中考数学一轮专题复习 矩形
2020年中考数学一轮专项复习——矩形、菱形、正方形(含解析)
2020年中考数学一轮专项复习——矩形、菱形、正方形课时1 矩 形基础过关1. (2019重庆模拟)下列关于矩形对角线的说法中,正确的是( ) A. 对角线相互垂直B. 面积等于对角线乘积的一半C. 对角线平分一组对角D. 对角线相等2.(2019临沂)如图,在▱ABCD 中,M ,N 是BD 上两点,BM =DN ,连接AM ,MC ,CN ,NA .添加一个条件,使四边形AMCN 是矩形,这个条件是( )A. OM =12ACB. MB =MOC. BD ⊥ACD. ∠AMB =∠CND第2题图3.如图,将矩形纸片ABCD 沿BD 折叠,得到△BC ′D ,C ′D 与AB 交于点E .若∠1=35°,则∠2的度数为( )A. 20°B. 30°C. 35°D. 55°第3题图4.(2019贵阳模拟)如图,在矩形ABCD中,AE平分∠BAD,交边BC于点E,若ED=5,EC=3,则矩形ABCD的周长为()A. 11B. 14C. 22D. 28第4题图5.如图,矩形ABCD中,A(-2,0),B(2,0),C(2,2),将AB绕点A旋转,使点B落在边CD上的点E处,则点E的坐标为()A. (3,2)B. (23,2)C. (1,2)D. (23-2,2)第5题图6.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作BD的垂线,垂足为E.已知∠EAD =3∠BAE,则∠EAO的度数为()A.22.5°B.67.5°C.45°D.60°第6题图7.(2020原创)如图,点O是矩形ABCD对角线AC的中点,OE∥AB交AD于点E.若AB=6,BC=8,则△BOE的周长为()A. 10B. 8+2 5C. 8+213D. 14第7题图8.(2018遵义)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于点E,F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A. 10B. 12C. 16D. 18第8题图9.(2019徐州)如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点,若MN=4,则AC的长为________.第9题图10.(人教八下P55练习2题)如图,▱ABCD的对角线AC、BD交于点O,△OAB是等边三角形,AB =4.(1)求证:四边形ABCD是矩形;(2)求四边形ABCD的面积.第10题图11.(2019怀化)已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,E,F分别为垂足.(1)求证:△ABE≌△CDF;(2)求证:四边形AECF是矩形.第11题图12.(2019连云港)如图,在△ABC中,AB=AC.将△ABC沿着BC方向平移得到△DEF,其中点E在边BC上,DE与AC相交于点O.(1)求证:△OEC为等腰三角形;(2)连接AE、DC、AD,当点E在什么位置时,四边形AECD为矩形,并说明理由.第12题图能力提升1.(2019台州)如图,有两张矩形纸片ABCD和EFGH,AB=EF=2 cm,BC=FG=8 cm.把纸片ABCD 交叉叠放在纸片EFGH上,使重叠部分为平行四边形,且点D与点G重合,当两张纸片交叉所成的角α最小时,tanα等于()A. 14 B.12 C.817 D.815第1题图2.如图,在矩形ABCD中,AB=4,BC=6,E是矩形内部的一个动点,且AE⊥BE,则线段CE的最小值为________.第2题图满分冲关1.(2019眉山模拟)如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①CF=3AF;②AB=DF;③DF=22BC;④S四边形CDEF=52S△ABF.其中正确的结论有()第1题图A.1个B.2个C.3个D.4个【错误结论纠正】请将错误结论改正确.2.如图,在矩形ABCD中,∠BAC=30°,对角线AC,BD交于点O,∠BCD的平分线CE分别交AB,BD于点E,H,连接OE.(1)求∠BOE的度数;(2)若BC=1,求△BCH的面积;(3)求S△CHO∶S△BHE的值.第2题图课时2菱形(建议时间:40分钟)基础过关1.(2019玉林)菱形不具备的性质是()A. 是轴对称图形B. 是中心对称图形C. 对角线互相垂直D. 对角线一定相等2.(2019河北)如图,菱形ABCD中,∠D=150°,则∠1=()A. 30°B. 25°C. 20°D. 15°第2题图3.(2019襄阳)如图,分别以线段AB的两个端点为圆心,大于AB的一半的长为半径画弧,两弧分别交于C,D两点,连接AC,BC,AD,BD,则四边形ADBC一定是()A. 正方形B. 矩形C. 梯形D. 菱形第3题图4.(2019呼和浩特)已知菱形的边长为3,较短的一条对角线的长为2,则该菱形较长的一条对角线的长为()A. 2 2B. 2 5C. 4 2D. 2105.(2019宁夏)如图,四边形ABCD的两条对角线相交于点O,且互相平分.添加下列条件,仍不能判定四边形ABCD为菱形的是()A. AC⊥BDB. AB=ADC. AC=BDD. ∠ABD=∠CBD第5题图6.(2019赤峰)如图,菱形ABCD的周长为20,对角线AC、BD相交于点O,E是CD的中点,则OE 的长是()A. 2.5B. 3C. 4D. 5第6题图7.(2019天津)如图,四边形ABCD为菱形,A,B两点的坐标分别是(2,0),(0,1),点C,D在坐标轴上,则菱形ABCD的周长等于()第7题图A. 5B. 4 3C. 4 5D. 208.(2019永州)如图,四边形ABCD的对角线相交于点O,且点O是BD的中点,若AB=AD=5,BD =8,∠ABD=∠CDB,则四边形ABCD的面积为()第8题图A. 40B. 24C. 20D. 159.如图,在菱形纸片ABCD中,∠A=60°,P为AB中点.折叠该纸片使点C落在点C′处,且DC′过点P,折痕为DE,则∠CDE的大小为()A.30°B.40°C.45°D.60°第9题图10.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,且∠ACD=30°,BD=4,则AB=______.第10题图11.如图,在菱形ABCD中,∠BAD=100°,点E为AC上一点,若∠CBE=20°,则∠AED=________°.第11题图12.(2019广西北部湾经济区)如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,过点A 作AH ⊥BC 于点H ,已知BO =4,S 菱形ABCD =24,则AH =________.第12题图13.(2019宿迁)如图,矩形ABCD 中,AB =4,BC =2,点E 、F 分别在AB 、CD 上,且BE =DF =32.(1)求证:四边形AECF 是菱形; (2)求线段EF 的长.第13题图14.(2020原创)如图,BD是△ABC的角平分线,它的垂直平分线分别交AB、BD、BC于点E、F、G,连接ED、DG.(1)请判断四边形EBGD的形状,并说明理由;(2)若∠ABC=30°,∠C=45°,ED=2,求GC的长.第14题图15.如图,在四边形ABCD中,AB∥DC,过对角线AC的中点O作EF⊥AC,分别交边AB,CD于点E,F,连接CE,AF.(1)求证:四边形AECF是菱形;(2)若EF=8,AE=5,求四边形AECF的面积.第15题图16.(2019北京)如图,在菱形ABCD 中,AC 为对角线,点E ,F 分别在AB ,AD 上,BE =DF ,连接EF .(1)求证:AC ⊥EF ;(2)延长EF 交CD 的延长线于点G ,连接BD 交AC 于点O .若BD =4,tan G =12,求AO 的长.第16题图能力提升1.如图,四边形ABCD 与四边形AECF 都是菱形,点E 、F 在BD 上.已知∠BAD =120°,∠EAF =30°,则ABAE的值为( ) A. 6+2B. 6-2C.6-22D.6+22第1题图2.已知菱形ABCD ,E 、F 是动点,边长为4,BE =AF ,∠BAD =120°,则下列结论正确的个数为( ) ①△BEC ≌△AFC ;②△ECF 为等边三角形; ③∠AGE =∠AFC ;④若AF =1,则GF EG =14.A. 1B. 2C. 3D. 4第2题图【错误结论纠正】请将错误结论改正确.满分冲关(2019绵阳模拟)如图,点E 、F 、G 分别在菱形ABCD 的边AB 、BC 、AD 上,2AE =BE ,2CF =BF ,AG =13AD ,已知△EFG 的面积等于1,则菱形ABCD 的面积等于________.题图课时3正方形(建议时间:40分钟)基础过关1.正方形具有而菱形不一定具有的特征有()A. 对角线互相垂直B. 内角和为360°C. 对角线相等D. 对角线平分内角2.(2019河池)如图,在正方形ABCD中,点E,F分别在BC,CD上,BE=CF,则图中与∠AEB相等的角的个数是()A. 1B. 2C. 3D. 4第2题图3.(2019毕节)如图,点E在正方形ABCD边AB上,若EB=1,EC=2,那么正方形ABCD的面积为()A. 3B. 3C. 5D. 5第3题图4.如图,在正方形ABCD中,E是AC上的一点,且AB=AE,则∠EBC的度数是()A.45°B.30°C.22.5°D.20°第4题图5.(2018梧州)如图,在正方形ABCD中,A,B,C三点的坐标分别是(-1,2),(-1,0),(-3,0),将正方形ABCD向右平移3个单位,则平移后点D的坐标是()A. (-6,2)B. (0,2)C. (2,0)D. (2,2)第5题图6.[人教八下P67第1(3)题改编]如图,在正方形ABCD的外侧作等边△ADE,AC,BE相交于点F,则∠BFC为()第6题图A. 45°B. 55°C. 60°D. 75°7.(2019兰州)如图,边长为2的正方形ABCD的对角线AC与BD交于点O,将正方形ABCD沿直线DF折叠,点C落在对角线BD上的点E处,折痕DF交AC于点M,则OM=()第7题图A. 12B.22C. 3-1D. 2-18.(2019包头)如图,在正方形ABCD 中,AB =1,点E ,F 分别在边BC 和CD 上,AE =AF ,∠EAF =60°,则CF 的长是( )A. 3+14B. 32C. 3-1D. 23第8题图9.(2019菏泽)如图,E ,F 是正方形ABCD 的对角线AC 上的两点,AC =8,AE =CF =2,则四边形BEDF 的周长是________.第9题图10.(2019扬州)如图,已知点E 在正方形ABCD 的边AB 上,以BE 为边向正方形ABCD 外部作正方形BEFG ,连接DF ,M 、N 分别是DC 、DF 的中点,连接MN .若AB =7,BE =5,则MN =________.第10题图11.如图,在平面直角坐标系中,正方形OABC的顶点O、B的坐标分别是(0,0),(2,0),则顶点C 的坐标是________.第11题图12.(数学文化)(2019大庆)我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a、b,那么(a-b)2的值是________.第12题图13.(2019黄冈)如图,ABCD是正方形,E是CD边上任意一点,连接AE,作BF⊥AE,DG⊥AE,垂足分别为F,G.求证:BF-DG=FG.第13题图1.(2018天津)如图,在正方形ABCD中,E,F分别为AD,BC的中点,P为对角线BD上的一个动点,则下列线段的长等于AP+EP最小值的是()A. ABB. DEC. BDD. AF第1题图2.(2019绍兴)正方形ABCD的边AB上有一动点E,以EC为边作矩形ECFG,且边FG过点D,在点E从点A移动到点B的过程中,矩形ECFG的面积()A. 先变大后变小B. 先变小后变大C. 一直变大D. 保持不变第2题图3.(2019乐山模拟)如图,正方形ABCD的边长为2,点E、F分别是边BC,CD的延长线上的动点,且CE=DF,连接AE、BF,交于点G,连接DG,则DG的最小值为________.第3题图(2019威海)如图,在正方形ABCD中,AB=10 cm,E为对角线BD上一动点,连接AE,CE,过E点作EF⊥AE,交直线BC于点F.E点从B点出发,沿着BD方向以每秒2 cm的速度运动,当点E与点D重合时,运动停止.设△BEF的面积为y cm2,E点的运动时间为x秒.(1)求证:CE=EF;(2)求y与x之间关系的函数表达式,并写出自变量x的取值范围;(3)求△BEF面积的最大值.题图备用图参考答案课时1矩形基础过关1.D2.A【解析】∵四边形ABCD是平行四边形,∴OB=OD,OA=OC,∵BM=DN,∴OM=ON,∴四边形AMCN 是平行四边形.当OM =12AC 时,MN =AC ,∴四边形AMCN 是矩形,故选A .3.A 【解析】∵四边形ABCD 是矩形,∴∠C =90°,CD ∥AB ,∴∠DBA =∠1=35°,∴∠CBD =55°,由折叠性质可知∠C ′BD =∠CBD =55°,∴∠2=∠C ′BD -∠DBA =20°.4.C 【解析】∵四边形ABCD 是矩形,∴∠C =90°,AB =CD ,AD ∥BC ,∵ED =5,EC =3,∴DC 2=DE 2-CE 2=25-9=16,∴DC =4,AB =4,∵AD ∥BC ,∴∠AEB =∠DAE ,∵AE 平分∠BAD ,∴∠BAE =∠DAE ,∴∠BAE =∠AEB ,∴BE =AB =4,∴矩形ABCD 的周长为2(4+3+4)=22.5.D 【解析】∵矩形ABCD 中,A (-2,0),B (2,0),C (2,2),∴AB =CD =4,BC =AD =2,∵将AB 绕点A 旋转,使点B 落在边CD 上的点E 处,∴AE =AB =4,∴DE =AE 2-AD 2=23,∴点E 坐标为(23-2,2).6.C 【解析】∵四边形ABCD 为矩形,∴∠BAD =90°,OA =OB ,∵∠EAD =3∠BAE ,∴4∠BAE =90°,∴∠BAE =22.5°,∵AE ⊥BD ,∴∠ABE =90°-∠BAE =67.5°,∴∠BAO =67.5°,∴∠EAO =∠BAO -∠BAE =67.5°-22.5°=45°.7.C 【解析】∵点O 是矩形ABCD 对角线AC 的中点,OE ∥AB ,∴OE =12CD =12AB =3,点E 为AD 中点,在Rt △ABE 中,利用勾股定理求得BE =213.在Rt △ABC 中,利用勾股定理求得AC =10.∴BO =OC =12AC =5.△BOE 的周长为5+3+213=8+213.8.C 【解析】如解图,作PM ⊥AD 于点M ,交BC 于点N ,则四边形AEPM ,四边形DFPM ,四边形CFPN ,四边形BEPN 都是矩形,∴S △ADC =S △ABC ,S △AMP =S △AEP ,S △PBE =S △PBN ,S △PFD =S △PDM ,S △PFC =S △PCN ,∴S 矩形DFPM =S 矩形BEPN ,∴S △DFP =S △PBE =12×2×8=8,∴S 阴影=8+8=16.第8题解图9.16 【解析】∵M 、N 分别为BC 、OC 的中点,∴MN 是△OBC 的中位线,∴OB =2MN =8,∵四边形ABCD 是矩形,∴AC =BD =2OB =16.10.(1)证明:∵四边形ABCD 是平行四边形,△AOB 是等边三角形, ∴OA =OB =OD ,且AC =2OA ,BD =2OB ,∴AC=BD.∴四边形ABCD是矩形;(2)解:∵AB=4,在Rt△ABC中,由题意可知,AC=8,则BC=43,∴S四边形ABCD=4×43=16 3.11.证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D.∵AE⊥BC,CF⊥AD,∴∠AEB=∠CFD=90°,∴△ABE≌△CDF(AAS);(2)∵四边形ABCD是平行四边形,∴AD∥BC.∵AE⊥BC,CF⊥AD,∴AE∥CF.∴四边形AECF是平行四边形.∵∠AEC=90°,∴四边形AECF是矩形.12.(1)证明:∵AB=AC,∴∠ABC=∠ACB.∵△ABC平移得到△DEF,∴∠ABC=∠DEF.∴∠DEF=∠ACB.即△OEC为等腰三角形;(2)解:如解图,当E为BC中点时,四边形AECD为矩形.理由如下:∵AB=AC,且E为BC的中点,∴AE ⊥BC ,BE =EC , ∵△ABC 平移得到△DEF , ∴BE ∥AD ,BE =AD , ∴AD ∥EC ,AD =EC , ∴四边形AECD 为平行四边形, 又∵AE ⊥BC ,∴四边形AECD 为矩形.第12题解图能力提升1.D 【解析】如解图,当B 、E 重合时,α最小,∵在△BMF 和△DMC 中,⎩⎪⎨⎪⎧∠BMF =∠DMC ,∠F =∠C ,BF =DC ,∴△BMF ≌△DMC (AAS),∴BM =DM ,设FM =x ,则DM =BM =8-x ,在Rt △BFM 中,由勾股定理得22+x 2=(8-x )2,解得x =154,∴tan α=BF FM =2154=815.第1题解图2.210-2 【解析】如解图,∵AE ⊥BE ,∴点E 在以AB 为直径的半圆⊙上,连接CO 交⊙O 于点E ′,∴当点E 落在OC 上时,即点E 在E ′处,线段CE 取得最小值,∵AB =4,∴OA =OB =OE ′=2.∵BC=6,∴OC =BC 2+OB 2=62+22=210,则CE ′=OC -OE ′=210-2.第2题解图满分冲关1.C 【解析】①∵AD ∥BC ,∴△AEF ∽△CBF ,∴AE BC =AF CF ,∵E 是AD 的中点,∴AE =12AD =12BC ,∴AF CF =12,∴CF =2AF ,故①错误;②如解图①,过点D 作DM ∥BE 交AC 于点N ,交BC 于点M ,∵DE ∥BM ,BE ∥DM ,∴四边形BMDE 是平行四边形,∴BM =DE =12BC ,∴BM =CM ,∴CN =NF ,∵BE ⊥AC 于点F ,DM ∥BE ,∴DN ⊥CF ,∴DM 垂直平分CF ,∴DF =DC ,∴AB =DF ,故②正确;③∵BE ⊥AC ,∠BAD =90°,∴∠ABE =∠DAC ,而∠BAE =∠ADC =90°,∴△BAE ∽△ADC ,∴ABAE =AD CD ,∴AE ×AD =AB ×CD ,∴12BC ×BC =AB 2,∴AB 2=12BC 2,∴AB =22BC ,∵AB =DF ,∴DF =22BC ,故③正确;④如解图②,连接CE ,由△AEF ∽△CBF ,可得EF BF =AF CF =12,设△AEF 的面积为s ,则△ABF的面积为2s ,△CEF 的面积为2s ,∴△ACE 的面积为3s ,∵E 是AD 的中点,∴△CDE 的面积为3s ,∴四边形CDEF 的面积为5s ,∴S 四边形CDEF =52S △ABF ,故④正确.