大连近三年中考几何探究试题押题卷探秘欣赏
中考数学几何探究试题押题卷探秘欣赏.doc
2019-2020 年中考数学 几何探究试题押题卷探秘欣赏如图 1,点 A 、B 分别是两条平行线 m 、 n 上任意两点,在直线 n 上找一点 C ,使 BC = kAB ( k 为常数),连结 AC ,在直线 AC 上任取一点 E ,作∠ BEF =∠ABC , EF 交直线 m 于点 F .( 1)请说明∠ AFE=∠ ABE 的理由; ( 2)当 k 1 时,探究线段 EF 的值,请说明理由; EB( 3)当 k 1 时,探究线段EF的值,请说明理由.EB2008 年中考几何探究真题25.点 、 B 分别是两条平行线、上任意两点,在直线 n 上找一点 ,使=,连结,在直线上任取一点Am nCBC kABACACE ,作∠ BEF = ∠ A BC , EF 交直线 m 于点 F . ⑴如图 15,当 k = 1 时,探究线段 EF 与 EB 的关系,并中以说明;说明:①如果你经过反复探索没有解决问题,请写出探索过程 ( 要求至少写三步 ) ;②在完成①之后, 可以自己添加条件 ( 添加的条件限定为∠ ABC 为特殊角 ) ,在图 16 中补全图形, 完成证明 ( 选择 添加条件比原题少得 3 分 ) .⑵如图 17,若∠ ABC = 90 °, k ≠1,探究线段 EF 与 EB 的关系,并说明理由.2009 年中考几何探究押题( 1)等边△ ABC 与等边△ MDE,点 M,N,F 分别是 AB,AC,BC 的中点,点 D 在直线 BC 上,试探究DF的值。
EN( 2)等腰△ ABC 与等腰△ MDE,∠DME=∠ ACB,点 M,N,F 分别是 AB,AC,BC 的中点,点 D 在直线 BC 上,试探究DF的值。
EN( 3)等腰直角△ ABC 与等腰直角△ MDE,∠ DME=∠ ACB,点 M,N,F 分别是 AB,AC,BC 的中点,点 D 在直线 BC 上,试探究DFEN的值。
辽宁省大连市中山区2024届中考数学猜题卷含解析
辽宁省大连市中山区2024届中考数学猜题卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)1.《九章算术》中有这样一个问题:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十 .问甲、乙持钱各几何?”题意为:今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?设甲的钱数为x ,乙的钱数为y ,则列方程组为( )A .15022503x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩B .15022503y y x x ⎧+=⎪⎪⎨⎪+=⎪⎩C .15022503x y y x ⎧-=⎪⎪⎨⎪-=⎪⎩D .15022503y y x x ⎧-=⎪⎪⎨⎪-=⎪⎩2.如图,是由7个相同的小立方体木块堆成的一个几何体,拿掉1个小立方体木块之后,这个几何体的主(正)视图没变,则拿掉这个小立方体木块之后的几何体的俯视图是( )A .B .C .D .3.已知5a b =,下列说法中,不正确的是( ) A .50a b -= B .a 与b 方向相同 C .//a bD .||5||a b =4.下列计算正确的是A .a 2·a 2=2a 4 B .(-a 2)3=-a 6 C .3a 2-6a 2=3a 2 D .(a -2)2=a 2-45.下列二次根式中,2的同类二次根式是( ) A .4B .2xC .29D .126.(2011贵州安顺,4,3分)我市某一周的最高气温统计如下表: 最高气温(℃) 25 26 27 28 天 数1123则这组数据的中位数与众数分别是( ) A .27,28B .27.5,28C .28,27D .26.5,277.已知二次函数 2y ax bx c =++图象上部分点的坐标对应值列表如下: x … -3 -2 -1 0 1 2 … y…2-1-2-127…则该函数图象的对称轴是( ) A .x=-3 B .x=-2C .x=-1D .x=08.如图,在ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,DE :EC=2:3,则S △DEF :S △ABF =( )A .2:3B .4:9C .2:5D .4:259.如图,等腰△ABC 中,AB =AC =10,BC =6,直线MN 垂直平分AB 交AC 于D ,连接BD ,则△BCD 的周长等于( )A .13B .14C .15D .1610.若正比例函数y =kx 的图象上一点(除原点外)到x 轴的距离与到y 轴的距离之比为3,且y 值随着x 值的增大而减小,则k的值为()A.﹣13B.﹣3 C.13D.3二、填空题(本大题共6个小题,每小题3分,共18分)11.将直线y=x+b沿y轴向下平移3个单位长度,点A(-1,2)关于y轴的对称点落在平移后的直线上,则b的值为____.12.为了节约用水,某市改进居民用水设施,在2017年帮助居民累计节约用水305000吨,将数字305000用科学记数法表示为________.13.若一次函数y=﹣2(x+1)+4的值是正数,则x的取值范围是_______.14.如图,矩形ABCD中,如果以AB为直径的⊙O沿着BC滚动一周,点B恰好与点C重合,那么BCAB的值等于________.(结果保留两位小数)15.计算:12×(﹣2)=___________.16.若分式67x--的值为正数,则x的取值范围_____.三、解答题(共8题,共72分)17.(8分)如图,△ABC中,∠A=90°,AB=AC=4,D是BC边上一点,将点D绕点A逆时针旋转60°得到点E,连接CE.B(1)当点E在BC边上时,画出图形并求出∠BAD的度数;(2)当△CDE为等腰三角形时,求∠BAD的度数;(3)在点D的运动过程中,求CE的最小值.(参考数值:sin75°=624,cos75°=624,tan75°=23)18.(8分)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP 于点C.求证:∠CBP=∠ADB.若OA=2,AB=1,求线段BP的长.19.(8分)关于x的一元二次方程x2﹣(2m﹣3)x+m2+1=1.(1)若m是方程的一个实数根,求m的值;(2)若m为负数,判断方程根的情况.20.(8分)若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从1,2,3,4这四个数字中任取3个数,组成无重复数字的三位数.(1)请画出树状图并写出所有可能得到的三位数;(2)甲、乙二人玩一个游戏,游戏规则是:若组成的三位数是“伞数”,则甲胜;否则乙胜.你认为这个游戏公平吗?试说明理由.21.(8分)如图,顶点为C的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,连接OC、OA、AB,已知OA=OB=2,∠AOB=120°.(1)求这条抛物线的表达式;(2)过点C作CE⊥OB,垂足为E,点P为y轴上的动点,若以O、C、P为顶点的三角形与△AOE相似,求点P 的坐标;(3)若将(2)的线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<120°),连接E′A、E′B,求E′A+12 E′B的最小值.22.(10分)已知,关于x的方程x2﹣mx+14m2﹣1=0,(1)不解方程,判断此方程根的情况;(2)若x=2是该方程的一个根,求m的值.23.(12分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,健民体育活动中心从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.该网店甲、乙两种羽毛球每筒的售价各是多少元?根据健民体育活动中心消费者的需求量,活动中心决定用不超过2550元钱购进甲、乙两种羽毛球共50筒,那么最多可以购进多少筒甲种羽毛球?24.如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A(1,a),B(3,b)两点.求反比例函数的表达式在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标求△PAB的面积.参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解题分析】设甲的钱数为x,人数为y,根据“若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也能为50”,即可得出关于x,y的二元一次方程组,此题得解.【题目详解】解:设甲的钱数为x,乙的钱数为y,依题意,得:15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩.故选A.【题目点拨】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.2、B【解题分析】俯视图是从上面看几何体得到的图形,据此进行判断即可.【题目详解】由7个相同的小立方体木块堆成的一个几何体,拿掉1个小立方体木块之后,这个几何体的主(正)视图没变,得拿掉第一排的小正方形,拿掉这个小立方体木块之后的几何体的俯视图是,故选B .【题目点拨】本题主要考查了简单几何体的三视图,解题时注意:俯视图就是从几何体上面看到的图形.3、A 【解题分析】根据平行向量以及模的定义的知识求解即可求得答案,注意掌握排除法在选择题中的应用. 【题目详解】A 、50a b -=,故该选项说法错误B 、因为5a b =,所以a 与b 的方向相同,故该选项说法正确,C 、因为5a b =,所以//a b ,故该选项说法正确,D 、因为5a b =,所以||5||a b =;故该选项说法正确, 故选:A . 【题目点拨】本题考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共线向量,是指方向相同或相反的非零向量.零向量和任何向量平行. 4、B【解题分析】【分析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得. 【题目详解】A. a 2·a 2=a 4 ,故A 选项错误; B. (-a 2)3=-a 6 ,正确;C. 3a 2-6a 2=-3a 2 ,故C 选项错误;D. (a -2)2=a 2-4a+4,故D 选项错误, 故选B.【题目点拨】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键.【解题分析】先将每个选项的二次根式化简后再判断.【题目详解】解:A2=不是同类二次根式;B2x不是同类二次根式;C是同类二次根式;D不是同类二次根式.故选C.【题目点拨】本题考查了同类二次根式的概念.6、A【解题分析】根据表格可知:数据25出现1次,26出现1次,27出现2次,28出现3次,∴众数是28,这组数据从小到大排列为:25,26,27,27,28,28,28∴中位数是27∴这周最高气温的中位数与众数分别是27,28故选A.7、C【解题分析】由当x=-2和x=0时,y的值相等,利用二次函数图象的对称性即可求出对称轴.【题目详解】解:∵x=-2和x=0时,y的值相等,∴二次函数的对称轴为2012x-+==-,故答案为:C.【题目点拨】本题考查了二次函数的性质,利用二次函数图象的对称性找出对称轴是解题的关键.【解题分析】试题分析:先根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,从而DE:AB=DE:DC=2:5,所以S△DEF:S△ABF=4:25试题解析:∵四边形ABCD是平行四边形,∴AB∥CD,BA=DC∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∴DE:AB=DE:DC=2:5,∴S△DEF:S△ABF=4:25,考点:1.相似三角形的判定与性质;2.三角形的面积;3.平行四边形的性质.9、D【解题分析】由AB的垂直平分MN交AC于D,根据线段垂直平分线的性质,即可求得AD=BD,又由△CDB的周长为:BC+CD+BD=BC+CD+AD=BC+AC,即可求得答案.【题目详解】解:∵MN是线段AB的垂直平分线,∴AD=BD,∵AB=AC=10,∴BD+CD=AD+CD=AC=10,∴△BCD的周长=AC+BC=10+6=16,故选D.【题目点拨】此题考查了线段垂直平分线的性质,比较简单,注意数形结合思想与转化思想的应用.10、B【解题分析】设该点的坐标为(a,b),则|b|=1|a|,利用一次函数图象上的点的坐标特征可得出k=±1,再利用正比例函数的性质可得出k=-1,此题得解.【题目详解】设该点的坐标为(a,b),则|b|=1|a|,∵点(a,b)在正比例函数y=kx的图象上,∴k=±1.又∵y 值随着x 值的增大而减小, ∴k =﹣1. 故选:B . 【题目点拨】本题考查了一次函数图象上点的坐标特征以及正比例函数的性质,利用一次函数图象上点的坐标特征,找出k=±1是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分) 11、1【解题分析】试题分析:先根据一次函数平移规律得出直线y=x+b 沿y 轴向下平移3个单位长度后的直线解析式y=x+b ﹣3,再把点A (﹣1,2)关于y 轴的对称点(1,2)代入y=x+b ﹣3,得1+b ﹣3=2,解得b=1. 故答案为1.考点:一次函数图象与几何变换 12、53.0510⨯ 【解题分析】试题解析:305000用科学记数法表示为:53.0510.⨯ 故答案为53.0510.⨯ 13、x <1 【解题分析】根据一次函数的性质得出不等式解答即可. 【题目详解】因为一次函数y=﹣2(x+1)+4的值是正数, 可得:﹣2(x+1)+4>0, 解得:x <1, 故答案为x <1. 【题目点拨】本题考查了一次函数与一元一次不等式,根据题意正确列出不等式是解题的关键. 14、3.1 【解题分析】分析:由题意可知:BC 的长就是⊙O 的周长,列式即可得出结论.详解:∵以AB 为直径的⊙O 沿着BC 滚动一周,点B 恰好与点C 重合,∴BC 的长就是⊙O 的周长,∴π•AB =BC ,∴BCAB=π≈3.1. 故答案为3.1.点睛:本题考查了圆的周长以及线段的比.解题的关键是弄懂BC 的长就是⊙O 的周长. 15、-1 【解题分析】根据“两数相乘,异号得负,并把绝对值相乘”即可求出结论. 【题目详解】()1212⨯-=-, 故答案为 1.- 【题目点拨】本题考查了有理数的乘法,牢记“两数相乘,同号得正,异号得负,并把绝对值相乘”是解题的关键. 16、x>1 【解题分析】 试题解析:由题意得:67x-->0, ∵-6<0, ∴1-x <0, ∴x >1.三、解答题(共8题,共72分)17、(1)∠BAD=15°;(2)∠BAC=45°或∠BAD =60°;(3) 【解题分析】(1)如图1中,当点E 在BC 上时.只要证明△BAD ≌△CAE ,即可推出∠BAD =∠CAE =12(90°-60°)=15°;(2)分两种情形求解①如图2中,当BD =DC 时,易知AD =CD =DE ,此时△DEC 是等腰三角形.②如图3中,当CD =CE 时,△DEC 是等腰三角形;(3)如图4中,当E 在BC 上时,E 记为E ′,D 记为D ′,连接EE′.作CM ⊥EE ′于M ,E ′N ⊥AC 于N ,DE 交AE ′于O .首先确定点E 的运动轨迹是直线EE ′(过点E 与BC 成60°角的直线上),可得EC 的最小值即为线段CM 的长(垂线段最短). 【题目详解】解:(1)如图1中,当点E在BC上时.∵AD=AE,∠DAE=60°,∴△ADE是等边三角形,∴∠ADE=∠AED=60°,∴∠ADB=∠AEC=120°,∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,在△ABD和△ACE中,∠B=∠C,∠ADB=∠AEC,AB=AC,∴△BAD≌△CAE,∴∠BAD=∠CAE=12(90°-60°)=15°.(2)①如图2中,当BD=DC时,易知AD=CD=DE,此时△DEC是等腰三角形,∠BAD=12∠BAC=45°.②如图3中,当CD=CE时,△DEC是等腰三角形.∵AD=AE,∴AC垂直平分线段DE,∴∠ACD=∠ACE=45°,∴∠DCE=90°,∴∠EDC=∠CED=45°,∵∠B=45°,∴∠EDC=∠B,∴DE∥AB,∴∠BAD=∠ADE=60°.(3)如图4中,当E在BC上时,E记为E′,D记为D′,连接EE′.作CM⊥EE′于M,E′N⊥AC于N,DE交AE′于O.∵∠AOE=∠DOE′,∠AE′D=∠AEO,∴△AOE∽△DOE′,∴AO:OD=EO:OE',∴AO:EO=OD:OE',∵∠AOD=∠EOE′,∴△AOD∽△EOE′,∴∠EE′O=∠ADO=60°,∴点E的运动轨迹是直线EE′(过点E与BC成60°角的直线上),∴EC的最小值即为线段CM的长(垂线段最短),设E′N=CN=a,则AN=4-a,在Rt△ANE′中,tan75°=AN:NE',∴3=4aa,∴a=2-233,∴CE′=2CN=22-263.在Rt△CE′M中,CM=CE′•cos30°=62-,∴CE的最小值为62-.【题目点拨】本题考查几何变换综合题、等腰直角三角形的性质、等边三角形的性质、全等三角形的判定和性质、相似三角形的判定和性质、轨迹等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,学会利用垂线段最短解决最值问题,属于中考压轴题.18、(1)证明见解析;(2)BP=1.【解题分析】分析:(1)连接OB,如图,根据圆周角定理得到∠ABD=90°,再根据切线的性质得到∠OBC=90°,然后利用等量代换进行证明;(2)证明△AOP∽△ABD,然后利用相似比求BP的长.详(1)证明:连接OB,如图,∵AD是⊙O的直径,∴∠ABD=90°,∴∠A+∠ADB=90°,∵BC为切线,∴OB⊥BC,∴∠OBC=90°,∴∠OBA+∠CBP=90°,而OA=OB,∴∠A=∠OBA,∴∠CBP=∠ADB;(2)解:∵OP⊥AD,∴∠POA=90°,∴∠P+∠A=90°,∴∠P=∠D,∴△AOP∽△ABD,∴AP AOAD AB=,即1241BP+=,∴BP=1.点睛:本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和相似三角形的判定与性质.19、(1)13m=-; (2)方程有两个不相等的实根.【解题分析】分析:(1)由方程根的定义,代入可得到关于m的方程,则可求得m的值;(2)计算方程根的判别式,判断判别式的符号即可.详解:(1)∵m是方程的一个实数根,∴m2-(2m-3)m+m2+1=1,∴m=−13;(2)△=b2-4ac=-12m+5,∵m<1,∴-12m>1.∴△=-12m+5>1.∴此方程有两个不相等的实数根.点睛:考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.20、(1)见解析(2)不公平。
大连市数学中考几何压轴题阅读材料专项精选精选题
大连市数学中考25几何压轴题-阅读材料专项精选25题1.阅读下面材料:小明遇到这样一个问题:如图1,在锐角△ABC中,AD、BE、CF分别为△ABC的高,求证:∠AFE=∠ACB.小明是这样思考问题的:如图2,以BC为直径作半⊙O,则点F、E在⊙O上,∠BFE+∠BCE=180°,所以∠AFE=∠ACB.请回答:若∠ABC=40°,则∠AEF的度数是.参考小明思考问题的方法,解决问题:如图3,在锐角△ABC中,AD、BE、CF分别为△ABC的高,求证:∠BDF=∠CDE.2.阅读下面材料:小明遇到这样一个问题:如图1,在△ABC中,DE∥BC分别交AB于D,交AC于E.已知CD⊥BE,CD=3,BE=5,求BC+DE的值.小明发现,过点E作EF∥DC,交BC延长线于点F,构造△BEF,经过推理和计算能够使问题得到解决(如图2).请回答:BC+DE的值为.参考小明思考问题的方法,解决问题:如图3,已知?ABCD和矩形ABEF,AC与DF交于点G,AC=BF=DF,求∠AGF的度数.3.阅读下面材料:小明遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.小明发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图2).(1)请回答:∠ACE的度数为,AC的长为.(2)参考小明思考问题的方法,解决问题:如图3,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2ED,求AC的长.4.阅读下面材料:小明遇到这样一个问题:如图1,在等边三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB度数.小明发现,利用旋转和全等的知识构造△AP′C,连接PP′,得到两个特殊的三角形,从而将问题解决(如图2).请回答:图1中∠APB的度数等于,图2中∠PP′C的度数等于.参考小明思考问题的方法,解决问题:如图3,在平面直角坐标系xOy中,点A坐标为(-3,1),连接AO.如果点B是x轴上的一动点,以AB为边作等边三角形ABC.当C(x,y)在第一象限内时,求y与x之间的函数表达式.5.(1)【问题发现】小明遇到这样一个问题:如图1,△ABC是等边三角形,点D为BC的中点,且满足∠ADE=60°,DE交等边三角形外角平分线CE所在直线于点E,试探究AD与DE的数量关系.小明发现,过点D作DF∥AC,交AC于点F,通过构造全等三角形,经过推理论证,能够使问题得到解决,请直接写出AD与DE的数量关系:;(2)【类比探究】如图2,当点D是线段BC上(除B,C外)任意一点时(其它条件不变),试猜想AD与DE之间的数量关系,并证明你的结论.(3)【拓展应用】当点D在线段BC的延长线上,且满足CD=BC(其它条件不变)时,请直接写出△ABC与△ADE的面积之比.6.阅读下面材料:小明遇到这样一个问题:如图1,在△ABC中,D为BC中点,E、F分别为AB、AC上一点,且ED⊥DF,求证:BE+CF>EF.小明发现,延长FD到点H,使DH=FD,连结BH、EH,构造△BDH和△EFH,通过证明△BDH与△CDF全等、△EFH为等腰三角形,利用△BEH使问题得以解决(如图2).参考小明思考问题的方法,解决问题:如图3,在矩形ABCD中,O为对角线AC中点,将矩形ABCD翻折,使点B恰好与点O重合,EF为折痕,猜想EF、AE、FC之间的数量关系?并证明你的猜想.7.阅读下面材料:小明遇到这样一个问题:如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,试判断BC和AC、AD 之间的数量关系.小明发现,利用轴对称做一个变化,在BC上截取CA′=CA,连接DA′,得到一对全等的三角形,从而将问题解决(如图2).请回答:(1)在图2中,小明得到的全等三角形是△≌△;(2)BC和AC、AD之间的数量关系是.参考小明思考问题的方法,解决问题:如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9.求AB的长.8.阅读下面材料:小明遇到这样一个问题:如图1,在边长为a(a>2)的正方形ABCD各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠CHN=∠DEP=45°时,求正方形MNPQ的面积.小明发现:分别延长QE,MF,NG,PH,交FA,GB,HC,ED的延长线于点R,S,T,W,可得△RQF,△SMG,△TNH,△WPE是四个全等的等腰直角三角形(如图2)请回答:(1)若将上述四个等腰直角三角形拼成一个新的正方形(无缝隙,不重叠),则这个新的正方形的边长为__________;(2)求正方形MNPQ 的面积.参考小明思考问题的方法,解决问题:如图3,在等边△ABC 各边上分别截取AD=BE=CF,再分别过点D,E,F 作BC,AC,AB 的垂线,得到等边△RPQ,若33RPQ S △,则AD 的长为__________. 9.阅读下面材料:小明遇到这样一个问题:如图1,△ABO 和△CDO 均为等腰直角三角形,∠AOB=∠COD=90°.若△BOC 的面积为1,试求以AD 、BC 、OC+OD 的长度为三边长的三角形的面积.小明是这样思考的:要解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他利用图形变换解决了这个问题,其解题思路是延长CO 到E ,使得OE=CO ,连接BE ,可证△OBE ≌△OAD ,从而得到的△BCE 即是以AD 、BC 、OC+OD 的长度为三边长的三角形(如图2). 请你回答:图2中△BCE 的面积等于______.请你尝试用平移、旋转、翻折的方法,解决下列问题:如图3,已知△ABC ,分别以AB 、AC 、BC 为边向外作正方形ABDE 、AGFC 、BCHI ,连接EG 、FH 、ID . (1)在图3中利用图形变换画出并指明以EG 、FH 、ID 的长度为三边长的一个三角形(保留画图痕迹); (2)若△ABC 的面积为1,则以EG 、FH 、ID 的长度为三边长的三角形的面积等于______.? 10.阅读下面材料:?11.小聪遇到这样一个有关角平分线的问题:如图1,在△ABC 中,? 12.∠A=2∠B ,CD 平分∠ACB ,AD=2.2,AC=3.6 13.求BC 的长.小聪思考:因为CD 平分∠ACB ,所以可在BC 边上取点E ,使EC=AC ,连接DE. 这样很容易得到△DEC ≌△DAC ,经过推理能使问题得到解决(如图2).请回答:(1)△BDE 是_________三角形. (2)BC 的长为__________.参考小聪思考问题的方法,解决问题:?如图3,已知△ABC 中,AB=AC, ∠A=20°,?BD 平分 ∠ABC,BD=2.3?,BC=2,求AD 的长.1.阅读下面材料:小炎遇到这样一个问题:如图1,点E 、F 分别在正方形ABCD 的边BC ,CD 上,∠EAF=45°,连结EF ,则EF=BE+DF ,试说明理由.小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中.她先后尝试了翻折、旋转、平移的方法,最后发现线段AB ,AD 是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE 绕着点A 逆时针旋转90°得到△ADG ,再利用全等的知识解决了这个问题(如图2).参考小炎同学思考问题的方法,解决下列问题: (1)如图3,四边形ABCD 中,AB=AD ,∠BAD=90°点E ,F 分别在边BC ,CD 上,∠EAF=45°.若∠B ,∠D 都不是直角,则当∠B 与∠D 满足 ??????? 关系时,仍有EF=BE+DF ;(2)如图4,在△ABC 中,∠BAC=90°,AB=AC ,点D 、E 均在边BC 上,且∠DAE=45°,若BD=1, EC=2,求DE 的长.2.阅读下面文字,解决下列问题(1)问题背景 宇昕同学遇到这样一个问题:如图1,在正方形ABCD 中,点E ,F 分别为BC ,CD 上的点,且∠EAF=45°,求证:BE+DF=EF .宇昕是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段集中到同一条线段上.他先后尝试了平移、翻折、旋转的方法,发现通过旋转可以解决此问题.他的方法是将△ADF 绕点A 顺时针旋转90°得到△ABG (如图2),此时GE 即是DF+BE . 请回答:在图2中,∠GAF 的度数是 、△AGE ≌△ .(2)拓展研究 如图3,若E ,F 分别在四边形ABCD 的边BC ,CD 上,∠B+∠D=180°,AB=AD ,要使(1)中线段BE ,EF ,FD 的等量关系仍然成立,则∠EAF 与∠BAD 应满足的关系是 ;(3)构造运用运用(1)(2)解答中所积累的经验和知识,完成下面问题:如图4,在四边形ABCD中,∠ABC=90°,3,试求线段AD,BE的长.∠CAB=∠CAD=22.5°,点E在AB上,且∠DCE=67.5°,DE⊥AB于点E,若AE=2。
2022届辽宁省大连市中考数学押题试卷及答案解析
2022届辽宁省大连市中考数学押题试卷一.选择题(共10小题,满分30分)1.(3分)如果一个有理数的绝对值是6,那么这个数一定是()A.6B.﹣6C.﹣6或6D.无法确定2.(3分)如图是一个由正方体和一个正四棱锥组成的立体图形,它的俯视图是()A.B.C.D.3.(3分)据统计,今年“五一”小长假期间,我市约有26.8万人次游览了植物园和动物园,则数据26.8万用科学记数法表示正确的是()A.268×103B.26.8×104C.2.68×105D.0.268×106 4.(3分)在直角坐标系中,将点(2,﹣3)向左平移两个单位长度得到的点的坐标是()A.(4,﹣3)B.(﹣4,3)C.(0,﹣3)D.(0,3)5.(3分)不等式4x+12>0的解集在数轴上表示正确的是()A.B.C.D.6.下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.7.(3分)x20不可以写成()A.(x4)5B.(±x2)10C.(x10)10D.(±x5)48.(3分)某超市为了吸引顾客,设计了一种返现促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”、“30元”的字样,规定:顾客在本超市一次性消费满200元,就可以在箱子里一次性摸出两个小球,两球数字之和记为返现金额.某顾客刚好消费200元,则该顾客所获得返现金额低于30元的概率是( ) A .34B .23C .12D .139.(3分)如图,将一边长AB 为4的矩形纸片折叠,使点D 与点B 重合,折痕为EF ,若EF =2√5,则矩形的面积为( )A .32B .28C .30D .3610.(3分)如图,一段抛物线y =﹣x 2+9(﹣3≤x ≤3)为C 1,与x 轴交于A 0,A 1两点,顶点为D 1;将C 1绕点A 1旋转180°得到C 2,顶点为D 2;C 1与C 2组成一个新的图象.垂直于y 轴的直线l 与新图象交于点P 1(x 1,y 1),P 2(x 2,y 2),与线段D 1D 2交于点P 3(x 3,y 3),且x 1,x 2,x 3均为正数,设t =x 1+x 2+x 3,则t 的最大值是( )A .15B .18C .21D .24二.填空题(共6小题,满分18分,每小题3分)11.(3分)将一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G 、D 、C 分别在M 、N 的位置上,若∠EFG =52°,则∠2﹣∠1= °.12.(3分)已知2、3、5、5、7的众数是.13.(3分)如图,已知等边三角形ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连结GD,则tan∠FGD 的值为.14.(3分)我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛.问大小器各容几何.”其大意为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hu,是古代的一种容量单位).1个大桶加上5个小桶可以盛酒2斛,问1个大桶、一个小桶分别可以盛酒多少斛?若设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据题意,可列方程组为.15.(3分)如图,为了测量塔CD的高度,小明在A处仰望塔顶,测得仰角为30°,再往塔的方向前进60m至B处,测得仰角为60°,那么塔的高度是m.(小明的身高忽略不计,结果保留根号).16.(3分)甲、乙两小朋友都从A地出发,匀速步行到B地(A、B两地之间为笔直的道路),甲出发半分钟后,乙才从A地出发,经过一段时间追上甲,两人继续向B地步行,当甲、乙之间的距离刚好是70米时,乙立刻掉头以原速度向A地步行,半分钟后与甲相遇,乙又立刻掉头向B地以原速度步行(两次掉头时间忽略不计).甲、乙相距的路程为y(米)与乙出发的时间x(分钟)之间的关系如图所示,当乙到达B地时,甲与B地相距的路程是米.三.解答题(共4小题,满分39分)17.(9分)计算:(1)√75−√12+√3(2)√2×(√12+3√8)(3)(2√15−5√8)÷√10÷√10(4)(√27−√12)﹣(√18+√12)18.(9分)计算:a2−1b2−2b+1÷a+1b−1+1b−119.(9分)如图,点E是△ABC的BC边上的一点,∠AEC=∠AED,ED=EC,∠D=∠B,求证:AB=AC.20.(12分)共享经济与我们的生活息息相关,其中,共享单车的使用给我们的生活带来了很多便利,但在使用过程中出现一些不文明现象.某市记者为了解“使用共享单车时的不文明行为”,随机抽查了该市部分市民,并对调查结果进行了整理,绘制了如下两幅尚不完整的统计图表(每个市民仅持有一种观点).调查结果分组统计表组别观点频数(人数)A损坏零件50B破译密码20C乱停乱放abD私锁共享单车,归为己用E其他30调查结果扇形图请根据以上信息,解答下列问题:(1)填空:a=;b=;m=;(2)求扇形图中B组所在扇形的圆心角度数;(3)若该市约有100万人,请你估计其中持有D组观点的市民人数.四.解答题(共3小题,满分28分)21.