函数的定义域值域专项训练(含答案)

合集下载

专题一函数相等、定义域,值域(带答案)

专题一函数相等、定义域,值域(带答案)

专题一函数相等、定义域,值域(带答案) 一、选择题1、已知,,a x y R∈,集合1{(,)|},{(,)|}P x y y Q x y x ax====那么集合P∩Q中所含元素的个数是()A、0;B、1;C、0或1;D、1或22、下列函数中,与函数y=2x²-3(x∈R)有相同的值域的是()A、y=-6x+3x² (x≥-1);B、y=3x-9(x≤-2)C、y=-x²+1(x≥2);3、下列各图中,可表示函数y=f(x)的图象的只可能是()4.图中(1)(2)(3)(4)四个图象各表示两个变量x,y的对应关系,其中表示y是x的函数关系的有()5、在下列四组函数中,f(x)与g(x)表示同一函数的是()A 、f (x )=x -1,g (x )=112+-x x B 、f (x )=|x +1|,g (x )=⎩⎨⎧≥1111<----+x x x x C 、f (x )=x +1,x ∈R ,g (x )=x +1,x ∈ZD 、f (x )=x ,g (x )=2)(x6、下列各组函数表示相等函数的是( )A .y =x 2-3x -3与y =x +3(x ≠3) B .y =x 2-1与y =x -1C .y =x 0(x ≠0)与y =1(x ≠0)D .y =2x +1,x ∈Z 与y =2x -1,x ∈Z7、下列函数完全相同的是( )A .f (x )=|x |,g (x )=(x )2B .f (x )=|x |,g (x )=x 2C .f (x )=|x |,g (x )=x 2xD .f (x )=x 2-9x -3,g (x )=x +3 二、填空题1、函数0(23)||x y x x+=-的定义域是__________________2、函数y =1-x +x 的定义域是_________3、函数y =(x +1)03-2x的定义域是________ 4、已知函数f(x)的定义域为(0,3],那么函数y=f(x +2)f(2x -2x)的定义域为___5、若函数f(x+1)的定义域是[-2,1],则函数f(x-1)的定义域为______6、已知函数f(x)的定义域为(-1,0),则函数f(2x+1)的定义域为______7、已知f(x)的定义域为[-2,4],则f(3x-2)的定义域为______8、已知f (x )=2x +x +1,则)2(f =______;f [)2(f ]=______9、设f (x )=11-x,则f [f (x )]=________ 10、若函数f (x )=ax 2-1,a 为一个正常数,且f [f (-1)]=-1,那么a 的值是______11、已知函数f(x)=bax x +(a,b 为常数,且0≠a )满足f(2)=1,方程f (x )=x 有唯一解,求函数f(x)的解析式求______ f[f (-3)]=______12、已知函数f (x )=,那么f (1)+f (2)+f (21)+f (3)+f (31)+f (4)+f (41)=________ 已知函数y =ax +1(a <0且a 为常数)在区间(-∞,1]上有意义,求实数a 的取值范围______13、已知函数f (x )对任意实数x 1,x 2,都有f (x 1x 2)=f (x 1)+f (x 2)成立,则f (0)=________,f (1)=________14、若f(x)满足f(ab)=f(a)+f(b),且f(2)=p,f(3)=q,则f(72)= ________三、解答题1、求下列函数的定义域(1)2)1(20++--=x x x y ;(2)1121-++=x x y ;(3)y=2x x x +-(4)y =-x 2x 2-3x -2 (5)y =34x +83x -2.2、求下列函数的值域.(1)y =x +1;(2)y =x x +1. (3)y =x 2x 2+1(x ∈R) (4)y =x 2-2x (-2≤x ≤4,x ∈Z)2 21 x x +答案:一、 选择题C AD (2)(3) B C B二、填空题2、[0,1];3,(-∞,-1)∪(-1,32) 4 [-1,0)567 8 32+ 57 9 x -1x (x ≠0,且x ≠1) 10 111 ()1x f x x =+ 35 12 72[-1,0) 13 0 014 3p+2q三 解答题(1)(-1,1)∪(1,2)(2)R(3)(,0)-∞(4){x |x ≤0,且x ≠-12}. (5){x |x >23}.2(1)[1,+∞)(2){y |y ∈R ,且y ≠1}(3) [0,1)(4) {-1,0,3,8}。