图①图②第1题解图2.解:(1)∵四边形ABCD 是矩形, ∴AB ∥CD ,AO =CO =BO =DO ,∴∠DCE =∠BEC , ∵CE 平分∠BCD , ∴∠BCE =∠DCE =45°, ∴∠BCE =∠BEC =45°, ∴BE =BC ,∵∠BAC =30°,AO =BO =CO , ∴∠BOC =60°,∠OBA =30°, ∵∠BOC =60°,BO =CO , ∴△BOC 是等边三角形, ∴BC =BO =BE ,且∠OBA =30°, ∴∠BOE =75°;(2)如解图①,过点H 作FH ⊥BC 于F , ∵△BOC 是等边三角形, ∴∠FBH =60°,FH ⊥BC , ∴BH =2BF ,FH =3BF , ∵∠BCE =45°,FH ⊥BC , ∴CF =FH =3BF , ∴BC =3BF +BF =1, ∴BF =3-12, ∴FH =3-32,∴S △BCH =12×BC ×FH =3-34;第2题解图①(3)如解图②,过点C作CN⊥BO于N,∵△BOC是等边三角形,∴∠FBH=60°,FH⊥BC,∴BH=2BF,FH=3BF,∵∠BCE=45°,FH⊥BC,∴CF=FH=3BF,∴BC=3BF+BF=BO=BE,∴OH=OB-BH=3BF-BF,∵∠CBN=60°,CN⊥BO,∴CN=32BC=3+32BF,∵S△CHO∶S△BHE=12×OH×CN∶12×BE×BF,∴S△CHO∶S△BHE=3-32.第2题解图②课时2 菱 形基础过关1.D 【解析】菱形既是轴对称图形又是中心对称图形,其对角线互相垂直且平分,但不一定相等. 2.D 【解析】根据菱形的性质可知:∠DAB =180°-∠D =30°,∠1=12∠DAB =15°.3.D4.C 【解析】∵菱形的对角线互相垂直且平分,∴另一条对角线长为2×32-1=4 2.5.C 【解析】∵四边形ABCD 的两条对角线相交于点O ,且互相平分,∴四边形ABCD 是平行四边形,∴AD ∥BC ,当AB =AD 或AC ⊥BD 时,均可判定四边形ABCD 是菱形;当AC =BD 时,可判定四边形ABCD 是矩形;当∠ABD =∠CBD 时,由AD ∥BC 得∠CBD =∠ADB ,∴∠ABD =∠ADB ,∴AB =AD ,∴四边形ABCD 是菱形.6.A 【解析】∵四边形ABCD 是菱形,∴CD =5,∠COD =90°.在Rt △COD 中,OE 是CD 边上的中线,∴OE =12CD =2.5.7.C 【解析】∵A (2,0),B (0,1),∴OA =2,OB =1,在Rt △AOB 中,由勾股定理得AB =22+12=5,∵四边形ABCD 为菱形,∴菱形ABCD 的周长为4AB =4 5.8.B 【解析】∵AB =AD ,点O 是BD 的中点,∴AC ⊥BD ,∠BAO =∠DAO ,∵∠ABD =∠CDB ,∴AB ∥CD ,∴∠BAC =∠ACD ,∴∠DAC =∠ACD ,∴AD =CD ,∴AB =CD ,∴四边形ABCD 是菱形,∵AB =5,BO =12BD =4,∴AO =3,∴AC =6,∴四边形ABCD 的面积为12×6×8=24.9.C 【解析】如解图,连接BD ,∵四边形ABCD 是菱形,∴AD =AB .∵∠A =60°,∴△ABD 是等边三角形.∵P 为AB 中点,∴∠ADP =12∠ADB =30°.∵AB ∥CD ,∴∠ADC =120°.∴∠CDP =90°.由折叠的性质可知,∠CDE =∠C ′DE =12∠CDP =45°.第9题解图10.4 【解析】∵四边形ABCD 是菱形,∠ACD =30°,∴∠BAD =∠BCD =2∠ACD =60°,AB =AD ,∴△ABD 是等边三角形,∴AB =BD =4.11.70 【解析】∵四边形ABCD 是菱形,∴∠BCD =∠BAD =100°,∴∠ACD =12∠BCD =50°,在△BCE 和△DCE 中,⎩⎪⎨⎪⎧BC =DC ∠BCE =∠DCE CE =CE ,∴△BCE ≌△DCE ,∴∠CDE =∠CBE =20°,∴∠AED =∠ACD+∠CDE =70°.12.245 【解析】∵S 菱形ABCD =12AC ·BD =12×AC ×8=24,∴AC =6,∴OC =12AC =3,∴BC =42+32=5.∵BC ·AH =OB ·AC ,∴AH =245.13.(1)证明:在矩形ABCD 中,AB =CD ,AB ∥CD , ∵BE =DF ,∴AE =CF ,AE ∥CF , ∴四边形AECF 是平行四边形. 又∵BE =DF =32,AB =4,∴AE =AB -BE =52.在Rt △BCE 中,CE 2=BE 2+BC 2, ∴CE 2=(32)2+22,∴CE =52,∴CE =AE .∴平行四边形AECF 是菱形;(2)解:如解图,连接AC ,交EF 于点O , ∵在Rt △ABC 中,AB =4,BC =2, ∴AC =AB 2+BC 2=2 5. ∵AC ·EF ·12=AE ·BC ,∴25×EF ×12=52×2,∴EF = 5.第13题解图14.解:(1)四边形EBGD 是菱形. 理由:∵EG 垂直平分BD , ∴EB =ED ,GB =GD , ∴∠EBD =∠EDB , ∵BD 平分∠ABC , ∵∠EBD =∠DBC , ∴∠EDF =∠GBF , 在△EFD 和△GFB 中, ⎩⎪⎨⎪⎧∠EDF =∠GBF DF =BF ∠EFD =∠GFB, ∴△EFD ≌△GFB (ASA),∴ED =BG ,∴BE =ED =DG =GB , ∴四边形EBGD 是菱形; (2)如解图,作DH ⊥BC 于H .∵四边形EBGD 为菱形,ED =DG =2,∠ABC =30°,∴∠DGH =30°, ∴DH =1,GH =3, ∵∠C =45°, ∴DH =CH =1, ∴GC =GH +CH =1+ 3.第14题解图15.(1)证明:∵AB ∥DC , ∴∠FCO =∠EAO . 在△CFO 和△AEO 中, ⎩⎪⎨⎪⎧∠FCO =∠EAO OC =OA ∠FOC =∠EOA, ∴△CFO ≌△AEO (ASA), ∴OF =OE , 又∵OA =OC ,∴四边形AECF 是平行四边形. ∵EF ⊥AC ,∴四边形AECF 是菱形;(2)解:∵四边形AECF 是菱形,EF =8, ∴OE =12EF =12×8=4,又∵在Rt △AEO 中,AE =5,∴由勾股定理得OA =AE 2-OE 2=52-42=3, ∴AC =2AO =2×3=6,∴S 菱形AECF =12EF ·AC =12×8×6=24.16.(1)证明:∵四边形ABCD 是菱形, ∴AB =AD , ∴∠BAC =∠DAC . ∵AB =AD ,BE =DF ,∴AB -BE =AD -DF ,即AE =AF . ∴△AEF 是等腰三角形. 又∵∠BAC =∠DAC , ∴AC ⊥EF ;(2)解:由题意作图如解图, ∵四边形ABCD 是菱形,∴AC ⊥BD ,AB ∥CD ,OB =12BD =12×4=2.∴∠G =∠AEG . 由(1)知EF ⊥AC . 又∵BD ⊥AC . ∴EF ∥BD .∴∠AEG =∠ABO . ∴∠G =∠ABO . ∵tan G =12,∴tan ∠ABO =AO OB =12.∴AO =OB ·tan ∠ABO =2×12=1.第16题解图能力提升1.D 【解析】如解图,过点E 作EN ⊥AB 于点N ,连接AC ,∵四边形ABCD 与四边形AECF 都是菱形,点E 、F 在BD 上,∠BAD =120°,∠EAF =30°,∴∠ABD =30°,∠EAC =15°,∠BAC =60°,∠BAE =45°,设AN =x ,则NE =x ,AE =2x ,BN =NE tan 30°=3x ,∴AB AE =x +3x2x=6+22.第1题解图2.C 【解析】在菱形ABCD 中,∵AC 平分∠BAD ,∠BAD =120°,∴∠BAC =∠DAC =60°.∴△BAC 为等边三角形.∴CB =CA ,∠CBA =∠CAD .又∵BE =AF ,∴△BEC ≌△AFC (SAS).故①正确;由①得.CE =CF ,∠BCE =∠ACF .∴∠ECF =∠BCA =60°.∴△ECF 为等边三角形.故②正确;∴∠CFG =∠CAE =60°.∴∠CGF =∠AFC .又∵∠AGE =∠CGF ,∴∠AGE =∠AFC .故③正确;由③得:△AGE ∽△BEC 由△AGE ∽△BEC 可知:AE BC =AG BE =EG EC =34,∴EG =34EC =34EF .∴GF EG =13.故④错误.满分冲关92 【解析】如解图,在CD 上截取一点H ,使得CH =13CD ,连接AC 、BD 相交于点O ,BD 交EF 于点Q ,EG 交AC 于点P ,∵AE AB =AG AD =13,∴EG ∥BD ,同法可证:FH ∥BD ,∴EG ∥FH ,同法可证:EF ∥GH ,∴四边形EFHG 是平行四边形,∵四边形ABCD 是菱形,∴AC ⊥BD ,∴EF ⊥EG ,∴四边形EFHG 是矩形,易证点O 在线段FG 上,四边形EQOP 是矩形,∵S △EFG =1,∴S 矩形EQOP=12,即OP ·OQ =12,∵OP ∶OA =BE ∶AB =2∶3,∴OA =32OP ,同法可证OB =3OQ ,∴S菱形ABCD=12·AC ·BD =12×3OP ×6OQ =9OP ×OQ =92.解图课时3正方形基础过关1.C【解析】逐项分析如下:2.C【解析】∵四边形ABCD是正方形,∴AD∥BC,∴∠DAE=∠AEB.∵BE=CF,∠ABE=∠BCF,AB=BC,∴△ABE≌△BCF,∴∠BFC=∠AEB.∵AB∥CD,∴∠ABF=∠BFC=∠AEB.∴与∠AEB相等的角有3个.3. B【解析】∵EC=2,EB=1,∠B=90°,利用勾股定理可得BC=3,则正方形ABCD的面积为(3)2=3.4.C【解析】在正方形ABCD中,∠BAC=45°,∵AB=AE,∴∠ABE=∠AEB=67.5°,∵∠ABE +∠EBC=90°,∴∠EBC=22.5°.5.B【解析】根据正方形的性质结合题图可知,点D的坐标为(-3,2),将正方形ABCD向右平移3个单位,根据平移的规律,可得平移后点D的坐标是(0,2).6.C【解析】∵四边形ABCD是正方形,∴AB=AD,又∵△ADE是等边三角形,∴AE=AD=DE,∠DAE=60°,∴AB=AE,∴∠ABE=∠AEB,∠BAE=90°+60°=150°,∴∠ABE=(180°-150°)÷2=15°,又∵∠BAC=45°,∴∠BFC=45°+15°=60°.7.D【解析】∵四边形ABCD是正方形,∴∠CBE=∠DCM=45°,BC=CD= 2.∴AC=BD=2.∴OC =1.由折叠的性质知,DE=CD=2,CF=EF,∴BE=2-2,∠DFC=90°,∴∠CDM+∠DCE=90°.又∠BCE+∠DCE=90°,∴∠BCE=∠CDM.∴△BCE≌△CDM.∴BE=CM=2- 2.∴OM=OC-CM=1-(2-2)=2-1.8.C【解析】如解图,连接EF.∵四边形ABCD为正方形,∴AB=AD=1,∠ABE=∠ADF=90°,又∵AE =AF ,∴Rt △ABE ≌△Rt △ADF (HL).∴BE =DF ,∴EC =FC ,设EC =FC =x ,则BE =1-x ,∴AE =AF =1+(1-x )2=x 2-2x +2.∵∠EAF =60°,AE =AF ,∴△EAF 为等边三角形,∴EF =AE =AF =x 2-2x +2.∴EF EC =x 2-2x +2x=2,解得x 1=3-1,x 2=-3-1(舍去).∴CF 的长为3-1.第8题解图9.85 【解析】如解图,连接BD 交AC 于点O ,∵四边形ABCD 是正方形,AC 是对角线,∴CD =AD ,∠DAE =∠DCF =45°,BD ⊥AC .∵AE =CF , ∴△DAE ≌△DCF (SAS), ∴DE =DF ,同理可证:DE =BE ,BE =BF ,∴四边形BEDF 是菱形,∵AC =8,AO =OD ,AE =2,∴OE =2,OD =4,∴DE =OD 2+OE 2=42+22=2 5.∴四边形BEDF 的周长为4DE =8 5.第9题解图10.132 【解析】 如解图,连接FC ,则MN =12CF ,在Rt △CFG 中,FG =5,CG =5+7=12,∴CF=52+122=13,∴MN =132.第10题解图11.(1,-1) 【解析】如解图,连接AC .∵四边形OABC 是正方形,∴点A 、C 关于x 轴对称,∴AC 所在直线为OB 的垂直平分线,即A 、C 的横坐标均为1,根据正方形对角线相等的性质,AC =BO =2,又∵A 、C 关于x 轴对称,∴A 点纵坐标为1,C 点纵坐标为-1,故C 点坐标(1,-1),第11题解图12.1 【解析】设大正方形的边长为c ,∵大正方形的面积是13,∴c 2=13,∴a 2+b 2=c 2=13,∵直角三角形的面积是13-14=3,又∵直角三角形的面积是12ab =3,∴ab =6,∴(a -b )2=a 2+b 2-2ab =13-2×6=1.13.证明:∵BF ⊥AE ,DG ⊥AE ,∴∠DGA =AFB =90°,∠ABF +∠F AB =90°, ∵四边形ABCD 是正方形,∴∠F AB +∠DAG =90° ,AB =AD , ∴∠DAG =∠ABF ,∠DGA =∠AFB . 在△DAG 和△ABF 中,⎩⎪⎨⎪⎧∠DGA =∠AFB ∠DAG =∠ABF ,AD =AB∴△DAG ≌△ABF (AAS), ∴AF =DG , BF =AG , ∴FG =AG -AF =BF -DG , ∴BF -DG =FG .能力提升1.D 【解析】如解图,连接CE 交BD 于点P ,则P 即为所求点. ∵四边形ABCD 为正方形,BD 为对角线,∴点A 关于BD 的对称点为C ,AP +EP 的最小值为CE . 又∵AD ∥BC ,AE =CF ,∴四边形AECF 为平行四边形,∴AF =CE , ∴AP +EP 的最小值为AF .第1题解图2.D 【解析】如解图,连接DE ,∵在正方形ABCD 中,S △DEC =12AD ·CD =12S 正方形ABCD ,在矩形ECFG中,S △DEC =12EC ·GE =12S 矩形ECFG .而点E 从点A 移动到点B 的过程中,△DEC 的面积保持不变,∴矩形ECFG的面积保持不变.第2题解图3.6-25 【解析】如解图,延长AF 交DC 的延长线于点H .∵点E 是CD 的中点,∴CE =DE =12×4=2,由勾股定理得AE =42+22=2 5.∵AF 平分∠BAE ,∴∠BAF =∠EAF .∵AB ∥CD ,∴∠BAF =∠H ,∴∠EAF =∠H ,∴EH =AE ,∴CH =25-2.∵AB ∥CD ,∴△HCF ∽△ABF ,∴CF BF =CH BA ,即CF BC -CF =CHBA ,∴CF4-CF=25-24,解得CF =6-2 5.第3题解图4.5-1 【解析】在正方形ABCD 中,AB =BC ,∠ABC =∠BCD =90°,在△ABE 和△BCF 中,∵⎩⎪⎨⎪⎧AB =BC ∠ABC =∠BCD BE =CF,∴△ABE ≌△BCF (SAS),∴∠BAE =∠CBF ,∵∠CBF +∠ABF =90°,∴∠BAE +∠ABF=90°,∴∠AGB=90°,∴点G在以AB为直径的圆上,如解图,连接OG,当O、G、D在同一直线上时,DG有最小值,∵在正方形ABCD中,AD=BC=2,∴AO=1=OG,∴OD=AD2+AO2=22+12=5,∴DG=5-1.第4题解图满分冲关(1)证明:如解图,过点E分别作AB、BC的垂线,垂足分别为点G、H,则四边形GBHE为矩形.∵四边形ABCD是正方形,∴AB=BC.∵BD是对角线,∴BD所在直线是正方形的对称轴,∴CE=AE,EG=EH,∴四边形GBHE为正方形.∵EF⊥AE,∴∠AEF=∠GEH=90°.∵∠AEG+∠GEF=90°,∠FEH+∠GEF=90°,∴∠AEG=∠FEH.∵∠AGE=∠FHE=90°,∴△AGE≌△FHE(ASA),∴AE=EF,∴CE=EF;解图(2)解:∵EF =EC ,EH ⊥BC , ∴FH =HC .∵△EHB 是等腰直角三角形,BE =2x , ∴EH =BH =2x ,∴HC =10-2x , ∴FH =HC =10-2x , ∴FB =10-22x ,∴y =12×(10-22x )×2x =-2x 2+52x (0≤x ≤52);(3)解:∵y =-2x 2+52x =-2(x -524)+254(0≤x ≤52),a =-2<0,∵x =524<52,∴当x =524时,y 有最大值,y 的最大值为0-(52)24×(-2)=254,即△BEF 面积的最大值为254cm 2.。
2020年陕西中考数学一轮复习--3矩形的性质与判定
∠BAD=⑦ 90°.
文字描述
几何语言表述
对角线 对称性 面积
对角线互相⑧平分且 AO=⑩ CO ,⑪ BO =
⑨ 相等 .
⑫DO ,AC=⑬BD .
既是轴对称图形又是中心对称图形,有⑭两 条对称轴,
对称中心是⑮对角线的交点(或点O) .
S=⑯ ab .(a,b表示矩形的长和宽)
1.如图,在矩形ABCD中,对角线AC,BD相交于点O. (1)若AB=6,AC=10,则BC= 8 ,AD= 8 ; (2)若AO=1,则OC= 1 ,AC= 2 ,BD= 2 ; (3)若∠ACB=30°,则∠AOB= 60°, △AOB的形状是等边三角形; (4)图中有 4 个等腰三角形,它们分别是 △AOB,△BOC,△COD, △AOD .
2.矩形的四个角都是直角,一条对角线将矩形分成两个直角三角 形,两条对角线把矩形分成四个等腰三角形,在矩形性质相关的计算和证 明题中要注意这些结论的运用.
3.过矩形某条边上的点分别向矩形的两条对角线作垂线,两条垂线 段的长度和为一定值,等于对角S线矩形的长.
考点突破
河北8年真题训练
命题点 矩形的性质与判定(8 年 2 考)
1.(2019·株洲)对于任意的矩形,下列说法一定正确的是(C ) A.对角线垂直且相等 B.四边都互相垂直 C.四个角都相等 D.是轴对称图形,但不是中心对称图形
2.(2018·上海)已知 ABCD,下列条件中,不能判定这个平行四边形
为矩形的是(B )
A.∠A=∠B
B.∠A=∠C
C.AC=BD
D.AB⊥BC
AB=CD,
在△ABE 和△CDF 中,∠ABE=∠CDF, BE=DF,
∴△ABE≌△CDF(SAS).