(9分)某钢铁厂计划今年第一季度一月份的总产量为500t,三月份的总产量为720t,若平均每月的增长率相同.(1)第一季度平均每月的增长率;(2)如果第二季度平均每月的增长率保持与第一季度平均每月的增长率相同,请你估计该厂今年5月份总产量能否突破1000t?22.(9分)如图,在平面直角坐标系xOy中,点A(3,2)在反比例函数y=kx(x>0)的图象上,点B在OA的延长线上,BC⊥x轴,垂足为C,BC与反比例函数的图象相交于点D,连接AC,AD.(1)求该反比例函数的解析式;(2)若S△ACD=32,设点C的坐标为(a,0),求线段BD的长.23.(10分)如图1,四边形ABCD内接于⊙O,AC是⊙O的直径,过点A的切线与CD的延长线相交于点P.且∠APC=∠BCP(1)求证:∠BAC=2∠ACD;(2)过图1中的点D作DE⊥AC,垂足为E(如图2),当BC=6,AE=2时,求⊙O的半径.五.解答题(共3小题,满分35分)24.(11分)如图,函数y=−13x+2的图象与x轴、y轴分别交于点A、B,与函数y=kx(k为常数)的图象交于点E,以BE、OE为邻边的平行四边形是菱形.(1)求k;(2)过点B作y轴的垂线,交函数y=kx的图象于点C,四边形OACB是矩形吗?为什么?25.(12分)△ABC 中,AC =BC ,∠ACB =α,点D 是平面内不与点A 和点B 重合的一点,连接DB ,将线段DB 绕点D 顺时针旋转α得到线段DE ,连接AE 、BE 、CD . (1)如图①,点D 与点A 在直线BC 的两侧,α=60°时,AE CD的值是 ;直线AE与直线CD 相交所成的锐角的度数是 度;(2)如图②,点D 与点A 在直线BC 两侧,α=90°时,求AE CD 的值及直线AE 与直线CD 相交所成的锐角∠AMC 的度数;(3)当α=90°,点D 在直线AB 的上方,S △ABD =12S △ABC ,请直接写出当点C 、D 、E 在同一直线上时,BE CD的值.26.(12分)把函数C 1:y =ax 2﹣2ax ﹣3a (a ≠0)的图象绕点P (m ,0)旋转180°,得到新函数C 2的图象,我们称C 2是C 1关于点P 的相关函数.C 2的图象的对称轴与x 轴交点坐标为(t ,0).(1)填空:t 的值为 (用含m 的代数式表示)(2)若a =﹣1,当12≤x ≤t 时,函数C 1的最大值为y 1,最小值为y 2,且y 1﹣y 2=1,求C 2的解析式;(3)当m =0时,C 2的图象与x 轴相交于A ,B 两点(点A 在点B 的右侧).与y 轴相交于点D .把线段AD 原点O 逆时针旋转90°,得到它的对应线段A ′D ′,若线A ′D ′与C 2的图象有公共点,结合函数图象,求a 的取值范围.2022届辽宁省大连市中考数学押题试卷参考答案与试题解析一.选择题(共10小题,满分30分)1.(3分)如果一个有理数的绝对值是6,那么这个数一定是()A.6B.﹣6C.﹣6或6D.无法确定解:如果一个有理数的绝对值是6,那么这个数一定是﹣6或6.故选:C.2.(3分)如图是一个由正方体和一个正四棱锥组成的立体图形,它的俯视图是()A.B.C.D.解:如图所示:它的俯视图是:.故选:C.3.(3分)据统计,今年“五一”小长假期间,我市约有26.8万人次游览了植物园和动物园,则数据26.8万用科学记数法表示正确的是()A.268×103B.26.8×104C.2.68×105D.0.268×106解:将26.8万用科学记数法表示为:2.68×105.故选:C.4.(3分)在直角坐标系中,将点(2,﹣3)向左平移两个单位长度得到的点的坐标是()A.(4,﹣3)B.(﹣4,3)C.(0,﹣3)D.(0,3)解:在直角坐标系中,将点(2,﹣3)向左平移两个单位长度得到的点的坐标是(0,﹣3),故选:C.5.(3分)不等式4x+12>0的解集在数轴上表示正确的是()A .B .C .D .解:不等式4x +12>0, 移项得:4x >﹣12, 解得:x >﹣3,故选:C .6.下列图形中既是中心对称图形又是轴对称图形的是( )A .B .C .D .解:A 、是轴对称图形,不是中心对称图形,故此选项错误; B 、是轴对称图形,是中心对称图形,故此选项正确; C 、是轴对称图形,不是中心对称图形,故此选项错误; D 、是轴对称图形,不是中心对称图形,故此选项错误; 故选:B .7.(3分)x 20不可以写成( ) A .(x 4)5B .(±x 2)10C .(x 10)10D .(±x 5)4解:x 20=(x 4)5=(±x 2)10=(±x 5)4,而(x 10)10=x 100, 故选:C .8.(3分)某超市为了吸引顾客,设计了一种返现促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”、“30元”的字样,规定:顾客在本超市一次性消费满200元,就可以在箱子里一次性摸出两个小球,两球数字之和记为返现金额.某顾客刚好消费200元,则该顾客所获得返现金额低于30元的概率是( ) A .34B .23C .12D .13解:用列表法表示所有可能出现的结果如下:共有12种等可能出现的结果,其中少于30元的有4种, ∴该顾客所获得返现金额低于30元的概率是412=13,故选:D .9.(3分)如图,将一边长AB 为4的矩形纸片折叠,使点D 与点B 重合,折痕为EF ,若EF =2√5,则矩形的面积为( )A .32B .28C .30D .36解:连接BD 交EF 于O ,如图所示: ∵折叠纸片使点D 与点B 重合,折痕为EF , ∴BD ⊥EF ,BO =DO ,OE =OF =12EF =√5, ∵四边形ABCD 是矩形, ∴AB =CD =4,∠BCD =90°, 设BC =x ,BD =√BC 2+CD 2=√x 2+42, ∴BO =√x 2+422,∵∠BOF =∠C =90°,∠CBD =∠OBF , ∴△BOF ∽△BCD , ∴OB BC=OF CD,即:√x2+422x=√54,解得:x=8,∴BC=8,∴S矩形ABCD=AB•BC=4×8=32,故选:A.10.(3分)如图,一段抛物线y=﹣x2+9(﹣3≤x≤3)为C1,与x轴交于A0,A1两点,顶点为D1;将C1绕点A1旋转180°得到C2,顶点为D2;C1与C2组成一个新的图象.垂直于y轴的直线l与新图象交于点P1(x1,y1),P2(x2,y2),与线段D1D2交于点P3(x3,y3),且x1,x2,x3均为正数,设t=x1+x2+x3,则t的最大值是()A.15B.18C.21D.24解:由已知可得:A1(3,0),D1(0,9),将C1绕点A1旋转180°后,得到:D2(6,﹣9),新函数的对称轴为x=6,垂直于y轴的直线l与新图象交于点P1(x1,y1),P2(x2,y2),∵x1,x2均为正数,∴P1(x1,y1),P2(x2,y2)在第四象限,∴P1(x1,y1),P2(x2,y2)两点关于对称轴x=6对称,∴x1+x2=12,∵垂直于y轴的直线l与线段D1D2交于点P3(x3,y3),∴0≤x3≤6,∴t=x1+x2+x3=12+x3,当x3=6时,t有最大值18.故选:B.二.填空题(共6小题,满分18分,每小题3分)11.(3分)将一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G、D、C分别在M、N的位置上,若∠EFG=52°,则∠2﹣∠1=28°.解:∵AD∥BC,∠EFG=52°,∴∠DEF=∠FEG=52°,∠1+∠2=180°,由折叠的性质可得∠GEF=∠DEF=52°,∴∠1=180°﹣∠GEF﹣∠DEF=180°﹣52°﹣52°=76°,∴∠2=180°﹣∠1=104°,∴∠2﹣∠1=104°﹣76°=28°.故答案为:28.12.(3分)已知2、3、5、5、7的众数是5.解:5出现的次数最多,是2次,因此众数是5,故答案为:5.13.(3分)如图,已知等边三角形ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连结GD,则tan∠FGD的值为√32.解:过D作DH⊥AB于H,如图所示:∵△ABC为等边三角形,∴∠C=∠A=∠B=60°,AC=BC=AB=12,∵OD=OB,∴△ODB是等边三角形,∴BD=OB=12AB=6,∴CD=BC﹣BD=3,∵FG⊥AB,DH⊥AB,∴FG∥DH,∴∠FGD=∠GDH.在Rt△BDH中,∠B=60°,∴∠BDH=30°,∴BH=12BD=3,DH=√3BH=3√3.在Rt△CDF中,∠C=60°,∴∠CDF=30°,∴CF=12CD=3,∴AF=AC﹣CF=12﹣3=9,在Rt△AFG中,∵∠AFG=30°,∴AG=12AF=92,∵GH=AB﹣AG﹣BH=12−92−3=92,∴tan∠GDH=GHDH=923√3=√32,∴tan∠FGD=tan∠GDH=√3 2,故答案为:√32.14.(3分)我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛.问大小器各容几何.”其大意为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hu ,是古代的一种容量单位).1个大桶加上5个小桶可以盛酒2斛,问1个大桶、一个小桶分别可以盛酒多少斛?若设1个大桶可以盛酒x 斛,1个小桶可以盛酒y 斛,根据题意,可列方程组为 {5x +y =3x +5y =2 .解:设1个大桶可以盛酒x 斛,1个小桶可以盛酒y 斛, 根据题意得:{5x +y =3x +5y =2,故答案为{5x +y =3x +5y =2.15.(3分)如图,为了测量塔CD 的高度,小明在A 处仰望塔顶,测得仰角为30°,再往塔的方向前进60m 至B 处,测得仰角为60°,那么塔的高度是 30√3 m .(小明的身高忽略不计,结果保留根号).解:∵∠DAB =30°,∠DBC =60°, ∴BD =AB =60m .∴DC =BD •sin60°=60×√32=30√3(m ), 答:该塔高为30√3m , 故答案为:30√3.16.(3分)甲、乙两小朋友都从A 地出发,匀速步行到B 地(A 、B 两地之间为笔直的道路),甲出发半分钟后,乙才从A 地出发,经过一段时间追上甲,两人继续向B 地步行,当甲、乙之间的距离刚好是70米时,乙立刻掉头以原速度向A地步行,半分钟后与甲相遇,乙又立刻掉头向B地以原速度步行(两次掉头时间忽略不计).甲、乙相距的路程为y(米)与乙出发的时间x(分钟)之间的关系如图所示,当乙到达B地时,甲与B地相距的路程是40米.解:设甲的速度为am/min,乙的速度为bm/min,由函数图象知,当x=1.5min时,y=0m,即两人第一次相遇,根据题意得,(1.5+0.5)a=1.5b,∴b=43a,∵当甲、乙之间的距离刚好是70米时,乙立刻掉头以原速度向A地步行,半分钟后与甲相遇,∴a+b=70÷12=140,∴a+43a=140,∴a=60(m/min),b=80(m/min),于是,当甲、乙之间的距离刚好是70米时,乙出发的时间为:1.5+70÷(80﹣60)=5(min),∴两人第二次相遇时的时间为:5+0.5=5.5(min),根据函数图象知,当x=7,5min时,乙到达了B地,此时,两人相距:(80﹣60)×(7.5﹣5.5)=40(m),∴甲与B两地的距离为:40m.故答案为:40.三.解答题(共4小题,满分39分)17.(9分)计算:(1)√75−√12+√3(2)√2×(√12+3√8)(3)(2√15−5√8)÷√10÷√10(4)(√27−√12)﹣(√18+√12)解:(1)√75−√12+√3=5√3−2√3+√3=4√3;(2)√2×(√12+3√8)=2√6+12;(3)(2√15−5√8)÷√10÷√10=2√32−5√45=√6−2√5;(4)(√27−√12)﹣(√18+√12)=3√3−√22−√24−2√3=√3−3√24.18.(9分)计算:a2−1b2−2b+1÷a+1b−1+1b−1解:原式=(a+1)(a−1)(b−1)2•b−1a+1+1b−1=a−1b−1+1b−1=a b−1.19.(9分)如图,点E是△ABC的BC边上的一点,∠AEC=∠AED,ED=EC,∠D=∠B,求证:AB=AC.证明:(1)在△AED 与△AEC 中{AE =AE ∠AED =∠AEC ED =EC∴△AED ≌△AEC (SAS ),∴∠D =∠C ,∵∠D =∠B ,∴∠B =∠C ,∴AB =AC ;20.(12分)共享经济与我们的生活息息相关,其中,共享单车的使用给我们的生活带来了很多便利,但在使用过程中出现一些不文明现象.某市记者为了解“使用共享单车时的不文明行为”,随机抽查了该市部分市民,并对调查结果进行了整理,绘制了如下两幅尚不完整的统计图表(每个市民仅持有一种观点).调查结果分组统计表组别观点 频数(人数) A损坏零件 50 B破译密码 20 C乱停乱放 a D 私锁共享单车,归为己用bE其他 30 调查结果扇形图请根据以上信息,解答下列问题:(1)填空:a=60;b=40;m=15;(2)求扇形图中B组所在扇形的圆心角度数;(3)若该市约有100万人,请你估计其中持有D组观点的市民人数.解:(1)50÷25%=200人,c=200×30%=60人,b=200×20%=40人,30÷200=15%,故答案为:60;40;15;(2)360°×(1﹣25%﹣30%﹣20%﹣15%)=36°;答:扇形图中B组所在扇形的圆心角度数为36°.(3)100×20%=20(万人)答:持有D组观点的市民人数大约为20万人,四.解答题(共3小题,满分28分)21.(9分)某钢铁厂计划今年第一季度一月份的总产量为500t,三月份的总产量为720t,若平均每月的增长率相同.(1)第一季度平均每月的增长率;(2)如果第二季度平均每月的增长率保持与第一季度平均每月的增长率相同,请你估计该厂今年5月份总产量能否突破1000t?解:(1)设第一季度平均每月的增长率为x,根据题意得:500(1+x)2=720,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:第一季度平均每月的增长率为20%.(2)720×(1+20%)2=1036.8(t),∵1036.8>1000,∴该厂今年5月份总产量能突破1000t.22.(9分)如图,在平面直角坐标系xOy中,点A(3,2)在反比例函数y=kx(x>0)的图象上,点B在OA的延长线上,BC⊥x轴,垂足为C,BC与反比例函数的图象相交于点D ,连接AC ,AD .(1)求该反比例函数的解析式;(2)若S △ACD =32,设点C 的坐标为(a ,0),求线段BD 的长.解:(1)∵点A (3,2)在反比例函数y =k x (x >0)的图象上,∴k =3×2=6,∴反比例函数y =6x ;答:反比例函数的关系式为:y =6x ;(2)过点A 作AE ⊥OC ,垂足为E ,连接AC ,设直线OA 的关系式为y =kx ,将A (3,2)代入得,k =23,∴直线OA 的关系式为y =23x ,∵点C (a ,0),把x =a 代入y =23x ,得:y =23a ,把x =a 代入y =6x ,得:y =6a , ∴B (a ,23a ),即BC ═23a , D (a ,6a ),即CD =6a∵S △ACD =32,∴12CD •EC =32,即12×6a ×(a −3)=32,解得:a =6, ∴BD =BC ﹣CD =23a −6a =3;答:线段BD 的长为3.23.(10分)如图1,四边形ABCD内接于⊙O,AC是⊙O的直径,过点A的切线与CD的延长线相交于点P.且∠APC=∠BCP(1)求证:∠BAC=2∠ACD;(2)过图1中的点D作DE⊥AC,垂足为E(如图2),当BC=6,AE=2时,求⊙O的半径.(1)证明:作DF⊥BC于F,连接DB,∵AP是⊙O的切线,∴∠P AC=90°,即∠P+∠ACP=90°,∵AC是⊙O的直径,∴∠ADC=90°,即∠PCA+∠DAC=90°,∴∠P=∠DAC=∠DBC,∵∠APC=∠BCP,∴∠DBC=∠DCB,∴DB=DC,∵DF⊥BC,∴DF是BC的垂直平分线,∴DF 经过点O ,∵OD =OC ,∴∠ODC =∠OCD ,∵∠BDC =2∠ODC ,∴∠BAC =∠BDC =2∠ODC =2∠OCD ;(2)解:∵DF 经过点O ,DF ⊥BC ,∴FC =12BC =3,在△DEC 和△CFD 中,{∠DCE =∠FDC ∠DEC =∠CFD DC =CD,∴△DEC ≌△CFD (AAS )∴DE =FC =3,∵∠ADC =90°,DE ⊥AC ,∴DE 2=AE •EC ,则EC =DE 2AE =92,∴AC =2+92=132,∴⊙O 的半径为134.五.解答题(共3小题,满分35分)24.(11分)如图,函数y=−13x+2的图象与x轴、y轴分别交于点A、B,与函数y=kx(k为常数)的图象交于点E,以BE、OE为邻边的平行四边形是菱形.(1)求k;(2)过点B作y轴的垂线,交函数y=kx的图象于点C,四边形OACB是矩形吗?为什么?解:∵函数y=−13x+2的图象与x轴、y轴分别交于点A、B∴A(6,0),B(0,2)∴BO=2,AO=6∵OE,BE是菱形的边∴BE=OE∴∠ABO=∠BOE∵∠AOB=90°∴∠ABO+∠BAO=90°,∠BOE+∠AOE=90°∴∠BAO=∠AOE∴OE=AE∴AE=BE作EM ⊥AO ,作ED ⊥BO∴EM ∥BO ,DE ∥AO∴DE AO =BE AB =12,EM BO =AE AB =12 ∴ME =1,DE =3∴E (3,1)∵y =kx 的图象过E 点∴1=3k∴k =13∴解析式y =13x(2)是矩形.∵BC ⊥y 轴,AO ⊥y 轴∴BC ∥AO∴BE AE =CE EO =1∴OE =CE ,且AE =BE∴ACBO 是平行四边形且∠AOB =90°∴四边形ACBO 是矩形.25.(12分)△ABC 中,AC =BC ,∠ACB =α,点D 是平面内不与点A 和点B 重合的一点,连接DB ,将线段DB 绕点D 顺时针旋转α得到线段DE ,连接AE 、BE 、CD .(1)如图①,点D 与点A 在直线BC 的两侧,α=60°时,AE CD 的值是 1 ;直线AE与直线CD 相交所成的锐角的度数是 60 度; (2)如图②,点D 与点A 在直线BC 两侧,α=90°时,求AE CD 的值及直线AE 与直线CD 相交所成的锐角∠AMC 的度数; (3)当α=90°,点D 在直线AB 的上方,S △ABD =12S △ABC ,请直接写出当点C 、D 、E 在同一直线上时,BE CD 的值.解:(1)如图1,延长AE ,CD 交于点H ,∵将线段DB 绕点D 顺时针旋转α得到线段DE ,∴DE =BD ,∠BDE =60°,∴△BDE 是等边三角形,∴BD =BE ,∠DBE =60°,∵△ABC 是等边三角形,∴AB =BC ,∠ABC =∠DBE =60°,∴∠ABE =∠CBD ,且BE =BD ,AB =BC ,∴△ABE ≌△CBD (SAS )∴AE =CD ,∠DCB =∠BAE ,∴AE CD =1,∵∠BAC +∠ACB =120°,∴∠BAE +∠CAE +∠ACB =120°,∴∠CAE +∠ACB +∠BCD =120°∴∠CAE +ACH =120°,∴∠AHB =60°,故答案为:1,60.(2)∵AC =BC ,∠ACB =90°,∴AB =√2BC ,∠ABC =45°,∵将线段DB 绕点D 顺时针旋转90°得到线段DE ,∴DE =BD ,∠BDE =90°,∴BE =√2BD ,∠DBE =45°,∴∠DBE =∠ABC ,∴∠ABE =∠CBD ,且AB BC =√2=BE BD , ∴△ABE ∽△CBD ,∴AE CD =AB CB =√2,∠BAE =∠BCD ,∵∠BAC +∠ACB =135°=∠ACB +∠CAM +∠BAE ,∴∠ACB +∠CAM +∠BCD =∠CAM +∠ACM =135°,∴∠AMC =45°;(3)若点D ,点A 在直线BC 两侧,如图3,分别取AC ,BC 中点G ,H ,连接GH ,∵S △ABD =12S △ABC ,∴点D 在直线GH 上,∵∠ACB =∠BDE =90°,AC =BC ,DE =BD ,∴∠CAB =∠CBA =45°,∠DEB =∠DBE =45°,BE =√2BD ,∵点G ,点H 分别是AC ,BC 的中点,∴GH ∥AB ,∴∠DHB =∠ABC =45°,∵点C 、E 、D 三点共线,∴∠CDB =90°,且点H 是BC 中点,∴DH =CH =BH ,∴∠HCD =∠HDC ,且∠HCD +∠HDC =∠BHD =45°,∴∠HCD =∠HDC =22.5°,∵∠BED =∠BCE +∠CBE =45°,∴∠BCE =∠CBE =22.5°,∴BE =CE =√2BD ,∴CD =CE +DE =(√2+1)BD ,∴BE CD =√2√2+1=2−√2; 若点A ,点D 在直线BC 同侧,如图4,分别取AC ,BC 中点G ,H ,连接GH ,∵S △ABD =12S △ABC ,∴点D 在直线GH 上,∵∠ACB =∠BDE =90°,AC =BC ,DE =BD ,∴∠CAB =∠CBA =45°,∠DEB =∠DBE =45°,BE =√2BD ,∵点G ,点H 分别是AC ,BC 的中点,∴GH ∥AB ,∴∠DHC =∠ABC =45°,∵点C 、E 、D 三点共线,∴∠CDB =90°,且点H 是BC 中点,∴DH =CH =BH ,∴∠HBD =∠HDB ,且∠HBD +∠HDB =∠CHD =45°,∴∠HBD =∠HDB =22.5°,∵∠ECB =67.5°,∠EBC =∠EBD +∠DBC =67.5°,∴∠BCE =∠CBE =67.5°,∴BE =CE =√2BD ,∴CD =CE ﹣DE =(√2−1)BD ,∴BE CD =√2√2−1=2+√2, 综上所述:BE CD 的值为2−√2或2+√2.26.(12分)把函数C 1:y =ax 2﹣2ax ﹣3a (a ≠0)的图象绕点P (m ,0)旋转180°,得到新函数C 2的图象,我们称C 2是C 1关于点P 的相关函数.C 2的图象的对称轴与x 轴交点坐标为(t ,0).(1)填空:t 的值为 2m ﹣1 (用含m 的代数式表示)(2)若a =﹣1,当12≤x ≤t 时,函数C 1的最大值为y 1,最小值为y 2,且y 1﹣y 2=1,求C 2的解析式;(3)当m =0时,C 2的图象与x 轴相交于A ,B 两点(点A 在点B 的右侧).与y 轴相交于点D .把线段AD 原点O 逆时针旋转90°,得到它的对应线段A ′D ′,若线A ′D ′与C 2的图象有公共点,结合函数图象,求a 的取值范围.解:(1)C 1:y =ax 2﹣2ax ﹣3a =a (x ﹣1)2﹣4a ,顶点(1,﹣4a )围绕点P (m ,0)旋转180°的对称点为(2m ﹣1,4a ),C 2:y =﹣a (x ﹣2m +1)2+4a ,函数的对称轴为:x =2m ﹣1,t =2m ﹣1,故答案为:2m ﹣1;(2)a =﹣1时,C 1:y =﹣(x ﹣1)2+4,①当12≤t <1时, x =12时,有最小值y 2=154, x =t 时,有最大值y 1=﹣(t ﹣1)2+4,则y 1﹣y 2=﹣(t ﹣1)2+4−154=1,无解;②1≤t ≤32时,x =1时,有最大值y 1=4,x =12时,有最小值y 2=154,y 1﹣y 2=14≠1(舍去);③当t>32时,x=1时,有最大值y1=4,x=t时,有最小值y2=﹣(t﹣1)2+4,y1﹣y2=(t﹣1)2=1,解得:t=0或2(舍去0),故C2:y=(x﹣2)2﹣4=x2﹣4x;(3)m=0,C2:y=﹣a(x+1)2+4a,点A、B、D、A′、D′的坐标分别为(1,0)、(﹣3,0)、(0,3a)、(0,1)、(﹣3a,0),当a>0时,a越大,则OD越大,则点D′越靠左,当C2过点A′时,y=﹣a(0+1)2+4a=1,解得:a=1 3,当C2过点D′时,同理可得:a=1,故:0<a≤13或a≥1;当a<0时,当C2过点D′时,﹣3a=1,解得:a=−1 3,故:a≤−1 3;综上,故:0<a≤13或a≥1或a≤−13.。
大连中考几何真题答案解析
大连中考几何真题答案解析几何是中学数学中非常重要的一个分支,不仅在中考中占有较大的比重,而且在高中阶段的学习中也需要深入学习和掌握。
下面,我们将通过解析大连中考几年的几何真题,来帮助同学们更好地理解和应对几何题的考查。
题目一:已知正方形ABCD的边长为a,点E,F,G分别是边AB,BC,CD的中点,连接AE,CF,DG。
若AE=CF=DG=18cm,求正方形ABCD的边长a。
解析:由题意可知,AE=CF=DG=18cm,且AE=CF=DG=18cm,即可以得到三角形AEB,CFB,DGC都是等边三角形。
由等边三角形的性质可知,正方形的边长等于三等边三角形的边长。
因此,正方形ABCD的边长a=18cm。
题目二:如下图所示,正方体ABCDEFGH的体积为64cm³,点M,N分别是线段AC,EF的中点,求线段MN的长度。
解析:题目中给出了正方体的体积为64cm³,即AB=BC=CD=DA=EF=FG=GH=HE=4cm。
根据题目中的描述可知,MN是线段AC和EF的中点,因此,由线段中点定理可得线段MN的长度等于线段AC的长度的一半。
设线段AC的长度为x,则根据勾股定理可得x²+4²=4²,解得x=3cm。
因此,线段MN的长度为线段AC的一半,即MN=3/2=1.5cm。
题目三:如下图所示,正方形ABCD的边长为5cm,点E,F分别是边BC,CD的中点,连接BE,CF,连接BF交AC于点H,求线段HF的长度。
解析:由题意可知,正方形ABCD的边长为5cm,且点E和F分别是边BC和CD的中点。
连接BE和CF,且线段BF交线段AC于点H。
因为正方形ABCD是一个等边四边形,所以线段BF和线段CE是长度相等的对角线。
由对角线长度的性质可知,线段BF和线段CE的长度都是正方形边长的根号2倍。
设线段BF和线段CE的长度为x,则有x=5√2cm。
又由于线段HF是线段BF的一半,所以线段HF的长度为x/2=5/√2 cm。
大连市重点中学2024届中考数学最后冲刺浓缩精华卷含解析
大连市重点中学2024年中考数学最后冲刺浓缩精华卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列事件中,必然事件是()A.若ab=0,则a=0B.若|a|=4,则a=±4C.一个多边形的内角和为1000°D.若两直线被第三条直线所截,则同位角相等2.如图,小岛在港口P的北偏西60°方向,距港口56海里的A处,货船从港口P出发,沿北偏东45°方向匀速驶离港口,4小时后货船在小岛的正东方向,则货船的航行速度是( )A.2/时B.3/时C.6海里/时D.2海里/时32,0,π,13,6这5个数中随机抽取一个数,抽到有理数的概率是()A.15B.25C.35D.454.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=1.那么在计算6×7时,左、右手伸出的手指数应该分别为()A.1,2 B.1,3C.4,2 D.4,35.已知☉O的半径为5,且圆心O到直线l的距离是方程x2-4x-12=0的一个根,则直线l与圆的位置关系是()A.相交B.相切C.相离D.无法确定6.如图,将一正方形纸片沿图(1)、(2)的虚线对折,得到图(3),然后沿图(3)中虚线的剪去一个角,展开得平面图形(4),则图(3)的虚线是()A .B .C .D .7.如图,ABC ∆的三边,,AB BC CA 的长分别为20,30,40,点O 是ABC ∆三条角平分线的交点,则::ABO BCO CAO S S S ∆∆∆等于( )A .1∶1∶1B .1∶2∶3C .2∶3∶4D .3∶4∶58.若m ,n 是一元二次方程x 2﹣2x ﹣1=0的两个不同实数根,则代数式m 2﹣m+n 的值是( ) A .﹣1B .3C .﹣3D .19.如图,点O′在第一象限,⊙O′与x 轴相切于H 点,与y 轴相交于A (0,2),B (0,8),则点O′的坐标是( )A .(6,4)B .(4,6)C .(5,4)D .(4,5)10.如图,已知第一象限内的点A 在反比例函数y=上,第二象限的点B 在反比例函数上,且OA ⊥OB ,,则k 的值为( )A .﹣2B .4C .﹣4D .21181 ) A .9B .±9C .±3D .312.我国的钓鱼岛面积约为4400000m2,用科学记数法表示为()A.4.4×106B.44×105C.4×106D.0.44×107二、填空题:(本大题共6个小题,每小题4分,共24分.)13.对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣1.例如,1※5=1×5﹣1+5﹣1=ll.请根据上述的定义解决问题:若不等式3※x<1,则不等式的正整数解是_____.14.如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n个图中正方形和等边三角形的个数之和为______个.15.如图,在每个小正方形的边长为1的网格中,点A,B,C,D均在格点上,AB与CD相交于点E.(1)AB的长等于_____;(2)点F是线段DE的中点,在线段BF上有一点P,满足53BPPF,请在如图所示的网格中,用无刻度的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明)_____.16.如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A、C分别在x轴、y轴的正半轴上,点Q在对角线OB上,若OQ=OC,则点Q的坐标为_______.17.分解因式:xy2﹣2xy+x=_____.18.股市规定:股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.若一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x,则x满足的方程是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,是5×5正方形网格,每个小正方形的边长为1,请按要求画出下列图形,所画图形的各个顶点均在所给小正方形的顶点上.(1)在图(1)中画出一个等腰△ABE,使其面积为3.5;(2)在图(2)中画出一个直角△CDF,使其面积为5,并直接写出DF的长.20.(6分)2018年4月22日是第49个世界地球日,今年的主题为“珍惜自然资源呵护美丽国土一讲好我们的地球故事”地球日活动周中,同学们开展了丰富多彩的学习活动,某小组搜集到的数据显示,山西省总面积为15.66万平方公里,其中土石山区面积约5.59万平方公里,其余部分为丘陵与平原,丘陵面积比平原面积的2倍还多0.8万平方公里.(1)求山西省的丘陵面积与平原面积;(2)活动周期间,两位家长计划带领若干学生去参观山西地质博物馆,他们联系了两家旅行社,报价均为每人30元.经协商,甲旅行社的优惠条件是,家长免费,学生都按九折收费;乙旅行社的优惠条件是,家长、学生都按八折收费.若只考虑收费,这两位家长应该选择哪家旅行社更合算?21.(6分)已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.求证:DE=OE;若CD∥AB,求证:BC是⊙O的切线;在(2)的条件下,求证:四边形ABCD是菱形.22.(8分)地球环境问题已经成为我们日益关注的问题.学校为了普及生态环保知识,提高学生生态环境保护意识,举办了“我参与,我环保”的知识竞赛.以下是从初一、初二两个年级随机抽取20名同学的测试成绩进行调查分析,成绩如下:初一:76 88 93 65 78 94 89 68 95 5089 88 89 89 77 94 87 88 92 91 初二:74 97 96 89 98 74 69 76 72 7899 72 97 76 99 74 99 73 98 74 (1)根据上面的数据,将下列表格补充完整;整理、描述数据:成绩x人数班级5059x≤≤6069x≤≤7079x≤≤8089x≤≤90100x≤≤初一 1 2 3 6初二0 1 10 1 8(说明:成绩90分及以上为优秀,80~90分为良好,60~80分为合格,60分以下为不合格)分析数据:年级平均数中位数众数初一84 88.5初二84.2 74(2)得出结论:你认为哪个年级掌握生态环保知识水平较好并说明理由.(至少从两个不同的角度说明推断的合理性).23.(8分)五一期间,小红到郊野公园游玩,在景点P处测得景点B位于南偏东45°方向,然后沿北偏东37°方向走200m米到达景点A,此时测得景点B正好位于景点A的正南方向,求景点A与景点B之间的距离.(结果保留整数)参考数据:sin37≈0.60,cos37°=0.80,tan37°≈0.7524.(10分)如图,在平面直角坐标系中,点O为坐标原点,已知△ABC三个定点坐标分别为A(﹣4,1),B(﹣3,3),C(﹣1,2).画出△ABC关于x轴对称的△A1B1C1,点A,B,C的对称点分别是点A1、B1、C1,直接写出点A1,B1,C1的坐标:A1(,),B1(,),C1(,);画出点C关于y轴的对称点C2,连接C1C2,CC2,C1C,并直接写出△CC1C2的面积是.25.(10分)如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.26.(12分)如图,已知矩形ABCD中,AB=3,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).(1)若m=5,求当P,E,B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于2,求所有这样的m的取值范围.27.