必修一 数学 定义域,值域,解析式 求法,例题,习题(含答案)

必修一 数学  定义域,值域,解析式 求法,例题,习题(含答案)

函数的定义域(1)函数的定义域就是使得这个函数关系式有意义的实数的全体构成的集合(2)求函数定义域的注意事项☉分式分母不为零; ☉偶次根式的被开方数大于等于零;☉零次幂的底数不为零; ☉实际问题对自变量的限制若函数由几个式子构成,求其定义域时要满足每个式子都要有意义(取“交集”)。

(3)抽象复合函数定义域的求法☉已知y=f (x )的定义域是A ,求y=f (g (x ))的定义域,可通过解关于g (x )∈A 的不等式,求出x 的范围☉已知y=f (g (x ))的定义域是A ,求y=f (x )的定义域,可由x ∈A ,求g (x )的取值范围(即y=g (x )的值域)。

例1.函数()1f x x =- 的定义域为 ( ) A. (-∞,4) B. [4,+∞) C. (-∞,4] D. (-∞,1)∪(1,4] 【答案】D 【解析】要使解析式有意义需满足:40{10x x -≥-≠,即x 4≤且1x ≠所以函数()f x =的定义域为(-∞,1)∪(1,4] 故选:D例2.函数y =( )A. {|11}x x x ≥≤-或B. {|11}x x -≤≤C. {1}D. {-1,1}【答案】D 【解析】函数y 可知: 2210{ 10x x -≥-≥,解得: 1x =±.函数y =的定义域为{-1,1}.故选D.例3.已知函数()21y f x =-的定义域为()2,2-,函数()f x 定义域为__________.【答案】[]1,3-【解析】由函数()21y f x =-的的定义域为(−2,2),得: 2113x -≤-≤,故函数f (x )的定义域是[]1,3-.例4.若函数()y f x =的定义域为[]0,2,则函数()()21f xg x x =-的定义域是( )A. [)0,1B. []0,1C. [)(]0,11,4⋃ D. ()0,1 【答案】A函数()y f x =的定义域是[]0,2, 022{10x x ≤≤∴-≠,解不等式组:01x ≤<,故选A.例5.已知函数()1y f x =+的定义域是[]2,3-,则()2y f x =的定义域是( ) A. []1,4- B. []0,16 C. []2,2- D. []1,4【答案】C 【解析】解:由条件知: ()1f x +的定义域是[]2,3-,则1x 14-≤+≤,所以214x -≤≤,得[]x 2,2∈-例6.已知函数y f x =+()1定义域是[]-23,,则y f x =-()21的定义域是( )A .[]052, B. []-14, C. []-55, D. []-37,【答案】A 【解析】523,114,1214,02x x x x -≤≤-≤+≤-≤-≤≤≤例7.函数y =的定义域为___________.【答案】[]3,4-【解析】要使函数有意义,则2120x x +-≥,即2120x x --≤,即34x -≤≤,故函数的定义域为[]3,4-,故答案为[]3,4-.函数值域定义:对于函数y=f (x ),x ∈A 的值相对应的y 值叫函数值,函数值得集合{f (x )|x ∈A }叫做函数的值域。

函数定义域及值域经典类型总结练习试题含答案解析(可编辑修改word版)

函数定义域及值域经典类型总结练习试题含答案解析(可编辑修改word版)

<一>求函数定义域、值域方法和典型题归纳一、基础知识整合1.函数的定义:设集合A 和B 是非空数集,按照某一确定的对应关系f,使得集合A 中任意一个数x,在集合B 中都有唯一确定的数f(x)与之对应。