中考数学一轮总复习 第28课时 矩形、菱形、正方形(无答案) 苏科版
A B C DEA′第28课时:矩形、菱形、正方形【知识梳理】1. 特殊的平行四边形的之间的关系2. 特殊的平行四边形的判别条件(1)矩形:①有一个角是 的平行四边形是矩形.②对角线 的平行四边形是矩形.③有三个角是 的四边形是矩形.(2)菱形:①一组 的平行四边形是菱形.②对角线 的平行四边形是菱形.③四条边都相等的四边形是菱形.(3)正方形:①有一个角是 的菱形是正方形.②对角线 的菱形是正方形.③有一组 的矩形是正方形.④对角线 的矩形是正方形.矩形 4.面积计算:(1)矩形:S=长×宽;(2)菱形:1212S l l =⋅(12l l 、是对角线);(3)正方形:S=边长2【课前预习】1、如图,将矩形ABCD 沿BE 折叠,若∠CBA′=30°则∠BEA′= .2、如图,菱形ABCD 的边长为10cm ,D E⊥AB,3sin 5A =,则这个菱形的面积= m 2. 3、如图,矩形内有两个相邻的正方形面积分别为25和4,那么阴影部分面积为 . 4、正方形的对角线长为a ,则它的对角线的交点到各边的距离为( ) A 、22 a B 、24 a C 、a2D 、2 2 a 【例题讲解】例1 如图,在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 边上的中点,求证:四边形EFGH 是平行四边形. (若四边形ABCD 是矩形,则四边形EFGH 有什么变化?若四边形ABCD 是菱形呢……你能说明中点四边形的形状是由什么决定的么?) 正平行四边形矩形菱形方形B例2 如图,在平行四边形ABCD 中,∠D AB =60°,AB =2AD ,点 E 、F 分别是CD 的中点,过点A 作AG∥BD,交CB 的延长线于点G . (1)求证:四边形DEBF 是菱形;(2)请判断四边形AGBD 是什么特殊四边形?并加以证明.例3 如图,点G 是正方形ABCD 对角线CA 的延长线上任意一点,以线段AG 为边作一个正方形AEFG ,线段EB 和GD 相交于点H . (1)求证:EB=GD ;(2)判断EB 与GD 的位置关系,并说明理由; (3)若AB=2,AG=2,求EB 的长.例4 如图,△ABC 中,已知∠BAC=45°,AD⊥BC 于D ,BD =2,DC =3,求AD 的长.解答了此题.请按照小萍的思路,探究并解答下列问题:(1)AB 、AC 为对称轴,画出△ABD、△ACD 的轴对称图形,D 为E 、F ,延长EB 、FC 相交于G点,证明四边形AEGF 是正方形;设AD=x ,利用勾股定理,建立关于x 的方程模型,求出x 的值.【巩固练习】 1、如图,矩形ABCD 的两条对角线相交于点O ,602AOB AB ∠==°,,则矩形的对角线AC 的长是( ) A .2 B .4 C . D .2、如图,正方形ABCD 内有两条相交线段MN 、EF ,M 、N 、E 、F 分别在边AB 、CD 、AD 、BC 上.小明认为:若MN = EF ,则MN⊥EF;小亮认为: 若MN⊥EF,则MN = EF .你认为( )A .仅小明对B .仅小亮对C .两人都对D .两人都不对 3、如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是 .4、四边形ABCD 的对角线互相平分,要使它变为菱形,需要添加的条件是 (只填一个你认为正确的即可).6、在□ABC D 中,BC AE ⊥于E ,CD AF ⊥于F ,BD 与AE 、AF 分别相交于G 、H .(1)求证:△ABE∽△ADF;(2)若AH AG =,求证:四边形ABCD 是菱形.【课后作业】 班级 姓名OD CA BA DC B GEH F一、必做题1、如图,在△ABC 中,点E ,D ,F 分别在边AB ,BC ,CA 上,且DE//CA , DF//BA .下列四个判断中,不正确...的是( ) A. 四边形AEDF 是平行四边形B. 如果∠BAC=90°,那么四边形AEDF 是矩形C. 如果AD 平分∠BAC,那么四边形AEDF 是菱形D. 如果AD⊥BC 是AB =AC ,那么四边形AEDF 是正方形 2、下列命题正确的是( )A .对角线互相平分的四边形是菱形;B .对角线互相平分且相等的四边形是菱形C .对角线互相垂直且相等的四边形是菱形;D .对角线互相垂直且平分的四边形是菱形. 3、如图,两张宽度相等的纸条交叉重叠,重合部分是( ) A .平行四边形 B .菱形 C .矩形 D .正方形4、如图,将矩形ABCD 沿对角线BD 折叠,使C 落在C '处,BC '交AD 于E ,则下列结论不一定成立的是( )A .AD BC '=B .EBD ED B ∠=∠C .ABE CBD △∽△ D .sin AE ABE ED∠=5、如图,在菱形ABCD 中,∠BAD=80°,AB 的垂直平分线交对角线AC 于点F ,E 为垂足,连DF ,∠CDF 等于 °.6、如图,矩形ABCD 中,AB=3,BC=5过对角线交点O 作OE⊥AC 交AD 于E 则AE 的长是 .7、顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是 .8、如图,在菱形ABCD 中,∠A=110°,E ,F 分别是边AB 和BC 的中点,EP⊥CD 于点P ,则∠FPC= .9、如图,平行四边形 ABCD 中,O 是对角线AC 的中点,EF⊥AC 交CD 于E ,交AB 于F ,问四边形AFCE 是菱形吗?请说明理由.10、如图,已知矩形ABCD 的两条对角线相交于O ,∠ACB=30°,AB=2. (1)求AC 的长;(2)求∠AOB 的度数;(3)以O B 、OC 为邻边作菱形OBEC ,求菱形OBEC 的面积.二、选做题第3题图第5题图 第6题图第8题图CD C 'A B E第4题图11、如图,l m ∥,矩形ABCD 的顶点B 在直线m 上,则α∠= 度.12、如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A 顺时针旋转45°,则这两个正方形重叠部分的面积是 .13、将五个边长都为2cm 的正方形按如图所示摆放,点A 、B 、C 、D 分别是正方形的中心,则途中四块阴影部分的面积和为__________cm 2.14、如图,正方形ABCD 的边长为1cm ,E 、F 分别是BC 、CD 的中点,连接BF 、DE ,则图中阴影部分的面积是 cm 2.15、如图,点P 是正方形ABCD 边AB 上一点(不与点A ,B 重合),连接PD 并将线段PD 绕点P 顺时针方向旋转90°得到线段PE ,PE 交边BC 于点F ,连接BE ,DF . (1)求证:∠ADP=∠EPB;(2)求∠CBE 的度数; (3)当APAB的值等于多少时,△PFD∽△BFP?并说明理由.16、学校植物园沿路护栏纹饰部分设计成若干个全等菱形图案,每增加一个菱形图案,纹饰长度就增加dcm,如图所示.已知每个菱形图案的边长,其一个内角为60°.(1)若d =26(2)当d =20时,若保持(1)中纹饰长度不变,则需要多少个这样的菱形图案?第11题图 第13题图 DA B C ml α 65°C 'B第12题图 第14题图。
中考专题复习——矩形菱形正方形
中考专题复习第二十一讲矩形菱形正方形【基础知识回顾】一、矩形:1、定义:有一个角是角的平行四边形叫做矩形2、矩形的性质:⑴矩形的四个角都⑵矩形的对角线3、矩形的判定:⑴用定义判定⑵有三个角是直角的是矩形⑶对角线相等的是矩形【名师提醒:1、矩形是对称图形,对称中心是,矩形又是对称图形,对称轴有条2、矩形被它的对角线分成四个全等的三角形和两对全等的三角形3、矩形中常见题目是对角线相交成600或1200角时,利用直角三角形、等边三角形等图形的性质解决问题】二、菱形:1、定义:有一组邻边的平行四边形叫做菱形2、菱形的性质:⑴菱形的四条边都⑵菱形的对角线且每条对角线3、菱形的判定:⑴用定义判定⑵对角线互相垂直的是菱形⑶四条边都相等的是菱形【名师提醒:1、菱形既是对称图形,也是对称图形,它有条对称轴,分别是2、菱形被对角线分成四个全等的三角形和两对全等的三角形3、菱形的面积可以用平行四边形面积公式计算,也可以用两对角线积的来计算4、菱形常见题目是内角为1200或600时,利用等边三角形或直角三角形的相关知识解决的题目】三、正方形:1、定义:有一组邻边相等的是正方形,或有一个角是直角的是正方形2、性质:⑴正方形四个角都都是角,⑵正方形四边条都⑶正方形两对角线、且每条对角线平分一组内角3、判定:⑴先证是矩形,再证⑵先证是菱形,再证【名师提醒:1、菱形、正方形具有平行四边形的所有性质,正方形具有以上特殊四边形的所有性质。
这四者之间的关系可表示为:2、正方形也既是对称图形,又是对称图形,有条对称轴3、几种特殊四边形的性质和判定都是从、、三个方面来看的,要注意它们的区别和联系】【重点考点例析】考点一:与矩形有关的折叠问题例1 (2016•泸州)如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,点D的对称点F恰好落在BC上,已知折痕AE=105cm,且tan∠EFC=34,那么该矩形的周长为()A.72cm B.36cm C.20cmD.16cm对应训练1.(2016•湖州)如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,则ADAB的值为()A.12B.33C.23D.22考点二:和菱形有关的对角线、周长、面积的计算问题例2 (2016•泉州)如图,菱形ABCD的周长为85,对角线AC和BD相交于点O,AC:BD=1:2,则AO:BO= ,菱形ABCD的面积S= .对应训练2.(2016•凉山州)如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.14B.15C.1 D.17考点三:和正方形有关的证明题例3 (2016•湘潭)在数学活动课中,小辉将边长为2和3的两个正方形放置在直线l 上,如图1,他连结AD、CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF的长.思路分析:(1)根据正方形的性质可得AO=CO ,OD=OF ,∠AOC=∠DOF=90°,然后求出∠AOD=∠COF ,再利用“边角边”证明△AOD 和△COF 全等,根据全等三角形对应边相等即可得证;(2)与(1)同理求出CF=AD ,连接DF 交OE 于G ,根据正方形的对角线互相垂直平分可得DF ⊥OE ,DG=OG=12OE ,再求出AG ,然后利用勾股定理列式计算即可求出AD . 解:(1)AD=CF .理由如下:在正方形ABCO 和正方形ODEF 中,AO=CO ,OD=OF ,∠AOC=∠DOF=90°, ∴∠AOC+∠COD=∠DOF+∠COD ,即∠AOD=∠COF ,在△AOD 和△COF 中,AO CO AOD COF OD OF =⎧⎪∠=∠⎨⎪=⎩,∴△AOD ≌△COF (SAS ), ∴AD=CF ;(2)与(1)同理求出CF=AD ,如图,连接DF 交OE 于G ,则DF ⊥OE ,DG=OG=12OE ,∵正方形ODEF 的边长为2,∴OE=2×2=2,∴DG=OG=12OE=12×2=1, ∴AG=AO+OG=3+1=4,在Rt △ADG 中,AD=22224117AG DG +=+=,∴CF=AD=17.点评:本题考查了正方形的性质,全等三角形的判定与性质,勾股定理的应用,(1)熟练掌握正方形的四条边都相等,四个角都是直角,对角线相等且互相垂直平分是解题的关键,(2)作辅助线构造出直角三角形是解题的关键.对应训练3.(2016•三明)如图①,在正方形ABCD 中,P 是对角线AC 上的一点,点E 在BC 的延长线上,且PE=PB .(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE= 度.3.(1)证明:在正方形ABCD中,BC=DC,∠BCP=∠DCP=45°,∵在△BCP和△DCP中,BC DCBCP DCPPC PC=⎧⎪∠=∠⎨⎪=⎩,∴△BCP≌△DCP(SAS);(2)证明:由(1)知,△BCP≌△DCP,∴∠CBP=∠CDP,∵PE=PB,∴∠CBP=∠E,∴∠DPE=∠DCE,∵∠1=∠2(对顶角相等),∴180°-∠1-∠CDP=180°-∠2-∠E,即∠DPE=∠DCE,∵AB∥CD,∴∠DCE=∠ABC,∴∠DPE=∠ABC;(3)解:与(2)同理可得:∠DPE=∠ABC,∵∠ABC=58°,∴∠DPE=58°.故答案为:58.考点四:四边形综合性题目例4 (2016•资阳)在一个边长为a(单位:cm)的正方形ABCD中,点E、M分别是线段AC,CD上的动点,连结DE并延长交正方形的边于点F,过点M作MN⊥DF于H,交AD于N.(1)如图1,当点M与点C重合,求证:DF=MN;(2)如图2,假设点M从点C出发,以1cm/s的速度沿CD向点D运动,点E同时从点A出发,以2cm/s速度沿AC向点C运动,运动时间为t(t>0);①判断命题“当点F是边AB中点时,则点M是边CD的三等分点”的真假,并说明理由.②连结FM、FN,△MNF能否为等腰三角形?若能,请写出a,t之间的关系;若不能,请说明理由.思路分析:(1)证明△ADF≌△DNC,即可得到DF=MN;易证△MND ∽△DFA,∴ND DMAF AD=,即ND a tat aa t-=-,得ND=t.∴ND=CM=t,AN=DM=a-t.若△MNF为等腰三角形,则可能有三种情形:(I)若FN=MN,则由AN=DM知△FAN≌△NDM,∴AF=DM,即ata t-=t,得t=0,不合题意.∴此种情形不存在;(II)若FN=FM,由MN⊥DF知,HN=HM,∴DN=DM=MC,∴t=12a,此时点F与点B重合;(III)若FM=MN,显然此时点F在BC边上,如下图所示:易得△MFC≌△NMD,∴FC=DM=a-t;又由△NDM∽△DCF,∴DN DCDM FC=,即t aa t FC=-,∴FC=()a a tt-.∴()a a tt-=a-t,∴t=a,此时点F与点C重合.综上所述,当t=a或t=12a时,△MNF能够成为等腰三角形.点评:本题是运动型几何综合题,考查了相似三角形、全等三角形、正方形、等腰三角形、命题证明等知识点.解题要点是:(1)明确动点的运动过程;(2)明确运动过程中,各组成线段、三角形之间的关系;(3)运用分类讨论的数学思想,避免漏解.对应训练4.(2016•营口)如图1,△ABC为等腰直角三角形,∠ACB=90°,F是AC边上的一个动点(点F与A、C不重合),以CF为一边在等腰直角三角形外作正方形CDEF,连接BF、AD.(1)①猜想图1中线段BF、AD的数量关系及所在直线的位置关系,直接写出结论;②将图1中的正方形CDEF,绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2、图3的情形.图2中BF交AC于点H,交AD于点O,请你判断①中得到的结论是否仍然成立,并选取图2证明你的判断.(2)将原题中的等腰直角三角形ABC改为直角三角形ABC,∠ACB=90°,正方形CDEF改为矩形CDEF,如图4,且AC=4,BC=3,CD=43,CF=1,BF交AC于点H,交AD于点O,连接BD、AF,求BD2+AF2的值.4.解:(1)①BF=AD ,BF ⊥AD ;②BF=AD ,BF ⊥AD 仍然成立,证明:∵△ABC 是等腰直角三角形,∠ACB=90°,∴AC=BC ,∵四边形CDEF 是正方形,∴CD=CF ,∠FCD=90°,∴∠ACB+∠ACF=∠FCD+∠ACF ,即∠BCF=∠ACD ,在△BCF 和△ACD 中BC ACBCF ACD CF CD=⎧⎪∠=∠⎨⎪=⎩,∴△BCF ≌△ACD (SAS ),∴BF=AD ,∠CBF=∠CAD ,又∵∠BHC=∠AHO ,∠CBH+∠BHC=90°,∴∠CAD+∠AHO=90°,∴∠AOH=90°,∴BF ⊥AD ;(2)证明:连接DF ,∵四边形CDEF 是矩形,∴∠FCD=90°,又∵∠ACB=90°,∴∠ACB=∠FCD∴∠ACB+∠ACF=∠FCD+∠ACF ,即∠BCF=∠ACD ,∵AC=4,BC=3,CD=43,CF=1,∴34BC CF AC CD ==,∴△BCF ∽△ACD ,∴∠CBF=∠CAD ,又∵∠BHC=∠AHO ,∠CBH+∠BHC=90°∴∠CAD+∠AHO=90°,∴∠AOH=90°,∴BF⊥AD,∴∠BOD=∠AOB=90°,∴BD2=OB2+OD2,AF2=OA2+OF2,AB2=OA2+OB2,DF2=OF2+OD2,∴BD2+AF2=OB2+OD2+OA2+OF2=AB2+DF2,∵在Rt△ABC中,∠ACB=90°,AC=4,BC=3,∴AB2=AC2+BC2=32+42=25,∵在Rt△FCD中,∠FCD=90°,CD=43,CF=1,∴DF2=CD2+CF2=(43)2+12=259,∴BD2+AF2=AB2+DF2=25+259=2509.【聚焦山东中考】1.(2016•威海)如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF2.(2016•枣庄)如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为()A.3-1B.3-5C.5+1D.5-13.(2016•临沂)如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则△AEF的面积是.4.(2016•烟台)如图,正方形ABCD的边长为4,点E在BC上,四边形EFGB也是正方形,以B为圆心,BA长为半径画AC,连结AF,CF,则图中阴影部分面积为.5.(2016•济南)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+3.其中正确的序号是(把你认为正确的都填上).6.(2016•济宁)如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.(1)求证:AF=BE;(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.6.(1)证明:在正方形ABCD中,AB=AD,∠BAE=∠D=90°,∴∠DAF+∠BAF=90°,∵AF⊥BE,∴∠ABE+∠BAF=90°,∴∠ABE=∠DAF,∵在△ABE和△DAF中,ABE DAFAB ADBAE D∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE≌△DAF(ASA),∴AF=BE;(2)解:MP与NQ相等.理由如下:如图,过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E,则与(1)的情况完全相同.7.(2016•青岛)已知:如图,在矩形ABCD中,M,N分别是边AD、BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM ≌△DCM ;(2)判断四边形MENF 是什么特殊四边形,并证明你的结论;(3)当AD :AB= 时,四边形MENF 是正方形(只写结论,不需证明)8.(2016•淄博)矩形纸片ABCD 中,AB=5,AD=4.(1)如图1,四边形MNEF 是在矩形纸片ABCD 中裁剪出的一个正方形.你能否在该矩形中裁剪出一个面积最大的正方形,最大面积是多少?说明理由;(2)请用矩形纸片ABCD 剪拼成一个面积最大的正方形.要求:在图2的矩形ABCD 中画出裁剪线,并在网格中画出用裁剪出的纸片拼成的正方形示意图(使正方形的顶点都在网格的格点上).8.解:(1)正方形的最大面积是16.设AM =x (0≤x ≤4),则MD =4-x .∵四边形MNEF 是正方形,∴MN =MF ,∠AMN +∠FMD =90°.∵∠AMN +∠ANM =90°,∴∠ANM =∠FMD .∵在△ANM 和△DMF 中A D ANM FMD MN FM ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ANM ≌△DMF (AAS ).∴DM =AN .∴S 正方形MNEF =MN 2=AM 2+AN 2,=x2+(4-x)2,=2(x-2)2+8∵函数S正方形MNEF=2(x-2)2+8的开口向上,对称轴是x=2,在对称轴的左侧S随x的增大而减小,在对称轴的右侧S随x的增大而增大,∵0≤x≤4,∴当x=0或x=4时,正方形MNEF的面积最大.最大值是16.(2)先将矩形纸片ABCD分割成4个全等的直角三角形和两个矩形如图1,然后拼成如图2的正方形.9.(2016•济南)(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写做法,保留作图痕迹);(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.9.解:(1)完成图形,如图所示:证明:∵△ABD和△ACE都是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,∵在△CAD和△EAB中,【备考真题过关】一、选择题1.(2016•铜仁地区)下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形2.(2016•宜宾)矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等3.(2013•随州)如图,在菱形ABCD中,∠BAD=120°.已知△ABC的周长是15,则菱形ABCD的周长是()A.25B.20C.15D.104.(2016•重庆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.2cm D.1cm 5.(2016•南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12B.24C.123D.1636.(2016•巴中)如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD 的周长是()A.24B.16C.43D.237(2016•茂名)如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=2,则AC 的长是()A.2B.4C.2 3D.438.