(12分)某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有______人,在扇形统计图中,“乒乓球”的百分比为______%,如果学校有800名学生,估计全校学生中有______人喜欢篮球项目.(2)请将条形统计图补充完整.(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解题分析】直接利用绝对值的性质以及多边形的性质和平行线的性质分别分析得出答案.【题目详解】解:A、若ab=0,则a=0,是随机事件,故此选项错误;B、若|a|=4,则a=±4,是必然事件,故此选项正确;C、一个多边形的内角和为1000°,是不可能事件,故此选项错误;D、若两直线被第三条直线所截,则同位角相等,是随机事件,故此选项错误;故选:B.【题目点拨】此题主要考查了事件的判别,正确把握各命题的正确性是解题关键.2、A【解题分析】于点Q.试题解析:设货船的航行速度为x海里/时,4小时后货船在点B处,作PQ AB由题意56AP =海里,4PB x =海里, 在Rt APQ △中, 60APQ ∠=, 所以28.PQ =在Rt PQB △中, 45BPQ ∠=,所以2cos45.2PQ PB x =⨯=228x =,解得:7 2.x = 故选A. 3、C 【解题分析】2,0,π,13,6这5个数中只有0、13、6为有理数,再根据概率公式即可求出抽到有理数的概率. 【题目详解】2,0,π,13,6这5个数中有理数只有0、13、6这3个数, ∴抽到有理数的概率是35,故选C . 【题目点拨】本题考查了概率公式以及有理数,根据有理数的定义找出五个数中的有理数的个数是解题的关键. 4、A 【解题分析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30, 30+4×3=42,故选A.点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.5、C【解题分析】首先求出方程的根,再利用半径长度,由点O到直线a的距离为d,若d<r,则直线与圆相交;若d=r,则直线与圆相切;若d>r,则直线与与圆相离.【题目详解】∵x2-4x-12=0,(x+2)(x-6)=0,解得:x1=-2(不合题意舍去),x2=6,∵点O到直线l距离是方程x2-4x-12=0的一个根,即为6,∴点O到直线l的距离d=6,r=5,∴d>r,∴直线l与圆相离.故选:C【题目点拨】本题考核知识点:直线与圆的位置关系.解题关键点:理解直线与圆的位置关系的判定方法.6、D【解题分析】本题关键是正确分析出所剪时的虚线与正方形纸片的边平行.【题目详解】要想得到平面图形(4),需要注意(4)中内部的矩形与原来的正方形纸片的边平行,故剪时,虚线也与正方形纸片的边平行,所以D是正确答案,故本题正确答案为D选项.【题目点拨】本题考查了平面图形在实际生活中的应用,有良好的空间想象能力过动手能力是解题关键.7、C【解题分析】作OF⊥AB于F,OE⊥AC于E,OD⊥BC于D,根据角平分线的性质得到OD=OE=OF,根据三角形的面积公式计算即可.【题目详解】作OF⊥AB于F,OE⊥AC于E,OD⊥BC于D,∵三条角平分线交于点O ,OF ⊥AB ,OE ⊥AC ,OD ⊥BC , ∴OD=OE=OF ,∴S △ABO :S △BCO :S △CAO =AB :BC :CA=20:30:40=2:3:4, 故选C . 【题目点拨】考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键. 8、B 【解题分析】把m 代入一元二次方程2210x x --=,可得2210m m --=,再利用两根之和2m n +=,将式子变形后,整理代入,即可求值. 【题目详解】解:∵若m ,n 是一元二次方程2210x x --=的两个不同实数根, ∴22102m m m n ,--=+=, ∴21m m m -=+∴213m m n m n -+=++= 故选B . 【题目点拨】本题考查了一元二次方程根与系数的关系,及一元二次方程的解,熟记根与系数关系的公式. 9、D 【解题分析】过O'作O'C ⊥AB 于点C ,过O'作O'D ⊥x 轴于点D ,由切线的性质可求得O'D 的长,则可得O'B 的长,由垂径定理可求得CB 的长,在Rt △O'BC 中,由勾股定理可求得O'C 的长,从而可求得O'点坐标. 【题目详解】如图,过O′作O′C⊥AB于点C,过O′作O′D⊥x轴于点D,连接O′B,∵O′为圆心,∴AC=BC,∵A(0,2),B(0,8),∴AB=8−2=6,∴AC=BC=3,∴OC=8−3=5,∵⊙O′与x轴相切,∴O′D=O′B=OC=5,在Rt△O′BC中,由勾股定理可得O′C=22O B =22-BC5-3=4,∴P点坐标为(4,5),故选:D.【题目点拨】本题考查了切线的性质,坐标与图形性质,解题的关键是掌握切线的性质和坐标计算.10、C【解题分析】试题分析:作AC⊥x轴于点C,作BD⊥x轴于点D.则∠BDO=∠ACO=90°,则∠BOD+∠OBD=90°,∵OA⊥OB,∴∠BOD+∠AOC=90°,∴∠BOD=∠AOC,∴△OBD∽△AOC,∴=(tanA)2=2,又∵S△AOC=×2=1,∴S△OBD=2,∴k=-1.故选C.考点:1.相似三角形的判定与性质;2.反比例函数图象上点的坐标特征.11、D【解题分析】根据算术平方根的定义求解.【题目详解】81,又∵(±1)2=9,∴9的平方根是±1,∴9的算术平方根是1.811.故选:D.【题目点拨】考核知识点:算术平方根.理解定义是关键.12、A【解题分析】4400000=4.4×1.故选A.点睛:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、2【解题分析】【分析】根据新定义可得出关于x的一元一次不等式,解之取其中的正整数即可得出结论.【题目详解】∵3※x=3x﹣3+x﹣2<2,∴x<74,∵x为正整数,∴x=2,故答案为:2.【题目点拨】本题考查一元一次不等式的整数解以及实数的运算,通过解不等式找出x<74是解题的关键.14、9n+1.【解题分析】∵第1个图由1个正六边形、6个正方形和6个等边三角形组成,∴正方形和等边三角形的和=6+6=12=9+1;∵第2个图由11个正方形和10个等边三角形组成,∴正方形和等边三角形的和=11+10=21=9×2+1;∵第1个图由16个正方形和14个等边三角形组成,∴正方形和等边三角形的和=16+14=10=9×1+1,…,∴第n个图中正方形和等边三角形的个数之和=9n+1.故答案为9n+1.15见图形【解题分析】分析:(Ⅰ)利用勾股定理计算即可;(Ⅱ)连接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1,取格点G、H,连接GH交DE于F,因为DG∥CH,所以FD:FC=DG:CH=5:8,可得DF=EF.取格点I、J,连接I J交BD于K,因为BI∥D J,所以BK:DK=BI:D J=5:2,连接EK交BF于P,可证BP:PF=5:3;详解:(Ⅰ)AB的长;(Ⅱ)由题意:连接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1.取格点G、H,连接GH交DE于F.∵DG∥CH,∴FD:FC=DG:CH=5:8,可得DF=EF.取格点I、J,连接I J交BD于K.∵BI∥D J,∴BK:DK=BI:D J=5:2.连接EK交BF于P,可证BP:PF=5:3.故答案为(Ⅰ)109;(Ⅱ)由题意:连接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1,取格点G、H,连接GH交DE于F.因为DG∥CH,所以FD:FC=DG:CH=5:8,可得DF=EF.取格点I、J,连接I J交BD于K.因为BI∥D J,所以BK:DK=BI:D J=5:2,连接EK交BF于P,可证BP:PF=5:3.点睛:本题考查了作图﹣应用与设计,平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,所以中考常考题型.16、(,)【解题分析】如图,过点Q作QD⊥OA于点D,∴∠QDO=90°.∵四边形OABC是正方形,且边长为2,OQ=OC,∴∠QOA=45°,OQ=OC=2,∴△ODQ是等腰直角三角形,∴OD=OQ==.∴点Q的坐标为.17、x (y-1)2【解题分析】分析:先提公因式x ,再用完全平方公式把221y y -+继续分解.详解:22xy xy x -+=x (221y y -+)=x (1y -)2.故答案为x (1y -)2.点睛:本题考查了因式分解,有公因式先提公因式,然后再用公式法继续分解,因式分解必须分解到每个因式都不能再分解为止.18、2(110%)(1)1x -+=.【解题分析】股票一次跌停就跌到原来价格的90%,再从90%的基础上涨到原来的价格,且涨幅只能≤10%,设这两天此股票股价的平均增长率为x ,每天相对于前一天就上涨到1+x ,由此列出方程解答即可.【题目详解】设这两天此股票股价的平均增长率为x ,由题意得(1﹣10%)(1+x )2=1.故答案为:(1﹣10%)(1+x )2=1.【题目点拨】本题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为()21a x b ±=.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、 (1)见解析;(2)DF 10【解题分析】(1)直接利用等腰三角形的定义结合勾股定理得出答案;(2)利用直角三角的定义结合勾股定理得出符合题意的答案.【题目详解】(1)如图(1)所示:△ABE,即为所求;(2)如图(2)所示:△CDF即为所求,DF=10.【题目点拨】此题主要考查了等腰三角形的定义以及三角形面积求法,正确应用网格分析是解题关键.20、(1)平原面积为3.09平方公里,丘陵面积为6.98平方公里;(2)见解析.【解题分析】(1)先设山西省的平原面积为x平方公里,则山西省的丘陵面积为(2x+0.8)平方公里,再根据总面积=平原面积+丘陵面积+土石山区面积列出等式求解即可;(2)先分别列出甲、乙两个旅行社收费与学生人数的关系式,然后再分情况讨论即可.【题目详解】解:(1)设山西省的平原面积为x平方公里,则山西省的丘陵面积为(2x+0.8)平方公里.由题意:x+2x+0.8+5.59=15.66,解得x=3.09,2x+0.8=6.98,答:山西省的平原面积为3.09平方公里,则山西省的丘陵面积为6.98平方公里.(2)设去参观山西地质博物馆的学生有m人,甲、乙旅行社的收费分别为y甲元,y乙元.由题意:y甲=30×0.9m=27m,y乙=30×0.8(m+2)=24m+48,当y甲=y乙时,27m=24m+48,m=16,当y甲>y乙时,27m>24m+48,m>16,当y甲<y乙时,27m<24m+48,m<16,答:当学生人数为16人时,两个旅行社的费用一样.当学生人数为大于16人时,乙旅行社比较合算.当学生人数为小于16人时,甲旅行社比较合算.【题目点拨】本题考查了一元一次方程的应用,解题的关键是熟练的掌握一元一次方程的应用.21、(1)证明见解析;(2)证明见解析;(3)证明见解析.【解题分析】(1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;(2)根据等腰三角形的性质得到∠3=∠COD=∠DEO=60°,根据平行线的性质得到∠4=∠1,根据全等三角形的性质得到∠CBO=∠CDO=90°,于是得到结论;(3)先判断出△ABO≌△CDE得出AB=CD,即可判断出四边形ABCD是平行四边形,最后判断出CD=AD即可.【题目详解】(1)如图,连接OD,∵CD是⊙O的切线,∴OD⊥CD,∴∠2+∠3=∠1+∠COD=90°,∵DE=EC,∴∠1=∠2,∴∠3=∠COD,∴DE=OE;(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA =30°,∴∠BOC =∠DOC =60°,在△CDO 与△CBO 中,{OD OBDOC BOC OC OC=∠=∠=,∴△CDO ≌△CBO (SAS ),∴∠CBO =∠CDO =90°,∴OB ⊥BC ,∴BC 是⊙O 的切线;(3)∵OA =OB =OE ,OE =DE =EC ,∴OA =OB =DE =EC ,∵AB ∥CD ,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA =30°,∴△ABO ≌△CDE (AAS ),∴AB =CD ,∴四边形ABCD 是平行四边形,∴∠DAE =12∠DOE =30°, ∴∠1=∠DAE ,∴CD =AD ,∴▱ABCD 是菱形.【题目点拨】此题主要考查了切线的性质,同角的余角相等,等腰三角形的性质,平行四边形的判定和性质,菱形的判定,判断出△ABO ≌△CDE 是解本题的关键.22、(1)1,2,19;(2)初一年级掌握生态环保知识水平较好.【解题分析】(1)根据初一、初二同学的测试成绩以及众数与中位数的定义即可完成表格;(2)根据平均数、众数、中位数的统计意义回答.【题目详解】(1)补全表格如下:整理、描述数据:初一成绩x满足10≤x≤19的有:11 19 19 11 19 19 17 11,共1个.故答案为:1.分析数据:在76 11 93 65 71 94 19 61 95 50 19 11 19 19 2 94 17 11 92 91中,19出现的次数最多,故众数为19;把初二的抽查成绩从小到大排列为:69 72 72 73 74 74 74 74 76 76 71 19 96 97 97 91 91 99 99 99,第10个数为76,第11个数为71,故中位数为:(76+71)÷2=2.故答案为:19,2.(2)初一年级掌握生态环保知识水平较好.因为两个年级的平均数相差不大,但是初一年级同学的中位数是11.5,众数是19,初二年级同学的中位数是2,众数是74,即初一年级同学的中位数与众数明显高于初二年级同学的成绩,所以初一年级掌握生态环保知识水平较好.【题目点拨】本题考查了频数(率)分布表,众数、中位数以及平均数.掌握众数、中位数以及平均数的定义是解题的关键.23、景点A与B之间的距离大约为280米【解题分析】由已知作PC⊥AB于C,可得△ABP中∠A=37°,∠B=45°且PA=200m,要求AB的长,可以先求出AC和BC的长.【题目详解】解:如图,作PC⊥AB于C,则∠ACP=∠BCP=90°,由题意,可得∠A=37°,∠B=45°,PA=200m.在Rt△ACP中,∵∠ACP=90°,∠A=37°,∴AC=AP•cosA=200×0.80=160,PC=AP•sinA=200×0.60=1.在Rt△BPC中,∵∠BCP=90°,∠B=45°,∴BC=PC=1.∴AB=AC+BC=160+1=280(米).答:景点A与B之间的距离大约为280米.【题目点拨】本题考查了解直角三角形的应用-方向角问题,对于解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.24、(1)﹣1、﹣1,﹣3、﹣3,﹣1、﹣2;(2)见解析,1.【解题分析】(1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得;(2)作出点C关于y轴的对称点,然后连接得到三角形,根据面积公式计算可得.【题目详解】(1)如图所示,△A1B1C1即为所求.A1(﹣1,﹣1)B1(﹣3,﹣3),C1(﹣1,﹣2).故答案为:﹣1、﹣1、﹣3、﹣3、﹣1、﹣2;(2)如图所示,△CC1C2的面积是122×1=1.故答案为:1.【题目点拨】本题考查了作图﹣轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质.25、证明过程见解析【解题分析】要证明BE=CD ,只要证明AB=AC 即可,由条件可以求得△AEC 和△ADB 全等,从而可以证得结论.【题目详解】∵BD ⊥AC 于点D ,CE ⊥AB 于点E ,∴∠ADB=∠AEC=90°,在△ADB 和△AEC 中,ADB AEC AD AEA A ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADB ≌△AEC (ASA )∴AB=AC ,又∵AD=AE ,∴BE=CD .考点:全等三角形的判定与性质.26、 (1) 1;(1) 355≤m <35. 【解题分析】(1)在Rt △ABP 中利用勾股定理即可解决问题;(1)分两种情形求出AD 的值即可解决问题:①如图1中,当点P 与A 重合时,点E 在BC 的下方,点E 到BC 的距离为1.②如图3中,当点P 与A 重合时,点E 在BC 的上方,点E 到BC 的距离为1.【题目详解】解:(1):(1)如图1中,设PD=t .则PA=5-t .∵P 、B 、E 共线,∴∠BPC=∠DPC ,∵AD ∥BC ,∴∠DPC=∠PCB ,∴∠BPC=∠PCB ,∴BP=BC=5,在Rt △ABP 中,∵AB 1+AP 1=PB 1,∴31+(5-t )1=51,∴t=1或9(舍弃),∴t=1时,B 、E 、P 共线.(1)如图1中,当点P 与A 重合时,点E 在BC 的下方,点E 到BC 的距离为1.作EQ ⊥BC 于Q ,EM ⊥DC 于M .则EQ=1,CE=DC=3易证四边形EMCQ 是矩形,∴CM=EQ=1,∠M=90°,∴2222325EC CM -=-∵∠DAC=∠EDM ,∠ADC=∠M ,∴△ADC ∽△DME , ∴AD DG DM EM= ∴55AD = ∴AD=35,如图3中,当点P 与A 重合时,点E 在BC 的上方,点E 到BC 的距离为1.作EQ ⊥BC 于Q ,延长QE 交AD 于M .则EQ=1,CE=DC=3在Rt△ECQ中,22325-=,由△DME∽△CDA,∴DM EM CD AD=51AD=,∴35,综上所述,在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于1,这样的m的取值范围355≤m<35.【题目点拨】本题考查四边形综合问题,根据题意作出图形,熟练运用勾股定理和相似三角形的性质是本题的关键.27、(1)5,20,80;(2)图见解析;(3)3 5 .【解题分析】【分析】(1)根据喜欢跳绳的人数以及所占的比例求得总人数,然后用总人数减去喜欢跳绳、乒乓球、其它的人数即可得;(2)用乒乓球的人数除以总人数即可得;(3)用800乘以喜欢篮球人数所占的比例即可得;(4)根据(1)中求得的喜欢篮球的人数即可补全条形图;(5)画树状图可得所有可能的情况,根据树状图求得2名同学恰好是1名女同学和1名男同学的结果,根据概率公式进行计算即可.【题目详解】(1)调查的总人数为20÷40%=50(人),喜欢篮球项目的同学的人数=50﹣20﹣10﹣15=5(人);(2)“乒乓球”的百分比=10100%50⨯=20%;(3)800×550=80,所以估计全校学生中有80人喜欢篮球项目;(4)如图所示,(5)画树状图为:共有20种等可能的结果数,其中所抽取的2名同学恰好是1名女同学和1名男同学的结果数为12,所以所抽取的2名同学恰好是1名女同学和1名男同学的概率=123 205.。
大连市大连市第九中学中考数学期末几何综合压轴题模拟汇编
大连市大连市第九中学中考数学期末几何综合压轴题模拟汇编一、中考几何压轴题 1.问题发现:(1)正方形ABCD 和正方形AEFG 如图①放置,AB =4,AE =2.5,则DGCF=___________. 问题探究:(2)如图②,在矩形ABCD 中,AB =3,BC =4,点P 在矩形的内部,∠BPC =135°,求AP 长的最小值. 问题拓展:(3)如图③,在四边形ABCD 中,连接对角线AC 、BD ,已知AB =6,AC =CD ,∠ACD =90°,∠ACB =45°,则对角线BD 是否存在最大值?若存在,求出最大值;若不存在,请说明理由.2.类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.原题:如图1,在平行四边形ABCD 中,点E 是BC 的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G .若3AFEF ,求CD CG的值.(1)尝试探究在图1中,过点E 作//EH AB 交BG 于点H ,则AB 和EH 的数量关系是_________,CG 和EH 的数量关系是_________,CDCG的值是_________. (2)类比延伸如图2,在原题的条件下,若()0AF m m EF =>,则CDCG的值是_________(用含有m 的代数式表示),试写出解答过程. (3)拓展迁移如图3,梯形ABCD 中,//DC AB ,点E 是BC 的延长线上的一点,AE 和BD 相交于点F .若ABa CD =,BCb BE=,()0,0a b >>,则AF EF 的值是________(用含a 、b 的代数式表示).3.《函数的图象与性质》拓展学习展示:(问题)如图①,在平面直角坐标系中,抛物线1G :232yax bx与x 轴相交于()1,0A -,()3,0B 两点,与y 轴交于点C ,则a =______,b =______.(操作)将图①中抛物线1G 沿BC 方向平移BC 长度的距离得到拋物线2G ,2G 在y 轴左侧的部分与1G 在y 轴右侧的部分组成的新图象记为G ,如图②.请直接写出图象G 对应的函数解析式.(探究)在图②中,过点C 作直线l 平行于x 轴,与图象G 交于D ,E 两点,如图③.求出图象G 在直线l 上方的部分对应的函数y 随x 的增大而增大时x 的取值范围. (应用)P 是抛物线2G 对称轴上一个动点,当PDE △是直角三角形时,直接写出P 点的坐标.4.(1)问题发现如图1,△ABC 与△ADE 都是等腰直角三角形,且∠BAC =∠DAE =90°,直线BD ,CE 交于点F ,直线BD ,AC 交于点G .则线段BD 和CE 的数量关系是 ,位置关系是 ;(2)类比探究如图2,在△ABC和△ADE中,∠ABC=∠ADE=α,∠ACB=∠AED=β,直线BD,CE交于点F,AC与BD相交于点G.若AB=kAC,试判断线段BD和CE的数量关系以及直线BD和CE相交所成的较小角的度数,并说明理由;(3)拓展延伸如图3,在平面直角坐标系中,点M的坐标为(3.0),点N为y轴上一动点,连接MN.将线段MN绕点M逆时针旋转90得到线段MP,连接NP,OP.请直接写出线段OP 长度的最小值及此时点N的坐标.5.(教材呈现)下面是华师版八年级下册教材第89页的部分内容.如图,G,H是平行四边形ABCD对角线AC上的两点,且AG=CH,E,F分别是边AB和CD 的中点求证:四边形EHFG是平行四边形证明:连接EF交AC于点O∵四边形ABCD是平行四边形∴AB=CD,AB∥CD又∵E,F分别是AB,CD的中点∴AE=CF又∵AB∥CD∴∠EAO=∠FCO又∵∠AOE=∠COF∴△AOE≌△COF请补全上述问题的证明过程.(探究)如图①,在△ABC中,E,O分别是边AB、AC的中点,D、F分别是线段AO、CO 的中点,连结DE、EF,将△DEF绕点O旋转180°得到△DGF,若四边形DEFG的面积为8,则△ABC的面积为.(拓展)如图②,GH是正方形ABCD对角线AC上的两点,且AG=CH,GH=AB,E、F分别是AB和CD的中点.若正方形ABCD的面积为16,则四边形EHFG的面积为.6.综合与实践背景阅读:“旋转”即物体绕一个点或一个轴做圆周运动.在中国古典专著《百喻经·口诵乘船法而不解用喻》中记载:“船盘回旋转,不能前进.”而图形旋转即:在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转,这个定点叫做旋转中心,转动的角叫做旋转角.综合实践课上,“睿智”小组专门探究了正方形的旋转,情况如下:在正方形ABCD 中,点O 是线段BC 上的一个动点,将正方形ABCD 绕点O 顺时针旋转得到正方形A B C D ''''(点A ',B ',C ',D 分别是点A ,B ,C ,D 的对应点).设旋转角为α(0180α<<︒).操作猜想:(1)如图1,若点O 是BC 中点,在正方形ABCD 绕点旋转过程中,连接AA ',BB ',DD ',则线段AA '与DD '的数量关系是_______;线段AA '与BB '的数量关系是________.探究验证:(2)如图2,在(1)的条件下,在正方形ABCD 绕点O 旋转过程中,顺次连接点B ,B ',C ,C ',B .判断四边形''BB CC 的形状,并说明理由.拓展延伸:(3)如图3,若2BO CO =,在正方形ABCD 绕点O 顺时针旋转的过程中,设直线BB '交线段AA '于点P .连接OP ,并过点O 作OQ BB '⊥于点Q .请你补全图形,并直接写出OPOQ的值. 7.将抛物线y =ax 2的图像(如图1)绕原点顺时针旋转90度后可得新的抛物线图像(如图2),记为C :y 2=1ax .(概念与理解)将抛物线y 1=4x 2和y 2=x 2按上述方法操作后可得新的抛物线图像,记为:C 1:_____________;C 2:____________.(猜想与证明)在平面直角坐标系中,点M(x,0)在x轴正半轴上,过点M作平行于y轴的直线,分别交抛物线C1于点A、B,交抛物线C2于点C、D,如图3所示.(1)填空:当x=1时,ABCD=______;当x=2时,ABCD=_______;(2)猜想:对任意x(x>0)上述结论是否仍然成立?若成立,请证明你的猜想;若不成立,请说明理由.(探究与应用)①利用上面的结论,可得△AOB与△COD面积比为;②若△AOB和△COD中有一个是直角三角形时,求△COD与△AOB面积之差;(联想与拓展)若抛物线C3:y2=mx、C4:y2=nx(0<m<n),M(k,0)在x轴正半轴上,如图所示,过点M作平行于y轴的直线,分别交抛物线C3于点A、B,交抛物线C4于点C、D.过点A 作x轴的平行线交抛物线C4于点E,过点D作x轴的平行线交抛物线C3于点F.对于x轴上任取一点P,均有△PAE与△PDF面积的比值1:3,请直接写出m和n之间满足的等量关系是______.8.综合与实践数学活动课上,老师让同学们结合下述情境,提出一个数学问题:如图1,四边形ABCD是正方形,四边形BEDF是矩形.探究展示:“兴趣小组”提出的问题是:“如图2,连接CE.求证:AE⊥CE.”并展示了如下的证明方法:证明:如图3,分别连接AC,BD,EF,AF.设AC与BD相交于点O.∵四边形ABCD是正方形,∴OA=OC=12AC,OB=OD=12BD,且AC=BD.又∵四边形BEDF是矩形,∴EF经过点O,∴OE=OF=12EF,且EF=BD.∴OE=OF,OA=OC.∴四边形AECF是平行四边形.(依据1)∵AC =BD ,EF =BD , ∴AC =EF .∴四边形AECF 是矩形.(依据2) ∴∠CEA =90°, 即AE ⊥CE . 反思交流:(1)上述证明过程中“依据1”“依据2”分别是什么? 拓展再探:(2)“创新小组”受到“兴趣小组”的启发,提出的问题是:“如图4,分别延长AE ,FB 交于点P ,求证:EB =PB .”请你帮助他们写出该问题的证明过程.(3)“智慧小组”提出的问题是:若∠BAP =30°,AE =31-,求正方形ABCD 的面积.请你解决“智慧小组”提出的问题. 9.(发现问题)(1)如图1, 已知CAB ∆和CDE ∆均为等边三角形,D 在AC 上,E 在CB 上, 易得线段AD 和BE 的数量关系是 .(2)将图1中的CDE ∆绕点C 旋转到图2的位置, 直线AD 和直线BE 交于点F ①判断线段AD 和BE 的数量关系,并证明你的结论. ②图2中AFB ∠的度数是 .(3)(探究拓展)如图3,若CAB ∆和CDE ∆均为等腰直角三角形,90ABC DEC ∠=∠=,AB BC =,DE EC =, 直线AD 和直线BE 交于点F , 分别写出AFB ∠的度数, 线段AD 、BE 之间的数量关系 .10.如图,在ABC 中,AB AC =,90BAC ∠=︒,5AB =,D 为底边BC 上一动点,连接AD ,以AD 为斜边向左上方作等腰直角ADE ,连接BE .观察猜想:(1)当点E 落在线段AB 上时,直接写出EB ,ED 的数量关系:EB _______ED . 类比探究:(2)如图2,当点D 在线段BC 上运动时,请问(1)中结论是否仍然成立?若成立,请证明;若不成立,请说明理由;拓展延伸:(3)在点D 运动过程中,当7BE =时,请直接写出线段CD 的长.11.定义:如图1,点M 、N 把线段AB 分割成AM 、MN 和BN ,若以AM 、MN 、BN 为边的三角形是一个直角三角形,则称点M 、N 是线段AB 的勾股点.已知点M 、N 是线段AB 的勾股点,若AM =1,MN =2,则BN = .(1)(类比探究)如图2,DE 是△ABC 的中位线,M 、N 是AB 边的勾股点(AM <MN <NB ),连接 CM 、CN 分别交DE 于点G 、H .求证:G 、H 是线段DE 的勾股点.(2)(知识迁移)如图3,C,D是线段AB的勾股点,以CD为直径画⊙O,P在⊙O上,AC=CP,连结PA,PB,若∠A=2∠B,求∠B的度数.(3)(拓展应用)如图4,点P(a,b)是反比例函数y=2x(x>0)上的动点,直线2y x=-+与坐标轴分别交于A、B两点,过点P分别向x、y轴作垂线,垂足为C、D,且交线段AB于E、F.证明:E、F是线段AB的勾股点.12.(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD,BE之间的数量关系为.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=2,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.13.(探究证明)(1)某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两邻边的数量关系进行探究,提出下列问题,请你给出证明:如图①,在矩形ABCD中,EF⊥GH,EF分别交AD、BC于点E、F,GH分别交AB、DC于点G、H,求证:EF AB GH AD=;(结论应用)(2)如图②,将矩形ABCD沿EF折叠,使得点B和点D重合,若AB=2,BC=3.求折痕EF的长;(拓展运用)(3)如图③,将矩形ABCD沿EF折叠.使得点D落在AB边上的点G处,点C落在点P处,得到四边形EFPG,若AB=2,BC=3,EF 210,请求BP的长.14.我们定义:连结凸四边形一组对边中点的线段叫做四边形的“准中位线”.(1)概念理解:如图1,四边形ABCD 中,F 为CD 的中点,90ADB ∠=︒,E 是AB 边上一点,满足DE AE =,试判断EF 是否为四边形ABCD 的准中位线,并说明理由.(2)问题探究:如图2,ABC ∆中,90ACB ∠=︒,6AC =,8BC =,动点E 以每秒1个单位的速度,从点A 出发向点C 运动,动点F 以每秒6个单位的速度,从点C 出发沿射线CB 运动,当点E 运动至点C 时,两点同时停止运动.D 为线段AB 上任意一点,连接并延长CD ,射线CD与点,,,A B E F 构成的四边形的两边分别相交于点,M N ,设运动时间为t .问t 为何值时,MN 为点,,,A B E F 构成的四边形的准中位线.(3)应用拓展:如图3,EF 为四边形ABCD 的准中位线,AB CD =,延长FE 分别与BA ,CD 的延长线交于点,M N ,请找出图中与M ∠相等的角并证明. 15.综合与实践:问题情境:在数学课上,以“等腰直角三角形为主体,以点的对称为基础,探究线段间的变化关系”.如图1,在ABC 中,90ACB ∠=︒,AC BC =,点E 为ACB ∠的角平分线CD 上一动点但不与点C 重合,作点E 关于直线BC 的对称点为F ,连接AE 并延长交CB 延长线于点H ,连接FB 并延长交直线AH 于点G . 探究实践:(1)勤奋小组的同学发现AE BF =,请写出证明; 探究发现:(2)智慧小组在勤奋小组的基础上继续探究,发现线段FG ,EG 与CE 存在数量关系,请写出他们的发现并证明; 探究拓展:(3)如图2,奇异小组的同学在前两个小组探究的基础上,连接GC ,得到三条线段GE ,GC 与GF 存在一定的数量关系,请直接写出.16.(1)观察发现:如图1,在ABC ∆中,AC BC =,90ACB ∠=︒,点D 是ACB ∠的平分线CM 上一点,将线段CD 绕点C 逆时针旋转90°到CE ,连结BE 、BD ,DE 交BC 于F .填空:①线段BD 与BE 的数量关系是_________; ②线段BC 与DE 的位置关系是_________.(2)拓展探究:如图2,在ABC ∆中,AC BC =,ACB α∠=,点D 是边AB 的中点,将CD 绕点C 逆时针旋转α到CE ,连结BE 、DE ,DE 交BC 于F .(1)中的结论是否仍然成立?请说明理由.(3)拓展应用:如图3,在ABC ∆中,AB AC =,60BAC ∠=︒,2BC =,ACB ∠的平分线交AB 于D ,点E 是射线CD 上的一点,将CE 绕点C 顺时针旋转60°到CF ,连结AE 、AF 、EF ,EF 与AC 相交于G ,若以A 、F 、G 为顶点的三角形与ADE ∆全等,直接写出EF 的长.17.如图1,在等腰三角形ABC 中,120,,A AB AC ∠==点D E 、分别在边AB AC 、上,,AD AE =连接,BE 点M N P 、、分别为DE BE BC 、、的中点.