则称f:为A 到B 的一个函数。

2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f),②集合A的取值范围。

由这两个条件就决定了 f(x)的取值范围③{y|y=f(x),x∈ A}。

3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是:(1)自变量放在一起构成的集合,成为定义域。

(2)数学表示:注意一定是用集合表示的范围才能是定义域,特殊的一个个的数时用“列举法”;一般表示范围时用集合的“描述法”或“区间”来表示。

4.值域:是由定义域和对应关系(f)共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域范围内的函数值的范围。

(1)明白值域是在定义域A 内求出函数值构成的集合:{y|y=f(x),x∈A}。

(2)明白定义中集合 B 是包括值域,但是值域不一定为集合 B。

二、求函数定义域(一)求函数定义域的情形和方法总结1 已知函数解析式时:只需要使得函数表达式中的所有式子有意义。

(1)常见情况简总:①表达式中出现分式时:分母一定满足不为 0;②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于 0(非负数)。

③表达式中出现指数时:当指数为 0 时,底数一定不能为 0.④根号与分式结合,根号开偶次方在分母上时:根号下大于 0.⑤表达式中出现指数函数形式时:底数和指数都含有 x,必须满足指数底数大于 0 且不等于 1.(0<底数<1;底数>1)⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于 0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于 0,底数要大于 0 且不等于 1.((x2-1) )f (x) = logx注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。

最新《高一数学必修1》函数的概念、定义域、值域练习题(含答案)

最新《高一数学必修1》函数的概念、定义域、值域练习题(含答案)

函数的概念、定义域、值域练习题班级:高一(3)班 姓名: 得分:一、选择题(4分×9=36分)1.集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数是( )A .f (x )→y =12xB .f (x )→y =13xC .f (x )→y =23x D .f (x )→y =x2.函数y =1-x 2+x 2-1的定义域是( )A .[-1,1]B .(-∞,-1]∪[1,+∞)C .[0,1]D .{-1,1}3.已知f (x )的定义域为[-2,2],则f (x 2-1)的定义域为( )A .[-1,3]B .[0,3]C .[-3,3]D .[-4,4]4.若函数y =f (3x -1)的定义域是[1,3],则y =f (x )的定义域是( )A .[1,3]B .[2,4]C .[2,8]D .[3,9]5.函数y =f (x )的图象与直线x =a 的交点个数有( )A .必有一个B .一个或两个C .至多一个D .可能两个以上6.函数f (x )=1ax 2+4ax +3的定义域为R ,则实数a 的取值范围是( ) A .{a |a ∈R }B .{a |0≤a ≤34}C .{a |a >34}D .{a |0≤a <34}7.某汽车运输公司购买了一批豪华大客车投入运营.据市场分析,每辆客车营运的利润y 与营运年数x (x ∈N )为二次函数关系(如图),则客车有营运利润的时间不超过( )年.A .4B .5C .6D .78.(安徽铜陵县一中高一期中)已知g (x )=1-2x ,f [g (x )]=1-x 2x 2(x ≠0),那么f ⎝⎛⎭⎫12等于( )A .15B .1C .3D .30 9.函数f (x )=2x -1,x ∈{1,2,3},则f (x )的值域是( )A .[0,+∞)B .[1,+∞)C .{1,3,5}D .R二、填空题(4分)10.某种茶杯,每个2.5元,把买茶杯的钱数y (元)表示为茶杯个数x (个)的函数,则y =________,其定义域为________.(5分)11.函数y =x +1+12-x的定义域是(用区间表示)________. 三、解答题(5分×3=15分)12.求下列函数的定义域.(1)y =x +1x 2-4; (2)y =1|x |-2;(3)y =x 2+x +1+(x -1)0.(10分×2=20分)13.(1)已知f (x )=2x -3,x ∈{0,1,2,3},求f (x )的值域.(2)已知f (x )=3x +4的值域为{y |-2≤y ≤4},求此函数的定义域.(10分×2=20分)14.(1)已知f (x )的定义域为 [ 1,2 ] ,求f (2x -1)的定义域;(2)已知f (2x -1)的定义域为 [ 1,2 ],求f (x )的定义域;1.2.1 函数的概念答案一、选择题1.[答案] C[解析] 对于选项C ,当x =4时,y =83>2不合题意.故选C. 2.[答案] D[解析] 使函数y =1-x 2+x 2-1有意义应满足⎩⎪⎨⎪⎧1-x 2≥0x 2-1≥0,∴x 2=1,∴x =±1. 3.[答案] C[解析] ∵-2≤x 2-1≤2,∴-1≤x 2≤3,即x 2≤3,∴-3≤x ≤ 3.4.[答案] C[解析] 由于y =f (3x -1)的定义域为[1,3],∴3x -1∈[2,8],∴y =f (x )的定义域为[2,8]。