(2016•成都)如图,将矩形ABCD沿对角线BD折叠,使点C和点C′重合,若AB=2,则C′D的长为()A.1B.2C.3D.4 9.(2016•包头)如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1、S2的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.3S1=2S210.(2016•扬州)如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC 于点F,垂足为E,连接DF,则∠CDF等于()A.50°B.60°C.70°D.80°11.(2016•绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=()A.2825cm B.2120cm C.2815cm D.2521cm12.(2016•雅安)如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正确结论有()个.A.2B.3C.4D.5二、填空题13.(2016•宿迁)如图,一个平行四边形的活动框架,对角线是两根橡皮筋.若改变框架的形状,则∠α也随之变化,两条对角线长度也在发生改变.当∠α为------度时,两条对角线长度相等.14.(2016•淮安)若菱形的两条对角线分别为2和3,则此菱形的面积是.15.(2013•无锡)如图,菱形ABCD中,对角线AC交BD于O,AB=8,E是CD的中点,则OE的长等于.16.(2016•黔西南州)如图所示,菱形ABCD的边长为4,且AE⊥BC于E,AF⊥CD于F,∠B=60°,则菱形的面积为.17.(2016•攀枝花)如图,在菱形ABCD中,DE⊥AB于点E,cosA=35,BE=4,则tan ∠DBE的值是.18.(2016•南充)如图,正方形ABCD的边长为2,过点A作AE⊥AC,AE=1,连接BE,则tanE= .19.(2016•苏州)如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若1CGGB k=,则ADAB=用含k的代数式表示).20.(2016•哈尔滨)如图,矩形ABCD的对角线AC,BD相交于点O,过点O作OE⊥AC交AB于E,若BC=4,△AOE的面积为5,则sin∠BOE的值为.21.(2016•北京)如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为.22.(2016•南京)如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF= cm.23.(2016•舟山)如图,正方形ABCD的边长为3,点E,F分别在边AB、BC上,AE=BF=1,小球P从点E出发沿直线向点F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P第一次碰到点E时,小球P所经过的路程为.24.(2016•桂林)如图,已知线段AB=10,AC=BD=2,点P是CD 上一动点,分别以AP 、PB 为边向上、向下作正方形APEF 和PHKB ,设正方形对角线的交点分别为O 1、O 2,当点P 从点C 运动到点D 时,线段O 1O 2中点G 的运动路径的长是 .25.(2016•荆州)如图,将矩形ABCD 沿对角线AC 剪开,再把△ACD 沿CA 方向平移得到△A 1C 1D 1,连结AD 1、BC 1.若∠ACB=30°,AB=1,CC 1=x ,△ACD 与△A 1C 1D 1重叠部分的面积为s ,则下列结论:①△A 1AD 1≌△CC 1B ;②当x=1时,四边形ABC 1D 1是菱形;③当x=2时,△BDD 1为等边三角形;④s=38(x -2)2 (0<x <2); 其中正确的是 (填序号).三、解答题26.(2016•南通)如图,AB=AC ,AD=AE ,DE=BC ,且∠BAD=∠CAE .求证:四边形BCDE 是矩形.26.证明:∵∠BAD=∠CAE ,∴∠BAD -∠BAC=∠CAE -∠BAC ,∴∠BAE=∠CAD ,∵在△BAE 和△CAD 中AE AD BAE CAD AB AC =⎧⎪∠=∠⎨⎪=⎩∴△BAE ≌△CAD (SAS ), ∴∠BEA=∠CDA ,BE=CD ,∵DE=BC ,∴四边形BCDE 是平行四边形,∵AE=AD ,∴∠AED=∠ADE ,∵∠BEA=∠CDA ,∴∠BED=∠CDE ,∵四边形BCDE 是平行四边形,∴BE ∥CD ,∴∠CDE+∠BED=180°,∴∠BED=∠CDE=90°,∴四边形BCDE 是矩形.27.(2016•广州)如图,四边形ABCD 是菱形,对角线AC 与BD相交于O ,AB=5,AO=4,求BD 的长.27.解:∵四边形ABCD 是菱形,对角线AC 与BD 相交于O ,∴AC ⊥BD ,DO=BO ,∵AB=5,AO=4,∴BO=2254-=3,∴BD=2BO=2×3=6.28.(2013•厦门)如图所示,在正方形ABCD 中,点G 是边BC 上任意一点,DE ⊥AG ,垂足为E ,延长DE 交AB 于点F .在线段AG 上取点H ,使得AG=DE+HG ,连接BH .求证:∠ABH=∠CDE .28.证明:如图,在正方形ABCD 中,AB=AD ,∠ABG=∠DAF=90°,∵DE ⊥AG ,∴∠2+∠EAD=90°,又∵∠1+∠EAD=90°,∴∠1=∠2,在△ABG 和△DAF 中, 1 290AB AD ABG DAF =⎧⎪=⎨⎪∠=∠=︒⎩,∴△ABG ≌△DAF (ASA ),∴AF=BG ,AG=DF ,∠AFD=∠BGA ,∵AG=DE+HG ,AG=DE+EF ,∴EF=HG ,在△AEF 和△BHG 中,AF BG AFD BGA EF HG =⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△BHG (SAS ),∴∠1=∠3,∴∠2=∠3,∵∠2+∠CDE=∠ADC=90°,∠3+∠ABH=∠ABC=90°,∴∠ABH=∠CDE .29.(2013•黔东南州)如图,在正方形ABCD 中,点M 是对角线BD 上的一点,过点M 作ME ∥CD 交BC 于点E ,作MF ∥BC 交CD 于点F .求证:AM=EF .29.证明:过M 点作MQ ⊥AD ,垂足为Q ,作MP 垂足AB ,垂足为P ,∵四边形ABCD 是正方形,∴四边形MFDQ 和四边形PBEM 是正方形,四边形APMQ 是矩形,∴AP=QM=DF=MF ,PM=PB=ME ,∵在△APM 和△FME 中,AP MF APM FME PM ME =⎧⎪∠=∠⎨⎪=⎩, ∴△APM ≌△FME (SAS ), ∴AM=EF .30.(2016•铁岭)如图,△ABC 中,AB=AC ,AD 是△ABC 的角平分线,点O 为AB 的中点,连接DO 并延长到点E ,使OE=OD ,连接AE ,BE .(1)求证:四边形AEBD 是矩形;(2)当△ABC 满足什么条件时,矩形AEBD 是正方形,并说明理由.30.(1)证明:∵点O 为AB 的中点,连接DO 并延长到点E ,使OE=OD ,∴四边形AEBD 是平行四边形,∵AB=AC ,AD 是△ABC 的角平分线,∴AD ⊥BC ,∴∠ADB=90°,∴平行四边形AEBD 是矩形;(2)当∠BAC=90°时,理由:∵∠BAC=90°,AB=AC ,AD 是△ABC 的角平分线,∴AD=BD=CD ,∵由(1)得四边形AEBD 是矩形,∴矩形AEBD 是正方形.31.(2016•南宁)如图,在菱形ABCD 中,AC 为对角线,点E 、F 分别是边BC 、AD 的中点.(1)求证:△ABE ≌△CDF ;(2)若∠B=60°,AB=4,求线段AE 的长.31.解:(1)∵四边形ABCD 是菱形,∴AB=BC=AD=CD ,∠B=∠D ,∵点E 、F 分别是边BC 、AD 的中点,∴BE=DF ,在△ABE 和△CDF 中,∵AB CD B D BE DF =⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△CDF (SAS );(2)∵∠B=60°,∴△ABC 是等边三角形,∵点E 是边BC 的中点,∴AE ⊥BC ,在Rt △AEB 中,∠B=60°,AB=4,sin60°=4AE AE AB =, 解得AE=23.32.(2016•贵阳)已知:如图,在菱形ABCD 中,F 是BC 上任意一点,连接AF 交对角线BD 于点E ,连接EC .(1)求证:AE=EC ;(2)当∠ABC=60°,∠CEF=60°时,点F 在线段BC 上的什么位置?说明理由.32.(1)证明:如图,连接AC ,∵BD 也是菱形ABCD 的对角线,∴BD 垂直平分AC ,∴AE=EC ;(2)解:点F 是线段BC 的中点.理由如下:在菱形ABCD 中,AB=BC ,又∵∠ABC=60°,∴△ABC 是等边三角形,∴∠BAC=60°,∵AE=EC ,∠CEF=60°,∴∠EAC=12∠BAC=30°, ∴AF 是△ABC 的角平分线,∵AF 交BC 于F ,∴AF 是△ABC 的BC 边上的中线,∴点F 是线段BC 的中点.33.(2016•曲靖)如图,点E 在正方形ABCD 的边AB 上,连接DE ,过点C 作CF ⊥DE 于F ,过点A 作AG ∥CF 交DE 于点G .(1)求证:△DCF ≌△ADG .(2)若点E 是AB 的中点,设∠DCF=α,求sinα的值.33.(1)证明:在正方形ABCD 中,AD=DC ,∠ADC=90°,∵CF ⊥DE ,∴∠CFD=∠CFG=90°,35.(2016•绥化)已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边做正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD 三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为22,对角线AE,DF相交于点O,连接OC.求OC的长度.35.证明:(1)∵∠BAC=90°,∠ABC=45°,线段PA绕点P逆时针旋转90°得到线段PE,在直线BA上取点F,使BF=BP,且点F与点E在BC同侧,连接EF,CF.(1)如图 ,当点P在CB延长线上时,求证:四边形PCFE是平行四边形;(2)如图 ,当点P在线段BC上时,四边形PCFE是否还是平行四边形,说明理由;(3)在(2)的条件下,四边形PCFE的面积是否有最大值?若有,请求出面积的最大值及此时BP长;若没有,请说明理由.36.解:(1)∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠PBA=90°∵在△PBA和△FBC中,AB BCPBA ABCBP BF=⎧⎪∠=∠⎨⎪=⎩,∴△PBA≌△FBC(SAS),∴PA=FC,∠PAB=∠FCB.∵PA=PE,∴PE=FC.∵∠PAB+∠APB=90°,∴∠FCB+∠APB=90°.∵∠EPA=90°,∴∠APB+∠EPA+∠FPC=180°,即∠EPC+∠PCF=180°,∴EP∥FC,∴四边形EPCF是平行四边形;(2)结论:四边形EPCF是平行四边形,∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠CBF=90°∵在△PBA和△FBC中,AB BCPBA ABCBP BF=⎧⎪∠=∠⎨⎪=⎩,∴△PBA≌△FBC(SAS),∴PA=FC,∠PAB=∠FCB.∵PA=PE,。
2024成都中考数学复习专题 矩形、菱形、正方形的性质与判定(含答案)
2024成都中考数学复习专题矩形、菱形、正方形的性质与判定基础题1. (2023上海)在四边形ABCD中,AD∥BC,AB=C D.下列说法能使四边形ABCD为矩形的是()A. AB∥CDB. AD=BCC. ∠A=∠BD. ∠A=∠D2. (2023自贡)如图,边长为3的正方形OBCD两边与坐标轴正半轴重合,点C的坐标是()A. (3,-3)B. (-3,3)C. (3,3)D. (-3,-3)第2题图3. (2022玉林)若顺次连接四边形ABCD各边的中点所得的四边形是正方形,则四边形ABCD 的两条对角线AC,BD一定是()A. 互相平分B. 互相垂直C. 互相平分且相等D. 互相垂直且相等4. (2023深圳)如图,在平行四边形ABCD中,AB=4,BC=6,将线段AB水平向右平移a 个单位长度得到线段EF,若四边形ECDF为菱形时,则a的值为()第4题图A. 1B. 2C. 3D. 45. (2023十堰)如图,将四根木条用钉子钉成一个矩形框架ABCD,然后向左扭动框架,观察所得四边形的变化.下面判断错误的是()A. 四边形ABCD由矩形变为平行四边形B. 对角线BD的长度减小C. 四边形ABCD的面积不变D. 四边形ABCD的周长不变第5题图6. 如图,菱形ABCD中,点E,F分别为AB,BC的中点,EF=2,BD=8,则该菱形的面积为()第6题图A. 12B. 16C. 20D. 327. (2023杭州)如图,矩形ABCD的对角线AC,BD相交于点O.若∠AOB=60°,则ABBC=()A. 12 B.3-12 C.32 D.33第7题图8. (2023大庆)将两个完全相同的菱形按如图方式放置,若∠BAD=α,∠CBE=β,则β=()第8题图A. 45°+12α B. 45°+32αC. 90°-12αD. 90°-32α 9. (2023河北)如图,在Rt △ABC 中,AB =4,点M 是斜边BC 的中点,以AM 为边作正方形AMEF .若S 正方形AMEF =16,则S △ABC =( ) A. 4 3 B. 8 3 C. 12 D. 16第9题图10. [新考法—条件开放](2023齐齐哈尔)如图,在四边形ABCD 中,AD =BC ,AC ⊥BD 于点O .请添加一个条件:________,使四边形ABCD 成为菱形.第10题图 11. (2023怀化)如图,点P 是正方形ABCD 的对角线AC 上的一点,PE ⊥AD 于点E ,PE =3.则点P 到直线AB 的距离为________.第11题图12. (2023绍兴)如图,在菱形ABCD 中,∠DAB =40°,连接AC ,以点A 为圆心,AC 长为半径作弧,交直线AD 于点E ,连接CE ,则∠AEC 的度数是________.第12题图13. (2023河南)矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且AN =AB =1.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为________.14. [新考法—条件开放](2023十堰)如图,▱ABCD 的对角线AC ,BD 交于点O ,分别以点B ,C 为圆心,12AC ,12BD 长为半径画弧,两弧交于点P ,连接BP ,CP . (1)试判断四边形BPCO 的形状,并说明理由;(2)请说明当▱ABCD 的对角线满足什么条件时,四边形BPCO 是正方形?第14题图15. 如图,在平行四边形ABCD 中,点E ,F 分别在边BC ,AD 上,且BE =DF ,连接AE ,CF ,EH ⊥CF 于点H ,FG ⊥AE 于点G .(1)判断四边形EGFH 的形状,并说明理由;(2)若AE =5,tan ∠DAE =2,EG =2GF ,求AG 的长.第15题图拔高题16. (2022青羊区模拟)我们规定菱形与正方形接近程度称为“接近度”,设菱形相邻两个内角的度数分别为α,β,将菱形的“接近度”定义为|α-β|,于是|α-β|越小,菱形越接近正方形.第16题图①若菱形的一个内角为80°,则该菱形的“接近度”为________;②当菱形的“接近度”等于________时,菱形是正方形.课时2基础题1. (2023湘潭)如图,菱形ABCD中,连接AC,BD,若∠1=20°,则∠2的度数为()A. 20°B. 60°C. 70°D. 80°第1题图2. 如图,在菱形ABCD中,AC,BD为菱形的对角线,∠DBC=60°,BD=10,点F为BC 中点,则EF的长为()第2题图A. 3B. 4C. 5D. 63. 如图所示,将一张矩形纸片沿虚线对折两次,当剪刀与纸片的夹角∠ABC=45°时,已知AB=4 cm,则剪下来图形的周长为()第3题图A. 4 cmB. 4 2 cmC. 16 cmD. 16 2 cm4. (2022青岛改编)如图,O 为正方形ABCD 对角线AC 的中点,△ACE 为等边三角形.若AB =2,则OE 的长度为________.第4题图5. [新考法—数学文化](2023内江)出入相补原理是我国古代数学的重要成就之一,最早是由三国时期数学家刘徽创建.“将一个几何图形,任意切成多块小图形,几何图形的总面积保持不变,等于所分割成的小图形的面积之和”是该原理的重要内容之一.如图,在矩形ABCD 中,AB =5,AD =12,对角线AC 与BD 交于点O ,点E 为BC 边上的一个动点,EF ⊥AC ,EG ⊥BD ,垂足分别为点F ,G ,则EF +EG =________.第5题图6. (2023天津)如图,在边长为3的正方形ABCD 的外侧,作等腰三角形ADE ,EA =ED =52.第6题图(1)△ADE 的面积为________;(2)若F 为BE 的中点,连接AF 并延长,与CD 相交于点G ,则AG 的长为________.7. (2023内江)如图,在△ABC 中,D 是BC 的中点,E 是AD 的中点,过点A 作AF ∥BC 交CE 的延长线于点F .(1)求证:F A =BD ;(2)连接BF ,若AB =AC ,求证:四边形ADBF 是矩形.第7题图8. (2023兰州)如图,矩形ABCD的对角线AC与BD相交于点O,CD∥OE,直线CE是线段OD的垂直平分线,CE分别交OD,AD于点F,G,连接DE.(1)判断四边形OCDE的形状,并说明理由;(2)当CD=4时,求EG的长.第8题图拔高题9. (2023绍兴改编)如图,在矩形ABCD中,O为对角线BD的中点,∠ABD=60°,动点E 在线段OB上,动点F在线段OD上,点E,F同时从点O出发,分别向终点B,D运动,且始终保持OE=OF.点E关于AD,AB的对称点为E1,E2;点F关于BC,CD的对称点为F1,F2.当E,F,O三点重合时,当点E,F分别为OB,OD的中点时,当E,F分别运动到B,D两点时,四边形E1E2F1F2形状的变化依次是()第9题图A. 菱形→平行四边形→矩形B. 菱形→矩形→菱形C. 平行四边形→矩形→平行四边形D. 平行四边形→菱形→正方形10. (2023武侯区二诊节选)如图①,在矩形ABCD中,AD=nAB(其中n>1),点P是AD边上一动点(点P不与点A重合),点E是AB边的中点,连接PE,将矩形ABCD沿直线PE进行翻折,其顶点A翻折后的对应点为O,连接PO并延长,交BC边于点F(点F不与点C重合),过点F作∠PFC的平分线FG,交矩形ABCD的边于点G.(1)求证:PE∥FG;(2)如图②,在点P运动过程中,若E,O,G三点在同一条直线上时,点G与点D刚好重合,求n的值.图①图②第10题图参考答案与解析1. C2. C 【解析】∵正方形的边长为3,∴DC =BC =3,DC 与BC 分别垂直于y 轴和x 轴.∵点C 在第一象限,∴点C 的坐标为(3,3).3. D 【解析】如解图,E ,F ,G ,H 分别为AB ,BC ,CD ,DA 的中点,则EH ∥DB ∥GF ,HG ∥AC ∥EF ,EF =12 AC ,FG =12BD ,∴四边形EFGH 为平行四边形.要使其为正方形,即EF ⊥FG ,FE =FG ,则AC ⊥BD ,AC =BD ,即对角线一定互相垂直且相等.第3题解图4. B 【解析】∵四边形ABCD 是平行四边形,∴AB ∥CD ,CE ∥FD ,CD =AB =4.∵将线段AB 水平向右平移得到线段EF ,∴AB ∥EF ∥CD ,∴四边形ECDF 为平行四边形,当CD =CE =4时,▱ECDF 为菱形,此时a =BE =BC -CE =6-4=2.5. C 【解析】将四根木条用钉子钉成一个矩形框架ABCD ,然后向左扭动框架,∵两组对边的长度分别相等,∴四边形ABCD 是平行四边形,故A 正确,∵向左扭动框架,∴BD 的长度减小,故B 正确;∵平行四边形ABCD 的底不变,高变小了,∴平行四边形ABCD 的面积变小,故C 错误;∵平行四边形ABCD 的四条边长度不变,∴四边形ABCD 的周长不变,故D 正确.6. B 【解析】如解图,连接AC ,∵点E ,F 分别为AB ,BC 的中点,∴EF 是△ABC 的中位线,∴AC =2EF =4.∵四边形ABCD 是菱形,∴AC ⊥BD ,∴S 菱形ABCD =12 AC ·BD =12×4×8=16.第6题解图7. D 【解析】∵四边形ABCD 是矩形,∴OA =OB =OC =OD ,∠ABC =90°,∴∠OBC =∠OCB .∵∠AOB =60°,∴∠ACB =12 ∠AOB =30°,∴AB BC =tan ∠ACB =tan 30°=33. 8. D 【解析】∵四边形ABCD 和四边形BGHF 是完全相同的菱形,∴∠DBE =∠BAD =α,AB =AD ,∠ABD =∠CBD =∠CBE +∠DBE =β+α.∴∠ADB =∠ABD =β+α.∵∠BAD +∠ADB +∠ABD =180°,∴α+β+α+β+α=180°,∴β=90°-32α. 9. B 【解析】∵S 正方形AMEF =16,∴AM =4.∵M 是斜边BC 的中点,∴AM 是Rt △ABC 斜边上的中线,∴BC =2AM =8.在Rt △ABC 中,由勾股定理,得AC =BC 2-AB 2 =43 ,∴S △ABC =12 AB ·AC =12×4×43 =83 . 10. AD ∥BC (答案不唯一) 【解析】当AD ∥BC ,AD =BC 时,四边形ABCD 为平行四边形,又∵AC ⊥BD ,∴四边形ABCD 是菱形.11. 3 【解析】如解图,过点P 作PF ⊥AB 于点F ,∵四边形ABCD 是正方形,AC 是对角线,∴∠DAC =∠BAC .∵PE ⊥AD ,PF ⊥AB ,∴∠AEP =∠AFP .∵AP =AP ,∴△AEP ≌△AFP (AAS),∴PE =PF .