(1)观察猜想图1中,线段NM NP 、的数量关系是____,MNP ∠的大小为_____;(2)探究证明把ADE 绕点A 顺时针方向旋转到如图2所示的位置,连接,MP BD CE 、、判断MNP △的形状,并说明理由;(3)拓展延伸把ADE 绕点A 在平面内自由旋转,若1,3AD AB ==,请求出MNP △面积的最大值. 18.如图1所示,边长为4的正方形ABCD 与边长为()14a a <<的正方形CFEG 的顶点C 重合,点E 在对角线AC 上.(问题发现)如图1所示,AE 与BF 的数量关系为________;(类比探究)如图2所示,将正方形CFEG 绕点C 旋转,旋转角为()030αα<<︒,请问此时上述结论是否还成立?如成立写出推理过程,如不成立,说明理由;(拓展延伸)若点F 为BC 的中点,且在正方形CFEG 的旋转过程中,有点A 、F 、G 在一条直线上,直接写出此时线段AG 的长度为________19.如图,在△ABC 中,∠ACB=90°,AC=BC ,点D 是AB 边上的动点,DE ⊥BC 于点E ,连接AE ,CD ,点F ,G ,H 分别是AE ,CD ,AC 的中点.(1)观察猜想:△FGH 的形状是(2)探究论证:把△BDE 绕点B 按逆时针方向旋转到如图所示的位置,(1)中的结论是否仍然成立?请说明理由.(3)拓展延伸:把△BDE 绕点B 在平面内自由旋转,若BC=6,BE=2,请直接写出△FGH 周长的取值范围.20.如图1,已知ABC 和ADE 均为等腰直角三角形,点D 、E 分别在线段AB 、AC 上,90C AED ∠=∠=︒.(1)观察猜想:如图2,将ADE 绕点A 逆时针旋转,连接BD 、CE ,BD 的延长线交CE 于点F .当BD 的延长线恰好经过点E 时,点E 与点F 重合,此时,①BD CE的值为______; ②∠BEC 的度数为______度;(2)类比探究:如图3,继续旋转ADE ,点F 与点E 不重合时,上述结论是否仍然成立,请说明理由;(3)拓展延伸:若2AE DE ==.10AC BC ==,当CE 所在的直线垂直于AD 时,请你直接写出线段BD 的长.【参考答案】***试卷处理标记,请不要删除一、中考几何压轴题1.(1);(2)AP 的最小值为;(3)存在,BD 的最大值为6+6【分析】(1)连接AC 、AF 、DG 、CF ,证△ADG ∽△ACF ,根据线段比例关系可求;(2)以BC 为斜边作等腰直角三角形BOC ,以解析:(1)22;(2)AP 的最小值为2922-;(3)存在,BD 的最大值为62+6 【分析】(1)连接AC 、AF 、DG 、CF ,证△ADG ∽△ACF ,根据线段比例关系可求;(2)以BC 为斜边作等腰直角三角形BOC ,以O 为圆心BO 为半径画圆,则P 的运动轨迹在矩形ABCD 内的劣弧BC 上,连接AO 交弧BC 于点P ,此时AP 最小,根据给出数据求值即可;(3)以AB 为斜边向下做等腰直角三角形AEB ,连接CE ,根据△DAB ∽△CAE ,得出BD =2CE ,以AB 为斜边向上做等腰直角三角形AOB ,以O 为圆心OA 为半径画圆,根据C 点的轨迹求出CE 最大值,即求出BD 最大值.【详解】解:(1)如图①,连接AC 、AF 、DG 、CF ,在正方形ABCD 和正方形AEFG 中,AB =4,AE =2.5,∴AC =2AB ,AF =2AE ,AG =AE =2.5,AD =AB =4,∴AD AC AG AF=, 又∵∠DAG =∠DAC -∠GAC =45°-∠GAC ,∠CAF =∠GAF -∠GAC =45°-∠GAC ,∴∠DAG =∠CAF ,∴△DGA ∽△CFA ,∴42242DG AD CF AC ===, 故答案为22; (2)如图②,以BC 为斜边作等腰直角三角形BOC ,以O 为圆心BO 为半径画圆,则∠BPC 作为圆周角刚好是135°,∴P 的运动轨迹在矩形ABCD 内的劣弧BC 上,连接AO 交弧BC 于点P ,此时AP 最小,作OE 垂直AB 延长线于点E ,∵△BOC 为等腰直角三角形,BC =4,∴OB =OC 222∠OBC =45°, ∴∠OBE =90°-∠OBC =90°-45°=45°,又∵OE ⊥AE ,∴△BEO 为等腰直角三角形,∴BE =OE =22OB =222=2, 又∵AB =3,∴AE =AB +BE =3+2=5,∴22225229AO AE OE =++∵OP =OB 2∴AP =AO -OP =29-22, 即AP 的最小值为29-22;(3)存在,如图3,以AB 为斜边向下做等腰直角三角形AEB ,连接CE ,则∠EAB =45°,2AB AE∵AC =AD ,∠ACD =90°,∴DAC =45°,2AD AC = ∴AB AD AE AC=,∠DAB =∠CAE =45°, ∴△DAB ∽△CAE , ∴2BD AD CE AC = ∴BD 2,∴当CE 最大时,BD 取最大值,以AB 为斜边向上做等腰直角三角形AOB ,以O 为圆心OA 为半径画圆,∵∠AOB =90°,∠ACB =45°,∴点C 在优弧AB 上,由图知当C 在OE 延长线C '位置时C 'E 有最大值,此时C 'E =OE +OC ',∵AB =6,△AOB 和△AEB 都是以AB 为斜边的等腰直角三角形, ∴四边形AOBE 为正方形,∴OE =AB =6,OC '=OA 22, ∴CE 的最大值为2,∵BD 2,∴BD 2(2)2.【点睛】本题主要考查了图形的变换,三角形相似,等腰直角三角形,正方形,圆周角,圆心角等知识点,熟练掌握并灵活运用这些知识点是解题的关键.2.(1);;;(2);(3).【分析】(1)本问体现“特殊”的情形,是一个确定的数值.如答图1,过E 点作平行线,构造相似三角形,利用相似三角形和中位线的性质,分别将各相关线段均统一用EH 来表示,最解析:(1)3AB EH =;2CG EH =;32;(2)2m ;(3)ab . 【分析】(1)本问体现“特殊”的情形,3AF EF =是一个确定的数值.如答图1,过E 点作平行线,构造相似三角形,利用相似三角形和中位线的性质,分别将各相关线段均统一用EH 来表示,最后求得比值;(2)本问体现“一般”的情形,AF m EF =不再是一个确定的数值,但(1)问中的解题方法依然适用,如答图2所示.(3)本问体现“类比”与“转化”的情形,将(1)(2)问中的解题方法推广转化到梯形中,如答图3所示.【详解】解:(1)依题意,过点E 作//EH AB 交BG 于点H ,如图1所示.则有ABF EHF , ∴3AB AF EH EF==, ∴3AB EH =. ∵ABCD ,//EH AB , ∴//EH CD ,又∵E 为BC 中点,∴EH 为BCG 的中位线,∴2CG EH =.3322CD AB EH CG CG EH ===. 故答案为:3AB EH =;2CG EH =;32. (2)如图2所示,作//EH AB 交BG 于点H ,则EFH AFB △△. ∴AB AF m EH EF==, ∴AB mEH =.∵AB CD =,∴CD mEH =.∵////EH AB CD ,∴BEH BCG △△.∴2CG BC EH BE ==, ∴2CG EH =. ∴22CD mEH m CG EH ==. 故答案为:2m . (3)如图3所示,过点E 作//EH AB 交BD 的延长线于点H ,则有////EH AB CD . ∵//EH CD ,∴BCD BEH △△,∴=CD BC b EH BE=, ∴CD bEH =. 又AB a CD =, ∴AB aCD abEH ==.∵//EH AB ,∴ABF EHF , ∴==AF AB abEH ab EF EH EH=. 故答案为:ab .【点睛】本题的设计独特:由平行四边形中的一个特殊的例子出发(第1问),推广到平行四边形中的一般情形(第2问),最后再通过类比、转化到梯形中去(第3问).各种图形虽然形式不一,但运用的解题思想与解题方法却是一以贯之:即通过构造相似三角形,得到线段之间的比例关系,这个比例关系均统一用同一条线段来表达,这样就可以方便地求出线段的比值.本题体现了初中数学的类比、转化、从特殊到一般等思想方法,有利于学生触类旁通、举一反三.3.【问题】,1;【操作】当时,,当时,;【探究】或;【应用】点的坐标为:或【分析】问题:即可求解;操作:抛物线G1沿BC 方向平移BC 长度的距离得到抛物线G2,相当于抛物线向左平移3个单位,向上平解析:【问题】12-,1;【操作】当0x <时,213222y x x =--+,当0x ≥时,21322y x x =--+;【探究】42x -<<-或01x <<;【应用】点P 的坐标为:32,222⎛-+ ⎝或32,222⎛-- ⎝ 【分析】问题:23(1)(3)2y ax bx a x x =++=+-即可求解; 操作:抛物线G 1沿BC 方向平移BC 长度的距离得到抛物线G 2,相当于抛物线向左平移3个单位,向上平移32个单位,即可求解; 探究:将点C 的坐标代入两个函数表达式,求出G 1、G 2的顶点坐标,即可求解; 应用:证明∠EPN =∠MDP ,利用tan ∠EPN =tan ∠MDP ,即可求解.【详解】 解:问题:()()23132y ax bx a x x =++=+-,解得:12a =-,1b =,故答案为:12-,1; 操作:抛物线1G 沿BC 方向平移BC 长度的距离得到抛物线2G ,相当于抛物线向左平移3个单位,向上平移32个单位, 1G :()2223131122222y ax bx x x x =++=-++=--+, 2G :()22131313222222y x x x =--+++=--+, 当0x <时,213222y x x =--+, 当0x ≥时,21322y x x =--+; 探究:C 点的坐标为30,2⎛⎫ ⎪⎝⎭. 当32y =时,2133222x x -++=, 解得:10x =,22x =,∴32,2E ⎛⎫ ⎪⎝⎭, 当32y =时,21332222x x --+=, 解得:10x =,24x =-,∴34,2D ⎛⎫- ⎪⎝⎭, ∵()2213112222y x x x =-++=--+,()221317222222y x x x =--+=-++, ∴抛物线1G 的顶点为()1,2,抛物线2G 的顶点为72,2⎛⎫- ⎪⎝⎭, ∴42x -<<-或01x <<时,函数y 随x 的增大而增大;应用:如图,过点P 作x 轴的平行线交过点D 与x 轴的垂线于点M ,交过E 点与x 轴的垂直的直线于点N ,设点()2,P m -,则32EN m =-,4PN =,32DM m =-,2PM =,∵90EPN MPD ∠+∠=︒,90MDP DPM ∠+∠=︒,∴EPN MDP ∠=∠,∴tan tan EPN MDP ∠=∠,即EN MP PN DM =,即322342m m -=-,解得:32m =± 故点P的坐标为:32,2⎛-+ ⎝或32,2⎛-- ⎝. 【点睛】本题考查的是二次函数综合运用,涉及解直角三角形、图形的平移等,具有一定的综合性,关键在于根据题意作出图形进行解答.4.(1)BD =CE ,BD ⊥CE ,理由见详解;(2)AB=kAC , 180°-α-β;(3)N(0,3),OP 的最小值为3【分析】(1)先证明△ABD ≌△ACE ,从而得BD =CE ,∠ABD =∠ACE解析:(1)BD =CE ,BD ⊥CE ,理由见详解;(2)AB =kAC , 180°-α-β;(3)N (0,3),OP 的最小值为3【分析】(1)先证明△ABD ≌△ACE ,从而得BD =CE ,∠ABD =∠ACE ,结合∠AGB =∠FGC ,即可得到结论;(2)先证明ABC ∽ADE ,从而得AB AD AC AE =,结合∠BAD =∠CAE ,可得BAD∽CAE ,进而即可得到结论;(3)把OPM 绕点M 顺时针旋转90°得到O P M '' (P '与N 重合),则OM O M '⊥,OM O M '=,O '(3,3),OP O P ''=,进而即可求解.【详解】解:(1)BD =CE ,BD ⊥CE ,∵△ABC 和△ADE 都是等腰直角三角形,∴AB =AC ,AD =AE ,∠BAC =∠DAE =90°,∵∠BAD =∠BAC −∠DAC ,∠CAE =∠DAE −∠DAC∴∠BAD =∠CAE ,在△ABD 和△ACE 中,∵AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩===, ∴△ABD ≌△ACE ,∴BD =CE ,∠ABD =∠ACE ,∵∠AGB =∠FGC ,∴∠CFG =∠BAG =90°,即BD ⊥CE ,故答案是:BD =CE ,BD ⊥CE ;(2)∵∠ABC =∠ADE =α,∠ACB =∠AED =β, ∴ABC ∽ADE , ∴AB AD AC AE=, ∵∠ABC =∠ADE =α,∠ACB =∠AED =β,∴∠BAC =∠DAE ,∴∠BAD =∠CAE ,∴BAD ∽CAE ,∴∠ABD =∠ACE ,BD AB k CE AC == 又∵∠AGB =∠FGC ,∴∠BFC =∠BAC =180°-∠ABC -∠ACB =180°-α-β,∴AB =kAC ,直线BD 和CE 相交所成的较小角的度数为:180°-α-β;(3)由题意得:MN =MP ,∠NMP =90°,把OPM 绕点M 顺时针旋转90°得到O P M '' (P '与N 重合),则OM O M '⊥,OM O M '=,∵点M 的坐标为(3,0),∴O '(3,3)∵OPM ≌O P M '',∴OP O P ''=,即线段OP 长度最小时,O P ''的长度最小,∴当O P ''⊥y 轴时,O P ''的长度最小,此时P '(0,3),∴N (0,3),OP 的最小值为3 .【点睛】本题主要考查全等三角形的判定和性质,相似三角形的判定和性质,旋转的性质,通过旋转变换,构造相似三角形或全等三角形,是解题的关键.5.教材呈现:见解析;探究:16;拓展:4【分析】教材呈现:先根据三角形全等的性质可得,再根据线段的和差可得,然后根据平行四边形的判定即可得证;探究:先由旋转的性质可得,再根据等底同高可得,从而可解析:教材呈现:见解析;探究:16;拓展:42 【分析】 教材呈现:先根据三角形全等的性质可得,OE OF OA OC ==,再根据线段的和差可得OG OH =,然后根据平行四边形的判定即可得证;探究:先由旋转的性质可得4DGF S=,再根据等底同高可得2ADE DOE EOF S S S ===,从而可得4AOE S =,然后根据三角形中位线定理即可得;拓展:先根据正方形的性质和面积可得4,90AB BC B ==∠=︒,从而可得42,4,2AC GH AE ===,再根据等腰直角三角形和勾股定理可得2OE =,然后利用三角形的面积公式可得22EGH S=,最后利用平行四边形的性质即可得.【详解】 解:教材呈现:补充完整证明过程如下:∴OE =OF ,OA =OC ,又∵AG =CH ,∴OA -AG =OC -CH ,即OG =OH ,∴四边形EHFG 是平行四边形;探究:如图,连接OE ,BO ,由旋转的性质得:118422DGF DEF DEFG S S S ===⨯=四边形, 点O 是AC 的中点,点D 是AO 的中点,点F 是CO 的中点,AD OD OF CF ∴===,由等底同高得:114222ADE DOE EOF DEF SS S S ====⨯=, 224AOE ADE DOE S S S ∴=+=+=,又点E 是AB 的中点,点O 是AC 的中点,∴S △BEO =S △AEO =4,∴S △ABO = S △BEO +S △AEO =8,22816ABC AOB S S ∴==⨯=,故答案为:16;拓展:如图,过点E 作EO GH ⊥于点O ,四边形ABCD 是面积为16的正方形,4,90AB BC B ∴==∠=︒,在Rt △ABC 中,由勾股定理得22224424A C B B A C ++=∵AC 为正方形的对角线,∴∠EAO =45°,点E 是AB 的中点, 122AE AB ∴==, ∵EO GH ⊥,∴45AEO EAO ∠=∠=︒,∴AO =EO ,在Rt △AEO 中由勾股定理的AO 2+EO 2=AE 2,即2OE 2=4解得2OE =,GH AB =,4GH ∴=,11422222EGH S GH OE ∴=⋅=⨯⨯=, 由教材呈现可知,四边形EHFG 是平行四边形,则四边形EHFG 的面积为222242EGH S=⨯=,故答案为:42.【点睛】本题考查了旋转的性质、三角形中线性质、平行四边形的判定与性质、正方形的性质,等腰直角三角形性质,勾股定理等知识点,较难的是拓展,通过作辅助线,构造等腰直角三角形是解题关键.6.(1);;(2)矩形,见解析;(3)见解析,.【分析】(1)如图,连接OA 、OA′、OD 、OD′,根据旋转的性质可得OA=OA′、OD=OD′,∠AOA′=∠DOD′=,根据勾股定理可得OA=O解析:(1)AA DD ''=;5AA BB ''=;(2)矩形,见解析;(3)见解析,13OP OQ 【分析】(1)如图,连接OA 、OA ′、OD 、OD ′,根据旋转的性质可得OA =OA ′、OD =OD ′,∠AOA ′=∠DOD ′=α,根据勾股定理可得OA =OD ,利用SAS 可证明△AOA ′≌△DO D′,根据全等三角形的性质可得AA ′=DD ′,根据旋转的性质可得∠BOB ′=α,根据5OB OB OA OA'='△OAA ′∽△OBB ′,根据相似三角形的性质即可得答案;(2)根据旋转的性质可得BC B C ''=,OB OB '=,OC OC '=,根据点O 是BC 中点即可得出OB OC OB OC ''===,根据对角线相等且互相平分的四边形是矩形即可证明四边形''BB CC 是矩形;(3)根据题意,补全图形,连接OA 、OA ′,作AM ⊥BP 于M ,A ′N ⊥BP 于N ,根据勾股定理可得132OA OA OB ''==,根据平角的定义及直角三角形两锐角互余的性质可得''ABM A B N ∠=∠,利用AAS 可证明△ABM ≌△A ′B ′N ,可得AM =A ′N ,利用AAS 可证明△APM ≌△A ′PN ,可得AP A P '=,根据等腰三角形“三线合一”的性质可得∠A ′OP =12∠AOA ′=12α,∠QOB ′=1122BOB α'∠=,根据角的和差关系可得∠POQ =∠A ′OB ′,即可证明△OQP ∽△OB ′A ′,根据相似三角形的性质即可得答案.【详解】(1)如图,连接OA 、OA ′、OD 、OD ′,∵将正方形ABCD 绕点O 顺时针旋转得到正方形A B C D '''',旋转角为α,∴OA =OA ′、OD =OD ′,∠AOA ′=∠DOD ′=α,∴△AOA ′≌△DO D′,∴AA ′=DD ′,∵点O 是BC 中点,∴OB =1122BC AB =, ∴OA =225OB AB OB +=,∵将正方形ABCD 绕点O 顺时针旋转得到正方形A B C D '''',旋转角为α,∴∠BOB ′=∠AOA ′=α,∵5OB OB OA OA'==', ∴△OAA ′∽△OBB ′,∴''AA OA BB OB==5, ∴5AA BB ''=,故答案为:AA DD ''=;5AA BB ''=(2)四边形''BB CC 是矩形;理由如下:∵正方形ABCD 绕点O 顺时针旋转得到正方形A B C D '''',∴BC B C ''=,OB OB '=,OC OC '=,∵点O 是BC 中点,∴OB OC OB OC ''===四边形''BB CC 是平行四边形,∵BC B C ''=,∴四边形''BB CC 是矩形.(3)如图,补全图形如下:连接OA 、OA ′,作AM ⊥BP 于M ,A ′N ⊥BP 于N , ∵2BO CO =,∴AB =BC =32OB , ∴OA ′=OA 2213AB OB +'13, ∵∠OB ′A ′=90°, ∴'''90A B N OB B ∠+∠=︒,∵'OB OB =,∴''OB B OBB ∠=∠,∵'90ABM OBB ∠+∠=︒,∴ABM A B N ''∠=∠,∵''AB A B =,''AMB A NB ∠=∠,∴△ABM ≌△A ′B ′N ,∴AM =A ′N (AAS ),∵''AMB A NB ∠=∠,'APM A PN ∠=∠,∴△APM ≌△A ′PN ,∴AP=A′P ,∵OA =OA ′,∴∠A ′OP =12∠AOA ′=12α, ∵OB =OB ′,OQ ⊥BB ′,∴∠QOB ′='1122BOB α∠=, ∴∠QOB ′+∠B ′OP =∠A ′OP +∠B ′OP ,即∠POQ =∠A ′OB ′,∵∠OQP =∠OB ′A ′=90°,∴△OQP ∽△OB ′A ′, ∴''132OP OA OQ OB ==.【点睛】本题考查旋转的性质、矩形的判定、全等三角形的判定与性质及相似三角形的判定与性质,熟练掌握全等三角形及相似三角形的判定定理并正确作出辅助线构造全等三角形及相似三角形是解题关键.7.【概念与理解】,;【猜想与证明】(1),;(2)成立,证明见解析;【探究与应用】①;②△COD 与△AOB 面积之差为或;【联想与拓展】n3=9m3.【分析】【概念与理解】:根据题意信息即可得出答案解析:【概念与理解】214y x =,2y x =;【猜想与证明】(1)12,12;(2)成立,证明见解析;【探究与应用】①12;②△COD 与△AOB 面积之差为116或12;【联想与拓展】n 3=9m 3.【分析】【概念与理解】:根据题意信息即可得出答案; 【猜想与证明】:(1)当x =1时,求出A ,B ,C ,D 的坐标进而得出AB ,CD 即可得出答案;当x =2时,求出A ,B ,C ,D 的坐标进而得出AB ,CD 即可得出答案;(2)任意x (x >0),求出A ,B ,C ,D 的坐标进而得出AB ,CD 即可得出答案;【探究与应用】:①根据已知条件表示出△AOB 与△COD 面积即可得出答案; ②设M (x ,0)(x >0),根据已知条件可得出2COD AOB x x S S -=△AOB 是直角三角形时解得14x =,当△COD 是直角三角形时,解得1x =,把x 代入即可; 【联想与拓展】:根据题意求出AEDF 的坐标然后表示出面积再利用△PAE 与△PDF 面积的比值1:3,即可得出关系式;【详解】【概念与理解】∴由题意可得C 1:214y x = ∵y 2=x 2∴由题意可得C 2:2y x =故答案为:C 1:214y x =,C 2:2y x =; 【猜想与证明】(1)当x =1时,∵点A 、B 在抛物线C 1上∴令x =1,则112y =± ∴A 1(1,)2,B 1(1,)2- ∴AB =1∵点C 、D 在抛物线C 2上∴令x =1,则21y ==±∴C (1,1),D (1,1)-∴CD =2 ∴AB CD =12当x =2时,∵点A 、B 在抛物线C 1上∴令x =2,则1y ==∴A (2,)2,B (2,2 ∴AB∵点C 、D 在抛物线C 2上∴令x =2,则2y =∴C ,D (2,∴CD =∴AB CD 12= (2)对任意x (x >0)上述结论仍然成立理由如下:对任意x (x >0),1y =∴A (x ,B (,x对任意x (x >0),2y x =±∴C (,)x x ,D (,)x x - ∴CD =2x∴AB CD =122x x = 【探究与应用】①连接OA ,OB ,OC ,OD12AOB SAB OM = 12COD S CD OM = ∴12AOB COD S AB S CD == 故答案为:12②设M (x ,0)(x >0),∵M (x ,0)∴1y = ∴AB∵M (x ,0), ∴2y =∴CD =∵122AOB x SAB OM == 1222COD x S CD OM ==∴2COD AOB x S S -=当△AOB 是直角三角形时,由题意可知OA =OB∴△△AOB 为等腰直角三角形∴OM =AM∴x =解得:14x =∴1216COD AOB x S S -== 当△COD 是直角三角形时,由题意可知OD =OC∴△△COD 为等腰直角三角形∴OM=CM∴x =解得:1x =∴122COD AOB x S S -== 综上所述:△COD 与△AOB 面积之差为116或12 【联想与拓展】∵M (k ,0)且点A 、B 在抛物线C 3上∴令x =k ,则1y ==∴A (k∵AE ∥x 轴,且交C 4于点E∴E (km n()km AE k n -∴=。
大连近三年中考几何探究试题押题卷
本人从2007年开始研究大连市中考题中的几何探究题,觉得很有意思。
现提供一份本人2008年、2009年、2010年的中考之前改编的几何探究题,虽然达不到原模原样,但也差不多了,供大家欣赏。
当然本人对大连2011年中考几何探究题正在改编当中。
2008年中考几何探究押题如图1,点A 、B 分别是两条平行线m 、n 上任意两点,在直线n 上找一点C ,使BC = kAB (k 为常数),连结AC ,在直线AC 上任取一点E ,作∠BEF =∠ABC ,EF 交直线m 于点F .(1)请说明∠AFE=∠ABE 的理由;(2)当1=k 时,探究线段EB EF 的值,请说明理由; (3)当1≠k 时,探究线段EB EF 的值,请说明理由.2008年中考几何探究真题25.点A 、B 分别是两条平行线m 、n 上任意两点,在直线n 上找一点C ,使BC = kAB ,连结AC ,在直线AC 上任取一点E ,作∠BEF =∠A BC ,EF 交直线m 于点F .⑴如图15,当k = 1时,探究线段EF 与EB 的关系,并中以说明;说明:①如果你经过反复探索没有解决问题,请写出探索过程(要求至少写三步);②在完成①之后,可以自己添加条件(添加的条件限定为∠ABC 为特殊角),在图16中补全图形,完成证明(选择添加条件比原题少得3分).⑵如图17,若∠ABC = 90°,k ≠1,探究线段EF 与EB 的关系,并说明理由.2009年中考几何探究押题(1)等边△ABC 与等边△MDE,点M,N,F 分别是AB,AC,BC 的中点,点D 在直线BC 上,试探究ENDF 的值。
(2)等腰△ABC 与等腰△MDE,∠DME=∠ACB,点M,N,F 分别是AB,AC,BC 的中点,点D 在直线BC 上,试探究EN DF 的值。
(3)等腰直角△ABC 与等腰直角△MDE,∠DME=∠ACB,点M,N,F 分别是AB,AC,BC 的中点,点D 在直线BC 上,试探究ENDF 的值。
辽宁省大连市第七十六中学2023学年中考数学押题卷(含答案解析)
辽宁省大连市第七十六中学2023学年中考数学押题卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下面运算结果为6a 的是( )A .33a a +B .82a a ÷C .23•a aD .()32a - 2.下列各式中正确的是( )A . =±3B . =﹣3C . =3D .3.已知关于x 的不等式组0217x a x -<⎧⎨-≥⎩ 至少有两个整数解,且存在以3,a ,7为边的三角形,则a 的整数解有( ) A .4个 B .5个C .6个D .7个 4.如图是一个放置在水平桌面的锥形瓶,它的俯视图是( )A .B .C .D .5.若关于x 的一元二次方程x 2﹣2x+m=0有两个不相等的实数根,则m 的取值范围是( )A .m <﹣1B .m <1C .m >﹣1D .m >16.如图,在△ABC 中,∠C=90°,∠B=10°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是①AD 是∠BAC 的平分线;②∠ADC=60°;③点D 在AB 的中垂线上;④S △DAC :S △ABC =1:1.A .1B .2C .1D .47.若关于x 、y 的方程组4xy k x y =⎧⎨+=⎩有实数解,则实数k 的取值范围是( ) A .k >4 B .k <4 C .k≤4 D .k≥48.已知a m =2,a n =3,则a 3m+2n 的值是( )A .24B .36C .72D .69.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x ,根据题意列方程得( )A .168(1﹣x )2=108B .168(1﹣x 2)=108C .168(1﹣2x )=108D .168(1+x )2=10810.如图,已知AB 和CD 是⊙O 的两条等弦.OM ⊥AB ,ON ⊥CD ,垂足分别为点M 、N ,BA 、DC 的延长线交于点P ,联结OP .下列四个说法中:①AB CD =;②OM =ON ;③PA =PC ;④∠BPO =∠DPO ,正确的个数是( )A .1B .2C .3D .411.在娱乐节目“墙来了!”中,参赛选手背靠水池,迎面冲来一堵泡沫墙,墙上有人物造型的空洞.选手需要按墙上的造型摆出相同的姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一块几何体恰好能以右图中两个不同形状的“姿势”分别穿过这两个空洞,则该几何体为( )A .B .C .D .12.下列计算正确的是( )A .x 2+x 3=x 5B .x 2•x 3=x 5C .(﹣x 2)3=x 8D .x 6÷x 2=x 3 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.方程15x 12x 1=-+的解为 . 14.若1+23x x --x 的范围是_____. 15.电子跳蚤游戏盘是如图所示的△ABC ,AB =AC =BC =1.如果跳蚤开始时在BC 边的P 0处,BP 0=2.跳蚤第一步从P0跳到AC边的P1(第1次落点)处,且CP1= CP0;第二步从P1跳到AB边的P2(第2次落点)处,且AP2= AP1;第三步从P2跳到BC边的P3(第3次落点)处,且BP3= BP2;…;跳蚤按照上述规则一直跳下去,第n次落点为P n (n为正整数),则点P2016与点P2017之间的距离为_________.16.如图,正比例函数y=kx(k>0)与反比例函数y=的图象相交于A、C两点,过点A 作x轴的垂线交x轴于点B,连结BC,则△ABC的面积等于_____.17.两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于______ 度.18.如图,直线a∥b,∠l=60°,∠2=40°,则∠3=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件.写出销售量y件与销售单价x元之间的函数关系式;写出销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式;若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?20.(6分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于5,那么小王去,否则就是小李去.用树状图或列表法求出小王去的概率;小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.21.(6分)如图,AB是⊙O直径,BC⊥AB于点B,点C是射线BC上任意一点,过点C作CD切⊙O于点D,连接AD.求证:BC=CD;若∠C=60°,BC=3,求AD的长.22.(8分)如图,将等腰直角三角形纸片ABC对折,折痕为CD.展平后,再将点B折叠在边AC上(不与A、C重合),折痕为EF,点B在AC上的对应点为M,设CD与EM交于点P,连接PF.已知BC=1.(1)若M为AC的中点,求CF的长;(2)随着点M在边AC上取不同的位置,①△PFM的形状是否发生变化?请说明理由;②求△PFM的周长的取值范围.23.(8分)近年来,新能源汽车以其舒适环保、节能经济的优势受到热捧,随之而来的就是新能汽车销量的急速增加,当前市场上新能漂汽车从动力上分纯电动和混合动力两种,从用途上又分为乘用式和商用式两种,据中国汽车工业协会提供的信息,2017年全年新能源乘用车的累计销量为57.9万辆,其中,纯电动乘用车销量为46.8万辆,混合动力乘用车销量为11.1万辆;2017年全年新能源商用车的累计销量为19.8万辆,其中,纯电动商用车销量为18.4万辆,混合动力商用车销量为1.4万辆,请根据以上材料解答下列问题:(1)请用统计表表示我国2017年新能源汽车各类车型销量情况;(2)小颖根据上述信息,计算出2017年我国新能源各类车型总销量为77.7万辆,并绘制了“2017年我国新能源汽车四类车型销量比例”的扇形统计图,如图1,请你将该图补充完整(其中的百分数精确到0.1%);(3)2017年我国新能源乘用车销量最高的十个城市排名情况如图2,请根据图2中信息写出这些城市新能源乘用车销售情况的特点(写出一条即可);(4)数据显示,2018年1~3月的新能源乘用车总销量排行榜上位居前四的厂家是比亚迪、北汽、上汽、江准,参加社会实践的大学生小王想对其中两个厂家进行深入调研,他将四个完全相同的乒乓球进行编号(用“1,2,3,4”依次对应上述四个厂家),并将乒乓球放入不透明的袋子中搅匀,从中一次拿出两个乒乓球,根据乒乓球上的编号决定要调研的厂家.求小王恰好调研“比亚迪”和“江淮”这两个厂家的概率.24.(10分)鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=1.在销售过程中,每天还要支付其他费用450元.求出y与x的函数关系式,并写出自变量x的取值范围.求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.当销售单价为多少元时,该公司日获利最大?最大获利是多少元?25.(10分)如图1,在Rt△ABC中,∠C=90°,AC=BC=2,点D、E分别在边AC、AB上,AD=DE=12AB,连接DE.