函数的定义域与值域及单调性最值(含答案)

函数的定义域与值域及单调性最值(含答案)

函数的定义域、值域1.函数y=xx x +-)1(的定义域为 (A.{x|x ≥0}B.{x|x ≥1}C.{x|x ≥1}∪{0}D.{x|0≤x ≤1}答案C2.函数f(x)=3x (0<x ≤2) )A.(0,+∞)B.(1,9C.(0,1)D.[9,+∞)答案B14.设f(x)=lg xx -+22,则f )2()2(xf x +的定义域为 (A.(-4,0)∪(0,4)B.(-4,-1)∪(1,4)C.(-2,-1)∪(1,2)D.(-4,-2)∪(2,4)答案B11.若函数f(x)的定义域是[0,1],则f(x+a)·f(x-a)(0<a <21)的定义域是 (A.∅B.[a ,1-aC.[-a ,1+aD.[0,1答案B17.函数f(x)=)1(log 1|2|2---x x 的定义域为答案 [3,+18.若函数y=lg(4-a ·2x )的定义域为R ,则实数a 的取值范围为答案 a ≤7.设函数y=f(x)的定义域为[0,1],求下列函数的定义域.(1)y=f(3x); (2)y=f(x1);(3)y=f()31()31-++x f x ;(4)y=f(x+a)+f(x-a).解 (1)0≤3x ≤1,故0≤x ≤31, y=f(3x)的定义域为[0, 31].(2)仿(1)解得定义域为[1,+∞).(3)由条件,y 的定义域是f )31(+x 与)31(-x 定义域的交集.列出不等式组,32313431323113101310≤≤⇒⎪⎪⎩⎪⎪⎨⎧≤≤≤≤-⇒⎪⎪⎩⎪⎪⎨⎧≤-≤≤+≤x x x x x故y=f )31()31(-++x f x 的定义域为⎥⎦⎤⎢⎣⎡32,31.(4)由条件得,111010⎩⎨⎧+≤≤-≤≤-⇒⎩⎨⎧≤-≤≤+≤ax a ax a a x ax①当⎩⎨⎧+≤--≤,11,1a a a a 即0≤a ≤21时,定义域为[a,1-a ]; ②当⎩⎨⎧+≤--≤,1,a a a a 即-21≤a ≤0时,定义域为[-a,1+a ].综上所述:当0≤a ≤21时,定义域为[a ,1-a当-21≤a ≤0时,定义域为[-a ,1+a ].10.(1)y=212)2lg(x x x -+-+(x-1)0; (2)y=)34lg(2+x x +(5x-4)0;(3)y=225x -+lgcosx; (4)y=lg(a x -k ·2x ) (a >0).解 (1)由⎪⎩⎪⎨⎧≠->-+>-01,012022x x x x 得⎪⎩⎪⎨⎧≠<<-<1,432x xx所以-3<x <2且x ≠ 1.故所求函数的定义域为(-3,1)∪(1,2).(2)由⎪⎩⎪⎨⎧≠-≠+>+045,134034x x x 得⎪⎪⎪⎩⎪⎪⎪⎨⎧≠-≠->54,2143x xx∴函数的定义域为).,54()54,21(21,43+∞-⎪⎭⎫ ⎝⎛--(3)由⎩⎨⎧>≥-0cos 0252x x ,得,)(222255⎪⎩⎪⎨⎧∈+<<-≤≤-Z k k x k x ππππ.5,23)2,2(23,5⎥⎦⎤ ⎝⎛-⎪⎭⎫⎢⎣⎡--ππππ (4)由a x -k ·2x >0)2(a ⇔x >k (a >0).若k ≤0,∵(2a )x >0,∴x ∈R .