∵PE =3,∴点P 到直线AB 的距离为PF =3.第11题解图12. 10°或80° 【解析】如解图,以点A 为圆心,AC 长为半径作弧,交直线AD 于点E 和E ′.在菱形ABCD 中,∠DAC =∠BAC ,∵∠DAB =40°,∴∠DAC =20°.∵AC =AE ,∴∠AEC =(180°-20°)÷2=80°.∵AE ′=AC ,∴∠AE ′C =∠ACE ′=10°.综上所述,∠AEC 的度数是10°或80°.第12题解图 13. 2或2 +1 【解析】分两种情况,①当∠DNM =90°时,如解图①,则MN ∥AB ,∴AN BM=AD BD.∵M 是BD 的中点,∴BD =2BM ,∴AD =2AN =2;②当∠DMN =90°时,如解图②,连接BN ,∵M 是BD 的中点,∠DMN =90°,∴BN =DN =AB 2+AN 2 =12+12 =2 ,∴AD =2 +1.综上所述,AD 的长为2或2 +1.图①图②第13题解图14. 解:(1)四边形BPCO 为平行四边形.理由如下:由作法得,BP =12 AC ,CP =12BD , ∵四边形ABCD 为平行四边形,∴OC =12 AC ,OB =12BD, ∴OC =BP ,OB =CP ,∴四边形BPCO 为平行四边形.(2)当▱ABCD 的对角线垂直且相等时,四边形BPCO 为正方形.理由:∵AC ⊥BD ,∴四边形BPCO 为矩形,∵AC =BD ,∴OB =OC ,∴四边形BPCO 为正方形.15. 解:(1)四边形EGFH 是矩形.理由如下:∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC .∵BE =DF ,∴AD -DF =BC -BE ,∴AF =CE ,∴四边形AECF 是平行四边形,∴AE ∥CF ,∴∠AEH +∠FHE =180°.∵EH ⊥CF ,FG ⊥AE ,∴∠FGE =∠FHE =∠GEH =90°,∴四边形EGFH 是矩形;(2)∵FG ⊥AE ,∴∠AGF =90°.在Rt △AGF 中,tan ∠DAE =GF AG=2, ∴GF =2AG .∵EG =2GF ,∴EG =4AG .∵AE =AG +EG =5,∴AG =1,即AG 的长为1.16. 20°;0° 【解析】①∵菱形相邻两个内角的度数和为180°,∴α+β=180°,即80°+β=180,解得β=100°,∴该菱形的“接近度”为|α-β|=|80°-100°|=20°;②∵当α=β=90°时,菱形是正方形,∴|α-β|=0°时,菱形是正方形.课时21. C 【解析】∵四边形ABCD 是菱形,∴AB ∥CD ,AC ⊥BD ,∴∠DCA =∠1=20°,∴∠2=90°-∠DCA =70°.2. C 【解析】∵四边形ABCD 是菱形,∴BC =DC ,BE =DE ,∵∠DBC =60°,∴△BDC是等边三角形,∴CD =BD =10.∵点F 为BC 中点,∴EF =12CD =5. 3. D 【解析】由折叠可知,剪下的图形两条对角线互相垂直且平分,此时图形为菱形,∵∠ABC =45°,∴剪下的图形有一个角为90°,∴有一个角为90°的菱形是正方形,∵AB =4 cm ,根据勾股定理得BC =42 cm ,故剪下来图形的周长为4×42 =16 2 cm. 4. 6 【解析】∵四边形ABCD 为正方形,AB =2,∴AC =22 .∵O 为正方形ABCD 对角线AC 的中点,△ACE 为等边三角形,∴∠AOE =90°,∴AC =AE =22 ,AO =2 ,∴OE=6 .5. 6013【解析】如解图,连接OE ,∵四边形ABCD 是矩形,∴∠BAD =90°, AB =CD =5,AD =BC =12.在Rt △ABD 中,BD =AB 2+AD 2 =13.∴AC =BD =13.∵AC 与BD 交于点O ,∴AO =CO =BO =DO =132 .∵S △BCO =14 S 四边形ABCD =14×12×5=15,∴S △BCO =S △BEO +S △CEO =12 BO ·EG +12 CO ·EF =12 ×132 (EG +EF )=15,∴EF +EG =15×413 =6013.第5题解图6. (1)3 【解析】(1)如解图,过点E 作EM ⊥AD 于点M ,∵△ADE 是等腰三角形,EA =ED =52 ,AD =3,∴AM =12 AD =32,∴EM =AE 2-AM 2 =(52)2-(32)2 =2,∴S △ADE =12 AD ·EM =12 ×3×2=3. (2)13 【解析】如解图,延长EM 交AG 于点N ,∵∠BAD =∠AME =90°,∴AB ∥NE ,∴∠ABF =∠FEN ,∠BAF =∠ENF .又∵点F 为BE 中点,∴BF =EF ,∴△AFB ≌△NFE ,∴EN =BA =3.由(1)知,EM =2,∴NM =1.∵∠NMD =∠ADC =90°,且M 为AD 中点,∴NM ∥GD ,∴NM 为△AGD 的中位线,∴GD =2NM =2,∴AG =AD 2+GD 2 =13 .第6题解图7. 证明:(1)∵AF ∥BC ,∴∠AFE =∠DCE .又∵E 是AD 的中点,∴AE =DE .在△AFE 和△DCE 中,∵ ⎩⎪⎨⎪⎧∠AFE =∠DCE ,∠AEF =∠DEC ,AE =DE ,∴△AFE≌△DCE,∴AF=DC.又∵D是BC的中点,∴BD=CD,∴AF=BD;(2)∵AB=AC,∴△ABC是等腰三角形.又∵D是BC的中点,∴∠ADB=90°,由(1)知F A=BD,又∵F A∥BD,∴四边形ADBF是平行四边形.又∵∠ADB=90°,∴四边形ADBF是矩形.8. 解:(1)四边形OCDE为菱形,理由如下:∵CE是线段OD的垂直平分线,∴OF=DF,OC=DC.∵CD∥OE,∴∠EOF=∠CDF.∵∠EFO=∠CFD,∴△OFE≌△DFC,∴OE=CD,∴四边形OCDE是平行四边形.又∵OC=CD,∴四边形OCDE是菱形;(2)∵四边形ABCD是矩形,∴DO=OC=OA,由(1)可知,OC=DC,∴OC=DO=CD,∴△OCD 是等边三角形,∴∠DCO =∠CDO =60°,∴∠FDG =90°-60°=30°.∵四边形OCDE 是菱形,∴∠DEC =∠DCE =30°,∠CGD =90°-∠DCE =60°,∴∠EDG =30°,∴DG =EG .∵CD =4,∴tan ∠DCG =DG CD =DG 4, ∴DG =4·tan 30°=4×33 =433, ∴EG =433. 9. B 【解析】∵四边形ABCD 为矩形,∠ABD =60°,∴∠CDF =60°,∠EDA =∠CBD =30°.∵OE =OF ,O 为对角线BD 的中点,∴DF =EB .由对称的性质得DF =DF 2,BF =BF 1,BE =BE 2,DE =DE 1,∠F 2DC =∠CDF =60°,∠EDA =∠E 1DA =30°,∠F 1BC =∠FBC =30°,∴E 1F 2=E 2F 1,∠E 1DB =60°,∠F 1BD =60°,∴DE 1∥BF 1,∴E 1F 2∥E 2F 1,∴四边形E 1E 2F 1F 2是平行四边形,如解图①,当E ,F ,O 三点重合时,DO =BO ,∴DE 1=DF 2=AE 1=AE 2,即E 1E 2=E 1F 2,∴四边形E 1E 2F 1F 2是菱形,如解图②,当E ,F 分别为OB ,OD 的中点时,设DB =4,则DF 2=DF =1,DE 1=DE =3,在Rt △ABD 中,AB =2,AD =23 ,连接AE ,易得AE =32 AB =3 ,根据对称性可得AE 1=AE =3 ,∵AD 2=12,DE 21 =9,AE 21 =3,即AD 2=AE 21 +DE 21 ,∴△DE 1A 是直角三角形,且∠E 1=90°,∴四边形E 1E 2F 1F 2是矩形;如解图③,当F ,E 分别与D ,B 重合时,△BE 1D ,△BDF 1都是等边三角形,则四边形E 1E 2F 1F 2是菱形,∴在这三个位置时,四边形E 1E 2F 1F 2形状的变化依次是菱形→矩形→菱形.图①图②图③第9题解图10. (1)证明:由翻折知,∠APE=∠OPE,∵FG平分∠PFC,∴∠PFG=∠CFG.∵AD∥BC,∴∠APF=∠CFP,∴∠EPF=∠PFG,∴PE∥FG;(2)解:由翻折知,EA=EO,∠EOP=90°.∵E,O,D三点在同一条直线上,∴∠DOF=∠EOF=∠C=90°.又∵DF=DF,∠OFG=∠CFG,∴△DOF≌△DCF(AAS),∴DO=DC=AB.∵E是AB的中点,∴设EA=EB=EO=a,∴OD=CD=AB=2a,∴DE=OE+OD=3a.在Rt△ADE中,由勾股定理,得AD2+AE2=DE2,∴AD=(3a)2-a2=22a.∵AD=nAB,∴22a=2na,∴n=2.。
2021年中考复习数学一轮专练:矩形及其性质(一)及答案
2021年中考数学一轮专练:矩形及其性质(一)1.已知:如图,在矩形ABCD中,M,N分别是边AD、BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB=时,四边形MENF是正方形(只写结论,不需证明)2.矩形ABCD的对角线交于O点,一条边的长为1,△AOB是正三角形,则这个矩形的周长为.3.如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP的面积S1与矩形QCNK的面积S2的大小关系是S1S2;(填“>”或“<”或“=”)4.如图矩形ABCD中,AB=3cm,AD=4cm,过对角线BD的中点O作BD的垂直平分线EF,分别交AD、BC于点E、F,则AE的长为.5.在矩形ABCD中,AC、BD交于点O.过点O作OE⊥BD交射线BC于点E,若BE=2CE,AB=3,则AD的长为.6.如图,矩形ABCD被分割成一个菱形和两个三角形,如果其中一个三角形的面积是菱形面积的,那么AB:AD的值是.7.如图,在矩形ABCD中,E是直线BC上一点,且CE=CA,连结AE.若∠BAC=60°,则∠CAE的度数为.8.已知矩形ABCD,对角线AC、BD相交于点O,点E为BD上一点,OE=1,连接AE,∠AOB=60°,AB=2,则AE的长为.9.如图,在矩形ABCD中,点E是边AD上一点,EF⊥AC于点F.若tan∠BAC=2,EF =1,则AE的长为.10.如图,在矩形ABCD中,AB=4,BC=6,将△ABE沿着AE折叠至△AB'E,若BE=CE,连接B'C,则B′C的长为.11.如图,△ABC中,∠ABC=90°,O为AC的中点,连接BO并延长到D,连接AD,CD.添加一个条件,使四边形ABCD是矩形(填一个即可).12.如图,在平行四边形ABCD中,AC、BD相交于O,请添加一个条件,可得平行四边形ABCD是矩形.13.如图,平行四边形ABCD的对角线相交于点O,请你添加一个条件.(只添一个即可),使平行四边形ABCD是矩形.14.如图,在▱ABCD中,请再添加一个条件,使得四边形ABCD是矩形,你所添加的条件是.15.如图,四边形ABCD的对角线互相平分,请你添加一个条件,使它成为矩形,你添加的条件是.16.四边形ABCD的对角线AC、BD互相平分,要使它成为矩形,需要添加的条件是.17.用一刻度尺检验一个四边形是否为矩形,以下方法可行的有.(只要填序号即可)①量出四边及两条对角线,比较对边是否相等,对角线是否相等.②量出对角线的交点到四个顶点的距离,看是否相等.③量出一组邻边的长a、b以及和这两边组成三角形的那条对角线的长c,计算是否有a2+b2=c2.④量出两条对角线长,看是否相等.18.如图,在Rt△ABC中,∠BAC=90°,且BA=6,AC=8,点D是斜边BC上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于点N,连接MN,则线段MN的最小值为.19.如图,△ABC是以AB为斜边的直角三角形,AC=4,BC=3,P为AB上一动点,且PE⊥AC于E,PF⊥BC于F,则线段EF长度的最小值是.20.如图,在菱形ABCD中,AC、BD交于点O,AC=6,BD=8,若DE∥AC,CE∥BD,则OE的长为.参考答案1.(1)证明:∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵M为AD中点,∴AM=DM,在△ABM和△DCM,∴△ABM≌△DCM(SAS);(2)答:四边形MENF是菱形.证明:∵N、E、F分别是BC、BM、CM的中点,∴NE∥CM,NE=CM,MF=CM,∴NE=FM,NE∥FM,∴四边形MENF是平行四边形,由(1)知△ABM≌△DCM,∴BM=CM,∵E、F分别是BM、CM的中点,∴ME=MF,∴平行四边形MENF是菱形;(3)解:当四边形MENF是正方形正方形时,则∠EMF=90°,∵△ABM≌△DCM,∴∠AMB=∠DMC=45°,∴△ABM、△DCM为等腰直角三角形,∴AM=DM=AB,∴AD=2AB,当AD:AB=2:1时,四边形MENF是正方形.故答案为:2:1.2.解:在矩形ABCD中,AC=2OB,∵△AOB是正三角形,∴OB=AB,∴AC=2AB,①AB=1时,AC=2,根据勾股定理,BC===,所以,矩形的周长=2(AB+BC)=2(1+)=2+2;②BC=1时,根据勾股定理,AB2+BC2=AC2,所以,AB2+12=(2AB)2,解得AB=,所以,矩形的周长=2(AB+BC)=2(+1)=+2;综上所述,矩形的周长为2+2或+2.故答案为:2+2或+2.3.解:∵四边形ABCD是矩形,四边形MBQK是矩形,四边形PKND是矩形,∴△ABD的面积=△CDB的面积,△MBK的面积=△QKB的面积,△PKD的面积=△NDK的面积,∴△ABD的面积﹣△MBK的面积﹣△PKD的面积=△CDB的面积﹣△QKB的面积=△NDK的面积,∴S1=S2.故答案为S1=S2.4.解:连接EB,∵EF垂直平分BD,∴ED=EB,设AE=xcm,则DE=EB=(4﹣x)cm,在Rt△AEB中,AE2+AB2=BE2,即:x2+32=(4﹣x)2,解得:x=,故答案为:cm.5.解:如图,当点E在BC的延长线上时,∵BE=2CE,∴BC=CE,∵OE⊥BD,∴OC=BC=CE,∵四边形ABCD是矩形,∴AO=CO=BO=DO,AD=BC;∴BO=CO=BC,∴△BOC是等边三角形,∴∠ACB=60°∴tan∠ACB=,∴BC==AD,如图,当点E在线段BC上时,设直线OE与直线AB,CD交于点F,点H,∵AB∥CD,∴,∴AF=CH,∵AB∥CD,∴△EBF∽△ECH,∴,∴BF=2CH=2AF,∴3+AF=2AF,∴AF=3=AB,且OE⊥BD,∴AO=AB=AF=3,∵AO=BO=CO=DO,∴AO=AB=BO,∴△ABO是等边三角形,∴∠ABD =60°, ∴tan ∠ABD =, ∴AD =3,故答案为:3或.6.解:∵四边形AECF 是菱形,∴AE =CE =CF ,∵四边形ABCD 是矩形,∴AD =BC ,∠B =∠D =90°,CD =AB∴Rt △AED ≌Rt △CFB (HL )∴S △ADE =S △CBF ,∵一个三角形的面积是菱形面积的,∴×AD ×DE =×AD ×EC , ∴EC =2DE ,∴AE =2DE ,DC =3DE =AB ,∴AD ==DE , ∴AB :AD =3DE :DE =:1,故答案为::1. 7.解:∵∠BAC =60°,∠ABC =90°, ∴∠ACB =30°,如图,当点E 在点B 左侧时,∵CE =CA ,∴∠CAE =∠AEC =75°,若点E '在点C 右侧时,∵AC =CE ',∴∠CAE '=∠CE 'A ,∵∠ACB=∠CAE'+∠CE'A=30°,∴∠CAE'=15°,综上所述:∠CAE的度数为75°或15°,故答案为75°或15°.8.解:如图,连接AE,∵四边形ABCD是矩形,∴OA=OB,且∠AOB=60°,∴△AOB是等边三角形,∴AO=OB=AB=2,若点E在BO上时,∵OE=1,∴BE=EO=1,且△ABO等边三角形,∴AE⊥BO,∴AE===,若点E'在OD上时,∴AE'===,故答案为:或.9.解:∵在矩形ABCD中,∠B=90°,tan∠BAC=2 ∴=2,∵AD=BC,CD=AB,∴=,∴tan∠EAF=,∵EF=1,∴AF=2,∴AE===,故答案为:.10.解:∵将△ABE沿着AE折叠至△AB'E,∴S△ABE =S△AB'E,BE=B'E,∵BE=CE,∴BE=EC=B'E=3,∴∠BB'C=90°,在Rt△ABE中,AE===5,∵×AE×BB'=2××AB×BE,∴BB'==,∴B'C===,故答案为:.11.解:添加BO=DO,理由:∵O为AC的中点,∴AO=CO,∵BO=DO,∴四边形ABCD是平行四边形,∵∠ABC=90°,∴四边形ABCD是矩形.故答案为:BO=DO.12.解:若使▱ABCD变为矩形,可添加的条件是:AC=BD;(对角线相等的平行四边形是矩形),∠ABC=90°等(有一个角是直角的平行四边形是矩形),故答案为:任意写出一个正确答案即可,如:AC=BD或∠ABC=90°.13.解:添加的条件是AC=BD,理由是:∵AC=BD,四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故答案为:AC=BD.答案不唯一.14.解:可添加AC=BD,在平行四边形ABCD中,∵AC=BD,∴四边形ABCD是矩形,故答案为:AC=BD(答案不唯一).15.解:可添加AC=BD,∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形,故答案为:AC=BD(答案不唯一).16.解:添加条件:AC=BD;理由如下:∵四边形ABCD的对角线AC、BD互相平分,∴四边形ABCD是平行四边形,又∵AC=BD,∴四边形ABCD是矩形;故答案为:AC=BD.17.解:①先测量两组对边是否相等,然后测量两条对角线是否相等;理由:两组对边分别相等的四边形是平行四边形,可以判定是否是矩形,故此选项正确;②根据对角线互相平分且相等的四边形是矩形,可知量出对角线的交点到四个顶点的距离,看是否相等,可判断是否是矩形,故此选项正确;③量出一组邻的长a、b以及和这两边组成三角形的那条对角线的长c,计算是否有a2+b2=c2.可以判断是否是直角,但不能判断是否是矩形;故此选项错误;④量出两条对角线长,看是否相等不能判定是矩形,必须两条对角线长相等气且互相平分才是矩形;故此选项错误;综上所述:用一刻度尺检验一个四边形是否为矩形,可行的方法有①②.故答案为:①②.18.解:∵∠BAC=90°,且BA=6,AC=8,∴BC==10,∵DM⊥AB,DN⊥AC,∴∠DMA=∠DNA=∠BAC=90°,∴四边形DMAN是矩形,∴MN=AD,∴当AD⊥BC时,AD的值最小,此时,△ABC的面积=AB×AC=BC×AD,∴AD==,∴MN的最小值为;故答案为:.19.解:连接PC.∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠C=90°;又∵∠ACB=90°,∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,即当CP⊥AB时,PC最小,∵AC=4,BC=3,∴AB=5,∴AC•BC=AB•PC,∴PC=.∴线段EF长的最小值为;故答案是:.20.证明:∵四边形ABCD为菱形,∴AC⊥BD,OA=AC=3,OD=BD=4,∴∠AOD=90°,∴AD==5=CD∵DE∥AC,CE∥BD∴四边形OCED为平行四边形,又∵AC⊥BD∴四边形OCED为矩形∴CD=OE=5故答案为:5。
中考数学一轮复习:第25课时矩形课件
No
返回目录
第25课时 矩形
③当DP=DC时,如解图①,过点D作DQ⊥AC于点Q,则PQ=CQ.
∵S△ADC=
1 2
AD·DC=
1 2
AC·DQ,
∴DQ= AD·DC=24 , AC 5
∴CQ= DC2-DQ2=18 , ∴PC=2CQ= 36 , 5
5 ∴AP=AC-PC= 14,
第2题解图①
返回目录
【提分要点】判定四边形是矩形,可以先判定这个四边形是平行四边形,然 后找角或者对角线的关系,若角度容易求,则可找其一角为90°,便可判定 是矩形;若对角线容易求,则证明其对角线相等即可判定其为矩形.
No
第25课时 矩形
回归教材 1. 证明:有三个角是直角的四边形是矩形. 已知:如图,在四边形ABCD中,∠A=∠B=∠C=90°. 求证:四边形ABCD是矩形. 【自主作答】 证明:∵∠A=∠B=∠C=90°, ∴AD∥BC,AB∥CD, ∴四边形ABCD是平行四边形. ∵∠A=90°, ∴四边形ABCD是矩形.
①若∠BCE=4∠DCE,则∠COE=___3_6_゚___ ; ②过点B作CE的平行线BF,过点C作BE的平行线CF,两平行线相交于点F,则
四边形BFCE是_矩___形__,判定根据为__有__一__个__角__是__直__角__的__平__行__四__边__形__是__矩__形____ ;
例题图②
2 又∵OC2+CE2=
1
BD2+
2 1
BD2=
1
BD2,
4
4
2
∴OC2+CE2=OE2,
∴∠OCE=90°.
∵OD=OC,
∴∠OCD=∠ODC=60°,
∴∠DCE=∠OCE-∠OCD=30°.
北师大版九年级数学中考一轮复习——矩形、菱形、正方形课件
1.(202X·襄阳)如图,分别以线段AB的两个端点为圆心,大于 AB的一半的长为半径画弧,两弧分别交于C,D两点,连接AC, BC,AD,BD,则四边形ADBC一定是( )
A.正方形 B.矩形
C.梯形
D.菱形
2.(19·临沂)如图,在平行四边形ABCD中,M、N是BD上两点, BM=DN,连接AM、MC、CN、NA,添加一个条件,使四边形 AMCN是矩形,这个条件是( )
【解析】 如答图,连结 DE, ∵S△CDE=12S 四边形 CEGF,S△CDE=12S 正方形 ABCD, ∴矩形 ECFG 与正方形 ABCD 的面积相等.
7 [2019·杭州]如图 23-17,把某矩形纸片 ABCD 沿 EF,GH 折叠(点 E,H 在 AD 边上,点 F,G 在 BC 边上),使点 B 和点 C 落在 AD 边上同一点 P 处,A 点的对 称点为 A′点,D 点的对称点为 D′点,若∠FPG=90°,△A′EP 的面积为 4,△D′PH 的面积为 1,则矩形 ABCD 的面积等于_1_0_+__6___5__.
平行且相等
四个角 都是直角
互相平分且相等
平行 且四边相等
四个角 都是直角
互相垂直平分且相等,每 一条对角线平分一组对角
二、菱形、矩形、正方形的判定方法
四边形
条件
①定义:一组邻边相等的平行四边形 ②对角线互相垂直的平行四边形 ③四条边都相等的四边形 ①定义:有一个角是直角的平行四边形 ②对角线相等的平行四边形 ③三个角是直角的四边形
11.(202X·通辽)如图,在边长为3的菱形
AAMBC=D中,A13D∠,A=N是60A°B边,上M是的A一D动边点上,的将一△点A,M且N 沿MN所在直线翻折得到△A′MN,连接
中考一轮复习--第21讲 矩形、菱形、正方形
考法1
考法2
考法3
对应练1(课本习题改编)下列命题,其中是真命题的为( D )
A.一组对边平行,另一组对边相等的四边形是平行四边形
B.对角线互相垂直的四边形是菱形
C.对角线相等的四边形是矩形
D.一组邻边相等的矩形是正方形
考法1
考法2
考法3
对应练2(2019·内蒙古通辽)如图,在矩形ABCD中,AD=8,对角线
∵AD2+AB2=BD2,∴64+AB2=4AB2,
8 3
.
3
∴AB=
考法1
考法2
考法3
对应练3
(2018·甘肃白银)已知矩形ABCD中,E是AD边上一个动点,点
F,G,H分别是BC,BE,CE的中点.
(1)求证:△BGF≌△FHC;
(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.
∴OD= 2,
∴直线 l∥AC 并且到 D 的距离为 3,同理,在点 D 的另一侧还有一条
直线满足条件,
故共有 2 条符合题意的直线 l.故选 B.
考法1
考法2
考法3
矩形的性质和判定
例1(2018·合肥行知学校模拟)如图,已知▱ABCD,延长AB到E使
BE=AB,连接BD,ED,EC,若ED=AD.
AC与BD相交于点O,AE⊥BD,垂足为点E,且AE平分∠BAC,则AB的
8 3
长为 3
.
解析:∵四边形ABCD是矩形,
∴AO=CO=BO=DO,∵AE平分∠BAO,
∴∠BAE=∠EAO,且AE=AE,∠AEB=∠AEO,
∴△ABE≌△AOE(ASA),
∴AO=AB,且AO=OB,
2024成都中考数学第一轮专题复习 重难题型分类题型 综合与实践
2024成都中考数学第一轮专题复习重难题型分类题型综合与实践1. (2022河南)综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM,BM.根据以上操作,当点M在EF上时,写出图①中一个30°的角:______________________________________;(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下:将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.①如图②,当点M在EF上时,∠MBQ=______°,∠CBQ=______°;②改变点P在AD上的位置(点P不与点A,D重合),如图③,判断∠MBQ与∠CBQ的数量关系,并说明理由;(3)拓展应用在(2)的探究中,已知正方形纸片ABCD的边长为8 cm,当FQ=1 cm时,直接写出AP的长.第1题图2. (2022齐齐哈尔)数学是以数量关系和空间形式为主要研究对象的科学.数学实践活动有利于我们在图形运动变化的过程中去发现其中的位置关系和数量关系,让我们在学习与探索中发现数学的美,体会数学实践活动带给我们的乐趣.转一转:如图①,在矩形ABCD中,点E,F,G分别为边BC,AB,AD的中点,连接EF,DF,H为DF的中点,连接GH .将△BEF 绕点B 旋转,线段DF ,GH 和CE 的位置和长度也随之变化.当△BEF 绕点B 顺时针旋转90°时,请解决下列问题:(1)图②中,AB =BC ,此时点E 落在AB 的延长线上,点F 落在线段BC 上,连接AF ,猜想GH 与CE 之间的数量关系,并证明你的猜想;(2)图③中,AB =2,BC =3,则GH CE=________; (3)当AB =m ,BC =n 时,GH CE=________;第2题图剪一剪、折一折:(4)在(2)的条件下,连接图③中矩形的对角线AC ,并沿对角线AC 剪开,得△ABC (如图④).点M ,N 分别在AC ,BC 上,连接MN ,将△CMN 沿MN 翻折,使点C 的对应点P 落在AB 的延长线上,若PM 平分∠APN ,则CM 长为________.第2题图④类型二 探究迁移型试题3. (2022乐山)以下是华师版八年级下册数学教材第121页习题19.3第2小题及参考答案.如图①,在正方形ABCD 中,CE ⊥DF .求证:CE =DF .证明:设CE 与DF 交于点O ,∵四边形ABCD 是正方形,∴∠B =∠DCB =90°,BC =C D.∴∠BCE +∠DCE =90°.∵CE ⊥DF ,∴∠COD =90°.∴∠CDF +∠DCE =90°.∴∠CDF =∠BCE .∴△CBE ≌△DCF .∴CE =DF .第3题图①某数学兴趣小组在完成了以上解答后,决定对该问题进一步探究.【问题探究】如图②,在正方形ABCD 中,点E ,F ,G ,H 分别在线段AB ,BC ,CD ,DA 上,且EG ⊥FH .试猜想EG FH的值,并证明你的猜想;【知识迁移】如图③,在矩形ABCD 中,AB =m ,BC =n ,点E ,F ,G ,H 分别在线段AB ,BC ,CD ,DA 上,且EG ⊥FH ,则EG FH=________; 【拓展应用】如图④,在四边形ABCD 中,∠DAB =90°,∠ABC =60°,AB =BC ,点E ,F 分别在线段AB ,AD 上,且CE ⊥BF .求CE BF的值.图②图③图④第3题图4. (2022江西)综合与实践问题提出某兴趣小组在一次综合与实践活动中提出这样一个问题:将足够大的直角三角板PEF(∠P=90°,∠F=60°)的一个顶点放在正方形中心O处,并绕点O逆时针旋转,探究直角三角板PEF与正方形ABCD重叠部分的面积变化情况(已知正方形边长为2).操作发现(1)如图①,若将三角板的顶点P放在点O处,在旋转过程中,当OF与OB重合时,重叠部分的面积为________;当OF与BC垂直时,重叠部分的面积为________;一般地,若正方形面积为S,在旋转过程中,重叠部分的面积S1与S的关系为________;类比探究(2)若将三角板的顶点F放在点O处,在旋转过程中,OE,OP分别与正方形的边相交于点M,N.①如图②,当BM=CN时,试判断重叠部分△OMN的形状,并说明理由;②如图③,当CM=CN时,求重叠部分四边形OMCN的面积(结果保留根号);拓展应用(3)若将任意一个锐角的顶点放在正方形中心O处,该锐角记为∠GOH(设∠GOH=α),将∠GOH绕点O逆时针旋转,在旋转过程中,∠GOH的两边与正方形ABCD的边所围成的图形的面积为S2,请直接写出S2的最小值与最大值(分别用含α的式子表示).(参考数据:sin 15°=6-24,cos 15°=6+24,tan 15°=2-3)第4题图源自北师九上P25第4题类型三综合应用型试题5. (2022自贡)某数学兴趣小组自制测角仪到公园进行实地测量,活动过程如下:(1)探究原理制作测角仪时,将细线一端固定在量角器圆心O处,另一端系小重物G.测量时,使支杆OM、量角器90°刻度线ON与铅垂线OG相互重合(如图①),绕点O转动量角器,使观测目标P与直径两端点A,B共线(如图②),此时目标P的仰角∠POC=∠GON.请说明这两个角相等的理由;第5题图(2)实地测量如图③,公园广场上有一棵树,为测树高,同学们在观测点K处测得树顶端P的仰角∠POQ=60°,观测点与树的距离KH为5米,点O到地面的距离OK为1.5米,求树高PH;(3≈1.73,结果精确到0.1米) (3)拓展探究公园高台上有一凉亭,为测量凉亭顶端P距地面的高度PH(如图④),同学们经过讨论,决定先在水平地面上选取观测点E,F(E,F,H在同一直线上),分别测得点P的仰角α,β,再测得E,F间的距离m,点O1,O2到地面的距离O1E,O2F均为1.5米.求PH(用α,β,m表示).图③图④第5题图源自北师九下P22活动课题6. (2022陕西)问题提出(1)如图①,AD是等边△ABC的中线,点P在AD的延长线上,且AP=AC,则∠APC的度数为________;问题探究(2)如图②,在△ABC中,CA=CB=6,∠C=120°.过点A作AP∥BC,且AP=BC,过点P作直线l⊥BC,分别交AB,BC于点O,E,求四边形OECA的面积;问题解决(3)如图③,现有一块△ABC型板材,∠ACB为钝角,∠BAC=45°.工人师傅想用这块板材裁出一个△ABP 型部件,并要求∠BAP=15°,AP=A C.工人师傅在这块板材上的作法如下:①以点C为圆心,以CA长为半径画弧,交AB于点D,连接CD;②作CD的垂直平分线l,与CD交于点E;③以点A为圆心,以AC长为半径画弧,交直线l于点P,连接AP,BP,得△ABP.请问,若按上述作法,裁得的△ABP型部件是否符合要求?请证明你的结论.第6题图。
2021年中考数学 一轮专题训练:矩形及其性质(一)(解析版)
2021年中考数学一轮专题训练:矩形及其性质(一)1.在矩形ABCD中,对角线AC,BD相交于点O,若∠AOB=100°,则∠OAB的度数是()A.100°B.80°C.50°D.40°2.如图,矩形ABCD中,对角线AC,BD交于点O.若∠AOB=60°,BD=6,则AB的长为()A.4 B.4C.3 D.53.如图,在矩形ABCD中,两条对角线AC、BD相交于点O,若AB=OB=5.则AC=()A.10 B.5 C.5D.84.菱形具有而矩形没有的性质是()A.对角线互相平分B.对边相等C.对角线相等D.对角线互相垂直5.如图,在矩形ABCD中,AO=5,CD=6,则AD=()A.5 B.6 C.7 D.86.一个长方形在平面直角坐标系中三个顶点的坐标为(﹣2,﹣1)(﹣2,2)和(4,﹣1),则第四个顶点的坐标为()A.(﹣2,2)B.(4,2)C.(4,4)D.(4,3)7.如图,矩形DEFG的顶点E,F分别在菱形ABCD的边AD和对角线AC上,连接EG,BF;若EG=3,则BF的长为()A.B.C.3 D.48.已知矩形ABCD,AB=2BC,在CD上取点E,使AE=AB,那么∠EBC等于()A.15°B.30°C.45°D.60°9.菱形具有而矩形不一定具有的性质是()A.两组对角分别相等B.对角线相等C.对角线互相平分D.对角线互相垂直10.如图,在矩形ABCD中,P、Q分别是BC、DC上的点,E、F分别是AP、PQ的中点.BC =12,DQ=5,在点P从B移动到C(点Q不动)的过程中,则下列结论正确的是()A.线段EF的长逐渐增大,最大值是13B.线段EF的长逐渐减小,最小值是6.5C.线段EF的长始终是6.5D.线段EF的长先增大再减小,且6.5≤EF≤1311.矩形的两条对角线的夹角为60度,对角线长为15,则矩形的较短边长为()A.12 B.10 C.7.5 D.512.下列说法错误的是()A.四个角都相等的四边形是矩形B.三角形的中位线平行于三角形的第三边且等于第三边的一半C.两条对角线相等的四边形是矩形D.一组对边平行且一组对角相等的四边形是平行四边形13.如图,下列条件不能判定四边形ABCD是矩形的是()A.∠DAB=∠ABC=∠BCD=90°B.AB∥CD,AB=CD,AB⊥ADC.AO=BO,CO=DO D.AO=BO=CO=DO14.下列说法中,错误的是()A.菱形的对角线互相垂直B.对角线相等的四边形是矩形C.平行四边形的对角线互相平分D.对角线互相垂直平分的四边形是菱形15.如图,为了检验教室里的矩形门框是否合格,某班的四个学习小组用三角板和细绳分别测得如下结果,其中不能判定门框是否合格的是()A.AB=CD,AD=BC,AC=BD B.AC=BD,∠B=∠C=90°C.AB=CD,∠B=∠C=90°D.AB=CD,AC=BD16.如图,已知点O为△ABC的AC边上的中点,连接BO并延长到D,使得OD=OB,要使四边形ABCD为矩形,△ABC中需添加的条件是()A.AB=BC B.∠ABC=90°C.∠BAC=45°D.∠BCA=45°17.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,则下面条件能判断平行四边形ABCD是矩形的是()A.AC=BD B.AC⊥BD C.AO=CO D.AB=AD18.在四边形ABCD中AB、CD相交于点O,下列说法错误的是()A.AB∥CD,AD=BC,则四边形ABCD是平行四边形B.AO=CO,BO=DO且AC⊥BD,则四边形ABCD是菱形C.AO=OB=OC=OD,则四边形ABCD是矩形D.∠A=∠B=∠C=∠D且AB=BC,则则四边形ABCD是正方形19.在等腰直角三角形ABC中,∠BAC=90°,BC=6,点P是线段BC上的一个动点,过点P分别作AB、AC的垂线交AB、AC于点M、N,连接MN,则MN的最小值为()A.4 B.3 C.2 D.120.如图:点P是Rt△ABC斜边AB上的一点,PE⊥AC于E,PF⊥BC于F,BC=15,AC=20,则线段EF的最小值为()A.12 B.6 C.12.5 D.25参考答案1.解:如图,∵四边形ABCD是矩形,∴AC=2OA,BD=2BO,AC=BD,∴OB=OA,∵∠AOB=100°,∴∠OAB=∠OBA=(180°﹣100°)=40°故选:D.2.解:∵四边形ABCD是矩形,∴OA=AC,OB=BD=3,AC=BD=6,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OB=3,故选:C.3.解:∵矩形ABCD中,AB=OB=5,∴BD=2OB=2×5=10,∴AC=BD=10,故选:A.4.解:∵菱形具有的性质:对角线互相垂直,对角线互相平分;矩形具有的性质:对角线相等,四个角都是直角,对角线互相平分;∴菱形具有而矩形不具有的性质是:对角线互相垂直.故选:D.5.解:∵四边形ABCD是矩形,AO=5,∴∠ADC=90°,AC=2AO=10,在Rt△ADC中,由勾股定理得:AD===8,。
备考2023年中考数学一轮复习-图形的性质_四边形_矩形的性质-填空题专训及答案
备考2023年中考数学一轮复习-图形的性质_四边形_矩形的性质-填空题专训及答案矩形的性质填空题专训1、(2019常州.中考真卷) 如图,在矩形中,,点是的中点,点在上,,点、在线段上.若是等腰三角形且底角与相等,则________.2、(2016无锡.中考真卷) 如图,矩形ABCD的面积是15,边AB的长比AD的长大2,则AD的长是________.3、(2016石家庄.中考模拟) 如图,已知矩形OABC的一个顶点B的坐标是(4,2),反比例函数y= (x>0)的图象经过矩形的对称中心E,且与边BC交于点D,则点CD的长为________.4、(2017徐汇.中考模拟) 如图,矩形ABCD的四个顶点正好落在四条平行线上,并且从上到下每两条平行线间的距离都是1,如果AB:BC=3:4,那么AB的长是________.5、(2019绍兴.中考模拟) 如图,矩形ABCD中,AB=2,点E在AD边上,以E为圆心,EA长为半径的⊙E与BC相切,交CD于点F,连接EF.若扇形EAF的面积为,则BC的长是________.6、(2019龙湾.中考模拟) 如图所示是小明设计带矩形、菱形、正方形图案的一块具有轴对称美的瓷砖作品. 若,,则矩形的周长是________ .7、(2019.中考模拟) 如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为________.8、(2014金华.中考真卷) 如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G.若G是CD的中点,则BC的长是________.9、(2017和.中考模拟) 如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D 落在点G处,有以下四个结论:①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=2 .以上结论中,你认为正确的有________.(填序号)10、(2017中.中考模拟) 如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为C′,再将所折得的图形沿EF折叠,使得点D和点A重合.若AB=3,BC=4,则折痕EF的长为________11、(2017枣庄.中考真卷) 在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED 的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC=________.(结果保留根号)12、(2020新野.中考模拟) 如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CE,CF,当△ECF为直角三角形时,AP的长为________.13、(2017平顶山.中考模拟) 如图,在矩形ABCD中,AB=2 ,AD=4,点E是BC边上一个动点,连接AE,作DF⊥AE于点F,当BE的长为________时,△CDF是等腰三角形.14、(2017许昌.中考模拟) 如图,矩形ABCD中,AB=8,BC=15,点E是AD边上一点,连接BE,把△ABE沿BE折叠,使点A落在点A′处,点F是CD边上一点,连接EF,把△DEF沿EF折叠,使点D落在直线EA′上的点D′处,当点D′落在BC 边上时,AE的长为________.15、(2017林州.中考模拟) 已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B,C 重合),经过点O、P折叠该纸片,得点B′和折痕OP(如图①)经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ(如图②),当点C′恰好落在OA上时,点P的坐标是________.16、(2019遂宁.中考真卷) 如图,在平面直角坐标系中,矩形的顶点O落在坐标原点,点A、点C分别位于x轴,y轴的正半轴,G为线段上一点,将沿翻折,O点恰好落在对角线上的点P处,反比例函数经过点B.二次函数的图象经过、G、A三点,则该二次函数的解析式为________.(填一般式)17、(2017贵州.中考模拟) 在平面直角坐标系中,四边形OABC为矩形,点A的坐标为(4,0),点B的坐标为(4,3),动点M,N分别从O、B同时出发,以每秒1个单位长度的速度运动,其中,点M沿OA向终点A运动,点N沿BC向终点C 运动,过点M作MP⊥OA,交AC于P,连接NP.下列说法①当点M运动了2秒时,点P的坐标为(2,);②当点M运动秒时,△NPC是等腰三角形;③当点N运动了2秒时,△NPC的面积将达到最大值.其中正确的有________.18、(2020保康.中考模拟) 如图,在矩形ABCD中,AB=4,∠DCA=30°,点F是对角线AC上的一个动点,连接DF,以DF为斜边作∠DFE=30°的直角三角形DEF,使点E和点A位于DF两侧,点F从点A到点C的运动过程中,点E的运动路径长是________.19、(2021徐州.中考真卷) 如图,四边形与均为矩形,点分别在线段上.若,矩形的周长为,则图中阴影部分的面积为.20、如图,在矩形ABCD中,E,F分别为边AB,AD的中点,BF与EC、ED分别交于点M,N.已知AB=4,BC=6,则MN的长为.矩形的性质填空题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:16.答案:17.答案:18.答案:19.答案:20.答案:。
中考数学一轮复习 特殊的平行四边形——矩形、菱形、正方形 专题培优、能力提升复习讲义(含答案)
特殊的平行四边形——矩形、菱形、正方形专题培优、能力提升复习讲义中考考点梳理一、矩形1、矩形的概念有一个角是直角的平行四边形叫做矩形。
2、矩形的性质(1)具有平行四边形的一切性质(2)矩形的四个角都是直角(3)矩形的对角线相等(4)矩形是轴对称图形3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形(3)定理2:对角线相等的平行四边形是矩形4、矩形的面积:S矩形=长×宽=ab二、菱形1、菱形的概念有一组邻边相等的平行四边形叫做菱形。
2、菱形的性质(1)具有平行四边形的一切性质(2)菱形的四条边相等(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角(4)菱形是轴对称图形3、菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形(2)定理1:四边都相等的四边形是菱形(3)定理2:对角线互相垂直的平行四边形是菱形4、菱形的面积:S菱形=底边长×高=两条对角线乘积的一半三、正方形1、正方形的概念有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2、正方形的性质(1)具有平行四边形、矩形、菱形的一切性质(2)正方形的四个角都是直角,四条边都相等(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角(4)正方形是轴对称图形,有4条对称轴(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。
3、正方形的判定(1)判定一个四边形是正方形的主要依据是定义,途径有两种:先证它是矩形,再证有一组邻边相等。
先证它是菱形,再证有一个角是直角。
(2)判定一个四边形为正方形的一般顺序如下:第一步:先证明它是平行四边形;第二步:再证明它是菱形(或矩形);第三步:最后证明它是矩形(或菱形)4、正方形的面积: 设正方形边长为a ,对角线长为b ,S 正方形=222b a 中考典例精选考点典例一、矩形的性质与判定【例1】如图,矩形ABCD 的对角线AC 、BD 相交于点O ,若AB =AO , 求∠ABD 的度数.图6A B 【答案】∠ABD =60°.【解析】考点:矩形的性质;等边三角形的判定及性质.【点睛】此题考查了等边三角形的判定与性质,矩形的性质,熟练掌握等边三角形的判定与性质是解本题的关键.【举一反三】1.已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.【答案】详见解析.【解析】试题分析:由四边形ABCD为矩形,得到四个角为直角,再由EF与FD垂直,利用平角定义得到一对角互余,利用同角的余角相等得到一对角相等,利用ASA得到△BEF≌△CFD,利用全等三角形对应边相等即可得证.考点:矩形的性质;全等三角形的判定与性质.2. 如图,将矩形ABCD 沿GH 对折,点C 落在Q 处,点D 落在E 处,EQ 与BC 相交于F .若AD=8cm ,AB=6cm ,AE=4cm .则△EBF 的周长是 cm .【答案】8.【解析】试题分析:BE=AB-AE=2.设AH=x ,则DH=AD ﹣AH=8﹣x ,在Rt △AEH 中,∠EAH=90°,AE=4,AH=x ,EH=DH=8﹣x ,∴EH 2=AE 2+AH 2,即(8﹣x )2=42+x 2,解得:x=3.∴AH=3,EH=5.∴C △AEH =12.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH .又∵∠EAH=∠FBE=90°,∴△EBF ∽△HAE ,∴32==∆∆AH BE C C HAE EFB . ∴C △EBF =23=C △HAE =8.考点:1折叠问题;2勾股定理;3相似三角形.考点典例二、菱形的性质与判定【例2】如图,在▱ABCD中,已知AD>AB.(1)实践与操作:作∠BAD的平分线交BC于点E,在AD上截取AF=AB,连接EF;(要求:尺规作图,保留作图痕迹,不写作法)(2)猜想并证明:猜想四边形ABEF的形状,并给予证明.【答案】(1)详见解析;(2)四边形ABEF是菱形,理由详见解析.【解析】(2)四边形ABEF是菱形;理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB,由(1)得:AF=AB,∴BE=AF,又∵BE ∥AF ,∴四边形ABEF 是平行四边形,∵AF=AB ,∴四边形ABEF 是菱形.考点:角平分线的画法;平行四边形的性质;菱形的判定.【点睛】本题考查了平行四边形的性质,菱形的判定,熟记各性质与平行四边形和菱形的判定方法是解题的关键.在利用菱形计算或证明时,应充分利用菱形的性质,如“菱形的四条边都相等”“菱形的对角线互相垂直且平分,并且每一组对角线平分一组对角”等.对于菱形的判定,若可证出四边形为平行四边形,则可证一组邻边相等或对角线互相垂直;若相等的边较多,则可证四条边都相等.【举一反三】1. 如图,四边形ABCD 是菱形,8=AC ,6=DB ,AB DH ⊥于H ,则DH 等于A .524 B .512 C .5 D .4【答案】A.【解析】 考点:菱形的性质.2. 如图,菱形ABCD 的边AB=8,∠B=60°,P 是AB 上一点,BP=3,Q 是CD 边上一动点,将梯形APQD 沿直线PQ 折叠,A 的对应点为A ′,当CA ′的长度最小时,CQ 的长为( )A. 5B. 7C. 8D. 213 CD H【答案】B.【解析】考点:菱形的性质;轴对称(折叠);等边三角形的判定和性质;最值问题.考点典例三、正方形的性质与判定【例3】如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【答案】证明见解析.【解析】考点:正方形的判定;全等三角形的判定与性质.【点睛】本题考查了全等三角形的判定和性质、角平分线的性质、矩形的判定和性质以及正方形的判定,解题的关键是熟记各种几何图形的性质和判定.正方形是特殊的矩形又是特殊的菱形,具有矩形和菱形的所有性质.证明一个四边形是正方形,可以先判定为矩形,再证邻边相等或对角线互相垂直;或先判定为菱形,再证有一个角是直角或对角线相等.【举一反三】1.如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.B.2 C.D.10﹣5【答案】B.【解析】考点:正方形的性质;全等三角形的判定及性质;勾股定理.考点典例四、特殊平行四边形综合题【例4】如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE ⊥BC,交直线MN于E,垂足为F,连接CD,BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.【答案】(1)证明见解析;(2)四边形BECD是菱形,(3)当∠A=45°时,四边形BECD是正方形.理由见解析.【解析】(3)当∠A=45°时,四边形BECD是正方形,理由是:考点:正方形的判定;平行四边形的判定与性质;菱形的判定.【点睛】本题考查了正方形的判定、平行四边形的性质和判定,菱形的判定,直角三角形的性质的应用,主要考查学生运用定理进行推理的能力. 【举一反三】如图,正方形ABCD 的边长为1,AC 、BD 是对角线,将△DCB 绕点D 顺时针旋转450得到△DGH , HG 交AB 于点E ,连接DE 交AC 于点F ,连接FG ,则下列结论:①四边形AEGF 是菱形 ②△AED ≌△GED③∠DFG =112.5︒ ④BC +FG =1.5其中正确的结论是 .(填写所有正确结论的序号)图5F EH G BA【答案】①②③. 【解析】试题分析:由旋转的性质可得HD=BD=2 ∴HA=12-考点:旋转的性质;全等三角形的判定及性质;菱形的判定.课后巩固、提高自测小练习一、选择题1.关于ABCD的叙述,正确的是()A.若AB⊥BC ABCD是菱形B.若AC⊥BD ABCD是正方形C.若AC=BD,则ABCD是矩形D.若AB=AD ABCD是正方形【答案】C.【解析】试题分析:根据矩形的判定可得A、C项应是矩形;根据菱形的判定可得B、D项应是菱形,故答案选C.考点:矩形、菱形的判定.2. 下列说法正确的是()A.对角线互相垂直的四边形是菱形B.矩形的对角线互相垂直C.一组对边平行的四边形是平行四边形D.四边相等的四边形是菱形【答案】D.【解析】考点:1菱形的判定;2矩形的性质;3平行四边形的判定.3.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1 B.2 C.3 D.4【答案】C.【解析】试题分析:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.此时,EP+FP的值最小,值为EF′.∵四边形ABCD为菱形,∴AB=BC=CD=DA=3,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF′D是平行四边形,∴EF′=AD=3.∴EP+FP的最小值为3.故选:C.考点:1轴对称;2菱形.4.如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件不正确的是( )A .AB =AD B .AC ⊥BD C .AC =BD D .∠BAC =∠DAC 【答案】C . 【解析】考点:菱形的判定;平行四边形的性质.5. 如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CE =2DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③EG =DE +BG ;④AG ∥CF ;⑤S △FGC =3.6.其中正确结论的个数是( )A .2B .3C .4D .5 【答案】D . 【解析】试题分析:∵正方形ABCD 的边长为6,CE =2DE ,∴DE =2,EC =4,∵把△ADE 沿AE 折叠使△ADE 落在△AFE 的位置,∴AF =AD =6,EF =ED =2,∠AFE =∠D =90°,∠FAE =∠DAE ,在Rt △ABG 和Rt △AFG 中,∵AB =AF ,AG =AG ,∴Rt △ABG ≌Rt △AFG (HL ),∴GB =GF ,∠BAG =∠FAG ,∴∠GAE =∠FAE +∠FAG =12∠BAD =45°,所以①正确; 设BG =x ,则GF =x ,C =BC ﹣BG =6﹣x ,在Rt △CGE 中,GE =x +2,EC =4,CG =6﹣x ,∵222CG CE GE +=,∴222(6)4(2)x x-+=+,解得x=3,∴BG=3,CG=6﹣3=3,∴BG=CG,所以②正确;∵EF=ED,GB=GF,∴GE=GF+EF=BG+DE,所以③正确;∵GF=GC,∴∠GFC=∠GCF,又∵Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF,而∠BGF=∠GFC+∠GCF,∴∠AGB+∠AGF=∠GFC+∠GCF,∴∠AGB=∠GCF,∴CF∥AG,所以④正确;过F作FH⊥DC.∵BC⊥DH,∴FH∥GC,∴△EFH∽△EGC,∴EH EFGC EG=,EF=DE=2,GF=3,∴EG=5,∴△EFH∽△EGC,∴相似比为:EH EFGC EG==25,∴S△FGC=S△GCE﹣S△FEC=12×3×4﹣12×4×(25×3)=3.6,所以⑤正确.故正确的有①②③④⑤,故选D.考点:翻折变换(折叠问题);全等三角形的判定与性质;正方形的性质.6.小红用次数最少的对折方法验证了一条四边形丝巾的形状是正方形,她对折了()A.1次B.2次C.3次D.4次【答案】B.【解析】考点:翻折变换(折叠问题).7.菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分D.对角线互相垂直【答案】D.【解析】考点:菱形的性质;平行四边形的性质.8.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°【答案】B.【解析】试题分析:∵将△ABC沿BC方向平移得到△DCE,∴AB//CD,∴四边形ABCD为平行四边形,当AC=BC时,平行四边形ACED是菱形.故选B.考点:菱形的判定;平移的性质.二、填空题1.如图,四边形ABCD是轴对称图形,且直线AC是对称轴,AB∥CD,则下列结论:①AC⊥BD;②AD∥BC;③四边形ABCD是菱形;④△ABD≌△CDB.其中正确的是(只填写序号)【答案】①②③④.【解析】考点:1菱形的性质和判定;2轴对称;3平行线的性质.2. 如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=度.【答案】22.5°.【解析】试题分析:已知四边形ABCD是矩形,由矩形的性质可得AC=BD,OA=OC,OB=OD,即可得OA=OB═OC,由等腰三角形的性质可得∠OAC=∠ODA,∠OAB=∠OBA,即可得∠AOE=∠OAC+∠OCA=2∠OAC,再由∠EAC=2∠CAD,可得∠EAO=∠AOE,因AE⊥BD,可得∠AEO=90°,所以∠AOE=45°,所以∠OAB=∠OBA=67.5°,即∠BAE=∠OAB ﹣∠OAE=22.5°.考点:矩形的性质;等腰三角形的性质.3. 如图,边长为1的正方形ABCD的对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G,则下列结论中正确的是.(1)EF=OE;(2)S四边形OEBF:S正方形ABCD=1:4;(3)BE+BF=OA;(4)在旋转过程中,当△BEF与△COF的面积之和最大时,AE=;(5)OG•BD=AE2+CF2.【答案】(1),(2),(3),(5).【解析】1(2)∵S四边形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD,4∴S四边形OEBF:S正方形ABCD=1:4;故正确;(3)∴BE+BF=BF+CF=BC=2OA;故正确;(5)∵∠EOG=∠BOE,∠OEG=∠OBE=45°,∴△OEG∽△OBE,∴OE:OB=OG:OE,∴OG•OB=OE2,∵OB=12BD,OE=22EF,∴OG•BD=EF2,∵在△BEF中,EF2=BE2+BF2,∴EF2=AE2+CF2,∴OG•BD=AE2+CF2.故正确.考点:四边形综合题.4.如图,已知菱形ABCD的两条对角线长分别为AC=8和BD=6,那么,菱形ABCD的面积为.【答案】24. 【解析】试题分析:根据菱形面积等于两条对角线的长度的乘积的一半即可得,菱形的面积=21×6×8=24. 考点:菱形的性质.5.将矩形ABCD 纸片按如图所示的方式折叠,EF ,EG 为折痕,试问∠AEF +∠BEG = .【答案】90°. 【解析】考点:翻折变换(折叠问题).6. 如图,四边形OABC 为矩形,点A ,C 分别在x 轴和y 轴上,连接AC ,点B 的坐标为(4,3),∠CAO 的平分线与y 轴相交于点D ,则点D 的坐标为 .【答案】(0,43).【解析】考点:矩形的性质;坐标与图形性质.三、解答题1.如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q两点.(1)求证:C P=AQ;(2)若BP=1,PQ=22,∠AEF=45°,求矩形ABCD的面积.【答案】(1)证明见解析;(2)8.【解析】考点:矩形的性质;全等三角形的判定与性质.2.如图,点P在矩形ABCD的对角线AC上,且不与点A,C重合,过点P分别作边AB,AD的平行线,交两组对边于点E,F和G,H.(1)求证:△PHC≌△CFP;(2)证明四边形PEDH和四边形PFBG都是矩形,并直接写出它们面积之间的关系.【答案】(1)证明见解析;(2)证明见解析,面积相等.【解析】试题分析:(1)由矩形的性质得出对边平行,再根据平行线的性质得出相等的角,结合全等三角形的判定定理AAS即可得出△PHC≌△CFP;(2)由矩形的性质找出∠D=∠B=90°,再结合对边互相平行即可证出四边形PEDH和四边形PFBG都是矩形,通过角的正切值,在直角三角形中表示出直角边的关系,利用矩形的面积公式即可得出两矩形面积相等.考点:矩形的判定与性质;全等三角形的判定与性质.3.如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.求证:A E=EF.【答案】证明见解析.【解析】试题分析:先取AB的中点H,连接EH,根据∠AE F=90°和ABCD是正方形,得出∠1=∠2,再根据E是BC 的中点,H是AB的中点,得出BH=BE,AH=CE,最后根据CF是∠DCG的角平分线,得出∠AHE=∠ECF=135°,从而证出△AHE≌△ECF,即可得出AE=EF.试题解析:取AB的中点H,连接EH.∵∠AEF=90°,∴∠2+∠AEB=90°,∵四边形ABCD是正方形,∴∠1+∠AEB=90°,∴∠1=∠2,∵E是BC的中点,H是AB的中点,∴BH=BE,AH=CE,∴∠BHE=45°,∵CF是∠DCG的角平分线,∴∠FCG=45°,∴∠AHE=∠ECF=135°,在△AHE和△ECF中,∵∠1=∠2,AH=EC,∠AHE=∠ECF,∴△AHE≌△ECF(ASA),∴AE=EF.考点:正方形的性质;全等三角形的判定与性质.4. 如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.【答案】详见解析.【解析】∵CE∥BD,∴四边形CEDB是平行四边形,∵BC=BD,∴四边形CEDB是菱形.考点:全等三角形的性质;菱形的判定.。
2021年九年级中考(通用版)数学一轮复习:矩形及其性质(二)
2021年中考(通用版)数学一轮复习矩形及其性质(二)1.平行四边形和矩形都具有的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.每条对角线平分一组对角2.如图,矩形ABCD中,AB=3,BC=6,点E、F、G、H 分别在矩形的各边上,且AE=CG,BF=DH,则四边形EFGH周长的最小值为()A.3B.6C.6D.93.如图的六边形是有甲、乙两个等腰直角三角形和丙、丁两个矩形组成,其中甲、乙的面积和等于丙、丁的面积和,若甲的直角边长为4,且甲的面积大于乙的面积,则乙的直角边长为()A.1 B.C.4﹣2D.8﹣4 4.在矩形ABCD中,对角线AC=10cm,AB:BC=4:3,则它的周长为()cm.A.14 B.20 C.28 D.305.如图,矩形EFGH的四个顶点分别在矩形ABCD的各条边上,AB=EF,FG=3,GC=4.有以下四个结论:①∠BGF=∠CHG;②△BFG≌△DHE;③tan∠BFG=;④矩形EFGH的面积为9.其中正确的结论为()A.①②B.①②③C.①②④D.①②③④6.如图,矩形ABCD的两条对角线AC、BD相交于点O,∠BOC=120°,BC=6.则矩形的面积为()A.6B.12C.9 D.187.在矩形ABCD中,AB=6,BC=8,点E在边AD上,EF⊥AC于F,EG⊥BD于G,则EF+EG的值是()A.4 B.4.8 C.4.5 D.68.下列性质中,菱形具有而矩形不一定具有的性质是()A.对边平行且相等B.每一条对角线所在直线都是它的对称轴C.内角和等于外角和D.对角线互相平分9.在四边形ABCD中,下列条件能判定四边形ABCD是矩形的是()A.AD∥BC,∠DAB=∠ABC=90°B.AC=BDC.OA=OB,OC=OD D.AB∥DC,AB=DC,OA =OB10.检查一个门框(已知两组对边分别相等)是不是矩形,不可用的方法是()A.测量两条对角线是否相等B.用重锤线检查竖门框是否与地面垂直C.测量两条对角线是否互相平分D.测量门框的三个角是否都是直角11.下列条件中,不能判断一个四边形是矩形的是()A.一组对边平行且相等,有一个内角是直角B.有3个角是直角C.两条对角线把四边形分成两对全等的等腰三角形D.一组对边平行,另一组对边相等,且两条对角线相等12.下列说法错误的是()A.16的平方根为±4B.⼀组对边平行,⼀组对⻆相等的四边形是平行四边形C.⼀限不循环小数是无理数D.对⻆线相等的四边形是矩形13.如图,在▱ABCD中,对角线AC与BD相交于点O,添加下列条件中能判定▱ABCD为矩形的是()A.AB=BC B.AC⊥BD C.∠ABC=90°D.∠1=∠214.要判断一个四边形是否为矩形,下面是4位同学拟定的方案,其中正确的是()A.测量两组对边是否分别相等B.测量两条对角线是否互相垂直平分C.测量其中三个内角是否都为直角D.测量两条对角线是否相等15.如图,要使▱ABCD成为矩形,需添加的条件是()A.AB=BC B.∠1=∠2 C.∠ABC=90°D.AC ⊥BD16.下列说法正确的是()A.矩形的对角线互相垂直且平分B.矩形的邻边一定相等C.对角线相等的四边形是矩形D.有三个角为直角的四边形为矩形17.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,且OA=OD,∠OAD=55°,则∠OCD的度数为()A.35°B.40°C.45°D.50°18.如图,点A、B在直线l1上,点C、D在直线l2上,l1∥l2,CA⊥l1,BD⊥l2,AC=3cm,则BD等于()cm.A.1 B.2 C.3 D.419.下列说法正确的有()个①一组对边平行且一组对角相等的四边形是平行四边形;②一组对边相等且有一个角是直角的四边形是矩形;③三角形的中位线平行于三角形的第三边且等于第三边的一半;④两条对角线相等的四边形是矩形.A.1 B.2 C.3 D.420.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点P为AB边上任一点,过P作PE⊥AC于E,PF⊥BC于F,则线段EF的最小值是()A.10 B.C.4.8 D.7.2参考答案1.解:平行四边形的性质为:对边平行且相等,对角相等,对角线互相平分;矩形的性质为:对边平行且相等,四个角都是直角,对角线互相平分且相等;故选:A.2.解:作点E关于BC的对称点E′,连接E′G交BC于点F,此时四边形EFGH周长取最小值,EF=E'F,过点G作GG′⊥AB于点G′,如图所示.∵AE=CG,BE=BE′,∴E′G′=AB=3,∵GG′=AD=6,∴E′G===3,∴C 四边形EFGH=2(GF+EF)=2E′G=6.故选:C.3.解:设乙的直角边为x,依题意得:4x+4x=×42+x2,整理可得:x2﹣16x+16=0,解得x=8±4,∵8+4>4,不合题意舍去,8﹣4<4,符合题意,∴x=8﹣4,故选:D.4.解:设AB=4xcm,则BC=3xcm,∵四边形ABCD是矩形,∴∠B=90°,AB=CD,AD=BC,∴AC===5x(cm),∴5x=10cm,∴x=2cm,∴AB=8cm,BC=6cm,∴矩形ABCD的周长=2(8+6)=28(cm),故选:C.5.解:∵∠FGH=90°,∴∠BGF+∠CGH=90°.又∵∠CGH+∠CHG=90°,∴∠BGF=∠CHG,故①正确.同理可得∠DEH=∠CHG.∴∠BGF=∠DEH.又∵∠B=∠D=90°,FG=EH,∴△BFG≌△DHE(AAS),故②正确.同理可得△AFE≌△CHG.∴AF=CH.∵∠BGF=∠CHG,∠B=∠C=90°,∴△BFG∽△CGH.设矩形GHEF的边GH为a,则EF为a,∴=,AB=EF=a,FG=3,GC=4.∴=∴BF=,∴AF=AB﹣BF=a﹣.∴CH=AF=a﹣.在Rt△CGH中,∵CG2+CH2=GH2,∴42+(a﹣)2=a2.解得a=3.∴GH=3.∴BF=a﹣=.在Rt△BFG中,BG==.∴tan∠BFG===,故③错误.因为矩形EFGH的面积=FG×GH=3×3=9,故④正确.∴其中正确的结论为①②④.故选:C.6.解:∵四边形ABCD是矩形,∴∠ABC=90°,OA=OB=OC,∵∠BOC=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=OA,∴AC=2AB,∵BC=6.∠ABC=90°,∴AC2=AB2+62,解得,AB=2,∴矩形的面积为:AB•BC=2×6=12,故选:B.7.解:设AC、BD交于点O,连接OE,如图所示:∵四边形ABCD是矩形,∴OA=OC=AC,OB=OD=BD,AC=BD,∠ABC =90°,∴AC===10,OA=OD=5,△AOD的面积=矩形ABCD的面积=×6×8=12,又∵△AOE的面积+△DOE的面积=△AOD的面积,∴OA×EF+OD×EG=12,即×5×(EF+EG)=12,解得:EF+EG=4.8,故选:B.8.解:A、对边平行且相等,菱形和矩形都具有的性质;B、每一条对角线所在直线都是它的对称轴,菱形具有而矩形不一定具有的性质;C、内角和等于外角和,菱形和矩形都具有的性质;D、对角线互相平分,菱形和矩形都具有的性质;故选:B.9.解:能判定四边形ABCD是矩形的条件为AB∥DC,AB =DC,OA=OB,理由如下:∵AB∥DC,AB=DC,∴四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OB,∴AC=BD,∴▱ABCD是矩形;其它三个选项的条件均不能判定四边形ABCD是矩形;故选:D.10.解:∵门框两组对边分别相等,∴门框是个平行四边形,∵对角线相等的平行四边形是矩形,故A不符合题意;∵竖门框与地面垂直,门框一定是矩形;故B不符合题意,∵对角线互相平分的四边形是平行四边形,∴C符合题意,∵三个角都是直角的四边形是矩形,故D不符合题意;故选:C.11.解:A、∵一组对边平行且相等的四边形是平行四边形,又∵有一个内角是直角,∴这个四边形是矩形;选项A不符合题意;B、∵有3个角是直角的四边形是矩形,∴选项B不符合题意;C、如图所示:∵两条对角线把四边形分成两对全等的等腰三角形,∴△AOB≌△DOC,△AOD≌△BOC,且OA=OB,OC =OD,∴OA=OC,OB=OD,∴四边形ABCD是平行四边形,AC=BD,∴四边形ABCD是矩形;故选项C不符合题意;D、∵一组对边平行,另一组对边相等,且两条对角线相等,∴这个四边形可能为等腰梯形或矩形,故选项D符合题意;故选:D.12.解:A、由于(±4)2=16,所以16的平方根为±4.故本选项说法正确.B、一组对边平行,一组对角相等的四边形可证出另一组对边也平行,所以该四边形是平行四边形.故本选项说法正确.C、无理数是⼀限不循环小数,故本选项说法正确.D、对⻆线相等的四边形不一定是矩形,例如等腰梯形,故本选项说法错误.故选:D.13.解:A、∵AB=BC,∴▱ABCD为菱形,错误;B、∵AC⊥BD,∴▱ABCD为菱形,错误;C、∵∠ABC=90°,∴▱ABCD是矩形,正确;D、∵∠1=∠2,∴▱ABCD为菱形,错误;故选:C.14.解:矩形的判定定理有①有三个角是直角的四边形是矩形,②对角线互相平分且相等的四边形是矩形,③有一个角是直角的平行四边形是矩形,A、根据两组对边分别相等,只能得出四边形是平行四边形,故本选项错误;B、根据对角线互相垂直平分得出四边形是菱形,故本选项错误;C、根据矩形的判定,可得出此时四边形是矩形,故本选项正确;D、根据对角线相等不能得出四边形是矩形,故本选项错误;故选:C.15.解:A、AB=BC,邻边相等,可判定平行四边形ABCD 是菱形;B、对角线平分对角,可判断平行四边形ABCD成为菱形;C、一内角等于90°,可判断平行四边形ABCD成为矩形;D、对角线互相垂直,可判定平行四边形ABCD是菱形;故选:C.16.解:A、∵矩形的对角线互相平分且相等,∴选项A不符合题意;B、∵矩形的邻边一定垂直,不一定相等,∴选项B不符合题意;C、∵对角线相等的平行四边形是矩形,∴选项C不符合题意;D、∵有三个角为直角的四边形为矩形,∴选项D符合题意;故选:D.17.解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OD,∴AC=BD,∴四边形ABCD是矩形,∴∠DAB=90°,AB∥CD,∴∠OAB=∠DAB﹣∠OAD=90°﹣55°=35°,∠OCD =∠OAB=35°,故选:A.18.解:如图,CA⊥l1,BD⊥l2,∴AC∥BD.又∵l1∥l2,∴四边形ABDC是矩形.∴BD=AC.又∵AC=3cm,∴BD=3cm.故选:C.19.解:①一组对边平行且一组对角相等的四边形是平行四边形;正确,可以证明两组对角分别相等.②一组对边相等且有一个角是直角的四边形是矩形;错误;③三角形的中位线平行于三角形的第三边且等于第三边的一半;正确;④两条对角线相等的四边形是矩形.错误,应该是两条对角线相等的平行四边形是矩形;故选:B.20.解:连接CP,如图所示:∵PE⊥AC,PF⊥BC,∠ACB=90°,∴∠PEC=∠ACB=∠PFC=90°,∴四边形PECF是矩形,∴EF=CP,当CP⊥AB时,CP最小,即EF最小,∵∠C=90°,AC=6,BC=8,∴AB===10,由三角形面积公式得:AC×BC=AB×CP,∴CP===4.8,即EF的最小值是4.8,故选:C.。
矩形的性质与判定-中考数学每日一练人教版(一轮复习)
矩形的性质与判定中考频度:★★★☆☆ 难易程度:★★★☆☆(1)如图,矩形ABCD 中,对角线AC ,BD 交于点O ,若608AOB BD ∠=︒=,,则AB 的长为A .4B .43C .3D .5 (2)矩形ABCD 中,6cm 8cm AB BC AE ==,,平分BAC ∠交BC 于E ,CF 平分ACD ∠交AD 于F . ①说明四边形AECF 为平行四边形;②求四边形AECF 的面积.【参考答案】(1)A ;(2)①见解析;②30 cm 2.又∵AE 平分∠BAC ,CF 平分∠ACD ,∴∠EAC =∠FCA ,∴AE ∥CF ,∴四边形AECF 是平行四边形.②如图,过点E 作EO ⊥AC 于点O ,∵∠B =90°,AE 平分∠BAC ,∴EO =BE ,∵AE =AE ,∴Rt △ABE ≌Rt △AOE ,∴AO =AB =6,∵在Rt △ABC ,AC 226810+=,∴OC =AC -AO =4,设CE =x ,则EO =BE =BC -CE =8-x ,∴在Rt △OEC 中,由勾股定理可得:222(8)4x x -+=,解得5x =,∴EC =5,∴S 四边形AECF =CE ·AB =5×6=30(cm 2). 【解题必备】1.矩形的概念有一个角是直角的平行四边形叫做矩形.2.矩形的性质(1)具有平行四边形的一切性质;(2)矩形的四个角都是直角;(3)矩形的对角线相等;(4)矩形是轴对称图形.3.矩形的判定(1)定义:有一个角是直角的平行四边形是矩形.(2)定理1:有三个角是直角的四边形是矩形.(3)定理2:对角线相等的平行四边形是矩形.4.矩形的面积S 矩形=长×宽=ab .1.下列各句判定矩形的说法:①对角线相等的四边形是矩形;②对角线互相平分且相等的四边形是矩形;③有一个角是直角的四边形是矩形;④有四个角是直角的四边形是矩形;⑤四个角都相等的四边形是矩形;⑥对角线相等,且有一个角是直角的四边形是矩形,其中正确的有A.2个B.3个C.4个D.5个2.如果矩形的一边长为6,一条对角线的长为10,那么这个矩形的另一边长是__________.3.如图,在矩形ABCD中,E是AB边上的中点,将△BCE沿CE翻折得到△FCE,连接AF.若∠EAF=75°,那么∠BCF的度数为__________.4.如图,在ABCD中,AB=6,BC=8,AC=10.(1)求证:四边形ABCD是矩形;(2)求BD的长.2.【答案】8【解析】∵矩形的一边长为6,一条对角线长为10,∴矩形的另一边长为22106 =8,故答案为:8.4.【解析】(1)∵AB =6,BC =8,AC =10,∴AB 2+BC 2=AC 2,∴∠ABC =90°,∵四边形ABCD 是平行四边形,∴四边形ABCD 是矩形. (2)∵四边形ABCD 是矩形,∴BD =AC =10.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩形一选择题:1.下列命题是假命题的是( )A.矩形的对角线相等B.矩形的对边相等C.矩形的对角线互相平分D.矩形的对角线互相垂直2.下列说法:①矩形是轴对称图形,两条对角线所在的直线是它的对称轴;②两条对角线相等的四边形是矩形;③有两个角相等的平行四边形是矩形;④两条对角线相等且互相平分的四边形是矩形;⑤两条对角线互相垂直平分的四边形是矩形.其中,正确的有( )A.1个 B.2个 C.3个D.4个3.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()A.50°B.55°C.60°D.65°4.如图,矩形ABCD中,E在AD上,且EF⊥EC,EF=EC,DE=2,矩形的周长为16,则AE的长是()A.3B.4C.5D.75.如图,在矩形ABCD中,AB=2,BC=4,对角线AC垂直平分线分别交AD、AC于点E、O,连接CE,则CE长为( )A.3B.3.5C.2.5D.2.86.如图,一个矩形纸片,剪去部分后得到一个三角形,则图中∠1+∠2的度数是( )A.30°B.60°C.90° D.120°7.如图是一张矩形纸片ABCD,AD=10 cm,若将纸片沿DE折叠,使DC落在DA上,点C的对应点为点F,若BE=6cm,A.4 cmB.6 cmC.8 cmD.10 cm8.如图,在Rt△ABC中,∠A=90°,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,动点P从点B出发,沿着BC匀速向终点C运动,则线段EF的值大小变化情况是( )A.一直增大B.一直减小C.先减小后增大D.先增大后减少9.如图,矩形ABCD中,AB=8,AD=6,将矩形ABCD绕点B按顺时针方向旋转后得到矩形A′BC′D′.若边A′B 交线段CD于H,且BH=DH,则DH的值是( )A.B.8-2 C. D.610.如图,矩形ABCD的对角线AC与数轴重合(点C在正半轴上),AB=5,BC=12,点A表示的数是-1,则对角线AC、BD的交点表示的数是( )A.5.5B.5C.6D.6.511.如图在△ABC中,CF⊥AB于F,BE⊥AC于E,M为BC的中点,EF=3,BC=8,则△EFM的周长是()A.21B.15C.13D.1112.如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不改变D.线段EF的长不能确定13.如图,在矩形ABCD中,AB=2,BC=1,动点P从点A出发,沿路线A→B→C做匀速运动,那么△CDP的面积SA. B. C. D.14.如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1、S2的大小关系是()A.S1>S2 B.S1=S2 C.S1<S2 D.3S1=2S215.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12B.24C.12D.1616.如图,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,则下列结论:△ODC是等边三角形;②BC=2AB;③∠AOE=135°;④S△AOE=S△COE,其中正确的结论的个数有( )A.1B.2C.3D.417.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB于E,PF ⊥AC于F.则EF的最小值为()A.4B.4.8C.5.2D.618.如图4,正方形ABCD中,点E在BC的延长线上,AE平分∠DAC,则下列结论:其中正确的有()A.5个B.4个C.3个D.2个19.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB于E,PF⊥AC于F,M为EF中点.设AM的长为x,则x的取值范围是()A.4≥x>2.4B.4≥x≥2.4C.4>x>2.4D.4>x≥2.420.如图,矩形ABCD中,AB=6,AD=8,顺次连结各边中点得到四边形A1B1C1D1,再顺次连结四边形A1B1C1D1各边中点得到四边形A2B2C2D2…,依此类推,则四边形A7B7C7D7的周长为()A.14B.10C.5D.2.5二填空题:21.如图,矩形A BCD中,点E在线段AD延长线上,AD=DE,连接BE与DC相交于点F,连接AF,请从图中找出一个等腰三角形.22.如图,在矩形ABCD中,AB=5cm,且∠BOC=120°,则AC 的长为____________;23.如图矩形ABCD中,AB=8㎝,CB=4㎝,E是DC的中点,BF=BC,则四边形DBFE的面积为______________。24.如图,已知矩形ABCD,P、R分别是BC和DC上的点,E、F分别是PA、PR的中点.如果DR=3,AD=4,则EF的长为________.25.如图,O为矩形ABCD的中心,将直角三角板的直角顶点与O点重合,转动三角板使两直角边始终与BC、AB相交,交点分别为M、N.如果AB=4,AD=6,OM=x,ON=y,则y与x的函数关系式是.26.如图,矩形ABCD 的边长AB=8,AD=4,若将△DCB沿BD所在直线翻折,点C落在点F处,DF与AB交于点E. 则cos∠ADE= .27.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC,若AC=4cm,则四边形CODE的周长为28.如图,将矩形纸片ABC(D)折叠,使点(D)与点B重合,点C落在点处,折痕为EF,若,那么的度数为度.29.如图,矩形ABCD中,AD=4,∠CAB=30o,点P是线段AC上的动点,点Q是线段CD上的动点,则AQ+QP的最小值30.小明尝试着将矩形纸片ABCD(如图①,AD>CD)沿过A点的直线折叠,使得B点落在AD边上的点F处,折痕为AE(如图②);再沿过D点的直线折叠,使得C点落在DA边上的点N处,E点落在AE边上的点M处,折痕为DG(如图③).如果第二次折叠后,M点正好在∠NDG的平分线上,那么矩形ABCD长与宽的比值为.三简答题:31.如图,在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F.求证:DF=DC.32.如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.33.长为1,宽为a的矩形纸片(<a<1),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去,若在第n次操作后,剩下的矩形为正方形,则操作终止.(I)第二次操作时,剪下的正方形的边长为;(Ⅱ)当n=3时,a的值为.(用含a的式子表示)34.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.35.如图,在矩形OABC中,点A、C的坐标分别为(10,0),(0,2),点D是线段BC上的动点(与端点B、C 不重合),过点D作直线交线段OA于点E.(1)矩形OABC的周长是;(2)连结OD,当OD=DE时,求的值;(3)若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究四边形O1A1B1C1与矩形OABC重叠部分的面积是否会随着E点位置的变化而变化,若不变,求出该重叠部分的面积;若改变,请说明理由.36.如图,长方形ABCD,AB=9,AD=4.E为CD边上一点,CE=6.(1)求AE的长.(2)点P从点B出发,以每秒1个单位的速度沿着边BA向终点A运动,连接PE.设点P运动的时间为t秒,则当t为何值时,△PAE为等腰三角形?37.长方形ABCD中,AD=10,AB=8,将长方形ABCD折叠,折痕为EF(1)当A′与B重合时(如图1),EF= ;(2)当直线EF过点D时(如图2),点A的对应点A′落在线段BC上,求线段EF的长;(3)如图3,点A的对应点A′落在线段BC上,E点在线段AB上,同时F点也在线段AD上,则A′在BC上的运动距离是;38.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.(1)试找出一个与△AED全等的三角形,并加以证明;(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,试求PG+PH的值,并说明理由.39.如图1,矩形ABCD中,AB=6,BC=8,点E、F分别是BC、CD边上的点,且AE⊥EF,BE=2,(1)求证:AE=EF;(2)延长EF交矩形∠BCD的外角平分线C P于点P(图2),试求AE与EP的数量关系;40.如图,把宽为2cm的纸条ABCD沿EF,GH同时折叠,B、C两点恰好落在AD边的P点处,若△PFH的周长为10cm,求长方形ABCD的面积.参考答案1、D2、A3、A4、A5、C6、C7、A8、C9、C 10、A 11、D 12、C 13、A14、B 15、D 16、C 17、B 18、A. 19、D; 20、D 21、△AFB或△AFE, 22、10cm; 23、10㎝2;24、2.5; 25、 26、 27、8 cm 28、125º29、 30、31、证明:∵四边形ABCD是矩形,∴AB=CD,AD∥BC,∠B=90°.∵DF⊥AE,∴∠AFD=∠B=90°.∵AD∥BC,∴∠DAE=∠AEB.又∵AD=AE,∴△ADF≌△EAB(AAS).∴DF=AB.又∵AB=DC,∴DF=DC.32、【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠MDO=∠NBO,∠DMO=∠BNO,∵在△DMO和△BNO中,,∴△DMO≌△BNO(AAS),∴OM=ON,∵OB=OD,∴四边形BMDN是平行四边形,∵MN⊥BD,∴平行四边形BMDN是菱形.(2)解:∵四边形BMDN是菱形,∴MB=MD,设MD长为x,则MB=DM=x,在Rt△AMB中,BM2=AM2+AB2即x2=(8﹣x)2+42,解得:x=5,所以MD长为5.33、【解答】解:由题意,可知当<a<1时,第一次操作后剩下的矩形的长为a,宽为1﹣a,所以第二次操作时正方形的边长为1﹣a,第二次操作以后剩下的矩形的两边分别为1﹣a,2a﹣1.故答案为:1﹣a;此时,分两种情况:①如果1﹣a>2a﹣1,即a<,那么第三次操作时正方形的边长为2a﹣1.∵经过第三次操作后所得的矩形是正方形,∴矩形的宽等于1﹣a,即2a﹣1=(1﹣a)﹣(2a﹣1),解得a=;②如果1﹣a<2a﹣1,即a>,那么第三次操作时正方形的边长为1﹣a.则1﹣a=(2a﹣1)﹣(1﹣a),解得a=.故答案为:或.34、(1)证明:∵CF平分∠ACD,且MN∥BD,∴∠ACF=∠FCD=∠CFO.∴OF=OC.同理:OC=OE.∴OE=OF.(2)由(1)知:OF=OC,OC=OE,∴∠OCF=∠OFC,∠OCE=∠OEC.∴∠OCF+∠OCE=∠OFC+∠OEC.而∠OCF+∠OCE+∠OFC+∠OEC=180°,∴∠ECF=∠OCF+∠OCE=90°.∴EF===13.∴OC=EF=.(3)连接AE、AF.当点O移动到AC中点时,四边形AECF为矩形.理由如下:由(1)知OE=OF,当点O移动到AC中点时,有OA=OC,∴四边形AECF为平行四边形.又∵∠ECF=90°,∴四边形AECF为矩形.35、(1)24(2)∵OC=2 OA=10 ∴D(2-4,2),E(2,0) ∵OD=DE ∴OE=2CD 2=2(2-4) ∴=4(3)设O1A1与CB相交于点M,OA与C1B1相交于点N,则矩形O1A1B1C1与矩形OABC的重叠部分的面积即为四边形DNEM的面积.由题意知,DM∥NE,DN∥ME,∴四边形DNEM为平行四边形根据轴对称知,∠MED=∠NED∵DM∥NE ∴∠MDE=∠NED∴∠MED=∠MDE ∴MD=ME ∴平行四边形DNEM为菱形过点D作DH⊥OA,垂足为H,∴DH=2设菱形DNEM 的边长为,∴HN=HE-NE=OE-OH-NE=4-,在RT△DHN中,解得∴菱形DNEM的面积=NE·DH=5∴矩形O1A1B1C1与矩形OABC重叠部分的面积不会随着点E位置的变化而变化,面积始终为5.36、(1)在长方形ABCD中,∠D=90°,CD=AB=9在Rt△ADE中,DE=9-6=3,AD=4,∴AE=5(2)若△PAE为等腰三角形,则有三种可能.当EP=EA时,AP=6,∴t=BP=3当AP=AE时,则9-t=5,∴t=4当PE=PA时,则(6-t)2+42=(9-t)2,∴t=综上所述,符合要求的t值为3或4或.37、1)EF=10 (2)5(3)438、【解答】解:(1)△AED≌△CEB′证明:∵四边形ABCD为矩形,∴B′C=BC=AD,∠B′=∠B=∠D=90°,又∵∠B′EC=∠DEA,∴△AED≌△CEB′;(2)由折叠的性质可知,∠EAC=∠CAB,∵CD∥AB,∴∠CAB=∠ECA,∴∠EAC=∠ECA,∴AE=EC=8﹣3=5.在△ADE中,AD===4,延长HP交AB于M,则PM⊥AB,∴PG=PM.∴PG+PH=PM+PH=HM=AD=4.39、(1)∵AE⊥EF,∴∠BEA+∠CEF=90°。