将△ADE绕点A逆时针方向旋转,记旋转角为θ.(1)问题发现①当θ=0°时,BECD= ;②当θ=180°时,BECD= .(2)拓展探究试判断:当0°≤θ<360°时,BECD的大小有无变化?请仅就图2的情形给出证明;(3)问题解决①在旋转过程中,BE的最大值为;②当△ADE旋转至B、D、E三点共线时,线段CD的长为.26.(12分)解不等式组:()()3x1x382x11x132⎧-+--<⎪⎨+--≤⎪⎩并求它的整数解的和.27.(12分)如图1,在等腰△ABC 中,AB=AC,点D,E 分别为BC,AB 的中点,连接AD.在线段AD 上任取一点P,连接PB,PE.若BC=4,AD=6,设PD=x(当点P 与点 D 重合时,x 的值为0),PB+PE=y.小明根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)通过取点、画图、计算,得到了x 与y 的几组值,如下表:x 0 1 2 3 4 5 6y 5.2 4.2 4.6 5.9 7.6 9.5说明:补全表格时,相关数值保留一位小数.(参考数据:2≈1.414,3≈1.732,5≈2.236)(2)建立平面直角坐标系(图2),描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)求函数y 的最小值(保留一位小数),此时点P 在图 1 中的什么位置.2023学年模拟测试卷参考答案(含详细解析)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、B【答案解析】根据合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方逐一计算即可判断.【题目详解】A .3332a a a += ,此选项不符合题意;B .826a a a ÷=,此选项符合题意;C .235a a a ⋅=,此选项不符合题意;D .236()a a -=-,此选项不符合题意;故选:B .【答案点睛】本题考查了整式的运算,解题的关键是掌握合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方. 2、D【答案解析】原式利用平方根、立方根定义计算即可求出值.【题目详解】解:A 、原式=3,不符合题意;B 、原式=|-3|=3,不符合题意;C 、原式不能化简,不符合题意;D 、原式=2-=,符合题意,故选:D .【答案点睛】此题考查了立方根,以及算术平方根,熟练掌握各自的性质是解本题的关键.3、A【答案解析】依据不等式组至少有两个整数解,即可得到a >5,再根据存在以3,a ,7为边的三角形,可得4<a <10,进而得出a 的取值范围是5<a <10,即可得到a 的整数解有4个.【题目详解】解:解不等式①,可得x<a,解不等式②,可得x≥4,∵不等式组至少有两个整数解,∴a>5,又∵存在以3,a,7为边的三角形,∴4<a<10,∴a的取值范围是5<a<10,∴a的整数解有4个,故选:A.【答案点睛】此题考查的是一元一次不等式组的解法和三角形的三边关系的运用,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.4、B【答案解析】根据俯视图是从上面看到的图形解答即可.【题目详解】锥形瓶从上面往下看看到的是两个同心圆.故选B.【答案点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的平面图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.5、B【答案解析】根据方程有两个不相等的实数根结合根的判别式即可得出△=4-4m>0,解之即可得出结论.【题目详解】∵关于x的一元二次方程x2-2x+m=0有两个不相等的实数根,∴△=(-2)2-4m=4-4m>0,解得:m<1.故选B.【答案点睛】本题考查了根的判别式,熟练掌握“当△>0时,方程有两个不相等的两个实数根”是解题的关键.6、D【答案解析】①根据作图的过程可知,AD 是∠BAC 的平分线.故①正确.②如图,∵在△ABC 中,∠C=90°,∠B=10°,∴∠CAB=60°. 又∵AD 是∠BAC 的平分线,∴∠1=∠2=∠CAB=10°,∴∠1=90°﹣∠2=60°,即∠ADC=60°.故②正确.③∵∠1=∠B=10°,∴AD=BD.∴点D 在AB 的中垂线上.故③正确.④∵如图,在直角△ACD 中,∠2=10°,∴CD=12AD. ∴BC=CD+BD=12AD+AD=32AD ,S △DAC =12AC•CD=14AC•AD. ∴S △ABC =12AC•BC=12AC•A 32D=34AC•AD. ∴S △DAC :S △ABC 13AC AD ?AC AD 1344::⎛⎫⎛⎫=⋅⋅=⎪ ⎪⎝⎭⎝⎭.故④正确. 综上所述,正确的结论是:①②③④,,共有4个.故选D.7、C【答案解析】利用根与系数的关系可以构造一个两根分别是x ,y 的一元二次方程,方程有实数根,用根的判别式≥0来确定k 的取值范围.【题目详解】解:∵xy =k ,x +y =4,∴根据根与系数的关系可以构造一个关于m 的新方程,设x ,y 为方程240m m k -+=的实数根.241640b ac k =-=-≥,解不等式1640k -≥得4k ≤.故选:C.【答案点睛】本题考查了一元二次方程的根的判别式的应用和根与系数的关系.解题的关键是了解方程组有实数根的意义.8、C【答案解析】测试卷解析:∵a m=2,a n=3,∴a3m+2n=a3m•a2n=(a m)3•(a n)2=23×32=8×9=1.故选C.9、A【答案解析】设每次降价的百分率为x,根据降价后的价格=降价前的价格(1-降价的百分率),则第一次降价后的价格是168(1-x),第二次后的价格是168(1-x)2,据此即可列方程求解.【题目详解】设每次降价的百分率为x,根据题意得:168(1-x)2=1.故选A.【答案点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.10、D【答案解析】如图连接OB、OD;∵AB=CD ,∴AB =CD ,故①正确∵OM ⊥AB ,ON ⊥CD ,∴AM=MB ,CN=ND ,∴BM=DN ,∵OB=OD ,∴Rt △OMB ≌Rt △OND ,∴OM=ON ,故②正确,∵OP=OP ,∴Rt △OPM ≌Rt △OPN ,∴PM=PN ,∠OPB=∠OPD ,故④正确,∵AM=CN ,∴PA=PC ,故③正确,故选D .11、C【答案解析】测试卷分析:通过图示可知,要想通过圆,则可以是圆柱、圆锥、球,而能通过三角形的只能是圆锥,综合可知只有圆锥符合条件.故选C12、B【答案解析】分析:直接利用合并同类项法则以及同底数幂的乘除运算法则和积的乘方运算法则分别计算得出答案.详解:A 、不是同类项,无法计算,故此选项错误;B 、235x x x ⋅=, 正确;C 、()326x x -=-,故此选项错误;D 、624x x x ÷=, 故此选项错误;故选:B .点睛:此题主要考查了合并同类项以及同底数幂的乘除运算和积的乘方运算,正确掌握运算法则是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、x 2=.【答案解析】测试卷分析:首先去掉分母,观察可得最简公分母是()()x 12x 2-+,方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解:152x 15x 53x 6x 2x 12x 1=⇒+=-⇒-=-⇒=-+,经检验,x 2=是原方程的根. 14、x ≤1.【答案解析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式即可.【题目详解】依题意得:1﹣x ≥0且x ﹣3≠0,解得:x ≤1.故答案是:x ≤1.【答案点睛】本题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数必须是非负数,分式有意义的条件是分母不等于零.15、3【答案解析】∵△ABC 为等边三角形,边长为1,根据跳动规律可知,∴P 0P 1=3,P 1P 2=2,P 2P 3=3,P 3P 4=2,…观察规律:当落点脚标为奇数时,距离为3,当落点脚标为偶数时,距离为2,∵2017是奇数,∴点P 2016与点P 2017之间的距离是3.故答案为:3.【答案点睛】考查的是等边三角形的性质,根据题意求出P0P1,P1P2,P2P3,P3P4的值,找出规律是解答此题的关键.16、1.【答案解析】根据反比例函数的性质可判断点A与点B关于原点对称,则S△BOC=S△AOC,再利用反比例函数k的几何意义得到S△AOC=3,则易得S△ABC=1.【题目详解】∵双曲线y=与正比例函数y=kx的图象交于A,B两点,∴点A与点B关于原点对称,∴S△BOC=S△AOC,∵S△AOC=×1=3,∴S△ABC=2S△AOC=1.故答案为1.17、108°【答案解析】如图,易得△OCD为等腰三角形,根据正五边形内角度数可求出∠OCD,然后求出顶角∠COD,再用360°减去∠AOC、∠BOD、∠COD即可【题目详解】∵五边形是正五边形,∴每一个内角都是108°,∴∠OCD=∠ODC=180°-108°=72°,∴∠COD=36°,∴∠AOB=360°-108°-108°-36°=108°.故答案为108°【答案点睛】本题考查正多边形的内角计算,分析出△OCD是等腰三角形,然后求出顶角是关键.18、80°【答案解析】根据平行线的性质求出∠4,根据三角形内角和定理计算即可.【题目详解】解:∵a ∥b ,∴∠4=∠l=60°,∴∠3=180°-∠4-∠2=80°,故答案为:80°.【答案点睛】本题考查的是平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)201800y x =-+;(2)2203000108000w x x =-+-;(3)最多获利4480元.【答案解析】(1)销售量y 为200件加增加的件数(80﹣x )×20; (2)利润w 等于单件利润×销售量y 件,即W=(x ﹣60)(﹣20x+1800),整理即可;(3)先利用二次函数的性质得到w=﹣20x 2+3000x ﹣108000的对称轴为x=75,而﹣20x+1800≥240,x ≤78,得76≤x≤78,根据二次函数的性质得到当76≤x≤78时,W 随x 的增大而减小,把x=76代入计算即可得到商场销售该品牌童装获得的最大利润.【题目详解】(1)根据题意得,y=200+(80﹣x )×20=﹣20x+1800, 所以销售量y 件与销售单价x 元之间的函数关系式为y=﹣20x+1800(60≤x≤80);(2)W=(x ﹣60)y=(x ﹣60)(﹣20x+1800)=﹣20x 2+3000x ﹣108000,所以销售该品牌童装获得的利润w 元与销售单价x 元之间的函数关系式为:W=﹣20x 2+3000x ﹣108000;(3)根据题意得,﹣20x+1800≥240,解得x≤78,∴76≤x≤78,w=﹣20x 2+3000x ﹣108000,对称轴为x=﹣30002(20)⨯-=75, ∵a=﹣20<0,∴抛物线开口向下,∴当76≤x≤78时,W 随x 的增大而减小,∴x=76时,W 有最大值,最大值=(76﹣60)(﹣20×76+1800)=4480(元).所以商场销售该品牌童装获得的最大利润是4480元.【答案点睛】二次函数的应用.20、(1)12;(2)规则是公平的;【答案解析】测试卷分析:(1)先利用画树状图展示所有12种等可能的结果数,然后根据概率公式求解即可;(2)分别计算出小王和小李去植树的概率即可知道规则是否公平.测试卷解析:(1)画树状图为:共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种,所以P(小王)=34;(2)不公平,理由如下:∵P(小王)=34,P(小李)=14,34≠14,∴规则不公平.点睛:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.21、(1)证明见解析;3【答案解析】(1)根据切线的判定定理得到BC是⊙O的切线,再利用切线长定理证明即可;(2)根据含30°的直角三角形的性质、正切的定义计算即可.【题目详解】(1)∵AB是⊙O直径,BC⊥AB,∴BC是⊙O的切线,∵CD切⊙O于点D,∴BC=CD;(2)连接BD,∵BC=CD,∠C=60°,∴△BCD是等边三角形,∴BD=BC=3,∠CBD=60°,∴∠ABD=30°,∵AB是⊙O直径,∴∠ADB=90°,∴AD=BD•tan∠ABD=3.【答案点睛】本题考查了切线的性质、直角三角形的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.22、(1)CF=32;(2)①△PFM的形状是等腰直角三角形,不会发生变化,理由见解析;②△PFM的周长满足:2<(2)y<2.【答案解析】(1)由折叠的性质可知,FB=FM,设CF=x,则FB=FM=1﹣x,在Rt△CFM中,根据FM2=CF2+CM2,构建方程即可解决问题;(2)①△PFM的形状是等腰直角三角形,想办法证明△POF∽△MOC,可得∠PFO=∠MCO=15°,延长即可解决问题;②设FM=y,由勾股定理可知:PF=PM=22y,可得△PFM的周长=(2)y,由2<y<1,可得结论.【题目详解】(1)∵M为AC的中点,∴CM=12AC=12BC=2,由折叠的性质可知,FB=FM,设CF=x,则FB=FM=1﹣x,在Rt△CFM中,FM2=CF2+CM2,即(1﹣x)2=x2+22,解得,x=32,即CF=32;(2)①△PFM的形状是等腰直角三角形,不会发生变化,理由如下:由折叠的性质可知,∠PMF=∠B=15°,∵CD是中垂线,∴∠ACD=∠DCF=15°,∵∠MPC=∠OPM,∴△POM∽△PMC,∴POPM=OMMC,∴MCPM=OMPO,∵∠EMC=∠AEM+∠A=∠CMF+∠EMF,∴∠AEM=∠CMF,∵∠DPE+∠AEM=90°,∠CMF+∠MFC=90°,∠DPE=∠MPC,∴∠DPE=∠MFC,∠MPC=∠MFC,∵∠PCM=∠OCF=15°,∴△MPC∽△OFC,∴MP MC OF OC=,∴MC OC PM OF=,∴OM OC PO OF=,∵∠POF=∠MOC,∴△POF∽△MOC,∴∠PFO=∠MCO=15°,∴△PFM是等腰直角三角形;②∵△PFM是等腰直角三角形,设FM=y,由勾股定理可知:PF=PM=2y,∴△PFM的周长=()y,∵2<y<1,∴△PFM的周长满足:<()y<【答案点睛】本题考查三角形综合题、等腰直角三角形的性质和判定、翻折变换、相似三角形的判定和性质、勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数解决问题,属于中考常考题型.23、(1)统计表见解析;(2)补全图形见解析;(3)总销量越高,其个人购买量越大;(4)1 6 .【答案解析】(1)认真读题,找到题目中的相关信息量,列表统计即可;(2)分别求出“混动乘用”和“纯电动商用”的圆心角的度数,然后补扇形图即可;(3)根据图表信息写出一个符合条件的信息即可;(4)利用树状图确定求解概率.【题目详解】(1)统计表如下:2017年新能源汽车各类型车型销量情况(单位:万辆)类型纯电动混合动力总计新能源乘用车46.8 11.1 57.9 新能源商用车18.4 1.4 19.8 (2)混动乘用:×100%≈14.3%,14.3%×360°≈51.5°,纯电动商用:×100%≈23.7%,23.7%×360°≈85.3°,补全图形如下:(3)总销量越高,其个人购买量越大.(4)画树状图如下:∵一共有12种等可能的情况数,其中抽中1、4的情况有2种,∴小王恰好调研“比亚迪”和“江淮”这两个厂家的概率为=.【答案点睛】 此题主要考查了数据的分析,利用统计表和扇形统计图表示数据的关系,以及用列表法或树状图法求概率,难度一般,注意认真阅读题目信息是关键.24、(1)y=-2x+200(30≤x≤60)(2)w=-2(x -65)2 +2000);(3)当销售单价为60元时,该公司日获利最大,为1950元【答案解析】(1)设出一次函数解析式,把相应数值代入即可.(2)根据利润计算公式列式即可;(3)进行配方求值即可.【题目详解】(1)设y=kx+b ,根据题意得806010050k b k b =+⎧⎨=+⎩解得:k 2b 200=-⎧⎨=⎩ ∴y=-2x+200(30≤x≤60)(2)W=(x -30)(-2x+200)-450=-2x 2+260x -6450=-2(x -65)2 +2000)(3)W =-2(x -65)2 +2000∵30≤x≤60∴x=60时,w 有最大值为1950元∴当销售单价为60元时,该公司日获利最大,为1950元考点:二次函数的应用.25、(122,②(2)无变化,证明见解析;(3)①2+23,②+13﹣1.【答案解析】(1)①先判断出DE ∥CB ,进而得出比例式,代值即可得出结论;②先得出DE ∥BC ,即可得出,AE AD AB AC=,再用比例的性质即可得出结论;(2)先∠CAD =∠BAE ,进而判断出△ADC ∽△AEB 即可得出结论;(3)分点D 在BE 的延长线上和点D 在BE 上,先利用勾股定理求出BD ,再借助(2)结论即可得出CD .【题目详解】解:(1)①当θ=0°时,在Rt △ABC 中,AC=BC=2,∴∠A=∠B=45°,AB=22, ∵AD=DE=12AB=2, ∴∠AED=∠A=45°,∴∠ADE=90°,∴DE ∥CB ,∴CD BE AC AB=, ∴222CD BE =, ∴2BE CD =, 故答案为2,②当θ=180°时,如图1,∵DE ∥BC ,∴AE AD AB AC=, ∴AE AB AD AC AB AC++=, 即:BE CD AB AC =, ∴2222BE AB CD AC === 2;(2)当0°≤θ<360°时,BE CD的大小没有变化, 理由:∵∠CAB=∠DAE ,∴∠CAD=∠BAE ,∵AD AE AC AB =, ∴△ADC ∽△AEB , ∴2222BE AB CD AC ==; (3)①当点E 在BA 的延长线时,BE 最大,在Rt △ADE 中,AE=2AD=2,∴BE 最大=AB+AE=22+2;②如图2,当点E 在BD 上时,∵∠ADE=90°,∴∠ADB=90°,在Rt △ADB 中,AB=22,AD=2,根据勾股定理得,BD=22-AB AD =6,∴BE=BD+DE=6+2,由(2)知,2BE CD=, ∴CD=62322BE +==+1, 如图3,当点D 在BE 的延长线上时,在Rt △ADB 中,AD=2,AB=22,根据勾股定理得,BD=22-AB AD =6,∴BE=BD ﹣DE=6﹣2,由(2)知,2BE CD=, ∴CD=62322BE -==﹣1. 故答案为3 +1或3﹣1.【答案点睛】此题是相似形综合题,主要考查了等腰直角三角形的性质和判定,勾股定理,相似三角形的判定和性质,比例的基本性质及分类讨论的数学思想,解(1)的关键是得出DE ∥BC ,解(2)的关键是判断出△ADC ∽△AEB ,解(3)关键是作出图形求出BD ,是一道中等难度的题目.26、0【答案解析】分析:先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可求出不等式组的解集. 详解: ,由①去括号得:﹣3x ﹣3﹣x+3<8,解得:x >﹣2,由②去分母得:4x+2﹣3+3x≤6,解得:x≤1,则不等式组的解集为﹣2<x≤1.点睛:本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.27、(1)4.5(2)根据数据画图见解析;(3)函数 y 的最小值为4.2,线段AD 上靠近D 点三等分点处.【答案解析】(1)取点后测量即可解答;(2)建立坐标系后,描点、连线画出图形即可;(3)根据所画的图象可知函数y 的最小值为4.2,此时点 P 在图 1 中的位置为.线段 AD 上靠近 D 点三等分点处.【题目详解】(1)根据题意,作图得,y=4.5故答案为:4.5(2)根据数据画图得(3)根据图象,函数y 的最小值为 4.2,此时点P 在图 1 中的位置为.线段AD 上靠近 D 点三等分点处. 【答案点睛】本题为动点问题的函数图象问题,正确作出图象,利用数形结合思想是解决本题的关键.。
辽宁省大连市2019-2020学年中考数学第三次押题试卷含解析
辽宁省大连市2019-2020学年中考数学第三次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,左、右并排的两棵树AB 和CD ,小树的高AB=6m ,大树的高CD=9m ,小明估计自己眼睛距地面EF=1.5m ,当他站在F 点时恰好看到大树顶端C 点.已知此时他与小树的距离BF=2m ,则两棵树之间的距离BD 是( )A .1mB .43mC .3mD .103m 2.如图,一次函数1y ax b =+和反比例函数2k y x=的图象相交于A ,B 两点,则使12y y >成立的x 取值范围是( )A .20x -<<或04x <<B .2x <-或04x <<C .2x <-或4x >D .20x -<<或4x >3.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,连接AC ,若∠CAB=22.5°,CD=8cm ,则⊙O 的半径为( )A .8cmB .4cmC .2D .5cm4.下列手机手势解锁图案中,是轴对称图形的是( )A.B.C.D.5.若等式x2+ax+19=(x﹣5)2﹣b成立,则a+b的值为()A.16 B.﹣16 C.4 D.﹣46.天气越来越热,为防止流行病传播,学校决定用420元购买某种牌子的消毒液,经过还价,每瓶便宜0.5元,结果比用原价购买多买了20瓶,求原价每瓶多少元?设原价每瓶x元,则可列出方程为( )A.4200.5x+-420x=20 B.420x-4200.5x+=20C.4200.5x--420x=20 D.420420200.5x x-=-7.如图,△ABC的三个顶点分别为A(1,2)、B(4,2)、C(4,4).若反比例函数y=kx在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4B.2≤k≤8C.2≤k≤16D.8≤k≤168.某商品价格为a元,降价10%后,又降价10%,因销售量猛增,商店决定再提价20%,提价后这种商品的价格为()A.0.96a元B.0.972a元C.1.08a元D.a元9.在Rt△ABC中,∠C=90°,如果AC=4,BC=3,那么∠A的正切值为()A.34B.43C.35D.4510.如图,AB是⊙O的切线,半径OA=2,OB交⊙O于C,∠B=30°,则劣弧»AC的长是()A.12πB.13πC.23πD.43π11.某青年排球队12名队员年龄情况如下:年龄18 19 20 21 22 人数 1 4 3 2 2A.20,19 B.19,19 C.19,20.5 D.19,2012.在下列交通标志中,是中心对称图形的是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若圆锥的底面半径长为10,侧面展开图是一个半圆,则该圆锥的母线长为_____.14.如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC,若DB=4,AB=6,BE=3,则EC的长是_____.15.如图,小红作出了边长为1的第1个正△A1B1C1,算出了正△A1B1C1的面积,然后分别取△A1B1C1三边的中点A2,B2,C2,作出了第2个正△A2B2C2,算出了正△A2B2C2的面积,用同样的方法,作出了第3个正△A3B3C3,算出了正△A3B3C3的面积…,由此可得,第8个正△A8B8C8的面积是_____.16.如图,点E在正方形ABCD的外部,∠DCE=∠DEC,连接AE交CD于点F,∠CDE的平分线交EF于点G,AE=2DG.若BC=8,则AF=_____.17.若关于x的一元二次方程kx2+2(k+1)x+k-1=0有两个实数根,则k的取值范围是18.函数y1x 的自变量x的取值范围为____________.19.(6分)(1)计算:0353tan60502-+-+sin45°(2)解不等式组:3(1)5 2111 32x xx x++-⎧⎪+-⎨-≤⎪⎩f20.(6分)如图1,反比例函数kyx=(x>0)的图象经过点A(23,1),射线AB与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,∠BAC=75°,AD⊥y轴,垂足为D.(1)求k的值;(2)求tan∠DAC的值及直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线l⊥x轴,与AC相交于点N,连接CM,求△CMN面积的最大值.21.(6分)如图,在四边形ABCD中,E是AB的中点,AD//EC,∠AED=∠B.求证:△AED≌△EBC;当AB=6时,求CD的长.22.(8分)某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样A:菜包、B:面包、C:鸡蛋、D:油条.超市约定:随机发放,早餐一人一份,一份两样,一样一个.按约定,“某顾客在该天早餐得到两个鸡蛋”是事件(填“随机”、“必然”或“不可能”);请用列表或画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率.23.(8分)如图,将矩形OABC放在平面直角坐标系中,O为原点,点A在x轴的正半轴上,B(8,6),点D是射线AO上的一点,把△BAD沿直线BD折叠,点A的对应点为A′.(1)若点A′落在矩形的对角线OB上时,OA′的长=;(2)若点A′落在边AB的垂直平分线上时,求点D的坐标;(3)若点A′落在边AO的垂直平分线上时,求点D的坐标(直接写出结果即可).24.(10分)小丽和哥哥小明分别从家和图书馆同时出发,沿同一条路相向而行,小丽开始跑步,遇到哥哥后改为步行,到达图书馆恰好用35分钟,小明匀速骑自行车直接回家,骑行10分钟后遇到了妹妺,再继续骑行5分钟,到家两人距离家的路程y(m)与各自离开出发的时间x(min)之间的函数图象如图所示:(1)求两人相遇时小明离家的距离;(2)求小丽离距离图书馆500m时所用的时间.25.(10分)阅读下列材料:数学课上老师布置一道作图题:已知:直线l和l外一点P.求作:过点P的直线m,使得m∥l.小东的作法如下:作法:如图2,(1)在直线l上任取点A,连接PA;(2)以点A为圓心,适当长为半径作弧,分别交线段PA于点B,直线l于点C;(3)以点P为圆心,AB长为半径作弧DQ,交线段PA于点D;(4)以点D为圆心,BC长为半径作弧,交弧DQ于点E,作直线PE.所以直线PE就是所求作的直线m.老师说:“小东的作法是正确的.”请回答:小东的作图依据是________.(1)求证:DE是⊙O的切线;(2)若AE:EB=1:2,BC=6,求⊙O的半径.27.(12分)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元.求甲、乙两种型号设备的价格;该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有几种购买方案;在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月,若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】由∠AGE=∠CHE=90°,∠AEG=∠CEH可证明△AEG∽△CEH,根据相似三角形对应边成比例求出GH 的长即BD的长即可.【详解】由题意得:FB=EG=2m,AG=AB﹣BG=6﹣1.5=4.5m,CH=CD﹣DH=9﹣1.5=7.5m,∵AG⊥EH,CH⊥EH,∴∠AGE=∠CHE=90°,∵∠AEG=∠CEH,∴△AEG∽△CEH,∴EGAG=EHCH=EG GHCH+,即24.5=27.5GH+,解得:GH=43,则BD=GH=43m , 故选:B .【点睛】 本题考查了相似三角形的应用,解题的关键是从实际问题中抽象出相似三角形.2.B【解析】【分析】根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可.【详解】观察函数图象可发现:2x <-或04x <<时,一次函数图象在反比例函数图象上方,∴使12y y >成立的x 取值范围是2x <-或04x <<,故选B .【点睛】本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键.3.C【解析】【分析】连接OC ,如图所示,由直径AB 垂直于CD ,利用垂径定理得到E 为CD 的中点,即CE=DE ,由OA=OC ,利用等边对等角得到一对角相等,确定出三角形COE 为等腰直角三角形,求出OC 的长,即为圆的半径.【详解】解:连接OC ,如图所示:∵AB 是⊙O 的直径,弦CD ⊥AB , ∴14cm 2CE DE CD ===, ∵OA=OC ,∴∠A=∠OCA=22.5°,∵∠COE 为△AOC 的外角,∴∠COE=45°,∴△COE 为等腰直角三角形,∴OC ==, 故选:C .【点睛】此题考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键.4.D【解析】【分析】根据轴对称图形与中心对称图形的定义进行判断.【详解】A.既不是轴对称图形,也不是中心对称图形,所以A错误;B.既不是轴对称图形,也不是中心对称图形,所以B错误;C.是中心对称图形,不是轴对称图形,所以C错误;D.是轴对称图形,不是中心对称图形,所以D正确.【点睛】本题考查了轴对称图形和中心对称图形的定义,熟练掌握定义是本题解题的关键.5.D【解析】分析:已知等式利用完全平方公式整理后,利用多项式相等的条件求出a与b的值,即可求出a+b的值.详解:已知等式整理得:x2+ax+19=(x-5)2-b=x2-10x+25-b,可得a=-10,b=6,则a+b=-10+6=-4,故选D.点睛:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.6.C【解析】【分析】关键描述语是:“结果比用原价多买了1瓶”;等量关系为:原价买的瓶数-实际价格买的瓶数=1.【详解】原价买可买420x瓶,经过还价,可买4200.5x-瓶.方程可表示为:4200.5x-﹣420x=1.故选C.考查了由实际问题抽象出分式方程.列方程解应用题的关键步骤在于找相等关系.本题要注意讨价前后商品的单价的变化.7.C【解析】试题解析:由于△ABC是直角三角形,所以当反比例函数kyx=经过点A时k最小,进过点C时k最大,据此可得出结论.∵△ABC是直角三角形,∴当反比例函数kyx=经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=1,∴2≤k≤1.故选C.8.B【解析】【分析】提价后这种商品的价格=原价×(1-降低的百分比)(1-百分比)×(1+增长的百分比),把相关数值代入求值即可.【详解】第一次降价后的价格为a×(1-10%)=0.9a元,第二次降价后的价格为0.9a×(1-10%)=0.81a元,∴提价20%的价格为0.81a×(1+20%)=0.972a元,故选B.【点睛】本题考查函数模型的选择与应用,考查列代数式,得到第二次降价后的价格是解决本题的突破点;得到提价后这种商品的价格的等量关系是解决本题的关键.9.A【解析】【分析】根据锐角三角函数的定义求出即可.【详解】解:在Rt△ABC中,∠C=90°,AC=4,BC=3,∴ tanA=34 BCAC=.故选A.【点睛】本题考查了锐角三角函数的定义,熟记锐角三角函数的定义内容是解题的关键.【解析】【分析】由切线的性质定理得出∠OAB=90°,进而求出∠AOB=60°,再利用弧长公式求出即可.【详解】∵AB是⊙O的切线,∴∠OAB=90°,∵半径OA=2,OB交⊙O于C,∠B=30°,∴∠AOB=60°,∴劣弧ACˆ的长是:602180π⨯=23π,故选:C.【点睛】本题考查了切线的性质,圆周角定理,弧长的计算,解题的关键是先求出角度再用弧长公式进行计算. 11.D【解析】【分析】先计算出这个队共有1+4+3+2+2=12人,然后根据众数与中位数的定义求解.【详解】这个队共有1+4+3+2+2=12人,这个队队员年龄的众数为19,中位数为20202+=1.故选D.【点睛】本题考查了众数:在一组数据中出现次数最多的数叫这组数据的众数.也考查了中位数的定义.12.C【解析】【分析】【详解】解:A图形不是中心对称图形;B不是中心对称图形;C是中心对称图形,也是轴对称图形;D是轴对称图形;不是中心对称图形故选C二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2侧面展开后得到一个半圆,半圆的弧长就是底面圆的周长.依此列出方程即可.【详解】设母线长为x,根据题意得2πx÷2=2π×5,解得x=1.故答案为2.【点睛】本题考查了圆锥的计算,解题的关键是明白侧面展开后得到一个半圆就是底面圆的周长,难度不大.14.3 2【解析】【分析】由△ABC中,点D、E分别在边AB、BC上,DE∥AC,根据平行线分线段成比例定理,可得DB:AB=BE:BC,又由DB=4,AB=6,BE=3,即可求得答案.【详解】解:∵DE∥AC,∴DB:AB=BE:BC,∵DB=4,AB=6,BE=3,∴4:6=3:BC,解得:BC=92,∴EC=BC﹣BE=92﹣3=32.故答案为32.