为 .ABC 中,若∠C ≠90°,则∠A ,∠B 不都是锐角,并判断它们的真假:(1)若x ≥10,则2x+1>20;(2)如果两圆外切,那么两圆圆心距等于两圆半径之和;,奇数不能被2整除.逆命题:若2x+1>20,则x ≥10,为假命题;否命题:若x<10,则2x+1≤20,为假命题;逆否命题:若2x+1≤20,则x<10,为真命题.(2)逆命题:如果两圆圆心距等于两圆半径之和,那么两圆外切,是真命题;否命题:如果两圆不外切,那么两圆圆心距不等于两圆半径之和,是真命题;逆否命题:如果两圆圆心距不等于两圆半径之和,那么两圆不外切,是真命题.(3)逆命题:在整数中,不能被2整除的数是奇数,是真命题;否命题:在整数中,不是奇数的数能被2整除,是真命题;逆否命题:在整数中,能被2整除的数不是奇数,是真命题. m 是整数,求证:若m 2+6m 是偶数,则m 不是奇数.p :m 是整数,若m 2+6m 是偶数,则m 不是奇数.:若m 是奇数,则m 2+6m 是奇数.以下证明该逆否命题为真命题.由于m 是奇数,不妨设m=2k-1(k ∈Z ),则m 2+6m=(2k-1)2+6(2k-1)=4k 2+8k-5=4(k 2+2k-1)-1,由于k ∈Z ,所以k 2+2k ∈Z ,于是4(k 2+2k )是偶数,从而4(k 2+2k-1)-1为奇数,即m 2+6m 是奇数.因此逆否命题是真命题,从而原结论正确.二、B 组1.若命题p 的否命题是q ,q 的逆否命题是r ,则r 是p 的 ( )B.逆命题C.否命题D.逆否命题a ,b ,c 不成等比数列,则b 2≠ac ”等价的命题是( )A.若a ,b ,c 不成等比数列,则b 2=acB.若a ,b ,c 成等比数列,则b 2=acC.若b 2≠ac ,则a ,b ,c 不成等比数列2=ac ,则a ,b ,c 成等比数列,命题“若a ,b ,c 不成等比数列,则b 2≠ac ”的逆否命题b 2=ac ,则a ,b ,c 成等比数列”,故选D .1<x<2,则m-1<x<m+1”的逆否命题是真命题,则实数m 的取值范围,所以原命题为真命题,因此有{ -1≤1, +1≥2,解得1≤m ≤2. :①“若b 2=ac ,则a ,b ,c 成等比数列”的逆否命题;②“若m=2,则直线x+y=0与直线2x+my+1=0平行”的逆命题;③“已知a ,b 是非零向量,若a ·b >0,则a 与b 方向相同”的逆否命题;④“若x>3,则x 2-x-6>0”的否命题.其中真命题的个数是( )B.2C.3D.4中,当a=b=c=0时,b 2=ac ,此时a ,b ,c 不成等比数列,原命题为假命题,所以它的逆否命题为;易知②为真命题;③中,当a =(0,1),b =(1,1)时,a ·b >0,但a 与b 不同向,所以原命题为假命题,故它的逆否命题为假命题;④中,原命题的逆命题为“若x2-x-6>0,则x>3”,易知它为假命题,所.故选A.:已知a,b为实数,若关于x的不等式x2+ax+b≤0的解集是非空数集,则a2-4b≥0.写出该命,并判断这些命题的真假.:已知a,b为实数,若a2-4b≥0,则关于x的不等式x2+ax+b≤0的解集是非空数集.否命题:已知a,b为实数,若关于x的不等式x2+ax+b≤0的解集是空集,则a2-4b<0.逆否命题:已知a,b为实数,若a2-4b<0,则关于x的不等式x2+ax+b≤0的解集是空集.原命题、逆命题、否命题和逆否命题均为真命题.导学号59254004求证:若x+y+z>60,则x,y,z中至少有一个大于20.证明:构造命题:若x+y+z>60,则x,y,z中至少有一个大于20.:若x,y,z都小于或等于20,则x+y+z≤60.由于x≤20,y≤20,z≤20,由不等式的性质可得x+y+z≤20+20+20=60,因此逆否命题正确,从而原结论正确.。
2018_2019学年高中数学第一章常用逻辑用语1.1.2四种命题1.1.3四种命题间的相互关系课件新人教A版选修2_1
解析:命题③可改写为“若一个四边形是正方形,则它的四 条边相等”;命题④可改写为“若一个四边形是圆内接四边 形,则它的对角互补”;命题⑤可改写为“若一个四边形的 对角不互补,则它不内接于圆” ,再依据四种命题间的关系便 不难判断.
答案:②和④,③和⑥ ①和⑥,②和⑤ ①和③,④和⑤
知识结构 四种命题之间的相互关系
等价命题的应用原则 (1)在证明某一个命题的真假性有困难时,可以证明它的逆否 命题为真(假)命题,来间接地证明原命题为真(假)命题. (2)四种命题中,原命题与其逆否命题是等价的,有相同的真 假性,否命题与其逆命题也是互为逆否命题,解题时不要忽 视.
证明:已知函数 f(x)是(-∞,+∞)上的增函 数,a,b∈R,若 f(a)+f(b)≥f(-a)+f(-b),则 a+b≥0.
A.若 x<-3,则 x≤0 C.若 x≥0,则 x>-3
解析: 选 C. 易知原命题的逆否命题是“若 x≥0, 则 x>-3”.
2. (2018· 山东济南外国语学校高二(下)期中考试)设 a, b 是向 量,命题“若 a=-b,则|a|=|b|”的逆命题是( A.若 a≠-b,则|a|≠|b| B.若 a=-b,则|a|≠|b| C.若|a|≠|b|,则 a≠-b D.若|a|=|b|,则 a=-b )
【解析】 ①“若 xy=1, 则 x, y 互为倒数”的逆命题是“若 x,y 互为倒数,则 xy=1”,是真命题;②“四边相等的四 边形是正方形”的否命题是“四边不都相等的四边形不是正 方形” , 是真命题;③ “梯形不是平行四边形” 本身是真命题, 所以其逆否命题也是真命题;④“若 ac2>bc2,则 a>b”的 逆命题是“若 a>b,则 ac2>bc2”,是假命题,所以真命题 是①②③.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1.2 四种命题1.1.3 四种命题间的相互关系学习目标:1.了解四种命题的概念,能写出某命题的逆命题、否命题和逆否命题.(重点)2.知道四种命题之间的相互关系以及真假性之间的联系.(易混点)3.会利用命题的等价性解决问题.(难点)[自 主 预 习·探 新 知]1.四种命题的概念及表示形式(1)四种命题之间的关系(2)四种命题间的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题为互逆命题或互否命题,它们的真假性没有关系.思考:(1)“a=b=c=0”的否定是什么?(2)在原命题,逆命题、否命题和逆否命题四个命题中.真命题的个数会是奇数吗?[提示](1)“a=b=c=0”的否定是“a,b,c至少有一个不等于0”.(2)真命题的个数只能是0,2,4,不会是奇数.[基础自测]1.思考辨析(1)命题“若﹁p,则q”的否命题为“若﹁p,则﹁q”.( )(2)同时否定原命题的条件和结论,所得的命题是否命题.( )(3)命题“若A∩B=A,则A∪B=B”的逆否命题是“若A∪B≠B,则A∩B≠A”.( )[答案](1)×(2)√(3)√2.命题“若一个数是负数,则它的相反数是正数”的逆命题是( )A.“若一个数是负数,则它的相反数不是正数”B.“若一个数的相反数是正数,则它是负数”C.“若一个数不是负数,则它的相反数不是正数”D.“若一个数的相反数不是正数,则它不是负数”B[根据逆命题的定义知,选B.]3.命题“若m=10,则m2=100”与其逆命题、否命题、逆否命题这四个命题中,真命题是( )【导学号:46342008】A.原命题、否命题B.原命题、逆命题C.原命题、逆否命题D.逆命题、否命题C[原命题正确,则逆否命题正确,逆命题不正确,从而否命题不正确.故选C.][合作探究·攻重难]否命题.(1)相似三角形对应的角相等;(2)当x>3时,x2-4x+3>0;(3)正方形的对角线互相平分.[解] (1)原命题:若两个三角形相似,则这两个三角形的三个角对应相等;逆命题:若两个三角形的三个角对应相等,则这两个三角形相似;否命题:若两个三角形不相似,则这两个三角形的三个角对应不相等;逆否命题:若两个三角形的三个角对应不相等,则这两个三角形不相似.(2)原命题:若x>3,则x2-4x+3>0;逆命题:若x2-4x+3>0,则x>3;否命题:若x≤3,则x2-4x+3≤0;逆否命题:若x2-4x+3≤0,则x≤3.(3)原命题:若一个四边形是正方形,则它的对角线互相平分;逆命题:若一个四边形对角线互相平分,则它是正方形;否命题:若一个四边形不是正方形,则它的对角线不互相平分;逆否命题:若一个四边形对角线不互相平分,则它不是正方形.[跟踪训练]1.(1)命题“若y=kx,则x与y成正比例关系”的否命题是( )【导学号:46342009】A.若y≠kx,则x与y成正比例关系B.若y≠kx,则x与y成反比例关系C.若x与y不成正比例关系,则y≠kxD.若y≠kx,则x与y不成正比例关系D[条件的否定为y≠kx,结论的否定为x与y不成比例关系,故选D.](2)命题“若ab ≠0,则a ,b 都不为零”的逆否命题是________.若a ,b 至少有一个为零,则ab =0 [“ab ≠0”的否定是“ab =0”,“a ,b 都不为零”的否定是“a ,b 中至少有一个为零”,因此逆否命题为“若a ,b 至少有一个为零,则ab =0”.]否命题、逆否命题,在这4个命题中,真命题的个数为( )A .0个B .1个C .2个D .4个(2)判断命题“若a ≥0,则x 2+x -a =0有实根”的逆否命题的真假. [思路探究] (1)只需判断原命题和逆命题的真假即可. (2)思路一 写出原命题的逆否命题→判断其真假 思路二原命题与逆否命题同真同假(即等价关系)→判断原命题的真假→得到逆否命题的真假[解析] (1)当c =0时,ac 2>bc 2不成立,故原命题是假命题,从而其逆否命题也是假命题;原命题的逆命题为“若ac 2>bc 2,则a >b ”是真命题,从而否命题也是真命题,故选C .[答案] C(2)法一:原命题的逆否命题:若x 2+x -a =0无实根,则a <0. ∵x 2+x -a =0无实根,∴Δ=1+4a <0,解得a <-14<0,∴原命题的逆否命题为真命题.法二:∵a ≥0,∴4a ≥0,∴对于方程x 2+x -a =0,根的判别式Δ=1+4a >0,∴方程x 2+x -a =0有实根,故原命题为真命题.∵原命题与其逆否命题等价,∴原命题的逆否命题为真命题.2.判断下列四个命题的真假,并说明理由. (1)“若x +y =0,则x ,y 互为相反数”的否命题; (2)“若x >y ,则x 2>y 2”的逆否命题;(3)“若x ≤3,则x 2-x -6>0”的否命题; (4)“对顶角相等”的逆命题.[解] (1)命题“若x +y =0,则x ,y 互为相反数”的逆命题为“若x ,y 互为相反数,则x +y =0”,则逆命题为真命题,因为原命题的逆命题和否命题具有相同的真假性,所以“若x +y =0,则x ,y 互为相反数”的否命题是真命题.(2)令x =1,y =-2,满足x >y ,但x 2<y 2,所以“若x >y ,则x 2>y 2”是假命题,因为原命题与其逆否命题具有相同的真假性,所以“若x >y ,则x 2>y 2”的逆否命题也是假命题.(3)该命题的否命题为“若x >3,则x 2-x -6≤0”,令x =4,满足x >3,但x 2-x -6=6>0,不满足x 2-x -6≤0,则该否命题是假命题.(4)该命题的逆命题为“相等的角是对顶角”是假命题,如等边三角形的任意两个内角都相等,但它们不是对顶角.[1.当一个命题的条件与结论以否定形式出现时,为了研究方便,我们可以研究哪一个命题?提示:一个命题与其逆否命题等价,我们可研究其逆否命题.2.在证明“若m 2+n 2=2,则m +n ≤2”时,我们也可以证明哪个命题成立. 