若k >0,则当2a >1,即a >2函数的定义域为{x|x >log 2ak};当0<2a <1,即0<a <2函数的定义域为{x|x <log 2a k};当2a =1,即a=2则有1x >k ,若0<k <1,则函数的定义域为R若k ≥1,则x ∈∅,即原式无意义. 19.(1)求函数f(x)=229)2(1x x xg --(2)已知函数f(2x )的定义域是[-1,1],求f(log 2x)的定义域.解 (1,3302,090222⎩⎨⎧<<-<>⎩⎨⎧>->-x x x x x x 或即解得-3<x <0或2<x <3.故函数的定义域是(-3,0)∪(2,3).(2)∵y=f(2x )的定义域是[-1,1],即-1≤x ≤1,∴21≤2x ≤2.∴函数y=f(log 2x)中21≤log 2x ≤2.即log 22≤log 2x ≤log 24,∴2≤x ≤4.故函数f(log 2x)的定义域为[2,4]2.若函数f(x)=loga (x+1)(a >0且a ≠1)的定义域和值域都是[0,1],则a 等于 (A.31 B.2 C.22 D.2答案D4.函数y=xx 1-的值域是 (A.⎥⎦⎤⎢⎣⎡-21,21 B.⎥⎦⎤⎢⎣⎡21,0 C.[0,1D.[0,+答案B5.若函数y=x 2-3x-4的定义域为[0,m ],值域为⎥⎦⎤⎢⎣⎡--4,425,则m 的取值范围是 (A.⎪⎭⎫⎝⎛3,23 B.⎥⎦⎤⎢⎣⎡3,23 C.(0,3D.⎪⎭⎫⎢⎣⎡3,23答案B15.设f(x)=⎩⎨⎧<≥,1||,,1||,2x x x x g(x)是二次函数,若f(g(x))的值域是[0,+∞),则g(x )的值域是 ( )A.(-∞,-1]∪[1,+B.(-∞,-1]∪[0,+C.[0,+D.[1,+答案C16.定义域为R 的函数y=f(x)的值域为[a ,b ],则函数y=f(x+a)的值域为 ( )A.[2a ,a+b ]B.[a ,b ]C.[0,b-aD.[-a ,a+b答案B8.(1)y=;122+--x x xx (2)y=x-x21-; (3)y=1e 1e +-x x .解 (1)方法一∵y=1-,112+-x x 而,4343)21(122≥+-=+-x x x∴0<,34112≤+-x x ∴.131<≤-y ∴值域为⎪⎭⎫⎢⎣⎡-1,31. 方法二 (判别式法) 由y=,122+--x x xx 得(y-1).0)1(2=+-+y x y x∵y=1时,≠∴∅∈y x , 1.又∵∈x R ,∴必须∆=(1-y)2-4y(y-1)≥0.∴.131≤≤-y ∵,1≠y ∴函数的值域为⎪⎭⎫⎢⎣⎡-1,31.22222222 (2)方法一定义域⎭⎬⎫⎩⎨⎧≤21|x x ,函数y=x,y=-x21-均在⎥⎦⎤ ⎝⎛∞-21,上递增,故y ≤.21212121=⨯--∴函数的值域为⎥⎦⎤⎝⎛∞-21,.方法二令x21-=t,则t ≥0,且x=.212t - ∴y=-21(t+1)2+1≤21(t ≥0),∴y ∈(-∞,21].(3)由y=1e 1e+-xx 得,e x =.11yy -+∵e x >0,即yy -+11>0,解得-1<y <1.∴函数的值域为{y|-1<y <1}.12.(1)y=521+-x x; (2)y=|x|21x -.解(1)(分离常数法)y=-)52(2721++x ,∵)52(27+x ≠0, ