一类高考导数压轴题的统一解法
高考压轴题:导数题型及解题方法总结很全.
注意:“函数 f ( x) 在 m, n 上是减函数”与“函数 f ( x) 的单调减区间是 a, b ”的区别是前者是后者的子集。
例 已知函数 f (x) x2 a ln x + 2 在 1, x
(利用极值点的大小关系、及极值点与区间的关系分类)
1,2 的极小值。
二.单调性问题
题型 1 求函数的单调区间。
求含参函数的单调区间的关键是确定分类标准。分类的方法有:
ቤተ መጻሕፍቲ ባይዱ
( 1)在求极值点的过程中,未知数的系数与
0
的关系不定而引起的分类; (2)在求极值点的过程中,有无极值点引起的分类(涉及到二次方程问题时,△与
切线方程。解决问题的方法是设切点,用导数求斜率,建立等式关系。
例 求曲线 y x2 与曲线 y 2eln x 的公切线方程。 (答案 2 ex y e 0 )
三.极值、最值问题。
题型 1 求函数极值、最值。
基本思路:定义域 → 疑似极值点 → 单调区间 → 极值 → 最值。
例 已知函数 f (x) ex x (k 1) ex 1 x 2 kx 1 ,求在 x 2
3. 对 x1 m, n , x2 m, n , f ( x1 ) g( x2 ) 成立。则 f ( x1 ) max g( x2 ) min 。
4. 对 x1 m, n , ,恒成立 4. 对 x1 m, n , x2 5. 对 x1 m, n , x2
f ( x1) g (x1) 。转化 f (x1) g(x1) 0 恒成立 m, n , f (x1) g( x2 ) 成立。则 f ( x1 ) min g (x2 )min 。 m, n , f (x1) g( x2 ) 成立。则 f ( x1 ) max g( x2 ) max
高考导数压轴题终极解答_2022年学习资料
13.设函数fx=nx-ux-1--1.-X-I当a=1时,过原点的直线与函数fx的图象相切于点P,求点P 坐标;-IⅡ当0<u<二时,求函数fx的单调区间:-D当u=号时,设函数g=-2x-,若对于飞∈0,e], 飞e[0,1-12-使fx≥8x2成立,求实数b的取值范围.e是自然对数的底,e<√3+1-14.两边分求 最小值与最大值已知函数f=xlnx,8=-x+x-3.求f在-[,t+2t>0上的最小值:若存在-e是常数 e=2.71828„使不等式-In x>-2f≥8成立,求实数0的取值范围:证明对一切x∈0,+0,都有e #43;bex∈R.(1若a=2,b=-2,求函数∫x的极值;-2若x=1是函数fx的一个 值点,试求出关于b的关系式(用M表示b,并确定-∫x的单调区间;-3在2的条件下,设u>0,函数8x=a2 14e+4.若存在21,22∈[0,4]使得-If2-f22K1成立,u的取值范围.-12.两边分求,最小 与最大值-已知函数f=lnr-ax+--1aeR.当a≤时,讨论f的单调性;设-8=x2-2bx+4.当a 时,若对任意x∈0,2,存在3∈[1,2,使fC≥g,-求实数b取值范围.
21.单调性已知fx=n+2-x+bx+c若函数fx在点1,y处的切线与直线-3x+7y+2=0垂直,且=0,求函数fx在区间[0,3]上的最小值;若fx在区间[0,m上-单调,求b的取值范围,-22.单调性, 到二阶导数的技巧-已知函数fx=lnx-0若F=f0+“-a∈R,求Fx的极大值:-X-2若Gx=[fx] kx在定义域内单调递减,求满足此条件的实数k的取值范围
压轴题型10-导数压轴大题的处理策略(解析版)-2023年高考数学压轴题专项训练
压轴题10导数压轴大题的处理策略目前虽然全国高考使用试卷有所差异,但高考压轴题目题型基本都是一致的,几乎没有差异,如果有差异只能是难度上的差异,高考导数压轴题考察的是一种综合能力,其考察内容方法远远高于课本,其涉及基本概念主要是:切线,单调性,非单调,极值,极值点,最值,恒成立等等。
导数解答题是高考数学必考题目,然而学生由于缺乏方法,同时认识上的错误,绝大多数同学会选择完全放弃,我们不可否认导数解答题的难度,但也不能过分的夸大。
掌握导数的解体方法和套路,对于基础差的同学不说得满分,但也不至于一分不得。
为了帮助大家复习,今天就总结倒数7大题型,让你在高考数学中多拿分,平时基础好的同学逆袭140也不是问题。
○热○点○题○型1分类讨论与极值点偏移问题○热○点○题○型2恒成立问题的处理策略○热○点○题○型3凹凸反转问题的处理策略1.已知函数()e 3xf x a x =--有两个零点.(1)求实数a 的取值范围.(2)函数()()()ln 1g x f x x x =+-+,证明:函数()g x 有唯一的极小值点.【答案】(1)2(0,e )(2)证明过程见解析【分析】(1)对函数()f x 求导,求出函数()f x 的单调区间,再利用函数图像,从而得出()f x 的最小值小于零,进而求出结果.(2)通过函数的极值点的定义,将问题转化成导函数的零点问题,通过对函数()g x 求导,得出导函数()g x '严格单调,进而再利用零点存在性原求出()0g x '=的零点,从而得到证明.2.已知2()e 2xf x x x =--.(1)若()f x 在x =0处取得极小值,求实数a 的取值范围;(2)若()f x 有两个不同的极值点12,x x (12x x <),求证:1202x x f +⎛⎫''< ⎪⎝⎭(()f x ''为()f x 的二阶导数).【答案】(1)(),1-∞3.已知函数()2e a f x x=,0a ≠.(1)讨论函数()f x 的单调性;(2)若()ln ln x xf x a -≤恒成立,求实数a 的取值范围.(1)当12a =时,讨论函数()()()F x f x g x =-的单调性;(2)当a<0时,求曲线()y f x =与()y g x =的公切线方程.【答案】(1)在R 上单调递增.(2)21y x =+【分析】(1)先求函数()F x 的导函数()F x ',再利用导数证明()0F x '≥,由此判断函数()F x 的单调性;()()0,,0x x ∞ϕ∈+>,又e 0x >得,所以()(),0,0x m x ∞∈-'<,()()0,,0x m x ∞∈+'>,所以()m x 在(),0∞-单调递减,在()0,∞+单调递增,所以()()00m x m ≥=,因此函数()y m x =只有一个零点,即()11121e4e 42e 410x x x ax a a -+--+=只有一个解10x =,此时切线方程为21y x =+,所以曲线()y f x =与()y g x =的公切线方程为21y x =+.【点睛】关键点点睛:本题第二小问解决的关键在于利用导数的几何意义确定切点的坐标满足的关系,再通过利用导数研究方程的解,确定切点坐标,由此求出切线方程.5.已知()()222ln 2a f x x a x x =-++.(1)讨论()f x 的单调性;(2)确定方程()22a f x x =的实根个数.(]0,e x ∈时,()g x 取值范围是⎛-∞ ⎝()e,x ∈+∞时,()g x 取值范围是0,⎛ ⎝所以当112e a +>,即22ea >-时,方程当112e a +=或102a +≤,即22e a =-当1012e a <+<,即222e a -<<-时,方程【点睛】方法点睛:利用导数研究函数的单调区间,首先要求函数的定义域,当导函数含有参数时,要对参数进行分类讨论,在确定导函数()f x '的正负时,难点在于分类讨论时标准的确定,主要是按照()0f x '=是否有根,根的大小进行分类求解的.6.已知函数()()()13ln 3R f x a x ax a x=---∈,ln 3 1.1≈.(1)当a<0时,试讨论()f x 的单调性;(2)求使得()0f x ≤在()0,∞+上恒成立的整数a 的最小值;(3)若对任意()4,3a ∈--,当[]12,1,4x x ∈时,均有()()()12ln 43ln 4m a f x f x +⋅>-+成立,求实数m 的取值范围.离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.7.已知函数()ln 2f x x ax =-.(1)讨论函数()f x 的单调性;(2)若()0f x ≤恒成立,求a 的取值范围.是自然对数的底数,函数e ln .(1)若2m =,求函数()()2e 422xx F x x f x =+-+-的极值;(2)是否存在实数m ,1x ∀>,都有()0f x ≥若存在,求m 的取值范围;若不存在,请说明理由.∴()F x 的极大值为()22ln 26F =-;()F x 的极小值为()34ln22F =-.(2)因为0m >,由0mx m ->得1x >,即()f x 的定义域为()1,+∞.当0,1m x >>时,由()()e ln 0xf x m m mx m =+--≥可得,()()e ln ln ln 1x m m mx m m m m x +≥-=+-,不等式两边同时除以m 可得,()1e 1ln ln 1x m x m +≥+-,即()1e ln ln 11x m x m-≥--可得()ln e ln ln 11x mm x --≥--所以()()()()()ln 1ln eln ln 11eln 1x x mx m x x x --+-≥-+-=+-.设()e xh x x =+,则ln ln(1)e (ln )e ln(1)x m x x m x --+-≥+-即()()ln ln 1h x m h x -≥-⎡⎤⎣⎦.易得()e 10xh x '=+>,所以()h x 为单调递增函数.由()()ln ln 1h x m h x -≥-⎡⎤⎣⎦,可得()ln ln 1x m x -≥-,所以()ln ln 1m x x ≤--设()()ln 1H x x x =--,则()12111x H x x x -=-=--'.∴当()1,2x ∈时,()201x H x x '-=<-,即()H x 单调递减;当()2,x ∈+∞时,()201x H x x '-=>-,即()H x 单调递增.即()1,x ∈+∞时,()()min 22H x H ==;由题意可得()min ln 2m H x ≤=,即2e m ≤.∴存在实数m ,且m 的取值范围为(20,e ⎤⎦.【点睛】方法点睛:不等式恒成立求解参数取值范围时,常用的方法是通过构造函数将问题转化成求解函数最大值或最小值问题,即可求得参数取值范围.9.已知函数()()ln ,e e x x f x x g x -=-=-.(1)若[]()()0,1,x g x f a ∃∈>成立,求实数a 的取值范围;(2)证明:()()πcos 2e x h x f x =+有且只有一个零点0x,且20π1e cos e 2e x g -⎛⎫<< ⎝⎭,f x 的导函数为f x 3πππ,π22n n ⎛⎫-- ⎪⎝⎭内的零点为n x ,n *∈N .(1)求函数()f x 的单调区间;(2)证明:1πn n x x +-<.11.已知函数()ln f x m x x x=++.(1)求函数()f x 的单调区间;(2)当1m =时,证明:()23e x x f x x <+.12.已知函数()()()211R 2f x x m x m =+--∈.(1)求函数()f x 在区间[]1,2上的最大值;(2)若m为整数,且关于x的不等式()ln≥恒成立,求整数m的最小值.f x x(1)讨论()f x 在()0,∞+的单调性;(2)是否存在01,,a x x ,且10x x ≠,使得曲线()y f x =在0x x =和1x x =处有相同的切线?证明你的结论.【答案】(1)答案见解析(2)不存在,证明见解析【分析】(1)对()f x 求导,讨论10a -->和10a --≤时,()f x '的正负即可得出答案;(2)假设存在,求出()f x 在()()00,x f x 和()()11,x f x 处的切线方程,建立等式,将等式化简,减少变量,从而构造新的函数,研究新函数的单调性,即可证明.【详解】(1)()()1e x f x x a '=++,故1x a >--时,()0f x ¢>;1x a <--时,()0f x '<,当10a -->,即1a <-时,()f x 在()0,1a --单调递减,在()1,a --+∞单调递增;14.已知函数23()ln f x x x x =+-.(1)若0a =,求()f x 在点()()1,1f 处的切线方程;(2)若12,x x (12x x <)是()f x 的两个极值点,证明:()()121234f x f x x x a-<-.轴上的射影分别为D ,C ,当AB 平行于x 轴时,四边形ABCD 的面积为4.(1)求p 的值;(2)过抛物线上两点的弦和抛物线弧围成一个抛物线弓形,古希腊著名数学家阿基米德建立了这样的理论:以抛物线弓形的弦为底,以抛物线上平行于弦的切线的切点为顶点作抛物线弓形的内接三角形,则抛物线弓形的面积等于该内接三角形面积的43倍.已知点P 在抛物线E 上,且E 在点P 处的切线平行于AB ,根据上述理论,从四边形ABCD 中任取一点,求该点位于图中阴影部分的概率的取值范围.16.已知函数()()1ln e ,xxf xg x m x==-.()m ∈R (1)证明:()1f x x ≥+;(2)若()()f x g x ≥,求实数m 的取值范围;(3)证明:11e e 1knk k =⎛⎫< ⎪-⎝⎭∑.()N n +∈【答案】(1)证明见解析(2)1m ≥-(3)证明见解析17.设函数1e 2,R .(1)讨论()f x 的单调性;(2)若当[2,)x ∈-+∞时,不等式()()213e f x m x x -≥+-恒成立,求m 的取值范围.18.已知函数.(1)当12a =-时,讨论函数()f x 在()0,∞+上的单调性;(2)当0x >时,()1f x <,求实数a 的取值范围.19.讨论函数()()212ln f x ax x a x =+-+的单调性.么称函数()f x 在区间D 上可被()g x 替代.(1)若()()1,14f x x g x x ==-,试判断在区间13,44⎡⎤⎢⎥⎣⎦上,()f x 能否可被()g x 替代?(2)若()()()2sin ,ln cos f x x g x a x ==+,且函数()f x 在x ∈R 上可被函数()g x 替代,求实数a 的取值范围.综上,满足条件的实数a 的取值范围是[]1,e 1-【点睛】思路点睛:常规函数求导问题中,涉及到三角函数的思路一般为两种:一、正常利用求导公式进行计算;二、利用换元法将三角函数换元进行计算。
2022年高考数学全国乙卷导数压轴题解析
㊀㊀㊀讲题比赛获奖论文之六:2022年高考数学全国乙卷导数压轴题解析◉中央民族大学附属中学呼和浩特分校㊀李雪峰㊀㊀摘要:函数零点问题在高考压轴题中经常出现.在解题过程中,按照一定标准对参数分类讨论㊁把握细节确定方向㊁引入隐零点㊁区间卡根,这些方面都可能成为解决零点问题的障碍.所以,选取适当的角度观察㊁分析,根据题目中的关键信息制定策略㊁拟定解题思路,并在此基础上进行计算㊁推理论证,往往是解题的关键.只有明白了思考的底层逻辑,才能使分析问题㊁解决问题的能力有所提高.关键词:函数零点问题;分类讨论;数形结合;区间卡根1试题呈现(2022年高考数学全国乙卷第21题)已知函数f (x )=l n (1+x )+a x e -x.(1)当a =1时,求曲线y =f (x )在点(0,f (0))处的切线方程;(2)若f (x )在区间(-1,0),(0,+ɕ)各恰有一个零点,求a 的取值范围.2试题解析本题的第(1)问不多赘述,下面给出第(2)问的几种不同的思考角度和解题方法.2.1思路一及解法2.1.1解题思路一的形成因为题中所给条件是函数零点问题,所以我们先观察函数值的正负情况以及何时为零.当a ȡ0时,若x >0,则f (x )=l n (1+x )+a x e -x>0恒成立,与题意不符.因此,下面只讨论a <0时的情形.通过观察易知f (0)=0,当x ң-1时,f (x )ң-ɕ;当x ң+ɕ时,f (x )ң+ɕ.要使f (x )在区间(-1,0),(0,+ɕ)各恰有一个零点,则可以猜测f (x )的图象大致如图1所示.图1由图1可知,fᶄ(0)=a +1<0显然为其必要条件,即a <-1.下面需要说明:①当a ȡ-1时,不符合题意;②当a <-1时,讨论函数f (x )的单调性,再根据零点存在定理说明在区间(-1,0)和(0,+ɕ)上各恰有一个零点.思路一的思维导图如图2所示.函数f (x )零点问题观察函数的零点及正负情况确定讨论a 的标准说明a ȡ0和-1ɤa <0时不符合题意当a <-1时,利用隐零点讨论f (x )的单调性,并区间探点,说明a <-1时符合题意得出结论图22.1.2具体解法解法1:由思路一的分析可知a ȡ0不合题意,下面只讨论a <0时的情形.由f (x )求导,得f ᶄ(x )=e x +a (1-x 2)(x +1)ex.设g (x )=e x +a (1-x 2).当-1ɤa <0时,在区间(0,+ɕ)上,有g (x )=e x +a (1-x 2)=(e x+a )-a x 2>0.所以,在区间(0,+ɕ)上,f ᶄ(x )>0,f (x )单调递增,则f (x )>f (0)=0,这与题意不符.当a <-1时,g ᶄ(x )=e x-2a x ,因为g ᵡ(x )=e x-2a >0,所以g ᶄ(x )在区间(-1,+ɕ)上单调递增.又因为g ᶄ(-1)=e -1+2a <0,gᶄ(0)=1>0,所以存在唯一x 0ɪ(-1,0),使g ᶄ(x 0)=0.因此,当x ɪ(-1,x 0)时,g ᶄ(x )<0,g(x )单调递减;当x ɪ(x 0,+ɕ)时,g ᶄ(x)>0,g (x )单调递增.(为直观起见,下面分别画出函数g ᶄ(x ),g (x ),f (x )的大致图象,如图3~5所示.)图3㊀㊀图4322022年12月上半月㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀试题研究命题考试Copyright ©博看网. All Rights Reserved.㊀㊀㊀图5于是g (x 0)<g (0)=a +1<0,又因为g (-1)=1e >0,g (1)=e >0,所以存在x 1ɪ(-1,x 0),x 2ɪ(x 0,1),使g (x 1)=g (x 2)=0.当x ɪ(-1,x 1)时,g (x )>0,f ᶄ(x )>0,f (x )单调递增;当x ɪ(x 1,x 2)时,g (x )<0,f ᶄ(x )<0,f (x )单调递减;当x ɪ(x 2,+ɕ)时,g (x )>0,fᶄ(x )>0,f (x )单调递增.同时可知f (x 1)>f (0)=0,f (x 2)<f (0)=0.(至此,利用隐零点求出了函数f (x )的单调区间.下面利用放缩法进行区间卡根,根据零点存在定理说明在区间(-1,0)和(0,+ɕ)上各恰有一个零点.)当-1<x <0时,因为x e -x>-e(证明略),所以f (x )=l n (1+x )+a x e -x<l n (x +1)-e a .由l n (x +1)-e a <0,得x <e e a -1.取m =e e a-1,则f (m )<0,从而存在唯一s ɪ(m ,x 1),使f (s )=0.当x >0时,因为x e -xɤ1e (证明略),所以f (x )=l n (1+x )+a x e -x>l n (x +1)+a e.由l n (x +1)+a e>0,得x >e -a e-1.取n =e -a e-1,则f (n )>0,从而存在唯一t ɪ(x 2,n ),使f (t )=0.所以,当a <-1时,函数f (x )区间(-1,0)和(0,+ɕ)上各恰有一个零点.综上所述,a 的取值范围是(-ɕ,-1).解法2:当a ȡ0时,在区间(0,+ɕ)上,f (x )=l n (1+x )+a x e -x>0,与题意不符.下面只讨论a <0时的情形.由f (x )求导得f ᶄ(x )=1x +1+a (1-x )ex=1x +1[1+a (1-x 2)e x].(注意常见的变形技巧:对数 单身狗 ,指数 找朋友 .)设g (x )=1+a (1-x 2)ex,x ɪ(-1,+ɕ).求导,得g ᶄ(x )=a (x 2-2x -1)ex,x ɪ(-1,+ɕ).易得g (x )在(-1,1-2)上单调递减,在(1-2,1+2)上单调递增,在(1+2,+ɕ)上单调递增.当-1ɤa <0时,g (0)=a +1ȡ0,又因为当x >1+2时,g (x )=1+a (1-x 2)ex>1,所以当x >0时,g (x )>0,f ᶄ(x )>0,f (x )单调递增,从而f (x )>f (0)=0,这与题意不符.(为直观起见,给出g (x )的图象,如图6所示.)图6当a <-1时,g (0)=a +1<0,因为g (-1)=g (1)=1>0,g (1-2)<g (0)<0,所以存在唯一x 1ɪ(-1,0),x 2ɪ(0,1),使g (x 1)=g (x 2)=0.此时f (x )在(-1,x 1)上单调递增,(x 1,x 2)上单调递减,在(x 2,+ɕ)上单调递增.故f (x 1)>f (0)=0>f (x 2).(为直观起见,给出g (x ),f (x )的图象,如图7.)㊀图7下面找点说明f (x )在区间(-1,0),(0,+ɕ)上有零点.f (x )=l n (1+x )+a xex (a <-1).设m (x )=x e x ,则x ɪ(-1,1)时,m ᶄ(x )=1-xex >0,x ɪ(1,+ɕ)时,m ᶄ(x )<0.于是m (x )ɪ-e ,1e æèçöø÷.所以,可得l n (1+x )+ae<l n (1+x )+a xex <l n (1+x )-a e .由l n (1+x )+a e=0,解得x =e -ae-1>0,f (e -a e-1)>l n (1+e --1)+a e=0.由l n (1+x )-a e =0,解得x =e e a-1.所以可得f (e a e -1)<l n (1+e a e-1)-a e =0.所以f (x )在区间(-1,0),(0,+ɕ)上各恰有一个零点.综上所述,a 的取值范围是(-ɕ,-1).点评:解法1和解法2的基本思路一样,都是按照一定的标准对参数a 进行分类讨论,然后借助隐零点将函数的定义域分成若干个单调区间,最后在每个单调区间上卡根,根据零点存在定理说明函数零点的情况.解法2在求导后将导函数等价变形,使再求导后只需解一个不含参的二次不等式,简化了运算.解题一般是按照由易到难的顺序进行思考,即先42命题考试试题研究㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2022年12月上半月Copyright ©博看网. All Rights Reserved.㊀㊀㊀观察㊁猜想,再分析㊁思辨,最后论证㊁求解.题目越复杂越要注意细节,细节往往是打通解题思路的关键.2.2思路二及解法2.2.1解题思路二的形成函数零点的问题往往可以转化为两个函数图象交点问题,因此该题可以考虑参变分离,将函数零点的问题转化为直线与另一个函数图象交点问题,同时还可以避免参数讨论带来的麻烦.思路二的思维导图,如图8所示.函数f (x )零点问题转化为直线y =-a 与y =F (x )图象交点问题求导后,讨论F ᶄ(x )的符号及F (x )的单调性x >0时,求出F (x )在x =0处的极限,由图可得a <-1当x <0时,利用隐零点,讨论F (x )的单调性,并求出F (x )当x 趋于-1时的极限,由图可得a <-1得出结论图82.2.2具体解法解法3:因为f (0)=0,所以f (x )=0等价于-a =e x l n (1+x )x.令F (x )=e x l n (1+x )x (x >-1),则F ᶄ(x )=e x[(x 2-1)l n (1+x )+x ]x 2(x +1).