提示:根据一个命题与其逆否命题等价,我们也可以证明“若m +n >2,则m 2+n 2≠2”成立.(1)命题“对任意x ∈R ,ax 2-2ax -3>0不成立”是真命题,则实数a 的取值范围是________.(2)证明:已知函数f (x )是(-∞,+∞)上的增函数,a ,b ∈R ,若f (a )+f (b )≥f (-a )+f (-b ),则a +b ≥0.【导学号:46342010】[思路探究] (1)根据其逆否命题求解.(2)证明其逆否命题成立. [解析] (1)∵命题“对任意x ∈R ,ax 2-2ax -3>0不成立” 等价于“对任意x ∈R ,ax 2-2ax -3≤0恒成立”, 若a =0,则-3≤0恒成立,∴a =0符合题意.若a ≠0,由题意知⎩⎪⎨⎪⎧a <0Δ=4a 2+12a ≤0,即⎩⎪⎨⎪⎧a <0-3≤a ≤0,∴-3≤a <0综上知,a 的取值范围是-3≤a ≤0.[答案][-3,0](2)证明原命题的逆否命题为“已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若a+b<0,则f(a)+f(b)<f(-a)+f(-b)”.若a+b<0,则a<-b,b<-a.又∵f(x)在(-∞,+∞)上是增函数,∴f(a)<f(-b),f(b)<f(-a),∴f(a)+f(b)<f(-a)+f(-b).即原命题的逆否命题为真命题.∴原命题为真命题.3.证明:若a2-4b2-2a+1≠0,则a≠2b+1.[证明]“若a2-4b2-2a+1≠0,则a≠2b+1”的逆否命题为“若a=2b+1,则a2-4b2-2a+1=0”.∵a=2b+1,∴a2-4b2-2a+1=(2b+1)2-4b2-2(2b+1)+1=4b2+1+4b-4b2-4b-2+1=0.∴命题“若a=2b+1,则a2-4b2-2a+1=0”为真命题.由原命题与逆否命题具有相同的真假性可知,原命题得证.[当堂达标·固双基]1.命题“若a∈/A,则b∈B”的逆命题是( )A.若a∈/A,则b∈/B B.若a∈A,则b∈/BC.若b∈B,则a∈/A D.若b∈/B,则a∈/AC[“若p,则q”的逆命题是“若q,则p”,所以本题的逆命题是“若b∈B,则a∈/ A”.]2.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是( ) A.若a+b+c≠3,则a2+b2+c2<3B.若a+b+c=3,则a2+b2+c2<3C.若a+b+c≠3,则a2+b2+c2≥3D.若a2+b2+c2≥3,则a+b+c=3A[同时否定命题的条件与结论,所得命题就是原命题的否命题,故选A.]3.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为 ( )A.1 B.2 C.3 D.4B[原命题是真命题,从而其逆否命题是真命题,其逆命题是“若a>-6,则a>-3”,是假命题,从而其否命题也是假命题,故真命题的个数是2.]4.命题“若m>1,则mx2-2x+1=0无实根”的等价命题是________.【导学号:46342011】若mx2-2x+1=0有实根,则m≤1[原命题的等价命题是其逆否命题,由定义可知其逆否命题为:“若mx2-2x+1=0有实根,则m≤1”.]5.已知命题p:“若ac≥0,则二次不等式ax2+bx+c>0无解”.(1)写出命题p的否命题;(2)判断命题p的否命题的真假.[解] (1)命题p的否命题为:“若ac<0,则二次不等式ax2+bx+c>0有解”.(2)命题p的否命题是真命题.判断如下:因为ac<0,所以-ac>0⇒Δ=b2-4ac>0⇒二次方程ax2+bx+c=0有实根⇒ax2+bx+c>0有解,所以该命题是真命题.。