【点睛】考查了平行线分线段成比例定理,解题时注意:平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.15【解析】【分析】根据相似三角形的性质,先求出正△A2B2C2,正△A3B3C3的面积,依此类推△A n B n C n的面积是,从而求出第8个正△A8B8C8的面积.正△A1B1C1的面积是3,而△A2B2C2与△A1B1C1相似,并且相似比是1:2,则面积的比是,则正△A2B2C2的面积是3×14;因而正△A3B3C3与正△A2B2C2的面积的比也是14,面积是3×(14)2;依此类推△A n B n C n与△A n-1B n-1C n-1的面积的比是14,第n个三角形的面积是34(14)n-1.所以第8个正△A8B8C8的面积是34×(14)7=834.故答案为3.【点睛】本题考查了相似三角形的性质及应用,相似三角形面积的比等于相似比的平方,找出规律是关键.16.46【解析】【详解】如图作DH⊥AE于H,连接CG.设DG=x,∵∠DCE=∠DEC,∴DC=DE,∵四边形ABCD是正方形,∴AD=DC,∠ADF=90°,∴DA=DE,∵DH⊥AE,∴AH=HE=DG,在△GDC与△GDE中,DG DG GDC GDE DC DE =⎧⎪∠=∠⎨⎪=⎩,∴△GDC ≌△GDE (SAS ),∴GC=GE ,∠DEG=∠DCG=∠DAF ,∵∠AFD=∠CFG ,∴∠ADF=∠CGF=90°,∴2∠GDE+2∠DEG=90°,∴∠GDE+∠DEG=45°,∴∠DGH=45°,在Rt △ADH 中,AD=8,AH=x ,DH=22x , ∴82=x 2+(2x )2, 解得:x=863, ∵△ADH ∽△AFD ,∴AD AH AF AD=, ∴AF=64863=46. 故答案为46.17.k≥,且k≠1【解析】 试题解析:∵a=k ,b=2(k+1),c=k-1,∴△=4(k+1)2-4×k×(k-1)=3k+1≥1,解得:k≥-,∵原方程是一元二次方程,∴k ≠1.考点:根的判别式.18.x≥-1【解析】试题分析:由题意得,x+1≥0,解得x≥﹣1.故答案为x≥﹣1.考点:函数自变量的取值范围.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)7;(2)﹣2<x≤1.【解析】【分析】(1)根据绝对值、特殊角的三角函数值可以解答本题;(2)根据解一元一次不等式组的方法可以解答本题.【详解】(1)0 3-++1(2)(2)()315211132x xx x>①②⎧++-⎪⎨+--≤⎪⎩由不等式①,得x>-2,由不等式②,得x≤1,故原不等式组的解集是-2<x≤1.【点睛】本题考查解一元一次不等式组、实数的运算、特殊角的三角函数值,解答本题的关键是明确解它们各自的解答方法.20.(1)(2)3,13y x=-;(3)14【解析】试题分析:(1)根据反比例函数图象上点的坐标特征易得(2)作BH⊥AD于H,如图1,根据反比例函数图象上点的坐标特征确定B点坐标为(1,),则1,﹣1,可判断△ABH为等腰直角三角形,所以∠BAH=45°,得到∠DAC=∠BAC﹣∠BAH=30°,根据特殊角的三角函数值得tan∠AD⊥y轴,则OD=1,后在Rt△OAD中利用正切的定义可计算出CD=2,易得C点坐标为(0,﹣1),于是可根据待定系数法求出直线AC的解析式为y=﹣1;(3)利用M点在反比例函数图象上,可设M点坐标为(t(0<t<),由于直线l⊥x轴,与AC相交于点N,得到N点的横坐标为t,利用一次函数图象上点的坐标特征得到N点坐标为(tt﹣1),则MN=t﹣3t+1,根据三角形面积公式得到S△CMN=12•t•(t﹣3t+1),再进行配方得到S=t﹣2)2+8(0<t<),最后根据二次函数的最值问题求解.试题解析:(1)把A(1)代入y=kx,得(2)作BH⊥AD于H,如图1,把B(1,a)代入反比例函数解析式y=x,得,∴B点坐标为(1,,∴﹣1,1,∴△ABH为等腰直角三角形,∴∠BAH=45°,∵∠BAC=75°,∴∠DAC=∠BAC﹣∠BAH=30°,∴tan∠DAC=tan30°=3;∵AD⊥y轴,∴OD=1,tan∠DAC=CDDA∴CD=2,∴OC=1,∴C点坐标为(0,﹣1),设直线AC的解析式为y=kx+b,把A(1)、C(0,﹣1)代入得11bb⎧+=⎪⎨=-⎪⎩,解得1kb⎧=⎪⎨⎪=-⎩,∴直线AC的解析式为﹣1;(3)设M点坐标为(t)(0<t<,∵直线l⊥x轴,与AC相交于点N,∴N点的横坐标为t,∴N点坐标为(t,33t﹣1),∴MN=23﹣(3t﹣1)=23﹣3t+1,∴S△CMN=12•t•(23﹣3t+1)=﹣3t2+12t+3=﹣3(t﹣3)2+93(0<t<23),∵a=﹣3<0,∴当t=3时,S有最大值,最大值为93.21.(1)证明见解析;(2)CD =3【解析】分析: (1)根据二直线平行同位角相等得出∠A=∠BEC,根据中点的定义得出AE=BE,然后由ASA判断出△AED≌△EBC;(2)根据全等三角形对应边相等得出AD=EC,然后根据一组对边平行且相等的四边形是平行四边形得出四边形AECD是平行四边形,根据平行四边形的对边相等得出答案.详解:(1)证明:∵AD∥EC∴∠A=∠BEC∵E是AB中点,∴AE=BE∵∠AED=∠B∴△AED≌△EBC(2)解:∵△AED≌△EBC∴AD=EC∵AD∥EC∴四边形AECD是平行四边形∴CD=AE∵AB=6∴CD= 12AB=3点睛: 本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.22.(1)不可能;(2)1 6 .【解析】【分析】(1)利用确定事件和随机事件的定义进行判断;(2)画树状图展示所有12种等可能的结果数,再找出其中某顾客该天早餐刚好得到菜包和油条的结果数,然后根据概率公式计算.【详解】(1)某顾客在该天早餐得到两个鸡蛋”是不可能事件;故答案为不可能;(2)画树状图:共有12种等可能的结果数,其中某顾客该天早餐刚好得到菜包和油条的结果数为2,所以某顾客该天早餐刚好得到菜包和油条的概率=21 126.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式mn计算事件A或事件B的概率.23.(1)1;(2)点D(8﹣2,0);(3)点D的坐标为(3﹣1,0)或(﹣3﹣1,0).【解析】分析:(Ⅰ)由点B的坐标知OA=8、AB=1、OB=10,根据折叠性质可得BA=BA′=1,据此可得答案;(Ⅱ)连接AA′,利用折叠的性质和中垂线的性质证△BAA′是等边三角形,可得∠A′B D=∠ABD=30°,据此知AD=ABtan∠ABD=2,继而可得答案;(Ⅲ)分点D在OA上和点D在AO延长线上这两种情况,利用相似三角形的判定和性质分别求解可得.详解:(Ⅰ)如图1,由题意知OA=8、AB=1,∴OB=10,由折叠知,BA=BA′=1,∴OA′=1.故答案为1;(Ⅱ)如图2,连接AA′.∵点A′落在线段AB的中垂线上,∴BA=AA′.∵△BDA′是由△BDA折叠得到的,∴△BDA′≌△BDA,∴∠A′BD=∠ABD,A′B=AB,∴AB=A′B=AA′,∴△BAA′是等边三角形,∴∠A′BA=10°,∴∠A′BD=∠ABD=30°,∴AD=ABtan∠ABD=1tan30°=2,∴OD=OA﹣AD=8﹣2,∴点D(8﹣2,0);(Ⅲ)①如图3,当点D在OA上时.由旋转知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.∵点A′在线段OA的中垂线上,∴BM=AN=OA=4,∴A′M===2,∴A′N=MN﹣A′M=AB﹣A′M=1﹣2,由∠BMA′=∠A′ND=∠BA′D=90°知△BMA′∽△A′ND,则=,即=,解得:DN=3﹣5,则OD=ON+DN=4+3﹣5=3﹣1,∴D(3﹣1,0);②如图4,当点D在AO延长线上时,过点A′作x轴的平行线交y轴于点M,延长AB交所作直线于点N,则BN=CM,MN=BC=OA=8,由旋转知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.∵点A′在线段OA的中垂线上,∴A′M=A′N=MN=4,则MC=BN==2,∴MO=MC+OC=2+1,由∠EMA′=∠A′NB=∠BA′D=90°知△EMA′∽△A′NB,则=,即=,解得:ME=,则OE=MO﹣ME=1+.∵∠DOE=∠A′ME=90°、∠OED=∠MEA′,∴△DOE∽△A′ME,∴=,即=,解得:DO=3+1,则点D的坐标为(﹣3﹣1,0).综上,点D的坐标为(3﹣1,0)或(﹣3﹣1,0).点睛:本题主要考查四边形的综合问题,解题的关键是熟练掌握折叠变换的性质、矩形的性质、相似三角形的判定与性质及勾股定理等知识点.24.(1)两人相遇时小明离家的距离为1500米;(2)小丽离距离图书馆500m时所用的时间为1856分.【解析】【分析】(1)根据题意得出小明的速度,进而得出得出小明离家的距离;(2)由(1)的结论得出小丽步行的速度,再列方程解答即可.【详解】解:(1)根据题意可得小明的速度为:4500÷(10+5)=300(米/分),300×5=1500(米),∴两人相遇时小明离家的距离为1500米;(2)小丽步行的速度为:(4500﹣1500)÷(35﹣10)=120(米/分),设小丽离距离图书馆500m时所用的时间为x分,根据题意得,1500+120(x﹣10)=4500﹣500,解得x=1856.答:小丽离距离图书馆500m时所用的时间为1856分.【点睛】本题由函数图像获取信息,以及一元一次方程的应用,由函数图像正确获取信息是解答本题的关键.25.内错角相等,两直线平行【解析】【分析】根据内错角相等,两直线平行即可判断.【详解】∵∠EPA=∠CAP,∴m∥l(内错角相等,两直线平行).故答案为:内错角相等,两直线平行.【点睛】本题考查了作图﹣复杂作图,平行线的判定等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.26.(1)证明见解析;(1)【解析】试题分析:(1)求出∠OED=∠BCA=90°,根据切线的判定即可得出结论;(1)求出△BEC ∽△BCA ,得出比例式,代入求出即可.试题解析:(1)证明:连接OE 、EC .∵AC 是⊙O 的直径,∴∠AEC=∠BEC=90°.∵D 为BC 的中点,∴ED=DC=BD ,∴∠1=∠1.∵OE=OC ,∴∠3=∠4,∴∠1+∠3=∠1+∠4,即∠OED=∠ACB .∵∠ACB=90°,∴∠OED=90°,∴DE 是⊙O 的切线;(1)由(1)知:∠BEC=90°.在Rt △BEC 与Rt △BCA 中,∵∠B=∠B ,∠BEC=∠BCA ,∴△BEC ∽△BCA ,∴BE :BC=BC :BA ,∴BC 1=BE•BA .∵AE :EB=1:1,设AE=x ,则BE=1x ,BA=3x .∵BC=6,∴61=1x•3x ,解得:x=,即AE=,∴AB=,∴AC==,∴⊙O 的半径=.点睛:本题考查了切线的判定和相似三角形的性质和判定,能求出∠OED=∠BCA 和△BEC ∽△BCA 是解答此题的关键.27.(1)甲,乙两种型号设备每台的价格分别为12万元和10万元.(2)有6种购买方案.(3)最省钱的购买方案为,选购甲型设备4台,乙型设备6台.【解析】【分析】(1)设甲、乙两种型号设备每台的价格分别为x 万元和y 万元,根据购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元可列出方程组,解之即可;(2)设购买甲型设备m 台,乙型设备()10m -台,根据购买节省能源的新设备的资金不超过110万元列不等式,解之确定m 的值,即可确定方案;(3)因为公司要求每月的产量不低于2040吨,据此可得关于m 的不等式,解之即可由m 的值确定方案,然后进行比较,做出选择即可.【详解】(1)设甲、乙两种型号设备每台的价格分别为x 万元和y 万元,由题意得:3216263x y x y -=⎧⎨+=⎩, 解得:1210x y =⎧⎨=⎩, 则甲,乙两种型号设备每台的价格分别为12万元和10万元;(2)设购买甲型设备m 台,乙型设备()10m -台,则()121010110m m +-≤,∴5m ≤,∵m 取非负整数,∴0,1,2,3,4,5m =,∴有6种购买方案;(3)由题意:()240180102040m m +-≥,∴4m ≥,∴m 为4或5,当4m =时,购买资金为:124106108⨯+⨯=(万元),当5m =时,购买资金为:125105110⨯+⨯=(万元),则最省钱的购买方案是选购甲型设备4台,乙型设备6台.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,弄清题意,找准等量关系、不等关系列出方程组与不等式是解题的关键.。
辽宁省大连市2019-2020学年中考数学第一次押题试卷含解析
辽宁省大连市2019-2020学年中考数学第一次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.山西有着悠久的历史,远在100 多万年前就有古人类生息在这块土地上.春秋时期,山西大部分为晋国领地,故山西简称为“晋”,战国初韩、赵、魏三分晋,山西又有“三晋”之称,下面四个以“晋”字为原型的Logo 图案中,是轴对称图形的共有()A.B.C.D.2.如图直线y=mx与双曲线y=kx交于点A、B,过A作AM⊥x轴于M点,连接BM,若S△AMB=2,则k的值是()A.1 B.2 C.3 D.43.小明解方程121xx x--=的过程如下,他的解答过程中从第()步开始出现错误.解:去分母,得1﹣(x﹣2)=1①去括号,得1﹣x+2=1②合并同类项,得﹣x+3=1③移项,得﹣x=﹣2④系数化为1,得x=2⑤A.①B.②C.③D.④4.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:班级参加人数平均数中位数方差甲55 135 149 191 乙55 135 151 110 某同学分析上表后得出如下结论:①甲、乙两班学生的平均成绩相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论中,正确的是()A.①②B.②③C.①③D.①②③5.某校40名学生参加科普知识竞赛(竞赛分数都是整数),竞赛成绩的频数分布直方图如图所示,成绩的中位数落在()A.50.5~60.5 分B.60.5~70.5 分C.70.5~80.5 分D.80.5~90.5 分6.已知正多边形的一个外角为36°,则该正多边形的边数为( ).A.12 B.10 C.8 D.67.已知⊙O1与⊙O2的半径分别是3cm和5cm,两圆的圆心距为4cm,则两圆的位置关系是()A.相交B.内切C.外离D.内含8.下列方程中,没有实数根的是( )A.2x2x30-+=--=B.2x2x30C.2x2x10--=-+=D.2x2x109.如图,是一个工件的三视图,则此工件的全面积是()A.60πcm2B.90πcm2C.96πcm2D.120πcm210.某公司有11名员工,他们所在部门及相应每人所创年利润如下表所示,已知这11个数据的中位数为1.部门人数每人所创年利润(单位:万元)A 1 19B 3 8C7 xD 4 3这11名员工每人所创年利润的众数、平均数分别是()A.10,1 B.7,8 C.1,6.1 D.1,611.益阳市高新区某厂今年新招聘一批员工,他们中不同文化程度的人数见下表:文化程度高中大专本科硕士博士人数9 17 20 9 5关于这组文化程度的人数数据,以下说法正确的是:()A.众数是20 B.中位数是17 C.平均数是12 D.方差是2612.如图,已知第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数上,且OA⊥OB,,则k的值为()A.﹣2B.4 C.﹣4 D.2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.因式分解a3-6a2+9a=_____.14.如图:图象①②③均是以P0为圆心,1个单位长度为半径的扇形,将图形①②③分别沿东北,正南,西北方向同时平移,每次移动一个单位长度,第一次移动后图形①②③的圆心依次为P1P2P3,第二次移动后图形①②③的圆心依次为P4P5P6…,依此规律,P0P2018=_____个单位长度.15.如图,在平面直角坐标系中,点A和点C分别在y轴和x轴正半轴上,以OA、OC为边作矩形OABC,双曲线6yx(x>0)交AB于点E,AE︰EB=1︰3.则矩形OABC的面积是__________.16.函数12yx=,当x<0时,y随x的增大而_____.17.已知某二次函数图像的最高点是坐标原点,请写出一个符合要求的函数解析式:_______.18.函数13xyx-=-自变量x的取值范围是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系中,直线y=x+2与坐标轴交于A、B两点,点A在x轴上,点B在y轴上,C点的坐标为(1,0),抛物线y=ax2+bx+c经过点A、B、C.(1)求该抛物线的解析式;(2)根据图象直接写出不等式ax2+(b﹣1)x+c>2的解集;(3)点P是抛物线上一动点,且在直线AB上方,过点P作AB的垂线段,垂足为Q点.当PQ=22时,求P点坐标.20.(6分)某海域有A、B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求:(1)∠C=°;(2)此时刻船与B港口之间的距离CB的长(结果保留根号).21.(6分)小敏参加答题游戏,答对最后两道单选题就顺利通关.第一道单选题有3个选项a,b,c,第二道单选题有4个选项A,B,C,D,这两道题小敏都不会,不过小敏还有一个“求助”机会,使用“求助”可以去掉其中一道题的一个错误选项.假设第一道题的正确选项是b,第二道题的正确选项是D,解答下列问题:(1)如果小敏第一道题不使用“求助”,那么她答对第一道题的概率是________;(2)如果小敏将“求助”留在第二道题使用,用画树状图或列表的方法,求小敏顺利通关的概率;(3)小敏选第________道题(选“一”或“二”)使用“求助”,顺利通关的可能性更大.22.(8分)(1)计算:2﹣2﹣12+(1﹣6)0+2sin60°.(2)先化简,再求值:(121x xx x---+)÷22121xx x-++,其中x=﹣1.23.(8分)如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,求∠OFA的度数24.(10分)已知二次函数y=mx2﹣2mx+n 的图象经过(0,﹣3).(1)n=_____________;(2)若二次函数y=mx2﹣2mx+n 的图象与x 轴有且只有一个交点,求m 值;(3)若二次函数y=mx2﹣2mx+n 的图象与平行于x 轴的直线y=5 的一个交点的横坐标为4,则另一个交点的坐标为;(4)如图,二次函数y=mx2﹣2mx+n 的图象经过点A(3,0),连接AC,点P 是抛物线位于线段AC 下方图象上的任意一点,求△PAC 面积的最大值.25.(10分)工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm2时,裁掉的正方形边长多大?26.(12分)铁岭市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:求y与x之间的函数关系式;商贸公司要想获利2090元,则这种干果每千克应降价多少元?该干果每千克降价多少元时,商贸公司获利最大?最大利润是多少元?27.(12分)如图,在△ABC中,BC=12,tanA=34,∠B=30°;求AC和AB的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据轴对称图形的概念求解.【详解】A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确.故选D.【点睛】此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.B【解析】【分析】此题可根据反比例函数图象的对称性得到A 、B 两点关于原点对称,再由S △ABM =1S △AOM 并结合反比例函数系数k 的几何意义得到k 的值. 【详解】根据双曲线的对称性可得:OA=OB,则S △ABM =1S △AOM =1,S △AOM =12|k|=1, 则k =±1.又由于反比例函数图象位于一三象限,k >0,所以k =1. 故选B . 【点睛】本题主要考查了反比例函数y =kx中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点. 3.A 【解析】 【分析】根据解分式方程的方法可以判断哪一步是错误的,从而可以解答本题. 【详解】12x x x--=1, 去分母,得1-(x-2)=x ,故①错误, 故选A . 【点睛】本题考查解分式方程,解答本题的关键是明确解分式方程的方法. 4.D 【解析】分析:根据平均数、中位数、方差的定义即可判断; 详解:由表格可知,甲、乙两班学生的成绩平均成绩相同; 根据中位数可以确定,乙班优秀的人数多于甲班优秀的人数; 根据方差可知,甲班成绩的波动比乙班大. 故①②③正确, 故选D .点睛:本题考查平均数、中位数、方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 5.C 【解析】分析:由频数分布直方图知这组数据共有40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,据此可得.详解:由频数分布直方图知,这组数据共有3+6+8+8+9+6=40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,所以中位数落在70.5~80.5分.故选C.点睛:本题主要考查了频数(率)分布直方图和中位数,解题的关键是掌握将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.B【解析】【分析】利用多边形的外角和是360°,正多边形的每个外角都是36°,即可求出答案.【详解】解:360°÷36°=10,所以这个正多边形是正十边形.故选:B.【点睛】本题主要考查了多边形的外角和定理.是需要识记的内容.7.A【解析】试题分析:∵⊙O1和⊙O2的半径分别为5cm和3cm,圆心距O1O2=4cm,5﹣3<4<5+3,∴根据圆心距与半径之间的数量关系可知⊙O1与⊙O2相交.故选A.考点:圆与圆的位置关系.8.B【解析】【分析】分别计算四个方程的判别式的值,然后根据判别式的意义确定正确选项.【详解】解:A、△=(-2)2-4×(-3)=16>0,方程有两个不相等的两个实数根,所以A选项错误;B、△=(-2)2-4×3=-8<0,方程没有实数根,所以B选项正确;C、△=(-2)2-4×1=0,方程有两个相等的两个实数根,所以C选项错误;D、△=(-2)2-4×(-1)=8>0,方程有两个不相等的两个实数根,所以D选项错误.故选:B.【点睛】本题考查根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0根时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.9.C【解析】【分析】先根据三视图得到圆锥的底面圆的直径为12cm,高为8cm,再计算母线长为10,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形半径等于圆锥的母线长计算圆锥的侧面积和底面积的和即可.【详解】圆锥的底面圆的直径为12cm,高为8cm,所以圆锥的母线长,所以此工件的全面积=π⋅62+12⋅2π⋅6⋅10=96π(cm2).故答案选C.【点睛】本题考查的知识点是圆锥的面积及由三视图判断几何体,解题的关键是熟练的掌握圆锥的面积及由三视图判断几何体.10.D【解析】【分析】根据中位数的定义即可求出x的值,然后根据众数的定义和平均数公式计算即可.【详解】解:Q这11个数据的中位数是第8个数据,且中位数为1,5x∴=,则这11个数据为3、3、3、3、1、1、1、1、1、1、1、8、8、8、19,所以这组数据的众数为1万元,平均数为119387543615⨯+⨯+⨯+⨯=万元.故选:D.【点睛】此题考查的是中位数、众数和平均数,掌握中位数的定义、众数的定义和平均数公式是解决此题的关键.11.C【解析】【分析】根据众数、中位数、平均数以及方差的概念求解.【详解】A 、这组数据中9出现的次数最多,众数为9,故本选项错误;B 、因为共有5组,所以第3组的人数为中位数,即9是中位数,故本选项错误;C 、平均数=91720955++++=12,故本选项正确;D 、方差=15[(9-12)2+(17-12)2+(20-12)2+(9-12)2+(5-12)2]= 1565,故本选项错误.故选C . 【点睛】本题考查了中位数、平均数、众数的知识,解答本题的关键是掌握各知识点的概念. 12.C 【解析】试题分析:作AC ⊥x 轴于点C ,作BD ⊥x 轴于点D .则∠BDO=∠ACO=90°,则∠BOD+∠OBD=90°,∵OA ⊥OB ,∴∠BOD+∠AOC=90°,∴∠BOD=∠AOC ,∴△OBD ∽△AOC ,∴=(tanA )2=2,又∵S △AOC =×2=1,∴S △OBD =2,∴k=-1. 故选C .考点:1.相似三角形的判定与性质;2.反比例函数图象上点的坐标特征. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.a(a-3)2 【解析】 【分析】根据因式分解的方法与步骤,先提取公因式,再根据完全平方公式分解即可. 【详解】解:3269a a a -+()269a a a =-+()23a a=-故答案为:()23a a-.【点睛】本题考查因式分解的方法与步骤,熟练掌握方法与步骤是解答关键.14.1【解析】【分析】根据P0P1=1,P0P2=1,P0P3=1;P0P4=2,P0P5=2,P0P6=2;P0P7=3,P0P8=3,P0P9=3;可知每移动一次,圆心离中心的距离增加1个单位,依据2018=3×672+2,即可得到点P2018在正南方向上,P0P2018=672+1=1.【详解】由图可得,P0P1=1,P0P2=1,P0P3=1;P0P4=2,P0P5=2,P0P6=2;P0P7=3,P0P8=3,P0P9=3;∵2018=3×672+2,∴点P2018在正南方向上,∴P0P2018=672+1=1,故答案为1.【点睛】本题主要考查了坐标与图形变化,应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.15.1【解析】【分析】根据反比例函数图象上点的坐标特征设E点坐标为(t,6t),则利用AE:EB=1:3,B点坐标可表示为(4t,6t),然后根据矩形面积公式计算.【详解】设E点坐标为(t,6t ),∵AE:EB=1:3,∴B点坐标为(4t,6t ),∴矩形OABC的面积=4t•6t=1.故答案是:1.【点睛】考查了反比例函数y=k x (k≠0)系数k 的几何意义:从反比例函数y=k x(k≠0)图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.16.减小【解析】【分析】 先根据反比例函数的性质判断出函数12y x =的图象所在的象限,再根据反比例函数的性质进行解答即可. 【详解】 解:∵反比例函数12y x =中,102k =>, ∴此函数的图象在一、三象限,在每一象限内y 随x 的增大而减小.故答案为减小.【点睛】 考查反比例函数的图象与性质,反比例函数()0,k y k x=≠ 当0k >时,图象在第一、三象限.在每个象限,y 随着x 的增大而减小,当k 0<时,图象在第二、四象限.在每个象限,y 随着x 的增大而增大.17.2y x =-等【解析】【分析】根据二次函数的图象最高点是坐标原点,可以得到a <0,b=0,c=0,所以解析式满足a <0,b=0,c=0即可.【详解】解:根据二次函数的图象最高点是坐标原点,可以得到a <0,b=0,c=0,例如:2y x =-.【点睛】此题是开放性试题,考查函数图象及性质的综合运用,对考查学生所学函数的深入理解、掌握程度具有积极的意义.18.x≥1且x≠1【解析】【分析】根据分式成立的条件,二次根式成立的条件列不等式组,从而求解.【详解】解:根据题意得:10{30 xx-≥-≠,解得x≥1,且x≠1,即:自变量x取值范围是x≥1且x≠1.故答案为x≥1且x≠1.【点睛】本题考查函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y=﹣x2﹣x+2;(2)﹣2<x<0;(3)P点坐标为(﹣1,2).【解析】分析:(1)、根据题意得出点A和点B的坐标,然后利用待定系数法求出二次函数的解析式;(2)、根据函数图像得出不等式的解集;(3)、作PE⊥x轴于点E,交AB于点D,根据题意得出∠PDQ=∠ADE=45°,,然后设点P(x,﹣x2﹣x+2),则点D(x,x+2),根据PD的长度得出x的值,从而得出点P的坐标.详解:(1)当y=0时,x+2=0,解得x=﹣2,当x=0时,y=0+2=2,则点A(﹣2,0),B(0,2),把A(﹣2,0),C(1,0),B(0,2),分别代入y=ax2+bx+c得4202a b ca b cc-+=⎧⎪++=⎨⎪=⎩,解得112abc=-⎧⎪=-⎨⎪=⎩.∴该抛物线的解析式为y=﹣x2﹣x+2;(2)ax2+(b﹣1)x+c>2,ax2+bx+c>x+2,则不等式ax2+(b﹣1)x+c>2的解集为﹣2<x<0;(3)如图,作PE⊥x轴于点E,交AB于点D,在Rt△OAB中,∵OA=OB=2,∴∠OAB=45°,∴∠PDQ=∠ADE=45°,在Rt△PDQ中,∠DPQ=∠PDQ=45°,PQ=DQ=2,∴,设点P(x,﹣x2﹣x+2),则点D(x,x+2),∴PD=﹣x2﹣x+2﹣(x+2)=﹣x2﹣2x,即﹣x2﹣2x=1,解得x=﹣1,则﹣x2﹣x+2=2,∴P点坐标为(﹣1,2).点睛:本题主要考查的是二次函数的性质以及直角三角形的性质,属于基础题型.利用待定系数法求出函数解析式是解决这个问题的关键.20.(1)60;(2)302106【解析】(1)由平行线的性质以及方向角的定义得出∠FBA=∠EAB=30°,∠FBC=75°,那么∠ABC=45°,又根据方向角的定义得出∠BAC=∠BAE+∠CAE=75°,利用三角形内角和定理求出∠C=60°;(2)作AD⊥BC交BC于点D,解Rt△ABD,得出BD=AD=302,解Rt△ACD,得出CD=106,根据BC=BD+CD即可求解.解:(1)如图所示,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,∴∠ABC=45°,∵∠BAC=∠BAE+∠CAE=75°,∴∠C=60°.故答案为60;(2)如图,作AD⊥BC于D,在Rt△ABD中,∵∠ABD=45°,AB=60,∴2.在Rt△ACD中,∵∠C=60°,AD=302,∴tanC=AD CD,∴CD=3023=106,∴BC=BD+CD=302+106.答:该船与B港口之间的距离CB的长为(302+106)海里.21.(1)13;(2)19;(3)一.【解析】【分析】(1)直接利用概率公式求解;(2)画树状图(用Z表示正确选项,C表示错误选项)展示所有9种等可能的结果数,找出小敏顺利通关的结果数,然后根据概率公式计算出小敏顺利通关的概率;(3)与(2)方法一样求出小颖将“求助”留在第一道题使用,小敏顺利通关的概率,然后比较两个概率的大小可判断小敏在答第几道题时使用“求助”.【详解】解:(1)若小敏第一道题不使用“求助”,那么小敏答对第一道题的概率=13;故答案为13;(2)若小敏将“求助”留在第二道题使用,那么小敏顺利通关的概率是19.理由如下:画树状图为:(用Z表示正确选项,C表示错误选项)共有9种等可能的结果数,其中小颖顺利通关的结果数为1,所以小敏顺利通关的概率=19;(3)若小敏将“求助”留在第一道题使用,画树状图为:(用Z表示正确选项,C表示错误选项)共有8种等可能的结果数,其中小敏顺利通关的结果数为1,所以小敏将“求助”留在第一道题使用,小敏顺利通关的概率=18,由于18>19, 所以建议小敏在答第一道题时使用“求助”.【点睛】本题考查了用画树状图的方法求概率,掌握其画法是解题的关键.22.(1)54-(2)20172018 【解析】【分析】(1)根据负整数指数幂、二次根式、零指数幂和特殊角的三角函数值可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.【详解】解:(1)原式=14﹣=14﹣54; (2)原式=2(1)(1)(2)(+1)(1)21x x x x x x x x -+--⋅+- =22212(+1)(1)21x x x x x x x --+⋅+- =221(+1)(1)21x x x x x -⋅+- =+1x x, 当x=﹣1时,原式=2018+12018--=20172018. 【点睛】本题考查分式的化简求值、绝对值、零指数幂、负整数指数幂和特殊角的三角函数值,解答本题的关键是明确它们各自的计算方法.23.25°【解析】【分析】先利用正方形的性质得OA=OC ,∠AOC=90°,再根据旋转的性质得OC=OF ,∠COF=40°,则OA=OF ,根据等腰三角形的性质得∠OAF=∠OFA ,然后根据三角形的内角和定理计算∠OFA 的度数.【详解】解:∵四边形OABC 为正方形,∴OA=OC ,∠AOC=90°,∵正方形OABC 绕着点O 逆时针旋转40°得到正方形ODEF ,∴OC=OF,∠COF=40°,∴OA=OF,∴∠OAF=∠OFA,∵∠AOF=∠AOC+∠COF=90°+40°=130°,∴∠OFA=12(180°-130°)=25°.故答案为25°.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.24.(2)-2;(2)m=﹣2;(2)(﹣2,5);(4)当a=32时,△PAC的面积取最大值,最大值为278【解析】【分析】(2)将(0,-2)代入二次函数解析式中即可求出n值;(2)由二次函数图象与x轴只有一个交点,利用根的判别式△=0,即可得出关于m的一元二次方程,解之取其非零值即可得出结论;(2)根据二次函数的解析式利用二次函数的性质可找出二次函数图象的对称轴,利用二次函数图象的对称性即可找出另一个交点的坐标;(4)将点A的坐标代入二次函数解析式中可求出m值,由此可得出二次函数解析式,由点A、C的坐标,利用待定系数法可求出直线AC的解析式,过点P作PD⊥x轴于点D,交AC于点Q,设点P的坐标为(a,a2-2a-2),则点Q的坐标为(a,a-2),点D的坐标为(a,0),根据三角形的面积公式可找出S△ACP 关于a的函数关系式,配方后即可得出△PAC面积的最大值.【详解】解:(2)∵二次函数y=mx2﹣2mx+n的图象经过(0,﹣2),∴n=﹣2.故答案为﹣2.(2)∵二次函数y=mx2﹣2mx﹣2的图象与x轴有且只有一个交点,∴△=(﹣2m)2﹣4×(﹣2)m=4m2+22m=0,解得:m2=0,m2=﹣2.∵m≠0,∴m=﹣2.(2)∵二次函数解析式为y=mx2﹣2mx﹣2,∴二次函数图象的对称轴为直线x=﹣-2m2m=2.∵该二次函数图象与平行于x轴的直线y=5的一个交点的横坐标为4,∴另一交点的横坐标为2×2﹣4=﹣2,∴另一个交点的坐标为(﹣2,5).故答案为(﹣2,5).(4)∵二次函数y=mx2﹣2mx﹣2的图象经过点A(2,0),∴0=9m﹣6m﹣2,∴m=2,∴二次函数解析式为y=x2﹣2x﹣2.设直线AC的解析式为y=kx+b(k≠0),将A(2,0)、C(0,﹣2)代入y=kx+b,得:3k+b=0 {b=-3,解得:k=1{b=-3,∴直线AC的解析式为y=x﹣2.过点P作PD⊥x轴于点D,交AC于点Q,如图所示.设点P的坐标为(a,a2﹣2a﹣2),则点Q的坐标为(a,a﹣2),点D的坐标为(a,0),∴PQ=a﹣2﹣(a2﹣2a﹣2)=2a﹣a2,∴S△ACP=S△APQ+S△CPQ=12PQ•OD+12PQ•AD=﹣32a2+92a=﹣32(a﹣32)2+278,∴当a=32时,△PAC的面积取最大值,最大值为278.【点睛】本题考查了待定系数法求一次(二次)函数解析式、抛物线与x轴的交点、二次函数的性质以及二次函数的最值,解题的关键是:(2)代入点的坐标求出n值;(2)牢记当△=b2-4ac=0时抛物线与x轴只有一个交点;(2)利用二次函数的对称轴求出另一交点的坐标;(4)利用三角形的面积公式找出S△ACP 关于a的函数关系式.25.裁掉的正方形的边长为2dm,底面积为12dm2.【解析】试题分析:设裁掉的正方形的边长为xdm ,则制作无盖的长方体容器的长为(10-2x )dm ,宽为(6-2x )dm ,根据长方体底面面积为12dm 2列出方程,解方程即可求得裁掉的正方形边长.试题解析:设裁掉的正方形的边长为xdm ,由题意可得(10-2x)(6-2x)=12,即x 2-8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2dm ,底面积为12dm 2.26. (1)y =10x+100;(2)这种干果每千克应降价9元;(3)该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.【解析】【分析】(1)由待定系数法即可得到函数的解析式;(2)根据销售量×每千克利润=总利润列出方程求解即可;(3)根据销售量×每千克利润=总利润列出函数解析式求解即可.【详解】(1)设y 与x 之间的函数关系式为:y =kx+b ,把(2,120)和(4,140)代入得,21204140k b k b +=⎧⎨+=⎩, 解得:10100k b =⎧⎨=⎩, ∴y 与x 之间的函数关系式为:y =10x+100;(2)根据题意得,(60﹣40﹣x)(10x+100)=2090,解得:x =1或x =9,∵为了让顾客得到更大的实惠,∴x =9,答:这种干果每千克应降价9元;(3)该干果每千克降价x 元,商贸公司获得利润是w 元,根据题意得,w =(60﹣40﹣x)(10x+100)=﹣10x 2+100x+2000,∴w =﹣10(x ﹣5)2+2250,∵a=-100<,∴当x =5时,w 2250=最大故该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.【点睛】本题考查的是二次函数的应用,此类题目主要考查学生分析、解决实际问题能力,又能较好地考查学生“用数学”的意识.27.8+63.【解析】【分析】如图作CH⊥AB于H.在Rt△BHC求出CH、BH,在Rt△ACH中求出AH、AC即可解决问题;【详解】解:如图作CH⊥AB于H.在Rt△BCH中,∵BC=12,∠B=30°,∴CH=12BC=6,BH22BC CH-3在Rt△ACH中,tanA=34=CHAH,∴AH=8,∴AC22AH CH+10,【点睛】本题考查解直角三角形,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.。
辽宁省大连市中学山区2024届中考猜题数学试卷含解析
辽宁省大连市中学山区2024学年中考猜题数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在矩形ABCD 中,AD=2AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①∠AED=∠CED ;②OE=OD ;③BH=HF ;④BC ﹣CF=2HE ;⑤AB=HF ,其中正确的有( )A .2个B .3个C .4个D .5个2.已知一次函数y=kx+b 的图象如图,那么正比例函数y=kx 和反比例函数y=b x在同一坐标系中的图象的形状大致是( )A .B .C .D .3.若30m n +-=,则222426m mn n ++-的值为( )A .12B .2C .3D .0 4.一、单选题在反比例函数4y x=的图象中,阴影部分的面积不等于4的是( )A. B.C.D.5.如图,已知正五边形ABCDE内接于O,连结BD,则ABD∠的度数是()A.60︒B.70︒C.72︒D.144︒6.如图,AB与⊙O相切于点A,BO与⊙O相交于点C,点D是优弧AC上一点,∠CDA=27°,则∠B的大小是()A.27°B.34°C.36°D.54°7.已知二次函数y=ax2+bx+c的图像经过点(0,m)、(4、m)、(1,n),若n<m,则()A.a>0且4a+b=0 B.a<0且4a+b=0C.a>0且2a+b=0 D.a<0且2a+b=08.若矩形的长和宽是方程x2-7x+12=0的两根,则矩形的对角线长度为()A.5 B.7 C.8 D.109.如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为()A.1 B.32C3D.2310.下列图形中,可以看作是中心对称图形的是()A.B.C.D.11.已知二次函数y=x2﹣4x+m的图象与x轴交于A、B两点,且点A的坐标为(1,0),则线段AB的长为() A.1 B.2 C.3 D.412.若()53-=-,则括号内的数是()A.2-B.8-C.2 D.8二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,矩形AOCB的两边OC、OA分别位于x轴、y轴上,点B的坐标为B(20,53-),D是AB边上的一点.将△ADO沿直线OD翻折,使A点恰好落在对角线OB上的点E处,若点E在一反比例函数的图像上,那么k的值是_______14.如图,在△ABC中,BA=BC=4,∠A=30°,D是AC上一动点,AC的长=_____;BD+12DC的最小值是_____.15.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,﹣4),顶点C在x轴的负半轴上,函数y=kx(x<0)的图象经过菱形OABC中心E点,则k的值为_____.16.已知16xx+=,则221xx+=______17.定义一种新运算:x*y=x yy+,如2*1=211=3,则(4*2)*(﹣1)=_____.18.关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,则实数k的取值范围是_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)灞桥区教育局为了了解七年级学生参加社会实践活动情况,随机抽取了铁一中滨河学部分七年级学生2016﹣2017学年第一学期参加实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图.请根据图中提供的信息,回答下列问题:(1)a=%,并补全条形图.(2)在本次抽样调查中,众数和中位数分别是多少?(3)如果该区共有七年级学生约9000人,请你估计活动时间不少于6天的学生人数大约有多少?20.(6分)如图,抛物线y=ax2+bx+c与x轴相交于点A(﹣3,0),B(1,0),与y轴相交于(0,﹣32),顶点为P.(1)求抛物线解析式;(2)在抛物线是否存在点E,使△ABP的面积等于△ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由;(3)坐标平面内是否存在点F,使得以A、B、P、F为顶点的四边形为平行四边形?直接写出所有符合条件的点F的坐标,并求出平行四边形的面积.21.(6分)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交BE于点F,点D,E的坐标分别为(3,0),(0,1).(1)求抛物线的解析式;(2)猜想△EDB的形状并加以证明;(3)点M在对称轴右侧的抛物线上,点N在x轴上,请问是否存在以点A,F,M,N为顶点的四边形是平行四边形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.22.(8分)把0,1,2三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下数字.放回后洗匀,再从中抽取一张卡片,记录下数字.请用列表法或树状图法求两次抽取的卡片上的数字都是偶数的概率.23.(8分)如图,平面直角坐标系中,将含30°的三角尺的直角顶点C落在第二象限.其斜边两端点A、B分别落在x轴、y轴上且AB=12cm(1)若OB=6cm.①求点C的坐标;②若点A向右滑动的距离与点B向上滑动的距离相等,求滑动的距离;(2)点C与点O的距离的最大值是多少cm.24.(10分)先化简代数式211aa aa a+⎛⎫⎛⎫+÷-⎪ ⎪⎝⎭⎝⎭,再从﹣1,0,3中选择一个合适的a的值代入求值.25.(10分)某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元.①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?②求出y与x之间的函数关系式,并通过画该函数图象的草图,观察其图象的变化趋势,结合题意写出当x取何值时,商场获利润不少于2160元.26.(12分)某地一路段修建,甲队单独完成这项工程需要60天,若由甲队先做5天,再由甲、乙两队合作9天,共完成这项工程的三分之一.(1)求甲、乙两队合作完成这项工程需要多少天?(2)若甲队的工作效率提高20%,乙队工作效率提高50%,甲队施工1天需付工程款4万元,乙队施工一天需付工程款2.5万元,现由甲乙两队合作若干天后,再由乙队完成剩余部分,在完成此项工程的工程款不超过190万元的条件下要求尽早完成此项工程,则甲、乙两队至多要合作多少天?27.(12分)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.(1)求证:直线BF是⊙O的切线;(2)若AB=5,sin∠CBF=,求BC和BF的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解题分析】试题分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴2AB,∵2AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=12(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵∠AHB=12(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选C.【题目点拨】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质2、C【解题分析】试题分析:如图所示,由一次函数y=kx+b 的图象经过第一、三、四象限,可得k >1,b <1.因此可知正比例函数y=kx 的图象经过第一、三象限,反比例函数y=b x的图象经过第二、四象限.综上所述,符合条件的图象是C 选项. 故选C .考点:1、反比例函数的图象;2、一次函数的图象;3、一次函数图象与系数的关系3、A【解题分析】先根据30m n +-=得出3m n +=,然后利用提公因式法和完全平方公式2222()a ab b a b ++=+对222426m mn n ++-进行变形,然后整体代入即可求值.【题目详解】∵30m n +-=,∴3m n +=,∴222224262()623612m mn n m n ++-=+-=⨯-=.故选:A .【题目点拨】本题主要考查整体代入法求代数式的值,掌握完全平方公式和整体代入法是解题的关键.4、B【解题分析】根据反比例函数k y x=中k 的几何意义,过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|解答即可. 【题目详解】解:A 、图形面积为|k|=1;B 、阴影是梯形,面积为6;C 、D 面积均为两个三角形面积之和,为2×(12|k|)=1. 故选B .【题目点拨】 主要考查了反比例函数k y x=中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S=12|k|. 5、C【解题分析】根据多边形内角和定理、正五边形的性质求出∠ABC 、CD=CB ,根据等腰三角形的性质求出∠CBD ,计算即可.【题目详解】∵五边形ABCDE 为正五边形 ∴()1552180108ABC C ∠=∠=-⨯︒=︒ ∵CD CB = ∴181(8326)010CBD ∠=︒-︒=︒ ∴72ABD ABC CBD ∠=∠-∠=︒故选:C .【题目点拨】本题考查的是正多边形和圆、多边形的内角和定理,掌握正多边形和圆的关系、多边形内角和等于(n-2)×180°是解题的关键.6、C【解题分析】由切线的性质可知∠OAB=90°,由圆周角定理可知∠BOA=54°,根据直角三角形两锐角互余可知∠B=36°.【题目详解】解:∵AB 与⊙O 相切于点A ,∴OA ⊥BA .∴∠OAB=90°.∵∠CDA=27°,∴∠BOA=54°.∴∠B=90°-54°=36°.故选C .考点:切线的性质.7、A【解题分析】由图像经过点(0,m )、(4、m )可知对称轴为x=2,由n <m 知x=1时,y 的值小于x=0时y 的值,根据抛物线的对称性可知开口方向,即可知道a 的取值.【题目详解】∵图像经过点(0,m )、(4、m )∴对称轴为x=2, 则-22b a=, ∴4a+b=0∵图像经过点(1,n ),且n <m∴抛物线的开口方向向上,∴a >0,故选A.【题目点拨】此题主要考查抛物线的图像,解题的关键是熟知抛物线的对称性.8、A【解题分析】解:设矩形的长和宽分别为a 、b ,则a +b =7,ab =12,所以矩形的对角线长=1.故选A .9、C【解题分析】连接AE ,OD ,OE .∵AB 是直径, ∴∠AEB=90°.又∵∠BED=120°,∴∠AED=30°.∴∠AOD=2∠AED=60°.∵OA=OD .∴△AOD 是等边三角形.∴∠A=60°.又∵点E 为BC 的中点,∠AED=90°,∴AB=AC .∴△ABC 是等边三角形,∴△EDC 是等边三角形,且边长是△ABC 边长的一半23∴∠BOE=∠EOD=60°,∴BE 和弦BE 围成的部分的面积=DE 和弦DE 围成的部分的面积.∴阴影部分的面积=EDC 1S =23=32∆⋅C . 10、A【解题分析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A 、是中心对称图形,故本选项正确;B 、不是中心对称图形,故本选项错误;C 、不是中心对称图形,故本选项错误;D 、不是中心对称图形,故本选项错误;故选:A .点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合. 11、B【解题分析】先将点A (1,0)代入y =x 2﹣4x +m ,求出m 的值,将点A (1,0)代入y =x 2﹣4x +m ,得到x 1+x 2=4,x 1•x 2=3,即可解答【题目详解】将点A (1,0)代入y =x 2﹣4x +m ,得到m =3,所以y =x 2﹣4x +3,与x 轴交于两点,设A (x 1,y 1),b (x 2,y 2)∴x 2﹣4x +3=0有两个不等的实数根,∴x 1+x 2=4,x 1•x 2=3,∴AB =|x 1﹣x 2|=21212)4x x x x ++( =2;故选B .【题目点拨】此题考查抛物线与坐标轴的交点,解题关键在于将已知点代入.12、C【解题分析】根据有理数的减法,减去一个数等于加上这个数的相反数,可得答案.【题目详解】解:253-=-,故选:C .【题目点拨】本题考查了有理数的减法,减去一个数等于加上这个数的相反数.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、-12【解题分析】过E 点作EF ⊥OC 于F,如图所示:由条件可知:OE=OA=5,532043EF BC tan BOC OF OC ∠====,所以EF=3,OF=4,则E 点坐标为(-4,3)设反比例函数的解析式是y=kx,则有k=-4×3=-12.故答案是:-12.14、(Ⅰ)AC=43(Ⅱ)43,23.【解题分析】(Ⅰ)如图,过B作BE⊥AC于E,根据等腰三角形的性质和解直角三角形即可得到结论;(Ⅱ)如图,作BC的垂直平分线交AC于D,则BD=CD,此时BD+12DC的值最小,解直角三角形即可得到结论.【题目详解】解:(Ⅰ)如图,过B作BE⊥AC于E,∵BA=BC=4,∴AE=CE,∵∠A=30°,∴AE=32AB=23,∴AC=2AE=43;(Ⅱ)如图,作BC的垂直平分线交AC于D,则BD=CD,此时BD+12DC的值最小,∵BF=CF=2,∴BD=CD=230COS=433,∴BD+12DC的最小值=23,故答案为:43,23.【题目点拨】本题考查了等腰三角形的性质,线段垂直平分线的性质,解直角三角形,正确的作出辅助线是解题的关键.15、8【解题分析】根据反比例函数的性质结合点的坐标利用勾股定理解答.【题目详解】解:菱形OABC的顶点A的坐标为(-3,-4),5,=则点B的横坐标为-5-3=-8,点B的坐标为(-8,-4),点C的坐标为(-5,0)则点E的坐标为(-4,-2),将点E的坐标带入y=kx(x<0)中,得k=8.给答案为:8.【题目点拨】此题重点考察学生对反比例函数性质的理解,掌握坐标轴点的求法和菱形性质是解题的关键.16、34【解题分析】∵16xx+=,∴221xx+=22126236234xx⎛⎫+-=-=-=⎪⎝⎭,故答案为34.17、-1【解题分析】利用题中的新定义计算即可求出值.【题目详解】解:根据题中的新定义得:原式=422+*(﹣1)=3*(﹣1)=311--=﹣1.故答案为﹣1.【题目点拨】本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.18、k<2且k≠1【解题分析】试题解析:∵关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,∴k-1≠0且△=(-2)2-4(k-1)>0,解得:k<2且k≠1.考点:1.根的判别式;2.一元二次方程的定义.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)10,补图见解析;(2)众数是5,中位数是1;(3)活动时间不少于1天的学生人数大约有5400人.【解题分析】(1)用1减去其他天数所占的百分比即可得到a的值,用310°乘以它所占的百分比,即可求出该扇形所对圆心角的度数;根据1天的人数和所占的百分比求出总人数,再乘以8天的人数所占的百分比,即可补全统计图;(2)根据众数和中位数的定义即可求出答案;(3)用总人数乘以活动时间不少于1天的人数所占的百分比即可求出答案.【题目详解】解:(1)扇形统计图中a=1﹣5%﹣40%﹣20%﹣25%=10%,该扇形所对圆心角的度数为310°×10%=31°,参加社会实践活动的天数为8天的人数是:2020%×10%=10(人),补图如下:故答案为10;(2)抽样调查中总人数为100人,结合条形统计图可得:众数是5,中位数是1.(3)根据题意得:9000×(25%+10%+5%+20%)=5400(人),活动时间不少于1天的学生人数大约有5400人.【题目点拨】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20、(1)y=12x2+x﹣32(2)存在,(﹣1﹣2,2)或(﹣2,2)(3)点F的坐标为(﹣1,2)、(3,﹣2)、(﹣5,﹣2),且平行四边形的面积为 1 【解题分析】(1)设抛物线解析式为y=ax2+bx+c,把(﹣3,0),(1,0),(0,32)代入求出a、b、c的值即可;(2)根据抛物线解析式可知顶点P的坐标,由两个三角形的底相同可得要使两个三角形面积相等则高相等,根据P点坐标可知E点纵坐标,代入解析式求出x的值即可;(3)分别讨论AB为边、AB为对角线两种情况求出F点坐标并求出面积即可;【题目详解】(1)设抛物线解析式为y=ax2+bx+c,将(﹣3,0),(1,0),(0,32)代入抛物线解析式得09a-3b+c0a+b+c32c⎧⎪=⎪=⎨⎪⎪=-⎩,解得:a=12,b=1,c=﹣32∴抛物线解析式:y=12x2+x﹣32(2)存在.∵y=12x2+x﹣32=12(x+1)2﹣2∴P点坐标为(﹣1,﹣2)∵△ABP的面积等于△ABE的面积,∴点E到AB的距离等于2,设E(a,2),∴12a2+a﹣32=2解得a1=﹣1﹣22,a2=﹣1+22∴符合条件的点E的坐标为(﹣1﹣22,2)或(﹣1+22,2)(3)∵点A(﹣3,0),点B(1,0),∴AB=4若AB为边,且以A、B、P、F为顶点的四边形为平行四边形∴AB∥PF,AB=PF=4∵点P坐标(﹣1,﹣2)∴点F坐标为(3,﹣2),(﹣5,﹣2)∴平行四边形的面积=4×2=1若AB为对角线,以A、B、P、F为顶点的四边形为平行四边形∴AB与PF互相平分设点F(x,y)且点A(﹣3,0),点B(1,0),点P(﹣1,﹣2)∴3112200222xy-+-+⎧=⎪⎪⎨+-+⎪=⎪⎩,∴x=﹣1,y=2∴点F (﹣1,2)∴平行四边形的面积=12×4×4=1 综上所述:点F 的坐标为(﹣1,2)、(3,﹣2)、(﹣5,﹣2),且平行四边形的面积为1.【题目点拨】本题考查待定系数法求二次函数解析式及二次函数的几何应用,分类讨论并熟练掌握数形结合的数学思想方法是解题关键.21、(1)y=﹣34x 2+3x ;(2)△EDB 为等腰直角三角形;证明见解析;(3)(3,2)或(3,﹣2). 【解题分析】(1)由条件可求得抛物线的顶点坐标及A 点坐标,利用待定系数法可求得抛物线解析式;(2)由B 、D 、E 的坐标可分别求得DE 、BD 和BE 的长,再利用勾股定理的逆定理可进行判断;(3)由B 、E 的坐标可先求得直线BE 的解析式,则可求得F 点的坐标,当AF 为边时,则有FM ∥AN 且FM =AN ,则可求得M 点的纵坐标,代入抛物线解析式可求得M 点坐标;当AF 为对角线时,由A 、F 的坐标可求得平行四边形的对称中心,可设出M 点坐标,则可表示出N 点坐标,再由N 点在x 轴上可得到关于M 点坐标的方程,可求得M 点坐标.【题目详解】解:(1)在矩形OABC 中,OA=4,OC=3,∴A (4,0),C (0,3),∵抛物线经过O 、A 两点,∴抛物线顶点坐标为(2,3),∴可设抛物线解析式为y=a (x ﹣2)2+3,把A 点坐标代入可得0=a (4﹣2)2+3,解得a=﹣34, ∴抛物线解析式为y=﹣34(x ﹣2)2+3,即y=﹣34x 2+3x ; (2)△EDB 为等腰直角三角形.证明:由(1)可知B (4,3),且D (3,0),E (0,1),∴DE 2=32+12=10,BD 2=(4﹣3)2+32=10,BE 2=42+(3﹣1)2=20,∴DE 2+BD 2=BE 2,且DE=BD ,∴△EDB 为等腰直角三角形;(3)存在.理由如下:设直线BE解析式为y=kx+b,把B、E坐标代入可得341k bb=+⎧⎨=⎩,解得1k2b1⎧=⎪⎨⎪=⎩,∴直线BE解析式为y=12x+1,当x=2时,y=2,∴F(2,2),①当AF为平行四边形的一边时,则M到x轴的距离与F到x轴的距离相等,即M到x轴的距离为2,∴点M的纵坐标为2或﹣2,在y=﹣34x2+3x中,令y=2可得2=﹣34x2+3x,解得x=63±,∵点M在抛物线对称轴右侧,∴x>2,∴∴M2);在y=﹣34x2+3x中,令y=﹣2可得﹣2=﹣34x2+3x,解得x=63±,∵点M在抛物线对称轴右侧,∴x>2,∴,∴M,﹣2);②当AF为平行四边形的对角线时,∵A(4,0),F(2,2),∴线段AF的中点为(3,1),即平行四边形的对称中心为(3,1),设M(t,﹣34t2+3t),N(x,0),则﹣34t2+3t=2,解得t=6233,∵点M在抛物线对称轴右侧,∴x>2,∵t>2,∴t=6+233,∴M点坐标为(6+233,2);综上可知存在满足条件的点M,其坐标为(6+233,2)或(6+2153,﹣2).【题目点拨】本题为二次函数的综合应用,涉及矩形的性质、待定系数法、勾股定理及其逆定理、平行四边形的性质、方程思想及分类讨论思想等知识.在(1)中求得抛物线的顶点坐标是解题的关键,注意抛物线顶点式的应用,在(2)中求得△EDB 各边的长度是解题的关键,在(3)中确定出M点的纵坐标是解题的关键,注意分类讨论.本题考查知识点较多,综合性较强,难度较大.22、见解析,4 9 .【解题分析】画树状图展示所有9种等可能的结果数,找出两次抽取的卡片上的数字都是偶数的结果数,然后根据概率公式求解.【题目详解】解:画树状图为:共有9种等可能的结果数,其中两次抽取的卡片上的数字都是偶数的结果数为4,所以两次抽取的卡片上的数字都是偶数的概率=49.【题目点拨】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.23、(1)①点C的坐标为(-33,9);②滑动的距离为6(3﹣1)cm;(2)OC最大值1cm.【解题分析】试题分析:(1)①过点C作y轴的垂线,垂足为D,根据30°的直角三角形的性质解答即可;②设点A向右滑动的距离为x,根据题意得点B向上滑动的距离也为x,根据锐角三角函数和勾股定理解答即可;(2)设点C的坐标为(x,y),过C作CE⊥x轴,CD⊥y轴,垂足分别为E,D,证得△ACE∽△BCD,利用相似三角形的性质解答即可.试题解析:解:(1)①过点C作y轴的垂线,垂足为D,如图1:在Rt△AOB中,AB=1,OB=6,则BC=6,∴∠BAO=30°,∠ABO=60°,又∵∠CBA=60°,∴∠CBD=60°,∠BCD=30°,∴BD=3,CD=3,所以点C的坐标为(﹣3,9);②设点A向右滑动的距离为x,根据题意得点B向上滑动的距离也为x,如图2:AO=1×cos∠BAO=1×cos30°=6.∴A'O=6﹣x,B'O=6+x,A'B'=AB=1在△A'O B'中,由勾股定理得,(6﹣x)2+(6+x)2=12,解得:x=6(﹣1),∴滑动的距离为6(﹣1);(2)设点C的坐标为(x,y),过C作CE⊥x轴,CD⊥y轴,垂足分别为E,D,如图3:则OE=﹣x,OD=y,∵∠ACE+∠BCE=90°,∠DCB+∠BCE=90°,∴∠ACE=∠DCB,又∵∠AEC=∠BDC=90°,∴△ACE∽△BCD,∴,即,∴y=﹣x,OC2=x2+y2=x2+(﹣x)2=4x2,∴当|x|取最大值时,即C到y轴距离最大时,OC2有最大值,即OC取最大值,如图,即当C'B'旋转到与y轴垂直时.此时OC=1,故答案为1.考点:相似三角形综合题.24、11 aa+-,1【解题分析】先通分得到22211a a aa a⎛⎫⎛⎫++-÷⎪ ⎪⎝⎭⎝⎭,再根据平方差公式和完全平方公式得到2(1)(1)(1)aa a aa+⨯+-,化简后代入a=3,计算即可得到答案. 【题目详解】原式=22211a a aa a⎛⎫⎛⎫++-÷⎪ ⎪⎝⎭⎝⎭=2(1)(1)(1)aa a aa+⨯+-=11aa+-,当a=3时(a≠﹣1,0),原式=1.【题目点拨】本题考查代数式的化简、平方差公式和完全平方公式,解题的关键是掌握代数式的化简、平方差公式和完全平方公式.25、(1)一天可获利润2000元;(2)①每件商品应降价2元或8元;②当2≤x≤8时,商店所获利润不少于2160元.【解题分析】:(1)原来一天可获利:20×100=2000元;(2)①y=(20-x)(100+10x)=-10(x2-10x-200),由-10(x2-10x-200)=2160,解得:x1=2,x2=8,∴每件商品应降价2或8元;②观察图像可得26、(1)甲、乙两队合作完成这项工程需要36天;(2)甲、乙两队至多要合作7天【解题分析】(1)设甲、乙两队合作完成这项工程需要x天,根据条件:甲队先做5天,再由甲、乙合作9天,共完成总工作量的,列方程求解即可;(2)设甲、乙两队最多合作元天,先求出甲、乙两队合作一天完成工程的多少,再根据完成此项工程的工程款不超过190万元,列出不等式,求解即可得出答案.【题目详解】(1)设甲、乙两队合作完成这项工程需要x天根据题意得,,解得x=36,经检验x=36是分式方程的解,答:甲、乙两队合作完成这项工程需要36天,(2)设甲、乙需要合作y天,根据题意得,,解得y≤7答:甲、乙两队至多要合作7天.【题目点拨】本题考查了分式方程的应用和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.27、(1)证明见解析;(2)BC=;.【解题分析】(1)连接AE,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明∠ABF=90°.(2)利用已知条件证得△AGC∽△ABF,利用比例式求得线段的长即可.(1)证明:连接AE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠1+∠2=90°.∵AB=AC,∴∠1=∠CAB.∵∠CBF=∠CAB,∴∠1=∠CBF∴∠CBF+∠2=90°即∠ABF=90°∵AB是⊙O的直径,∴直线BF是⊙O的切线.(2)解:过点C作CG⊥AB于G.∵sin∠CBF=,∠1=∠CBF,∴sin∠1=,∵在Rt△AEB中,∠AEB=90°,AB=5,∴BE=AB•sin∠1=,∵AB=AC,∠AEB=90°,∴BC=2BE=2,在Rt△ABE中,由勾股定理得AE==2,∴sin∠2===,cos∠2===,在Rt△CBG中,可求得GC=4,GB=2,∴AG=3,∵GC∥BF,∴△AGC∽△ABF,∴=.∴BF==.。
辽宁省大连中山区四校联考2024届中考数学押题试卷含解析
辽宁省大连中山区四校联考2024届中考数学押题试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)1.如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC的长为()A.2 B.4 C.6 D.82.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.12B.14C.16D.1123.a、b是实数,点A(2,a)、B(3,b)在反比例函数y=﹣2x的图象上,则()A.a<b<0 B.b<a<0 C.a<0<b D.b<0<a4.“五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为()A.567×103B.56.7×104C.5.67×105D.0.567×1065.如图,A(4,0),B(1,3),以OA、OB为边作□OACB,反比例函数kyx(k≠0)的图象经过点C.则下列结论不正确的是()A.□OACB的面积为12B.若y<3,则x>5C.将□OACB向上平移12个单位长度,点B落在反比例函数的图象上.D.将□OACB绕点O旋转180°,点C的对应点落在反比例函数图象的另一分支上.6.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( )A .m 1≠.B .m 1=.C .m 1≥D . m 0≠.7.已知抛物线y=ax 2+bx+c 的图象如图所示,顶点为(4,6),则下列说法错误的是( )A .b 2>4acB .ax 2+bx+c≤6C .若点(2,m )(5,n )在抛物线上,则m >nD .8a+b=0 8.某校九年级(1)班全体学生实验考试的成绩统计如下表: 成绩(分) 24 25 26 27 28 29 30 人数(人)2566876根据上表中的信息判断,下列结论中错误的是( ) A .该班一共有40名同学 B .该班考试成绩的众数是28分 C .该班考试成绩的中位数是28分 D .该班考试成绩的平均数是28分9.中国传统扇文化有着深厚的底蕴,下列扇面图形是中心对称图形的是( )A .B .C .D .10.在中国集邮总公司设计的2017年纪特邮票首日纪念截图案中,可以看作中心对称图形的是( )A .千里江山图B .京津冀协同发展C.内蒙古自治区成立七十周年D.河北雄安新区建立纪念二、填空题(本大题共6个小题,每小题3分,共18分)11.因式分解:a3﹣2a2b+ab2=_____.12.“五一”期间,一批九年级同学包租一辆面包车前去竹海游览,面包车的租金为300元,出发时,又增加了4名同学,且租金不变,这样每个同学比原来少分摊了20元车费.若设参加游览的同学一共有x人,为求x,可列方程_____.13.△ABC中,∠A、∠B都是锐角,若sin A=32,cos B=12,则∠C=_____.14.如图,⊙O的半径为1cm,正六边形ABCDEF内接于⊙O,则图中阴影部分面积为_____cm1.(结果保留π)15.一机器人以0.2m/s的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为__s.16.若式子x1x有意义,则x的取值范围是.三、解答题(共8题,共72分)17.(8分)已知抛物线y=a(x+3)(x﹣1)(a≠0),与x轴从左至右依次相交于A、B两点,与y轴相交于点C,经过点A的直线y=﹣x+b与抛物线的另一个交点为D.(1)若点D的横坐标为2,求抛物线的函数解析式;(2)若在第三象限内的抛物线上有点P,使得以A、B、P为顶点的三角形与△ABC相似,求点P的坐标;(3)在(1)的条件下,设点E是线段AD上的一点(不含端点),连接BE.一动点Q从点B出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED以每秒个单位的速度运动到点D后停止,问当点E的坐标是多少时,点Q在整个运动过程中所用时间最少?18.(8分)在某小学“演讲大赛”选拔赛初赛中,甲、乙、丙三位评委对小选手的综合表现,分别给出“待定”(用字母W表示)或“通过”(用字母P表示)的结论.(1)请用树状图表示出三位评委给小选手琪琪的所有可能的结论;(2)对于小选手琪琪,只有甲、乙两位评委给出相同结论的概率是多少?(3)比赛规定,三位评委中至少有两位给出“通过”的结论,则小选手可入围进入复赛,问琪琪进入复赛的概率是多少?19.(8分)如图抛物线y=ax2+bx,过点A(4,0)和点B(6,23),四边形OCBA是平行四边形,点M(t,0)为x轴正半轴上的点,点N为射线AB上的点,且AN=OM,点D为抛物线的顶点.(1)求抛物线的解析式,并直接写出点D的坐标;(2)当△AMN的周长最小时,求t的值;(3)如图②,过点M作ME⊥x轴,交抛物线y=ax2+bx于点E,连接EM,AE,当△AME与△DOC相似时.请直接写出所有符合条件的点M坐标.20.(8分)在Rt△ABC中,∠ACB=90°,以点A为圆心,AC为半径,作⊙A交AB于点D,交CA的延长线于点E,过点E作AB的平行线EF交⊙A于点F,连接AF、BF、DF(1)求证:BF 是⊙A 的切线.(2)当∠CAB 等于多少度时,四边形ADFE 为菱形?请给予证明.21.(8分)武汉市某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷词查的结果分为“非常了解“、“比较了解”、“只听说过”,“不了解”四个等级,划分等级后的数据整理如下表:等级 非常了解 比较了解 只听说过 不了解 频数 40 120 36 4 频率 0.2m0.180.02(1)本次问卷调查取样的样本容量为 ,表中的m 值为 ;(2)在扇形图中完善数据,写出等级及其百分比;根据表中的数据计算等级为“非常了解”的频数在扇形统计图所对应的扇形的圆心角的度数;(3)若该校有学生1500人,请根据调查结果估计这些学生中“比较了解”垃圾分类知识的人数约为多少?22.(10分)先化简代数式22321(1)24a a a a -+-÷+-,再从-2,2,0三个数中选一个恰当的数作为a 的值代入求值. 23.(12分)先化简,再求值:(221121a a a a a a +----+)÷1a a -,其中3. 24.如图,某中学数学课外学习小组想测量教学楼DC 的高度,组员小方在A 处仰望教学楼顶端D 处,测得DAC α∠=,小方接着向教学楼方向前进到B 处,测得2DBC α∠=,已知90DCA ∠=︒,24AC m =,1tan 2α=.(1)求教学楼DC的高度;(2)求cos DBC∠的值.参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解题分析】证明△ADC∽△ACB,根据相似三角形的性质可推导得出AC2=AD•AB,由此即可解决问题. 【题目详解】∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB,∴AC AD AB AC=,∴AC2=AD•AB=2×8=16,∵AC>0,∴AC=4,故选B.【题目点拨】本题考查相似三角形的判定和性质、解题的关键是正确寻找相似三角形解决问题.2、C【解题分析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【题目详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21 126=.故答案为C.【题目点拨】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.3、A【解题分析】解:∵2yx=-,∴反比例函数2yx=-的图象位于第二、四象限,在每个象限内,y随x的增大而增大,∵点A(2,a)、B(3,b)在反比例函数2yx=-的图象上,∴a<b<0,故选A.4、C【解题分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【题目详解】567000=5.67×105,【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5、B【解题分析】先根据平行四边形的性质得到点C的坐标,再代入反比例函数kyx=(k≠0)求出其解析式,再根据反比例函数的图象与性质对选项进行判断. 【题目详解】解:A (4,0),B (1,3),4BC OA ==,∴ ()5,3C ,反比例函数ky x=(k ≠0)的图象经过点C , ∴5315k =⨯=,∴反比例函数解析式为15y x=. □OACB 的面积为4312b OA y ⨯=⨯=,正确; 当0y <时,0x <,故错误;将□OACB 向上平移12个单位长度,点B 的坐标变为()1,15,在反比例函数图象上,故正确;因为反比例函数的图象关于原点中心对称,故将□OACB 绕点O 旋转180°,点C 的对应点落在反比例函数图象的另一分支上,正确. 故选:B. 【题目点拨】本题综合考查了平行四边形的性质和反比例函数的图象与性质,结合图形,熟练掌握和运用相关性质定理是解答关键. 6、A 【解题分析】根据一元二次方程的定义可得m ﹣1≠0,再解即可. 【题目详解】 由题意得:m ﹣1≠0, 解得:m≠1, 故选A . 【题目点拨】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程. 7、C 【解题分析】观察可得,抛物线与x 轴有两个交点,可得240b ac - ,即24b ac > ,选项A 正确;抛物线开口向下且顶点为(4,6)可得抛物线的最大值为6,即26ax bx c ++≤,选项B 正确;由题意可知抛物线的对称轴为x=4,因为4-2=2,5-4=1,且1<2,所以可得m<n ,选项C 错误; 因对称轴42bx a=-= ,即可得8a+b=0,选项D 正确,故选C.点睛:本题主要考查了二次函数y=ax 2+bx+c 图象与系数的关系,解决本题的关键是从图象中获取信息,利用数形结合思想解决问题,本题难度适中.8、D 【解题分析】直接利用众数、中位数、平均数的求法分别分析得出答案. 【题目详解】解:A 、该班一共有2+5+6+6+8+7+6=40名同学,故此选项正确,不合题意; B 、该班考试成绩的众数是28分,此选项正确,不合题意;C 、该班考试成绩的中位数是:第20和21个数据的平均数,为28分,此选项正确,不合题 意;D 、该班考试成绩的平均数是:(24×2+25×5+26×6+27×6+28×8+29×7+30×6)÷40=27.45(分), 故选项D 错误,符合题意. 故选D . 【题目点拨】此题主要考查了众数、中位数、平均数的求法,正确把握相关定义是解题关键. 9、C 【解题分析】根据中心对称图形的概念进行分析. 【题目详解】A 、不是中心对称图形,故此选项错误;B 、不是中心对称图形,故此选项错误;C 、是中心对称图形,故此选项正确;D 、不是中心对称图形,故此选项错误; 故选:C . 【题目点拨】考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合. 10、C 【解题分析】根据中心对称图形的概念求解.【题目详解】解:A选项是轴对称图形,不是中心对称图形,故本选项错误;B选项不是中心对称图形,故本选项错误;C选项为中心对称图形,故本选项正确;D选项不是中心对称图形,故本选项错误.故选C.【题目点拨】本题主要考查了中心对称图形的概念:关键是找到相关图形的对称中心,旋转180度后与原图重合.二、填空题(本大题共6个小题,每小题3分,共18分)11、a(a﹣b)1.【解题分析】【分析】先提公因式a,然后再利用完全平方公式进行分解即可.【题目详解】原式=a(a1﹣1ab+b1)=a(a﹣b)1,故答案为a(a﹣b)1.【题目点拨】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12、3004x-﹣300x=1.【解题分析】原有的同学每人分担的车费应该为3004x-,而实际每人分担的车费为300x,方程应该表示为:3004x-﹣300x=1.故答案是:3004x-﹣300x=1.13、60°.【解题分析】先根据特殊角的三角函数值求出∠A、∠B的度数,再根据三角形内角和定理求出∠C即可作出判断.【题目详解】∵△ABC中,∠A、∠B都是锐角cosB=12,∴∠A=∠B=60°.∴∠C=180°-∠A-∠B=180°-60°-60°=60°.故答案为60°.【题目点拨】本题考查的是特殊角的三角函数值及三角形内角和定理,比较简单.14、6π【解题分析】试题分析:根据图形分析可得求图中阴影部分面积实为求扇形部分面积,将原图阴影部分面积转化为扇形面积求解即可.试题解析:如图所示:连接BO,CO,∵正六边形ABCDEF内接于⊙O,∴AB=BC=CO=1,∠ABC=110°,△OBC是等边三角形,∴CO∥AB,在△COW和△ABW中{BWA OWC BAW OCW AB CO∠=∠∠=∠=,∴△COW≌△ABW(AAS),∴图中阴影部分面积为:S扇形OBC=26013606ππ⨯=.考点:正多边形和圆.15、240【解题分析】根据图示,得出机器人的行走路线是沿着一个正八边形的边长行走一周,是解决本题的关键,考察了计算多边形的周长,本题中由于机器人最后必须回到起点,可知此机器人一共转了360°,我们可以计算机器人所转的回数,即360°÷45°=8,则机器人的行走路线是沿着一个正八边形的边长行走一周,故机器人一共行走6×8=48m,根据时间=路程÷速度,即可得出结果.本题解析:依据题中的图形,可知机器人一共转了360°,∵360°÷45°=8,∴机器人一共行走6×8=48m.∴该机器人从开始到停止所需时间为48÷0.2=240s .16、x 1≥-且x 0≠【解题分析】 ∵式子1x x+在实数范围内有意义, ∴x+1≥0,且x≠0,解得:x≥-1且x≠0. 故答案为x≥-1且x≠0.三、解答题(共8题,共72分) 17、(1)y=﹣(x+3)(x ﹣1)=﹣x 2﹣2x+3;(2)(﹣4,﹣)和(﹣6,﹣3)(3)(1,﹣4). 【解题分析】试题分析:(1)根据二次函数的交点式确定点A 、B 的坐标,求出直线的解析式,求出点D 的坐标,求出抛物线的解析式;(2)作PH ⊥x 轴于H ,设点P 的坐标为(m ,n ),分△BPA ∽△ABC 和△PBA ∽△ABC ,根据相似三角形的性质计算即可;(3)作DM ∥x 轴交抛物线于M ,作DN ⊥x 轴于N ,作EF ⊥DM 于F ,根据正切的定义求出Q 的运动时间t=BE+EF 时,t 最小即可.试题解析:(1)∵y=a (x+3)(x ﹣1),∴点A 的坐标为(﹣3,0)、点B 两的坐标为(1,0),∵直线y=﹣x+b 经过点A , ∴b=﹣3, ∴y=﹣x ﹣3,当x=2时,y=﹣5,则点D 的坐标为(2,﹣5), ∵点D 在抛物线上,∴a (2+3)(2﹣1)=﹣5,解得,a=﹣, 则抛物线的解析式为y=﹣(x+3)(x ﹣1)=﹣x 2﹣2x+3;(2)作PH ⊥x 轴于H ,设点P 的坐标为(m ,n ), 当△BPA ∽△ABC 时,∠BAC=∠PBA ,∴tan ∠BAC=tan ∠PBA ,即=,∴=,即n=﹣a(m﹣1),∴,解得,m1=﹣4,m2=1(不合题意,舍去),当m=﹣4时,n=5a,∵△BPA∽△ABC,∴=,即AB2=AC•PB,∴42=•,解得,a1=(不合题意,舍去),a2=﹣,则n=5a=﹣,∴点P的坐标为(﹣4,﹣);当△PBA∽△ABC时,∠CBA=∠PBA,∴tan∠CBA=tan∠PBA,即=,∴=,即n=﹣3a(m﹣1),∴,解得,m1=﹣6,m2=1(不合题意,舍去),当m=﹣6时,n=21a,∵△PBA∽△ABC,∴=,即AB2=BC•PB,∴42=•,解得,a1=(不合题意,舍去),a2=﹣,则点P的坐标为(﹣6,﹣),综上所述,符合条件的点P的坐标为(﹣4,﹣)和(﹣6,﹣);(3)作DM∥x轴交抛物线于M,作DN⊥x轴于N,作EF⊥DM于F,则tan∠DAN===,∴∠DAN=60°,∴∠EDF=60°,∴DE==EF,∴Q的运动时间t=+=BE+EF,∴当BE和EF共线时,t最小,则BE⊥DM,E(1,﹣4).考点:二次函数综合题.18、(1)见解析;(2)14;(3)12.【解题分析】(1)根据列树状图的步骤和题意分析所有等可能的出现结果,即可画出图形;(2)根据(1)求出甲、乙两位评委给出相同结论的情况数,再根据概率公式即可求出答案;(3)根据(1)即可求出琪琪进入复赛的概率.【题目详解】(1)画树状图如下:(2)∵共有8种等可能结果,只有甲、乙两位评委给出相同结论的有2种可能,∴只有甲、乙两位评委给出相同结论的概率P=21 84 =;(3)∵共有8种等可能结果,三位评委中至少有两位给出“通过”结论的有4种可能,∴乐乐进入复赛的概率P=41 82 =.【题目点拨】此题考查了列树状图,掌握列树状图的步骤,找出三位评委给出相同结论的情况数是本题的关键,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P=mn.19、(1)y=36x223x,点D的坐标为(223);(2)t=2;(3)M点的坐标为(2,0)或(6,0).【解题分析】(1)利用待定系数法求抛物线解析式;利用配方法把一般式化为顶点式得到点D的坐标;(2)连接AC,如图①,先计算出AB=4,则判断平行四边形OCBA为菱形,再证明△AOC和△ACB都是等边三角形,接着证明△OCM≌△ACN得到CM=CN,∠OCM=∠ACN,则判断△CMN为等边三角形得到MN=CM,于是△AMN的周长=OA+CM,由于CM⊥OA时,CM的值最小,△AMN的周长最小,从而得到t的值;(3)先利用勾股定理的逆定理证明△OCD为直角三角形,∠COD=90°,设M(t,0),则E(t,36t2-33t),根据相似三角形的判定方法,当AM MEOC OD=时,△AME∽△COD,即|t-4|:4=|36t2-233t |:433,当AM MEOD OC=时,△AME∽△DOC,即|t-4|433223:4,然后分别解绝对值方程可得到对应的M点的坐标.【题目详解】解:(1)把A(4,0)和B(6,3y=ax2+bx得164036623a b a b +⎧⎪⎨+⎪⎩==,解得36233a b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴抛物线解析式为y=36x 2-233x ; ∵y=36x 2-233x =3(x 6-2) 2-233; ∴点D 的坐标为(2,-233); (2)连接AC ,如图①,()2246(23)-+,而OA=4,∴平行四边形OCBA 为菱形,∴OC=BC=4,∴C (2,3),∴()2224(23)-+,∴OC=OA=AC=AB=BC ,∴△AOC 和△ACB 都是等边三角形,∴∠AOC=∠COB=∠OCA=60°,而OC=AC ,OM=AN ,∴△OCM ≌△ACN ,∴CM=CN ,∠OCM=∠ACN ,∵∠OCM+∠ACM=60°,∴∠ACN+∠ACM=60°,∴△CMN 为等边三角形,∴MN=CM ,∴△AMN 的周长=AM+AN+MN=OM+AM+MN=OA+CM=4+CM ,当CM ⊥OA 时,CM 的值最小,△AMN 的周长最小,此时OM=2,∴t=2;(3)∵C (2,,D (2,,∴,∵3=,OC=4, ∴OD 2+OC 2=CD 2,∴△OCD 为直角三角形,∠COD=90°,设M (t ,0),则E (t ,6t 2-3t ), ∵∠AME=∠COD ,∴当AM ME OC OD =时,△AME ∽△COD ,即|t-4|:2t |, 整理得|16t 2-23t|=13|t-4|, 解方程16t 2-23t =13(t-4)得t 1=4(舍去),t 2=2,此时M 点坐标为(2,0); 解方程16t 2-23t =-13(t-4)得t 1=4(舍去),t 2=-2(舍去);当AM ME OD OC =时,△AME ∽△DOC ,即|t-4|:3=|6t 2-3t |:4,整理得|16t 2-23t |=|t-4|, 解方程16t 2-23t =t-4得t 1=4(舍去),t 2=6,此时M 点坐标为(6,0); 解方程16t 2-23t =-(t-4)得t 1=4(舍去),t 2=-6(舍去); 综上所述,M 点的坐标为(2,0)或(6,0).【题目点拨】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、平行四边形的性质和菱形的判定与性质;会利用待定系数法求函数解析式;理解坐标与图形性质;熟练掌握相似三角形的判定方法;会运用分类讨论的思想解决数学问题.20、(1)证明见解析;(2)当∠CAB=60°时,四边形ADFE为菱形;证明见解析;【解题分析】分析(1)首先利用平行线的性质得到∠FAB=∠CAB,然后利用SAS证得两三角形全等,得出对应角相等即可;(2)当∠CAB=60°时,四边形ADFE为菱形,根据∠CAB=60°,得到∠FAB=∠CAB=∠CAB=60°,从而得到EF=AD=AE,利用邻边相等的平行四边形是菱形进行判断四边形ADFE是菱形.详解:(1)证明:∵EF∥AB∴∠FAB=∠EFA,∠CAB=∠E∵AE=AF∴∠EFA =∠E∴∠FAB=∠CAB∵AC=AF,AB=AB∴△ABC≌△ABF∴∠AFB=∠ACB=90°,∴BF是⊙A的切线.(2)当∠CAB=60°时,四边形ADFE为菱形.理由:∵EF∥AB∴∠E=∠CAB=60°∵AE=AF∴△AEF是等边三角形∴AE=EF,∵AE=AD∴EF=AD∴四边形ADFE是平行四边形∵AE=EF∴平行四边形ADFE为菱形.点睛:本题考查了菱形的判定、全等三角形的判定与性质及圆周角定理的知识,解题的关键是了解菱形的判定方法及全等三角形的判定方法,难度不大.21、(1)200;0.6(2)非常了解20%,比较了解60%;72°;(3) 900人【解题分析】(1)根据非常了解的频数与频率即可求出本次问卷调查取样的样本容量,用1减去各等级的频率即可得到m值;(2)根据非常了解的频率、比较了解的频率即可求出其百分比,与非常了解的圆心角度数;(3)用全校人数乘以非常了解的频率即可.【题目详解】解:(1) 本次问卷调查取样的样本容量为40÷0.2=200;m=1-0.2-0.18-0.02=0.6 (2)非常了解20%,比较了解60%;非常了解的圆心角度数:360°×20%=72°(3)1500×60%=900(人)答:“比较了解”垃圾分类知识的人数约为900人.【题目点拨】此题主要考查扇形统计图的应用,解题的关键是根据频数与频率求出调查样本的容量.22、21a a --,2 【解题分析】试题分析:首先将括号里面的进行通分,然后将除法改成乘法进行分式的化简,选择a 的值时,不能使原分式没有意义,即a 不能取2和-2.试题解析:原式=232a a +-+·2(2)(2)(1)a a a +--=21a a -- 当a=0时,原式=21a a --=2. 考点:分式的化简求值.23、()211a -,13. 【解题分析】根据分式的减法和除法可以化简题目中的式子,然后将a 的值代入化简后的式子即可解答本题.【题目详解】解: (221121a a a a a a +----+)÷1a a- =21(1)(1)(1)1a a a a a a a a +---⋅--() =2221(11a a a a a a a --+⋅--) =21(11a a a a a -⋅--) =21(1a )-,当+1时,原式=13. 【题目点拨】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.24、(1)12m ;(2)35 【解题分析】(1)利用tan CD ACα=即可求解; (2)通过三角形外角的性质得出ADB DAB α∠=∠=,则AB BD =,设BC x =,则24BD AB x ==-,在Rt BCD 中利用勾股定理即可求出BC,BD 的长度,最后利用cos BC DBC BD ∠=即可求解. 【题目详解】解:(1)在Rt ACD ∆中,tan CD ACα=, 1242CD ∴= 12CD cm =答:教学楼DC 的高度为12m ;(2),2DAC DBC αα∠=∠=ADB DAB α∴∠=∠=AB BD ∴=设BC x =,则24BD AB x ==-,故22212(24)x x +=-,解得:9x =,则24915()BD m =-= 故93cos 155BC DBC BD ∠===. 【题目点拨】本题主要考查解直角三角形,掌握勾股定理及正切,余弦的定义是解题的关键.。
2024届辽宁省大连市名校中考试题猜想物理试卷含解析
2024届辽宁省大连市名校中考试题猜想物理试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、单项选择题(本大题7小题,每题3分,共21分)1.由空气中的水蒸气凝华而成的是A.雨B.露C.雾D.霜2.小丽想用一个小灯泡、一个小电动机、两个开关等器材,模拟电冰箱内的照明灯L和压缩机用的电动机M之间的连接.如图所示是她设计的四个电路图,其中符合实际情况的是A.B.C.D.3.电是人们的好帮手,但若摸不准它的脾气,不注意用电安全,也可能会发生触电事故.下列选项中符合安全用电要求的是A.有金属外壳的家用电器,外壳必须接地B.保险丝断了,可以用铁丝来代替C.有人触电时,应迅速用手将他拉开D.可用湿手接触照明电路中的开关4.关于声现象的说法正确的是()A.物体振动越快,发出的声音响度越大B.声音在真空中的传播速度是340m/sC.人耳可以听到超声,不能听到次声D.“闻其声而知其人”,主要是因为不同的人音色不同5.“珍爱生命、注意安全”是我们日常生活中必须具有的意识,下列相关说法正确的是A.严禁攀爬输电铁塔B.电路中的保险丝熔断时,可用铜丝代替C.只要人和大地良好绝缘就一定不会触电D.户外露营时,如遇雷雨天气,可在大树下避雨6.下列有关光学知识说法正确的是A.用照相机照相时,景物在照相机镜头的二倍焦距以外B.近视眼的矫正是佩戴合适的凸透镜C.人站在穿衣镜前看到自己在镜中的像是实像D.人通过放大镜看到的是物体正立放大的实像7.小铭和小群为了探究“温度和物质状态对同种物质密度的影响,在一定的环境下将1g的冰加热,分别记录其温度和体积的数据,利用描点法得到了如图所示的图象.则下列说法中正确的是A.当0℃时,在冰变成水的过程中质量变大B.在0℃时,冰块的密度比水大C.当水从0℃上升到4℃的过程中,其密度逐渐增大D.小铭和小群的研究结果表明:密度是不会随状态而发生改变的二、填空题(本大题7小题,共21分)8.如图所示,电源电压恒定,R1=10Ω,闭合开关S,断开开关S1电流表示数为0.3A.若再闭合S1,发现电流表示数变化了0.2A,则电源电压为______V;R2的阻值为________ Ω.9.如图是四冲程汽油机的工作过程中_____冲程;如果该汽油机每分钟转3600转,则该汽油机每秒做功_____次;若该汽油机功率为10kW,机械效率为36%,使用的乙醇汽油热值为4×107J/kg,则汽油机工作1小时消耗_____kg乙醇汽油.10.在斜面上将一个重5N的物体匀速拉到顶端,沿斜面向上的拉力为2N,斜面长4m,高1m。
2023年辽宁省大连市八区联考中考数学押题试卷(含解析)
2023年辽宁省大连市八区联考中考数学押题试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1.如图,是由4个完全相同的小正方体组成的立体图形,它的主视图是( )A.B.C.D.2. 武汉地区春季日均最高气温15℃,最低7℃,日均最高气温比最低气温高( )A. 22℃B. 15℃C. 8℃D. 7℃3. 计算(a+2)(a−3)的结果是( )A. a2−6B. a2+6C. a2−a−6D. a2+a−64. 把直线y=−x+1向下平移3个单位后得到的直线的解析式为( )A. y=−x+4B. y=−x−2C. y=x+4D. y=X−25. 已知一组从小到大的数据:0,4,x,10的中位数是5,则x=( )A. 5B. 6C. 7D. 86. 下列说法中错误的是( )A. 两条对角线互相平分的四边形是平行四边形B. 两条对角线相等的四边形是矩形C. 两条对角线互相垂直的矩形是正方形D. 两条对角线相等的菱形是正方形7. 如图,矩形EFGO的两边在坐标轴上,点O为平面直角坐标系的原点,以y轴上的某一点为位似中心,作位似图形ABCD,且点B,F的坐标分别为(−4,4),(2,1),则位似中心的坐标为( )A. (0,3)B. (0,2.5)C. (0,2)D. (0,1.5)8. 众所周知,“石头、剪刀、布”游戏规则是比赛时双方任意出“石头”、“剪刀”、“布”这三种手势中的一种.石头胜剪刀,剪刀胜布,布胜石头,若双方出相同手势,则算打平.小明和小红玩这个游戏,他们随机出一种手势,则小明获胜的概率为( )A. 12B. 13C. 14D. 499. 某校“研学”活动小组在一次野外实践时,发现一种植物的1个主干上长出x个枝干,每个枝干上再长出x个小分支.若在1个主干上的主干、枝干和小分支的数量之和是43个,则x 等于( )A. 4B. 5C. 6D. 710. 如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(5,0),与y轴交于点C,其对称轴为直线x=2,结合图象分析如下结论:①abc>0;②b+3a<0;③当x>0时,y随x的增大而增大;④若一次函数y=kx+b(k≠0)的图象经过点A,则点E(k,b)在第四象限;⑤点M是抛物线的顶点,若CM⊥AM,则a=66.其中正确的有( )A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共18.0分)11. 方程x2−x=0解为______ .12. 要从甲、乙、丙三名学生中选出一名学生参加数学竞赛,对这三名学生进行了10次数学测试,经过数据分析,3人的平均成绩均为92分,甲的方差为0.024、乙的方差为0.08、丙的方差为0.015,则这10次测试成绩比较稳定的是______.13. 如图,点E为平行四边形ABCD中CD边上一点,将△ADE沿AE折叠至△AD′E处,∠B= 55°,∠DAE=20°,则∠CED′的大小为______.14. 《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程为______.15. 如图,直线y=3x+3与y轴相交于点A,与x轴相交于点B,点C在x轴上,OC=2,四边4的图象经过点E,则k的形ABCD是平行四边形,对角线AC与BD相交于点E,反比例函数y=kx值为______ .16. 如图,在△ABC中,∠C=90°,∠B=30°,AC=3,点D,E,F分别在边BC,AC,AB 上(点E,F与△ABC的顶点不重合),AD平分∠CAB,EF⊥AD,垂足为H.若设DH=x,BF= y,则y关于x的函数解析式为______ .三、解答题(本大题共10小题,共102.0分。
【强哥解读大连市中考几何压轴题】????2...
【强哥解读大连市中考几何压轴题】 2...
【强哥解读大连市中考几何压轴题】
2 0 1 9
提示全等基本没用,可以说是误导。
不用构造只要找出两组相似三角形,其第三比例项构筑了已知和结论线段比的桥梁。
2 0 1 8
是小明完全说真话的一年。
其解法,是同2019年一样的第三比例项。
2 0 1 7
看条件,你既可以理解中线倍长,又可以理解截长补短。
不过,只用一组相似三角形,列出三组比例,其中一部分可转化为一个一元二次方程。
2 0 1 6
利用已知的角等,构造一组相似三角形,得到三组比例。
利用已知两个线段的等量关系,设其中一个为x。
2 0 1 5
补角转等角,利用一角一边构造全等或相似三角形。
2 0 1 4
利用一角一边构造全等或相似三角形。
倍长中线。
已知一个角的等腰三角形,建立底和腰的关系。
2 0 1 3
是一个以托勒密定理构建的问题。
2 0 1 2
利用一角一边构造全等或相似三角形。
图形位置改变,解题方法基本不变。
典型问题改编的问题。
2 0 0 9
构建旋转式全等和相似。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年中考几何探究押题
如图1,点A 、B 分别是两条平行线m 、n 上任意两点,在直线n 上找一点C ,使BC = kAB (k 为常数),连结AC ,在直线AC 上任取一点E ,作∠BEF =∠ABC ,EF 交直线m 于点F . (1)请说明∠AFE=∠ABE 的理由;
(2)当1=k 时,探究线段EB EF
的值,请说明理由;
(3)当1≠k 时,探究线段EB EF
的值,请说明理由.
2008年中考几何探究真题
25.点A 、B 分别是两条平行线m 、n 上任意两点,在直线n 上找一点C ,使BC = kAB ,连结AC ,在直线AC 上任取一点E ,作∠BEF =∠ABC ,EF 交直线m 于点F .
⑴如图15,当k = 1时,探究线段EF 与EB 的关系,并中以说明;
说明:①如果你经过反复探索没有解决问题,请写出探索过程(要求至少写三步);
②在完成①之后,可以自己添加条件(添加的条件限定为∠ABC 为特殊角),在图16中补全图形,完成证明(选择添加条件比原题少得3分).
⑵如图17,若∠ABC = 90°,k ≠1,探究线段EF 与EB 的关系,并说明理由.
2009年中考几何探究押题
(1)等边△ABC 与等边△MDE,点M,N,F 分别是AB,AC,BC 的中点,点D 在直线BC 上,试探究EN DF
的值。
(2)等腰△ABC 与等腰△MDE,∠DME=∠ACB,点M,N,F 分别是AB,AC,BC 的中点,点D 在直线BC 上,试探究EN DF
的值。
(3)等腰直角△ABC 与等腰直角△MDE,∠DME=∠ACB,点M,N,F 分别是AB,AC,BC 的中点,点D 在直线BC 上,试探究EN DF
的值。
(4)任意△ABC 与△MDE,∠DME=∠ACB,ME=mDM,BC=mAC 点M,N,F 分别是AB,AC,BC 的中点,点D 在直线BC 上,试探究EN
DF
的值。
2009年中考几何探究真题
25.如图15,在△ABC 和△PQD 中,AC = k BC ,DP = k DQ ,∠C =∠PDQ ,D 、E 分别是AB 、AC 的中点,点P 在直线BC 上,连结EQ 交PC 于点H .
猜想线段EH 与AC 的数量关系,并证明你的猜想.
2010年中考几何探究押题
在ABC Rt ∆和AMN Rt ∆中,=∠=∠AMN ABC 90°,kAB BC =,kAM MN =,点M 是BC 边中点,BD ⊥AC 于点D ,
AM 交BD 于E ,MN 交AC 于F . (1)1=k ,如图1,探究MF ME
的值;
(2)n k =,如图2,探究MF ME
的值;
2010年中考几何探究真题
23.如图12,∠ACB=90︒,CD ⊥AB ,垂足为D ,点E 在AC 上,BE 交CD 于点G ,EF ⊥BE 交AB 于点F ,若AC=mBC ,CE=kEA ,探索线段EF 与EG 的数量关系,并证明你的结论
说明:如果你反复探索没有解决问题,可以选取(1)或(2)中的条件,选(1)中的条件完成解答满分为7分;选(2)中的条件完成解答满分为5分 (1)m=1(如图13)
(2)m=1,k=1(如图14)。