令g (x )=(x 2-1)l n (1+x )+x ,则gᶄ(x )=x [1+2l n (1+x )].(注意到g (0)=0,所以先讨论g (x )在x >0时的正负情况.)当x >0时,gᶄ(x )>0,则g (x )单调递增,g (x )>g (0)=0,从而当x >0时,F ᶄ(x )>0,F (x )在(0,+ɕ)单调递增.由导数定义,得㊀F (x )>l i m x ң0F (x )=l i m x ң0e xl n (1+x )-e 0l n (1+0)x -0=[e xl n (1+x )]ᶄ|x =0=[e x 11+x +e xl n (1+x )]|x =0=1.(为直观起见,下面给出F (x )的图象.)图9如图9所示,要使直线y =a 与F (x )图象在y 轴右侧恰有一个交点,则必然有-a >1,即a <-1.因为e e l n (1+e -a )e-a+a >l n (1+e -a )+a >l n e -a+a =0,所以由零点存在定理可知,a <-1时,f (x )在区间(0,+ɕ)恰有一个零点.当-1<x <0时,令g ᶄ(x )=0,得x =e --1.易知g (x )在(-1,e -12-1)上单调递增,在(e -12-1,0)上单调递减,则g (e -12-1)>g (0)=0.因为g (e -1-1)=-e 2+3e -1e2<0,所以存在唯一x 0ɪ(e -1-1,e -12-1),使g (x 0)=0.(为直观起见,给出g (x ),F (x )的图象,如图10.)㊀㊀图10当-1<x <x 0时,g (x )<0,F ᶄ(x )<0,F (x )单调递减;当x 0<x <0时,g (x )>0,F ᶄ(x )>0,F (x )单调递增.所以F (x 0)<l i m x ң0F (x )=1.又因为l i m x ң-1F (x )=+ɕ,所以要使直线y =a 与f (x )图象在y 轴左侧恰有一个交点,则必然有-a >1,即a <-1.综上所述,当a <-1时,f (x )在区间(-1,0),(0,+ɕ)各恰有一个零点.点评:解法3的好处在于对F (x )求导后避免了参数的讨论;难点在于当x 趋于0时F (x )的极限值不易求出,虽然可用洛必达法则,但是超出了高中所学.该解法绕开了洛必达法则,利用导数的定义求出F (x )在x =0处的极限,比较巧妙,不易想到.3试题链接下面给出两道高考真题,供读者练习.试题1㊀(2017年全国Ⅰ卷理科)已知函数f (x )=a e 2x +(a -2)e x-x .(1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.试题2㊀(2018年全国Ⅱ卷理科)已知函数f (x )=e x-a x 2.(1)若a =1,证明:当x ȡ0时,f (x )ȡ1;(2)若f (x )在(0,+ɕ)只有一个零点,求a .4总结函数零点问题是高考的常考内容,数形并用㊁合理分类是解题的关键.区间探点是一个难点,常常可以用放缩法解决.上述方法都是解决此类问题的典型方法,由于方法3中的极限值不易求出,考试中绝大多数考生选择了方法1和方法2.该题对学生的逻辑推理能力和运算能力要求较高,解题时要求学生注意细节㊁大胆猜想㊁合理分类㊁准确计算,这样才能将问题顺利解决.Z522022年12月上半月㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀试题研究命题考试Copyright ©博看网. All Rights Reserved.。
函数与导数压轴题题型与解题方法(高考必备)
函数与导数压轴题题型与解题方法(高考必备)题型与方法(选择、填空题)一、函数与导数1、抽象函数与性质主要知识点:定义域、值域(最值)、单调性、奇偶性、周期性、对称性、趋势线(渐近线)对策与方法:赋值法、特例法、数形结合例1:已知定义在$[0,+\infty)$上的函数$f(x)$,当$x\in[0,1]$时,$f(x)=\frac{2}{3}-4x$;当$x>1$时,$f(x)=af(x-1)$,$a\in R$,$a$为常数。
下列有关函数$f(x)$的描述:①当$a=2$时,$f(\frac{3}{2})=4$;②当$a<\frac{1}{2}$时,函数$f(x)$的值域为$[-2,2]$;③当$a>\frac{1}{2}$时,不等式$f(x)\leq 2a$恒成立;④当$-\frac{1}{2}<a<\frac{1}{2}$时,函数$f(x)$的图像与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$。
其中描述正确的个数有(。
)【答案】C分析:根据题意,当$x>1$时,$f(x)$的值由$f(x-1)$决定,因此可以考虑特例法。
当$a=2$时,$f(x)$的值域为$[0,4]$,因此①正确。
当$a\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此不等式$f(x)\leq 2a$恒成立,③正确。
当$-\frac{1}{2}<a<\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此$f(x)$与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$,④正确。
因此,答案为$\boxed{\textbf{(C) }2}$。
六招破解高考导数压轴题
破解高考导数压轴题的常见策略纵观近十年高考数学课标全国卷,容易发现导数压轴题有如下特点:主要考查导数的几何意义,利用导 数研究函数的单调性、极值、最值,研究方程和不等式. 试题有一定的综合性,并与数学思想方法紧密结合, 对函数与方程的思想,分类与整合的思想等都进行深入的考查.下面介绍破解高考导数压轴题的六种策略.1. 分类讨论分类讨论是高考数学解答题压轴题的常用方法,纵观 2007-2018 年高考数学课标全国卷解答题压轴题, 几乎每一道都有用到分类讨论.高考要求考生理解什么样的问题需要分类讨论,为什么要分类,如何分类.例 1已知函数31()4f x x ax =++,()lng x x =-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线;(Ⅱ)用min{,}m n 表示,m n 中的最小值,设函数min{),()(}()h x f x g x =(0x >),讨论()h x 零点的个数.2. 分离参数讨论含参数的方程或不等式解的问题时,进行分类讨论有时显得比较复杂.如果我们将含参数的方程经过 变形,将参数分离出来,使方程的一端化为只含参数的解析式,而另一端化为与参数方程无关的主变元函数, 通过函数的值域或单调性讨论原方程的解的情况,则往往显得非常简捷、有效.例 2已知函数()f x =2x ax b ++,()g x =()x e cx d +,若曲线()y f x =和曲线()y g x =都过点P(0,2),且在点P 处有相同的切线42y x =+(Ⅰ)求a ,b ,c ,d 的值(Ⅱ)若x ≥-2时,()f x ≤()kg x ,求k 的取值范围。
3. 构造函数利用导数解决不等式问题是导数的一个非常重要的应用,其关键是根据不等式的结构特点,构造恰当的 辅助函数,进而通过研究函数的单调性和最值,最终解决问题.运用构造函数法来解题是培养学生创新意识的 手段之一.例3设函数1(0ln x xbe f x ae x x -=+,曲线()y f x =在点(1,(1)f 处的切线为(1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >.4.合理放缩高考数学压轴题往往涉及函数不等式问题,由于高考命题基本上涉及超越函数,研究其单调区间时一般 涉及解超越不等式,难度非常高,往往陷入绝境.放缩法是解决函数不等式问题的一把利器,关键是如何合理 放缩.常见的一种放缩法是切线放缩法,曲线的切线为一次函数,高中阶段大部分函数的图像均在切线的同侧, 即除切点外,函数的图像在切线的上方或下方,利用这一特性,可以将参与函数放缩成一次函数.例 4设函数1(0ln x xbe f x ae x x -=+,曲线()y f x =在点(1,(1)f 处的切线为(1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >.5.虚设零点导数在研究函数的单调性、极值和最值方面有着重要的应用,而这些问题都离不开一个基本点——导函 数的零点,因为导函数的零点既可能是原函数单调区间的分界点,也可能是原函数的极值点或最值点.可以说, 抓住了导函数的零点,就抓住了原函数的要点.在高考导数压轴题中,经常会遇到导函数具有零点但求解相对 比较复杂甚至无法求解的问题.此时,不必正面强求,只需要设出零点,充分利用其满足的关系式,谋求一种 整体的代换和过渡,再结合其他统计解决问题,这种方法即是“虚设零点”.例 5(Ⅰ)讨论函数的单调性,并证明当时,; (Ⅱ)证明:当时,函数有最小值.设的最小值为,求函数的值域.6. 多次求导高中函数压轴题一般需要求导,利用导函数的正负来判断原函数的增减.有些试题,当你一次求导后发现 得出的结果还存在未知的东西,导函数的正负没有清晰得表现出来时,就可以考虑二次求导甚至三次求导, 这个时候要非常细心,观察全局,不然做到后边很容易出错.例 6设函数()1xf x e -=-. (Ⅰ)证明:当x >-1时,()1x f x x ≥+; (Ⅱ)设当0x ≥时,()1x f x ax ≤+,求a 的取值范围. x x 2f (x)x 2-=+e 0x >(2)20x x e x -++>[0,1)a ∈2x =(0)x e ax a g x x-->()()g x ()h a ()h a教师版1. 分类讨论分类讨论是高考数学解答题压轴题的常用方法,纵观 2007-2017 年高考数学课标全国卷解答题压轴题, 几乎每一道都有用到分类讨论.高考要求考生理解什么样的问题需要分类讨论,为什么要分类,如何分类.例 1(2015 年高考数学全国乙卷(Ⅰ卷)理 21) 已知函数31()4f x x ax =++,()lng x x =-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线;(Ⅱ)用min{,}m n 表示,m n 中的最小值,设函数min{),()(}()h x f x g x =(0x >),讨论()h x 零点的个数.解:(Ⅰ)2()3f x x a '=+,若x 轴为曲线()y f x =的切线,则切点0(,0)x 满足00()0,()0f x f x '==,也就是2030x a +=且300104x ax ++=,解得012x =,34a =-,因此,当34a =-时,x 轴为曲线()y f x =的切线; (Ⅱ)当1x >时,()ln 0g x x =-<,函数()()()(min{}),h x f x g x g x ≤=没有零点; 当1x =时,若54a ≥-,则5(1)04f a =+≥,min{,(1)(1)(1)}(1)0h fg g ===,故1x =是()h x 的零点;当01x <<时,()ln 0g x x =->,以下讨论()y f x =在区间(0,1)上的零点的个数. 对于2()3f x x a '=+,因为2033x <<,所以令()0f x '=可得23a x =-,那么 (i )当3a ≤-或0a ≥时,()f x '没有零点(()0f x '<或()0f x '>),()y f x =在区间(0,1)上是单调函数,且15(0),(1)44f f a ==+,所以当3a ≤-时,()y f x =在区间(0,1)上有一个零点;当0a ≥时,()y f x =在区间(0,1)上没有零点;(ii )当30a -<<时,()0f x '<(0x <<()0f x '>1x <<),所以x =14f =.显然,若0f >,即304a -<<时,()y f x =在区间(0,1)上没有零点;若0f =,即34a =-时,()y f x =在区间(0,1)上有1个零点;若0f <,即334a -<<-时,因为15(0),(1)44f f a ==+,所以若5344a -<<-,()y f x =在区间(0,1)上有2个零点;若534a -<≤-,()y f x =在区间(0,1)上有1个零点.综上,当34a >-或54a <-时,()h x 有1个零点;当34a =-或54a =-时,()h x 有2个零点;当5344a -<<-时,()h x 有3个零点. 3. 分离参数讨论含参数的方程或不等式解的问题时,进行分类讨论有时显得比较复杂.如果我们将含参数的方程经过 变形,将参数分离出来,使方程的一端化为只含参数的解析式,而另一端化为与参数方程无关的主变元函数, 通过函数的值域或单调性讨论原方程的解的情况,则往往显得非常简捷、有效.例 2(2013 年高考数学全国乙卷(Ⅰ卷)理 21)已知函数()f x =2x ax b ++,()g x =()x e cx d +,若曲线()y f x =和曲线()y g x =都过点P(0,2),且在点P 处有相同的切线42y x =+(Ⅰ)求a ,b ,c ,d 的值(Ⅱ)若x ≥-2时,()f x ≤()kg x ,求k 的取值范围。
导数压轴题十种构造方法大全以及解题方法导引
导数压轴题十种构造方法大全以及解题方法导引方法一 等价变形,转化构造 方法导读研究函数的性质是高考压轴题的核心思想,但直接构造或者简单拆分函数依然复杂,这时候需要依赖对函数的等价变形,通过恒等变形发现简单函数结构再进行构造研究,会起到事半功倍的效果。
方法导引例1 已知函数f(x)=a e x (a ∈R ),g(x)=lnx x+1.(1)求函数g(x)的极值;(2)当a ≥1e 时,求证:f(x)≥g(x). 解析:(1)由g (x )=ln x x+1,得g ′(x )=1−ln x x 2,定义域为(0,+∞).令g ′(x )=0,解得x =e , 列表如下:结合表格可知函数g (x )的极大值为g (e )=1e +1,无极小值. (2)要证明f (x )≥g (x ),即证ae x ≥ln x x+1,而定义域为(0,+∞),所以只要证axe x −ln x −x ≥0,又因为a ≥1e,所以axe x −ln x −x ≥1exe x −ln x −x , 所以只要证明1e xe x −ln x −x ≥0.令F (x )=1e xe x −ln x −x ,则F ′(x )=(x +1)(e x−1−1x ), 记ℎ(x )=e x−1−1x ,则ℎ(x )在(0,+∞)单调递增且ℎ(1)=0,所以当x ∈(0,1)时,ℎ(x )<0,从而F ′(x )<0;当x ∈(1,+∞)时,ℎ(x )>0,从而F ′(x )>0,即F (x )在(0,1)单调递减,在(1,+∞)单调递增,F (x )≥F (1)=0. 所以当a ≥1e 时,f (x )≥g (x ).例2已知a ∈R ,a ≠0,函数f (x ) =e ax -1-ax ,其中常数e =2.71828.(1)求f (x ) 的最小值;(2)当a ≥1时,求证:对任意x >0 ,都有xf (x ) ≥ 2ln x +1-ax 2. 解析:(1)因为()1ax f x eax -=-,则()()11ax f x a e -'=-,()210ax f x a e -'=>'故()f x '为R 上的增函数,令()0f x '=,解得1x a= 故当()1,,0x f x a ⎛⎫∈-∞< '⎪⎝⎭,()f x 单调递减; 当()1,,0x f x a ⎛⎫∈+∞>'⎪⎝⎭,()f x 单调递增, 则()10min f x f a ⎛⎫==⎪⎝⎭故函数()f x 的最小值为0.(2)证明:要证明xf (x ) ≥ 2ln x +12ax - 等价于证明121ax xe lnx -≥+由(1)可知:10ax e ax --≥,即1ax e ax -≥ 因为0x >,故12ax xe ax -≥ 故等价于证明221ax lnx ≥+即()2210,0,ax lnx x --≥∈+∞令()221g x ax lnx =--,即证()()0,0,g x x ≥∈+∞恒成立.又())21122g x ax x x+-=-='令()0g x '=,解得x =故当(),0x g x⎛'∈< ⎝,()g x 单调递减; 当(),0x g x⎫∈+∞>'⎪⎭,()g x 单调递增;故()2g x g lna≥== 有因为1a ≥,故0lna ≥ 故()0g x lna ≥≥即证.即对任意x >0 ,都有xf (x ) ≥ 2ln x +1-ax 2. 方法二:构造常见典型函数 方法导读常见典型函数主要包括xlnx ,x/lnx ,lnx/x ; xe x ,xe x ,e x /x 等,通过变形发现简单函数结构再进行构造研究,会起到事半功倍的效果。
一类多变量导数压轴题的破解策略
f ( 2 一 )≥ 0, f 4— 2 + n≥ 0, 一 m
1 ( ≥0 1 + -≥0 厂 1 , —1 4 ) ” .
此不 等式 组表示 的可 行域 如 图 8 示 , 所 目标 函数 —m。 。 +n 表示 点 ( , 与原 点 ( ,) 间距 离 的 ) OO 之
() 2 不妨 设 < . 因为 口<一 1 由( )知 , 1
f x) ( , 。 )上单 调 递 减 , 而 1厂 z ) ( 在 0+ 。 从 .( 一
最 大值 是 2 . 7 点评 本 题 的难 点 是 用两 个 已知 的代 数 式 线 性表 示待 求分 式. 于本 题 涉及 双变 元 的不 等 由
解 ( )略 . 1
仔细 观察 发现 , 给 不等式 虽 含 z , 两个参 数 , 所 。 但两 个参 数 的地位 一 致 , 且 在 不 等 式 中 的组 成 而 结 构也一 致. 因此 可 以 考 虑对 不 等 式 进 行适 当 的 变 形 , 后 由单调性 定 义构造 单调 函数 , 然 最后 利 用 导 数工 具处 理这个 被 构 造 出来 的 单调 函数 , 而 从 突破所 求 的参数 范 围. 本题 中 , z 设 < z 结 合 ,
・
6 0・
中学 数学 月 刊 多 变 量 导 数 压 轴题 的破 解 策略
傅 建红 ( 江省衢 州 市第二 中学 浙 3 40 ) 2 0 0
在 近几 年 的高 考 和高三 模 拟考 题 中 , 时常 出 现一 类 以不等 式 为背 景 考查 函数 单 调 性 定 义 、 应 用 导数解 决 函数单 调 性 的函 数综 合 问题 . 这类 问 题 构思 巧妙 、 计 新颖 , 函数单 调性定 义 与导数 设 将
高考数学导数压轴大题7大题型梳理归纳
导数压轴大题7个题型梳理归纳题型一:含参分类讨论 类型一:主导函数为一次型例1:已知函数()ln f x ax a x =--,且()0f x ≥.求a 的值 解:()1ax f x x-'=.当0a ≤时,()0f x '<,即()f x 在()0,+∞上单调递减,所以当01x ∀>时,()()010f x f <=,与()0f x ≥恒成立矛盾.当0a >时,因为10x a <<时()0f x '<,当1x a>时()0f x '>,所以()min 1f x f a ⎛⎫= ⎪⎝⎭,又因为()1ln10f a a =--=,所以11a =,解得1a =类型二:主导函数为二次型例2: 已知函数()()320f x x kx x k =-+<.讨论()f x 在[],k k -上的单调性. 解:()f x 的定义域为R ,()()23210f x x kx k '=-+<,其开口向上,对称轴3k x =,且过()0,1,故03kk k <<<-,明显不能分解因式,得2412k ∆=-.(1)当24120k ∆=-≤时,即0k ≤<时,()0f x '≥,所以()f x 在[],k k -上单调递增;(2)当24120k ∆=->时,即k <令()23210f x x kx '=-+=,解得:12x x ==,因为()()210,010f k k f ''=+>=>,所以两根均在[],0k 上.因此,结合()f x '图像可得:()f x 在,,33k k k k ⎡⎡⎤+-⎢⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦上单调递增,在⎢⎥⎣⎦上单调递减.类型三:主导函数为超越型例3:已知函数()cos xf x e x x =-.求函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最值. 解:定义域0,2π⎡⎤⎢⎥⎣⎦,()()cos sin 1x f x e x x '=--,令()()cos sin 1xh x e x x =--,则()()cos sin sin cos 2sin .xx h x e x x x x e x '=---=-当0,2x π⎡⎤∈⎢⎥⎣⎦,可得()0h x '≤,即()h x 在0,2π⎡⎤⎢⎥⎣⎦递减,可得()()()000h x h f '≤==,则()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦递减,所以()()()max01,.22f x f f x f ππ⎛⎫====- ⎪⎝⎭类型四:复杂含参分类讨论例4:已知函数()()33f x x x a a R =+-∈.若()f x 在[]1,1-上的最大值和最小值分别记为()(),M a m a ,求()()M a m a -.解:()33333,333,x x a x a f x x x a x x a x a ⎧+-≥⎪=+-=⎨-+<⎪⎩,()2233,33,x x af x x x a⎧+≥⎪'=⎨-<⎪⎩ ①当1a ≤-时,有x a ≥,故()333f x x x a =+-,所以()f x 在()1,1-上是增函数,()()()()143,143M a f a m a f a ==-=-=--,故()()8M a m a -=.②当11a -<<时,若()()3,1,33x a f x x x a ∈=+-,在(),1a 上是增函数;若()1,x a ∈-,()333f x x x a =-+,在()1,a -上是减函数,()()(){}()()3max 1,1,M a f f m a f a a =-==,由于()()1162f f a --=-+因此当113a -<≤时,()()334M a m a a a -=--+;当113a <<时,()()332M a m a a a -=-++.③当1a ≥时,有x a ≤,故()333f x x x a =-+,此时()f x 在()1,1-上是减函数,因此()()()()123,123M a f a m a f a =-=+==-+,故()()4M a m a -=.题型二:利用参变分离法解决的恒成立问题类型一:参变分离后分母跨0例5:已知函数()()()242,22xf x x xg x e x =++=+,若2x ≥-时,()()f x kg x ≤,求k 的取值范围.解:由题意()24221xx x ke x ++≤+,对于任意的2x ≥-恒成立.当1x =-,上式恒成立,故k R ∈;当1x >-,上式化为()24221x x x k e x ++≥+,令()()()2421,21x x x h x x e x ++=>-+ ()()()22+221x xxe x h x e x -'=+,所以()h x 在0x =处取得最大值,()01k h ≥= 当21x -≤<-时,上式化为()24221x x x k e x ++≤+,()h x 单调递增,故()h x 在2x =-处取得最小值,()22k h e ≤-=.综上,k 的取值范围为21,e ⎡⎤⎣⎦.类型二:参变分离后需多次求导例6:已知函数()()()()212ln ,f x a x x a R =---∈对任意的()10,,02x f x ⎛⎫∈> ⎪⎝⎭恒成立,求a 的最小值.解:即对12ln 0,,221xx a x ⎛⎫∈>-⎪-⎝⎭恒成立. 令()2ln 12,0,12x l x x x ⎛⎫=-∈ ⎪-⎝⎭,则()()()()222212ln 2ln 211x x x x x l x x x --+-'=-=-- 再令()()()222121122ln 2,0,,02x m x x x m x x x x x --⎛⎫'=+-∈=-+=< ⎪⎝⎭()m x 在10,2⎛⎫ ⎪⎝⎭上为减函数,于是()122ln 202m x m ⎛⎫>=->⎪⎝⎭,从而,()0l x '>,于是()l x 在10,2⎛⎫ ⎪⎝⎭上为增函数,()124ln 22l x l ⎛⎫<=- ⎪⎝⎭,故要2ln 21xa x >--恒成立,只要[)24ln 2,a ∈-+∞,即a 的最小值24ln 2-. 变式1:已知函数()()1ln ,0x f x x a R a ax -=+∈≠,()()()11x g x b x xe b R x=---∈(1)讨论()f x 的单调性;(2)当1a =时,若关于x 的不等式()()2f x g x +≤-恒成立,求b 取值范围.类型三:参变分离后零点设而不求例7:已知函数()ln f x x x x =+,若k Z ∈,且()1f x k x <-对于任意1x >恒成立,求k 的最大值.解:恒成立不等式()minln ln ,111f x x x x x x x k k x x x ++⎛⎫<=< ⎪---⎝⎭,令()ln 1x x x g x x +=-,则()()2ln 21x x g x x --'=-,考虑分子()ln 2,h x x x =-- ()110h x x'=->,()h x 在()1,+∞单调递增.()()31ln 30,42ln 20h h =-<=->由零点存在定理,()3,4b ∃∈,使得()0h b =.所以()1,x b ∈,()()00h x g x '<⇒<,同理()(),,0x b g x '∈+∞>,所以()g x 在 ()1,b 单调递减,在(),b +∞单调递增.()()min ln 1b b bg x g b b +==-,因为()0h b =即ln 20ln 2b b b b --=⇒=-,()()()23,4,1b b b g b b b +-==∈-所以,k b <得max 3k =变式1:(理)已知函数().x ln x eaxx f x +-=(2)当0>x 时,()e x f -≤,求a 的取值范围.题型三:无法参变分离的恒成立问题类型一:切线法例8:若[)20,,10x x e ax x ∈+∞---≥,求a 的取值范围.类型二:赋值法例9:已知实数0a ≠,设函数()ln 1,0f x a x x x =++>.(1)当34a =-时,求函数()f x 的单调区间; (2)对于任意21,e ⎡⎫+∞⎪⎢⎣⎭均有()2x f x a ≤,求a 的取值范围. 解析:(1)当34a =-时,3()ln 1,04f x x x x =-++>. 3(12)(21()42141x x f 'x x x x x++=-=++ 所以,函数()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由1(1)2f a≤,得0a <≤当04a <≤时,()2f x a≤等价于22ln 0x a a --≥.令1t a=,则t ≥.设()22ln ,g t t x t =≥,则()2ln g t g x ≥=.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭≤则()2ln g t g x ≥=.记1()ln ,7p x x x =≥,则1()p'x x =-=.故所以,()(1)0p x p ≥= .因此,()2()0g t g p x ≥=≥.(ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,1()1g t g x ⎛+= ⎝.令211()(1),,e 7q x x x x ⎡⎤=++∈⎢⎥⎣⎦,则()10q'x =+>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫⎪⎝⎭.由(i )得11(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭.所以,()<0q x . 因此1()10g t g x ⎛+=>⎝.由(i )(ii )得对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,),()0t g t ∈+∞,即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()2x f x a.综上所述,所求a 的取值范围是⎛ ⎝⎦题型四:零点问题类型一:利用单调性与零点存在定理讨论零点个数 例10:已知函数()()31+ln .4f x x axg x x =+=-,(2)用{}min ,m n 表示,m n 中最小值,设函数()()(){}()min ,0h x f x g x x =>讨论()h x 零点个数.解:(2)当(1,)x ∈+∞时,()ln 0g x x =-<,从而()min{(),()}()0h x f x g x g x =<≤,∴()h x 在(1,)+∞无零点.当x =1时,若54a -≥,则5(1)04f a =+≥,(1)min{(1),(1)}(1)0h fg g ===, 故x =1是()h x 的零点;若54a <-,则5(1)04f a =+<,(1)min{(1),(1)}(1)0h f g f ==<,故x =1不是()h x 的零点.当(0,1)x ∈时,()ln 0g x x =->,所以只需考虑()f x 在(0,1)的零点个数. (ⅰ)若3a -≤或0a ≥,则2()3f x x a '=+在(0,1)无零点,故()f x 在(0,1)单调,而1(0)4f =,5(1)4f a =+,所以当3a -≤时,()f x 在(0,1)有一个零点; 当a ≥0时,()f x 在(0,1)无零点.(ⅱ)若30a -<<,则()f x 在(01)单调递增,故当x ()f x 取的最小值,最小值为f 14.①若f >0,即34-<a <0,()f x 在(0,1)无零点.②若f =0,即34a =-,则()f x 在(0,1)有唯一零点;③若f <0,即334a -<<-,由于1(0)4f =,5(1)4f a =+, 所以当5344a -<<-时,()f x 在(0,1)有两个零点; 当534a -<≤-时,()f x 在(0,1)有一个零点.综上,当34a >-或54a <-时,()h x 由一个零点;当34a =-或54a =-时,()h x 有两个零点;当5344a -<<-时,()h x 有三个零点.类型二:±∞方向上的函数值分析例11:已知函数()()22.x xf x ae a e x =+--若()f x 有两个零点,求a 取值范围.(2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点. (ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+.①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e(2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln 1n a ⎛⎫>+⎪⎝⎭,则()()000032ln 10n nf n e ae n f a ⎛⎫⎛⎫>-->+> ⎪ ⎪⎝⎭⎝⎭, 因此()f x 在(ln ,)a -+∞有一个零点.综上,a 的取值范围为(0,1).总结:若()01,ln 0a f a <<-<,要证明()f x 有两个零点,结合零点存在定理,分别在a 的左右两侧,这两个点的函数值()f x 都大于0,这时候需要我们对函数进行适当地放缩,化简,以便取值.先分析当x →-∞,2,x x ae ae 虽然为正,但是对式子影响不大,因此可以大胆的舍掉,得出()2xf x x e >--,显然我们对于右侧这个式子观察,就容易得出一个足够小的x (如1x =-),使得式子大于0了.再分析当x →+∞,我们可以把x ae 这个虽然是正数,但贡献比较小的项舍掉来简化运算,得到()()2xxf x eaex >--,显然当x 足够大,就可以使()2x ae -大于任何正数.那么把它放缩成多少才可以使得x e 的倍数大于x 呢?由常用的不等式1x e x x ≥+>,因此只需要使得21x ae ->即3ln x a >(如3ln 1x a=+)就可以了.题型五:极值点偏移类型一:标准极值点偏移例13:已知函数()()()221x f x x e a x =-+-有两个零点1,2x x ,证明12 2.x x +<解: 不妨设12x x <,由(Ⅰ)知12(,1),(1,)x x ∈-∞∈+∞,22(,1)x -∈-∞,又()f x 在(,1)-∞上单调递减,所以122x x +<等价于12()(2)f x f x >-,即2(2)0f x -<.由于222222(2)(1)x f x x e a x --=-+-, 而22222()(2)(1)0xf x x e a x =-+-=,所以222222(2)(2)x x f x x ex e --=---.设2()(2)xx g x xex e -=---,则2'()(1)()x x g x x e e -=--.所以当1x >时,'()0g x <,而(1)0g =,故当1x >时,()0g x <. 从而22()(2)0g x f x =-<,故122x x +<.类型二:推广极值点偏移例14:已知()()()12ln ,f x x x f x f x ==,求证121x x +<. 解:我们可以发现12,x x 不一定恒在12x =两侧,因此需要分类讨论: (1)若12102x x <<<,则1211122x x +<+=,该不等式显然成立; (2)若121012x x <<<<,令()()()()()1ln 1ln 1g x f x f x x x x x =--=---102x <<,故()()()()12ln ln 12,01x g x x x g x x x -'''=+-+=>-,()g x '在10,2⎛⎫ ⎪⎝⎭上单调递增,当0x →时,()1;22ln 202g x g ⎛⎫''→-∞=-> ⎪⎝⎭.010,2x ⎛⎫∃∈ ⎪⎝⎭使()00g x '=即()g x 在()00,x 上单调递减,在01,2x ⎛⎫ ⎪⎝⎭上单调递增,又0x →时,()0g x →,且102g ⎛⎫=⎪⎝⎭,故()0g x <,即()()1f x f x <-对10,2x ⎛⎫∈ ⎪⎝⎭成立,得证.题型六:双变量问题类型一:齐次划转单变量例15:已知函数()()1ln 1a x f x x x -=-+()2a ≤.设,m n R +∈,且m n ≠,求证ln ln 2m n m nm n -+<-. 解:设m n >,证明原不等式成立等价于证明()2ln m n mm n n-<+成立,即证明21ln 1m m n m n n⎛⎫- ⎪⎝⎭<+成立.令m t n =,1t >,即证()()21ln 01t g t t t -=->+.由(1)得,()g t 在()0,+∞上单调递增,故()()10g t g >=,得证.变式1:对数函数()x f 过定点⎪⎭⎫ ⎝⎛21,e P ,函数()()()为常数m ,n x f m n x g '-=,()()的导函数为其中x f x f '.(1)讨论()x g 的单调性;(2)若对于()+∞∈∀,x 0有()m n x g -≤恒成立,且()()n x x g x h -+=2在()2121x x x ,x x ≠=处的导数相等,求证:()()22721ln x h x h ->+.解:(2)因为()1g n m =-,而()0,x ∀∈+∞有()()1g x n m g ≤-=恒成立,知()g x 当1x =时有最大值()1g ,有(1)知必有1m =.∴()()()11ln ,22ln ,g x n x h x g x x n x x x x=--=+-=-- 依题意设()()211122221120,1120k x x h x h x k k x x ⎧-+-=⎪⎪''==⎨⎪-+-=⎪⎩∴12111x x +=121212+=4x x x x x x ⇒≥>∴()()()()121212*********+ln ln 21ln h x h x x x x x x x x x x x ⎛⎫+=-+-+=-- ⎪⎝⎭令()124,21ln t x x t t t ϕ=>=--,()()1204t t tϕ'=->> ∴()t ϕ在4t >单调递增,∴()()472ln 2t ϕϕ>=-类型二:构造相同表达式转变单变量例16:已知,m n 是正整数,且1m n <<,证明()()11.nmm n +>+解:两边同时取对数,证明不等式成立等价于证明()()ln 1ln 1n m m n +>+,即证明()()ln 1ln 1m n m n ++>,构造函数()()ln 1x f x x+=,()()2ln 11xx x f x x -++'=,令()()ln 11x g x x x =-++,()()()22110111x g x x x x -'=-=<+++,故()()00g x g <=,故()0f x '<,结合1,m n <<知()()f m f n >类型三:方程消元转单变量例17:已知()ln xf x x=与()g x ax b =+,两交点的横坐标分别为1,2x x ,12x x ≠,求证:()()12122x x g x x ++>解:依题意11211112222222ln ln ln ln x ax b x x ax bx x x ax bx ax b x ⎧=+⎪⎧=+⎪⎪⇒⎨⎨=+⎪⎪⎩=+⎪⎩,相减得: ()()()12121212ln ln x x a x x x x b x x -=+-+-,化简得()()121212lnx x a x x b x x ++=-,()()()()()()112121121212121122221ln ln 1x x x x x x x x g x x x x a x x b x x x x x x ++++=+++==⎡⎤⎣⎦-- 设12x x >,令121x t x =>,()()()12122112ln 2ln 011t t x x g x x t t t t -+++>⇔>⇔->-+ 再求导分析单调性即可.变式1:已知函数()1++=ax x ln x f 有两个零点21x ,x .()10a -<<(2)记()x f 的极值点为0x ,求证:()0212x ef x x >+.变式2:设函数()()3211232xf x ex kx kx =--+. 若()f x 存在三个极值点123,,x x x ,且123x x x <<,求k 范围,证明1322x x x +>.变式3:已知函数()122ln 21x ef x a x x x-⎛⎫=++-- ⎪⎝⎭在定义域()0,2内有两个极值点.(1)求实数a 的取值范围;(2)设12,x x 是()f x 两个极值点,求证12ln ln ln 0x x a ++>.类型四:利用韦达定理转单变量例18:已知()()21ln 02f x x x a x a =-+>,若()f x 存在两极值点1,2x x , 求证:()()1232ln 24f x f x --+>.解:()21,a x x af x x x x-+'=-+=由韦达定理12121,x x x x a +==1140,4a a ∆=->< ()()()()()212121212121+2ln 2f x f x x x x x x x a x x ⎡⎤=+--++⎣⎦ ()11121ln ln 22a a a a a a =--+=--令()()11ln ,0,ln 024g a a a a a g a a '=--<<=<,()g a 在10,4⎛⎫⎪⎝⎭上单调递减,故()132ln 244g a g --⎛⎫>=⎪⎝⎭. 变式1:已知函数().R a ,x ax x ln x f ∈-+=22(2)若n ,m 是函数()x f 的两个极值点,且n m <,求证:.mn 1>方法二:变式2:已知函数()213ln 222f x x ax x =+-+()0a ≥. (1)讨论函数()f x 的极值点个数;(2)若()f x 有两个极值点12,x x ,证明()()110f x f x +<.题型六:不等式问题类型一:直接构造函数解决不等式问题例19:当()0,1x ∈时,证明:()()221ln 1x x x ++<.解:令()()()221ln 1f x x x x =++-,则()00f =,而()()()()2ln 1ln 12,00f x x x x f ''=+++-=,当()0,1x ∈时,有()ln 1x x +<,故()()()ln 12222ln 10111x f x x x x x x+''=+-=+-<⎡⎤⎣⎦+++, ()f x '在()0,1上递减,即()()00f x f ''<=,从而()f x 在()0,1递减,()()00f x f ≤=,原不等式得证.变式1:已知函数()()()R a ex x ln x a x f ∈+-=1.(1)求函数()x f 在点1=x 处的切线方程;(2)若不等式()0≤-x e x f 对任意的[)+∞∈,x 1恒成立,求实数a 的取值范围解:(2)令()()()()1ln 1,x xg x f x e a x x ex e x =-=-+->()1ln 1xg x a x e e x ⎛⎫'=+-+- ⎪⎝⎭, ①若0a ≤,则()g x '在[)1,+∞上单调递减,又()10g '=.即()0g x '≤恒成立,所以()g x 在[)1,+∞上单调递减,又()10g =,所以()0g x ≤恒成立.②0a >,令()()1ln 1,x h x g x a x e e x ⎛⎫'==+-+- ⎪⎝⎭所以()211xh x a e x x ⎛⎫'=+-⎪⎝⎭,易知211x x +与x -e 在[)1,+∞上单调递减,所以()h x '在[)1,+∞上单调递减,()12h a e '=-. 当20a e -≤,即02ea <≤时,()0h x '≤在[)1,+∞上恒成立,则()h x 在[)1,+∞上单调递减,即()g x '在[)1,+∞上单调递减,又()10g '=,()0g x '≤恒成立,()g x 在[)1,+∞上单调递减,又()10g =,()0g x ≤恒成立.当20a e ->时,即2ea >时,()01,x ∃∈+∞使()00h x '=,所以()h x 在()01,x 上单调递增,此时()()10h x h >=,所以()0g x '>所以()g x 在()01,x 递增,得()()10g x g >=,不符合题意. 综上,实数a 的取值范围是2e a ≤. 变式2:(文)已知函数()()()().R a ,x a x g ,x ln x x f ∈-=+=11(1)求直线()x g y =与曲线()x f y =相切时,切点T 的坐标. (2)当()10,x ∈时,()()x f x g >恒成立,求a 的取值范围.解:(1)设切点坐标为()00x y ,,()1ln 1f x x x'=++,则()()000001ln 11ln 1x a x x x a x ⎧++=⎪⎨⎪+=-⎩,∴00012ln 0x x x -+=.令()12ln h x x x x=-+,∴()22210x x h x x -+'=-≤,∴()h x 在()0+∞,上单调递减, ∴()0h x =最多有一根.又∵()10h =,∴01x =,此时00y =,T 的坐标为(1,0).(2)当()0 1x ∈,时,()()g x f x >恒成立,等价于()1ln 01a x x x --<+对()0 1x ∈,恒成立. 令()()1ln 1a x h x x x -=-+,则()()()()2222111211x a x ah x x x x x +-+'=-=++,()10h =. ①当2a ≤,()1x ∈0,时,()22211210x a x x x +-+≥-+>, ∴()0h x '>,()h x 在()0 1x ∈,上单调递增,因此()0h x <. ②当2a >时,令()0h x '=得1211x a x a =-=-由21x >与121x x =得,101x <<.∴当()1 1x x ∈,时,()0h x '<,()h x 单调递减, ∴当()1 1x x ∈,时,()()10h x h >=,不符合题意; 综上所述得,a 的取值范围是(] 2-∞,.变式3:(文)已知函数().x x x ln x f 12---=(2)若存在实数m ,对于任意()∞+∈0x ,不等式()()()0212≤+-+x x m x f 恒成立,求实数m 的最小整数值.解:(2)法一:参变分离+二次局部求导+虚设零点变式4:(理)已知函数()()()R a x a eae x f xx∈-++=-22.(1)讨论()x f 的单调性;(2)当0≥x 时,()(),x cos a x f 2+≥求实数a 的取值范围.变式5:已知()1ln ,mf x x m x m R x-=+-∈. (1)当202e m <≤时,证明()21x e x xf x m >-+-.类型二:利用min max f g >证明不等式问题例20:设函数()1ln x xbe f x ae x x-=+曲线()y f x =在点()()1,1f 的切线方程为()12y e x =-+.(1)求,a b 值; (2)证明:()1f x >【解析】(1)函数()f x 的定义域为(0,)+∞,112()ln xx x x a b b f x ae x e e e x x x--=+-+. 由题意可得(1)2f =,(1)f e '=.1, 2.a b ==故(2)由(1)知12()ln xx f x e x e x -=+,从而()1f x >等价于2ln x x x xe e->-. 设函数()1g x x nx =,则'()1g x nx =.所以当1(0,)x e ∈时,()0g x '<;当1(,)x e ∈+∞时,()0g x '>.故()g x 在1(0,)e 单调递减,在1(,)e+∞单调递增,从而()g x 在(0,)+∞的最小值为11()g e e=-. 设函数2()xh x xee-=-,则'()(1)x h x e x -=-. 所以当(0,1)x ∈时()0h x '>;当(1,)x ∈+∞时,()0h x '<故()h x 在(0,1)单调递增, 在(1,)+∞单调递减,从而()h x 在(0,)+∞的最大值为1(1)h e=-.变式1. 已知函数()x ln a bx x f +=2的图像在点()()11f ,处的切线斜率为2+a .(1)讨论()x f 的单调性; (2)当20e a ≤<时,证明:()222-+<x e xx x f 解:(2)要证()222x f x x e x -<+,需证明22ln 2x a x e x x-<.令()ln 02a x e g x a x ⎛⎫=<≤ ⎪⎝⎭,则()()21ln a x g x x -'=, 当()0g x '>时,得0x e <<;当()0,g x '<得x e >. 所以()()max ag x g e e==. 令()()2220x e h x x x -=>,则()()2322x e x h x x--'=. 当()0h x '>时,得2x >;当()0h x '<时,得02x <<. 所以()()min 122h x h ==.因为02e a <≤,所以()max 12a g x e ==. 又2e ≠,所以22ln 2x a x e x x-<,即()222x f x x e x -<+得证.变式2:(理)已知函数()().ax ln axx f -=(1)求()x f 的极值;(2)若()012≤+-++m x e mx x ln e x x ,求正实数m 的取值范围.变式3:已知()1ln ,mf x x m x m R x-=+-∈. (2)当202e m <≤时,证明()21x e x xf x m >-+-.类型三:利用赋值法不等式问题例21:已知函数()2x xf x e e x -=--.(1)讨论()f x 的单调性;(2)设()()()24g x f x bf x =-,当0x >,()0g x >,求b 的最大值. (3)估计ln 2(精确小数点后三位).解:因为()()()()()2224484xx x x g x f x bf x e e b e e b x --=-=---+-所以()()()()()2222422222xx x x x x x xg x ee b e e b e e e e b ----⎡⎤'=+-++-=+-+-+⎣⎦①当2b ≤时,()0,g x '≥等号仅当0x =时成立,所以()g x 在R 上单调递增,而()00g =,所以对于任意()0,0x g x >>.②当2b >,若x 满足222x x e e b -<+<-,即(20ln 12x b b b <<-+-时,()0g x '<,而()00g =,因此当(20ln 12x b b b <≤--时,()0g x <,综上最大为2.(3)由(2)知,(()3221ln 22g b =-+-,当2b =时,(36ln 20,ln 20.69282g =->>>;当14b =+时,(ln 1b -+=(()32ln 202g =--<,18ln 20.69328+<<,所以近似值为0.693类型四:利用放缩法构造中间不等式例22:若0x >,证明:()ln 1.1x x xx e +>- 解:转化成整式()()2ln 11xx e x +->.令()()()2ln 11xf x x e x =+--,则()()1ln 121x xe f x e x x x -'=++-+()()()21ln 1211x x x e x e f x e x x x +''=+++-++.由()+1ln 11x x e x x x ≥+≥+,, 得()()()()3222112120,11x x x x f x x x x +++''≥++-=>++()()00,f x f ''≥=故()()00f x f ≥=,得证.变式1:(2020河南鹤壁市高三期末)已知函数()21xf x e kx =--,()()()2ln 1g x k x x k R =+-∈.(2)若不等式()()0f x g x +≥对任意0x ≥恒成立,求实数k 范围.变式2:(2020年河南六市联考)已知函数()()2ln 1sin 1f x x x =+++,()1ln g x ax b x =-- 证明:当1,x >-()()2sin 22xf x x x e<++类型五:与数列相关的不等式例23:设m 为整数,且对于任意正整数n ,2111111222n m ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,求m 的最小值.解:(2)由(1)知当(1,)x ∈+∞时,1ln 0x x -->令112n x =+得11ln(1)22n n +<,从而 221111111ln(1)ln(1)ln(1)112222222n n n ++++⋅⋅⋅++<++⋅⋅⋅+=-<故2111(1)(1)(1)222n e ++⋅⋅⋅+<而23111(1)(1)(1)2222+++>,所以m 的最小值为3.变式1:(理)已知函数()()()021>+-+=a ax xx ln x f .(1)若不等式()0≥x f 对于任意的0≥x 恒成立,求实数a 的取值范围;(2)证明:().N n ln ln ln ln n n n *-∈⎪⎭⎫⎝⎛->⎪⎪⎭⎫ ⎝⎛-++⋅⋅⋅+++1212121279353变式1:(2020河南开封二模)已知函数()1xf x e x =--.(1)证明()0f x >;(2)设m 为整数,且对于任意正整数n ,2111111222n m ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭, 求m 的最小值.类型六:与切、割线相关的不等式例24:已知函数()()2901xf x a ax =>+ (1)求()f x 在1,22⎡⎤⎢⎥⎣⎦上的最大值;(2)若直线2y x a =-+为曲线()y f x =的切线,求实数的值;(3)当2a =时,设12141,,22x x x ⎡⎤⋅⋅⋅∈⎢⎥⎣⎦,且121414x x x +⋅⋅⋅+=,若不等式()()()1214f x f x f x λ+⋅⋅⋅+≤恒成立,求实数λ的最小值.解:证明()29412xf x x x=≤-++,即32281040x x x -+-+≥, 令()3228104F x x x x =-+-+,()261610F x x x '=-+-,所以()F x在1,12⎛⎫⎪⎝⎭,5,23⎛⎫ ⎪⎝⎭递减,在51,3⎛⎫ ⎪⎝⎭递增.而()50,203F F ⎛⎫>> ⎪⎝⎭,表明不等式()29412xf x x x =≤-++成立.所以()()()12141244+442n f x f x f x x x x ++⋅⋅⋅+≤-+-+⋅⋅⋅-+=, 等号在全部为1时成立,所以λ最小值为42。
导数压轴题与解题套路
导数压轴题与解题套路
导数压轴题是高中数学中比较有难度的题目之一,很多同学在考试中遇到这种题目时会感到比较头疼。
但是,只要理解了导数的概念和解题套路,就能够轻松地解决这类题目。
首先,我们需要明确导数的定义和意义,即导数表示函数在某一点处的变化率。
根据这个定义,我们可以通过求导数来求函数在某一点处的切线斜率、函数的最值等。
对于导数压轴题,我们可以采用以下解题套路:
1.找出函数的定义域和导数的定义域,确定导数的存在性。
2.计算函数的导数,并化简。
3.求出导数为0或不存在的点,这些点可能是函数的极值点或拐点。
4.求出导数的正负性,确定函数的单调性。
5.求出导数的符号变化点,确定函数的凸凹性和拐点。
6.结合上述信息,画出函数的草图。
通过这样的解题流程,我们就可以轻松地解决导数压轴题。
当然,实际解题时还需要注意一些细节问题,比如边界点处的导数计算等。
总之,掌握导数的概念和解题套路是解决导数压轴题的关键。
只要多加练习,相信大家都能够轻松地应对这类题目。
- 1 -。
如何解高考导数压轴题
例1、函数f (x) ln(x 1) k(x 1) 1,
(1)若f (x) 0恒成立,试求实数k的取值范围.
(2)证明:ln 2 ln 3 ln 4 ln n n(n 1) .(n N ,且n 1)
345
n1 4
(1)法一:k ln(x 1) 1 在(1,)上恒成立, x 1
设g(x) ln(x 1) 1,(x 1), x 1
h' (x) 0 h(x)在(0,)单调递增
h(x) h(0)
即h(x) lim (x 1) ln(x 1) limln(x 1) 1 1
x0
x
x0
a 1
2. 分类讨论法
有一部分题在高中范围内用分离参数的方法 不能顺利解决,研究发现利用分离参数的方法不 能解决这部分问题的原因是求最值时出现了0 或
f
(b) f ba
(a)
ln b
ln a ba
a
b
ln b b
ln a a
1
ln b a
b 1
1 a
1
a
由(Ⅱ)得:f (x) 0在x (0, )上恒成立,即 ln x x 1 ,
当且仅当 x 1 时取等号,又由 0 a b 得 b 1 ,所以
有 0 ln b b 1 ,即
x0 2
x0 2
212,16,
m gx0 3,4,m的最大值为 3.
4
注意:主参换位
例3、已知函数f x x3 3ax1, gx f x ax5其中f (x)
是f (x)的导函数. 对满足1 a 1的一切a的值,都有g(x) 0, 求实数x的取值范围.
例4 设函数 f x x 1lnx 1 ,若对所有的 x 0 , 都有 f x ax 成立,求实数 a 的取值范围.
高考数学函数压轴题方法归纳总结
高考数学函数压轴题方法归纳总结一、利用导数证明不等式1.已知()()21xf x ax e x =-+.(1)当1a =时,讨论函数()f x 的零点个数,并说明理由;(2)若0x =是()f x 的极值点,证明()()2ln 11f x ax x x ≥-+++.【思路引导】(1)由题意1a =时,得()()21xf x x e x =-+,利用导数得到函数的单调性,进而可判定函数的零点个数;(2)求得函数的导数()()12xf x eax a x -'=++,由0x =是()f x 的极值点,得1a =,得到函数的解析式,令1x t -=,转化为证明1ln 2t te t t +≥++,设()()ln 20xh x ex e x x x =⋅--->, 根据导数得到()h x 的单调性和最小值,证得()0h x ≥,即可作出证明. 2.已知函数()()22xf x e ax x a R =--∈.(1)当0a =时,求()f x 的最小值; (2)当12e a <-时,证明:不等式()12ef x >-在()0,+∞上恒成立. 【思路引导】(1)()2xf x e x =-, ()2xf x e '=-,由单调区间及极值可求得最小值。
(2) 由导函数()22xf x e ax =--',及12e a <-, ()12222102e f e a e ⎛⎫=-->---= ⎪⎝⎭, ()010f '=-<,由根的存在性定理可知存在()00,1x ∈使得()00f x '=,只需证()f x 最小值()()0020000022x x f x e ax x e x ax =--=-+>12e -,由隐零点00220x e ax --=回代,即证()12t t g t e t ⎛⎫=-- ⎪⎝⎭12e >-。
3.已知函数()ln f x x =,()()1g x a x =-(1)当2a =时,求函数()()()h x f x g x =-的单调递减区间;(2)若1x >时,关于x 的不等式()()f x g x <恒成立,求实数a 的取值范围; (3)若数列{}n a 满足11n n a a +=+, 33a =,记{}n a 的前n 项和为n S ,求证:()ln 1234...n n S ⨯⨯⨯⨯⨯<.【思路引导】(Ⅰ)求出()h x ',在定义域内,分别令()'0h x >求得x 的范围,可得函数()h x 增区间, ()'0h x <求得x 的范围,可得函数()h x 的减区间;(Ⅱ)当0a ≤时,因为1x >,所以()1ln 0a x x -->显然不成立,先证明因此1a ≥时, ()()f x g x <在()1,+∞上恒成立,再证明当01a <<时不满足题意,从而可得结果;(III )先求出等差数列的前n 项和为()12n n n S +=,结合(II )可得ln22,ln33,ln44,,ln n n <<<⋅⋅⋅<,各式相加即可得结论.4.已知函数()sin xf x e x ax =-.(1)若1a =,求曲线()y f x =在()()0,0f 处的切线方程; (2)若()f x 在0,4π⎡⎤⎢⎥⎣⎦上单调递增,求实数a 的取值范围; (3)当1a ≤时,求证:对于任意的x ∈ 30,4π⎡⎤⎢⎥⎣⎦,均有()0f x ≥. 【思路引导】(1)求出()1x xf x e sinx e cosx '=+-,由()0f 的值可得切点坐标,由()'0f 的值,可得切线斜率,利用点斜式可得曲线()y f x =在点()()1,1f 处的切线方程;(2)函数()f x 在[0,4π]上单调递增⇔ ()f x '在[0,4π]上恒有()0f x '≥.即sin x (4x π+)a ≥恒成立,令()sinxg x =(4x π+),只需求出()g x 的最小值即可得结果;(3)先证明当x ∈ [0,2π]时, ()()0f x g x a '=-≥,()f x 递增,有()()()min 00f x f x f ≥==成立,再讨论两种情况若0a ≤,不等式恒成立,只需分两种情况证明a ∈(0,1]时也恒成立即可. 5.已知函数()2ln f x a x =+且()f x a x ≤.(1)求实数a 的值; (2)令()()xf x g x x a=-在(),a +∞上的最小值为m ,求证: ()67f m <<.【思路引导】由题意知: 2ln a x a x +≤恒成立等价于2ln 0a at t -+≤在0t >时恒成立, 令()2ln h t a at t =-+,由于()10h =,故2ln 0a at t -+≤ ()()1h t h ⇔≤, 可证: ()h t 在()0,1上单调递增;在()1,+∞上单调递减.故2a =合题意.6.已知函数()1ln xf x x ax-=+(其中0a >, e 2.7≈). (1)当1a =时,求函数()f x 在()()1,1f 点处的切线方程; (2)若函数()f x 在区间[)2,+∞上为增函数,求实数a 的取值范围; (3)求证:对于任意大于1的正整数n ,都有111ln 23n n>+++. 【思路引导】(1)()21x f x x='-, ()10f '=, ()10f =,可求得切线方程。
导数压轴大题之极值点偏移问题,把握本质与通用思路才能举一反三
导数压轴大题之极值点偏移问题,把握本质与通用思路才能举一反三极值点偏移题型是上一篇所讲述的双变量题型的一种重要分型。
2016年高考I卷的压轴大题就考了这种题型。
这类题型的特点鲜明,解题思路通用性强。
本文通过原创的一张图来直观、简明地揭示极值点偏移问题的基本原理(未见第二家如此系统地阐述它的原理)。
相信每一位同学学会后,再遇到此类题型就有底气而不会再发怵了,真正做到举一反三。
1. 导数(应用)压轴大题之不等式有关问题的极值点偏移题型及典型例题例1(2016国I) 已知函数f(x) = (x-2)e^x +a(x-1)^2有两个零点。
(1) 求a的取值范围;(2) 设x1, x2是f(x)的两个零点,证明:x1+x2<2。
(提示:这题在上一篇中已给出详细解答,这里不再赘述。
作为2016年的压轴题,第(2)问算是极值点偏移题型中的一个难度适中的题目,因此刚好可用来清晰地揭示极值点偏移题型的基本原理与通用解题思路。
不熟悉这类题型的同学应先把该题学透,再继续学习其它例题)例2 已知函数f(x) = xlnx,g(x) = 1/2×mx^2+x。
(1) 若函数f(x)与g(x)的图像上存在关于原点对称的点,求实数m 的取值范围;(2) 设F(x) = f(x) – g(x),已知F(x)在(0, +∞)上存在两个极值点x1、x2,且x1<x2,求证:x1x2 > e^2 (其中e为自然对数的底数)。
解:依题意,x>0,讲解:①从极值点偏移题型角度看,本题(2)问稍有变化(可视作常规题型的变式——出题人常以类似的方式改题或增加难度):(a) 分析的函数对象为‘导函数’及其两个零点——即两个等值点。
但这些变化对以极值点偏移的思路进行解题并无太大差别,仅仅是对象不同而已。
(b) 已知函数的定义域受限——x>0;处理时不要忘了其约束。
(c) 从所求证的‘x1x2 > e^2’看不出与极值点偏移问题相关,但只需利用已知推出可知条件“x1=lnx1/m和x2=lnx2/m”,即可把所求证问题转化为需知问题(或称需知条件)“x2+x1>2/m”——此为极值点偏移的标准形态。
高考数学导数压轴题解题技巧
高考数学导数压轴题解题技巧包括:
函数法:将参数k当成整个函数中的一部分,分情况讨论k的不同取值对函数的影响。
放缩法:有的参数给的一个范围,通过单调性分析,可以简化为一个端点值讨论即可。
比如给k≤2,你可以转化为
k=2,这样题中就没有参数了,大大降低难度。
此外,还有分离参数等方法。
在解决导数压轴题时,需要注意:
遇到有关单调性或最值的题目,考虑使用导数法。
对于存在性问题,如求参数的取值范围,可以运用分离参数法。
对于与零点存在性有关的问题,最好借助零点存在性定理严格说明,即需在给定单调区间【以单调增区间为例】上找到,进而严格说明使得。
在应用这些技巧时,要结合题目的具体条件和已知信息,灵活运用所学知识解决问题。
高考导数压轴题终极解答
2019-3-16
2019-3-16
1பைடு நூலகம்
导数单调性、极值、最值的直接应用
1.(切线)设函数 f ( x) x 2 a . (1)当 a 1 时,求函数 g ( x) xf ( x) 在区间 [0,1] 上的最小值; (2) 当 a 0 时,曲线 y f ( x) 在点 P( x1 , f ( x1 ))( x1 a ) 处的切线为 l ,
24.已知函数 f x x ax bx c 在 ,0 上是减函数,在 0,1 上是增函数,函数
3 2
f x 在 R 上有三个零点.求 b 的值; 若1是其中一个零点,求 f 2 的取值范围;
若
a 1,g x f ' x 3x 2 ln x
2 3 x 10.设 x 3 是函数 f x x ax b e , x R 的一个极值点.求 a 与 b 的关系式(用 a
2 25 x f x a 0, g x a e ,若存在 1 , 2 0, 4 ,使 表示 b ) ,并求 的单调区间;设 4
单调区间;若存在属于区间
1,3 的 ,
f f ,且 ≥ 1 ,使 ,证明:
ln 3 ln 2 ln 2 ≤a≤ 5 3 .
2019/3/17
10
19.(恒成立,直接利用最值)已知函数 f ( x) ln(ax 1) x 2 ax, a 0 ,
1 9 ) m ln x ( m R , x 0 ) . 2 8
x1,x2 [1, m] , 恒 有 ( Ⅲ ) 设 1 m e , H ( x) f ( x) ( m 1) x , 求 证 : 对 于 | H ( x1 ) H ( x2 ) | 1 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以, ( , 时 , x< ( )0 H < 题设/ ≥ ∈ 0 ) g )g0= , ( I ) , I )
一相 矛 盾 .
二 e 二 (
.
当 ∈( , 2 ) 0 l 。 时 , < . n ( 0由于厂0 : 所 以 ) ( )0,
综 卜 述 , 足 条件 的n 取 值 范 刚 足 ( , ] 所 满 的 一 2.
_ )e一 I 厂 = e1 ( .
( ) 明 X 的导 1证 ) ( ≥2 ) ;
用大学知识 中的罗必塔 法则可以求 该点 的极 限值 ,这 ■题 的 答案都是小于等于号 , 说明这个极限值就 是临界值. 问题以 此类 大学数学 中的函数连续为背景 , 仔在着 一个 町去问断点 , 个点 这 就 是讨论的重点. 在高 中阶段 , 无法求 极限值 , 只能通过 分类 讨 论等办法 , 探求参 数的取值范 用.
一 眨 , 址一
过 双曲线 中a b Ce 、 、 、的独 关系分别求 ab 确定标准方程 ) 、( 第
点 , 问 断 点 的 两侧 , 在 该 数 是 调 数 , 且都 是 左 减 右 增 . 而 利
取得极小值 ,  ̄ ( ) 可X ux 求极 限 , 由罗必塔法 则得l ( = , 以 i x)0 所 mu k . ≤0还有其他的高考题具有同样的特点 吗? 案例2 ( 0 7 2 0 年高考 全 围卷 I理科 数 学第 2 题 ) 2 没函数
程必修5 北 师大版 )5 中曾 以例题 的形式 现过 ( 的是向量 ( t5 " 用
法) .
2这 是 本 卷 中运 算 量最 大 的 一 道 题 , 一 问 有 两 步 运 算 : . 第 通
有 帮助的 , 可以使教师到对 高考试题触类 旁趔 、 件一劳永逸 的事情.
参考文献 :
若0 贝厂() 1 ≤ 1,l ≥e j 一
由( ) 1 t0 所 1 知e > , 一
≥ n
上 为增 函数 , 以 , 所 ≥0寸,( ) ( , 日 g x ≥g 0)B
) ≥一.
/ —■
( ≥0 所 以 ) f o - , ) ) ,  ̄ > ( )o B -
评析: 以上 三 道 高 考 题 具 有 相 同 的特 点 , 第 二 问 都 可 以 通 即
过 讨 论 的 方 式 . 部 分 范 围 是 恒 成 立 的 . 另 一 部 分 范 围则 需要 一 而
0 时取到极小值 , ≠0 F罗必塔法 则可求 得 且 ,h
( 1, 根 ) 再
举 出反 例 舍 去 . 解 决 的 过 程 中 . 常 还 得 用 到 恒 等 变形 、 3 在 通 适 " - 放 缩 . 以难 度 都 很 大 . 考 场 上 想 利 用 高 中知 识 迅 速 准确 地 做 所 在
南 卜而 的 几 道 例 题 不 难 得 }解 决 该类 问题 的统 一 法 , H 分
( ) 对所有 都有 ) , 的取值范罔. 2若 ≥0 ≥甜 求a
解 : 1略. ()
( ) g )厂 -x 贝g( ( 一 : e。n 2 令 ( ( o ,U ) ) )“ e 。 c + 一
e 、
( )
0 = , 以 当n 时 不 成立 , 。 . )0 所 > 故 ≤
该题若进行 分离变 , 即 ≤
订知 = 时 取 到 极 小 值 ,但 X 『 0 ≠0,
r + 0
, ( = _ , #像 令 ) 。 南I 1
罗 必 塔 法 则 町 求 得 极 限
( ) > , 程 ( = 的正根 为 .l i 若。 2 方 i ) 0 =n
- 此时, 4 若
.
∈( , )则 ( < , ( 在 该 区 间 E为 减 函 数. 0 , )0 故 )
若 > 由()e +, 1 E ≤ +a 1 n÷, 1 x ≥ , 知 ≥l 则e ()e l ( 一) 2e
这 道 题 的第 二 问是 否也 可 以采 取 分 离 变 量 的 方 法 呢 ?我 们
可 以尝 试 一 下 .
l g )2 所 以“ , i ( =, m ≤2 该题仍然可以用相同的方法解决.
.
电 ) , ≤竺 ≥0得n
> 令g ) e x I( 0) ( ' -
-
,
,
由 图像 知 :
总 之 , 舟 考 试题 进 行 推 广 , 将 推 广 的结 论 特 殊 化 , l 将 再 就 1 『 以 僻 剑 不 同 的 试 题 .这 种 研 究 能 力 对提 高 高 中 数 学 教 师 深 入钻 研 教 材 、 宽 数 学 视 野 . 别是 对 r 高 考 试题 的 求 庀 去脉 是很 拓 特
据 函 数 的 连续 性 可 知n ≤ . 高 中 阶段 我 们 并 没有 学 习 求 极 限 在 的 方 法 , 以这 道 题 不 可 以 分 离 变 量 . 么 2 1年 的 高 考 题 也 有 所 那 0 1
对 . 非 常 困 难 在 近 五 年 高 考 中 . 国 卷共 考 了 五 次 , 都 全 不得 不 让
两步走 :. 1通过 分类 讨论 , 探求使结论 成 ●的参 数范 罔 , : 证明其 恒成 ;. 举 反例 , 2 通过 将不符合要求的部分舍去.●
() ≤2 当 > 时 , ) + i若n , 0 ( e
2 “ , ( ) ( . ∞) 一 ≥0 故gx 在 O 十
( 接第 3 上 8页 )
我 们 对 它给 予 高度 的 重 视 和 研 究
探究- V这类 问题的本质 , - 他们都不是连续 函数 , 往无意 义 这样 的情况 吗?令“ ) ( l(2 12 )南 数图像矢x l寸 x- - 一 , f=  ̄ t 的点是不连续 的 , 该点是函数的间断点 , 日是 函数的可去间断 而 _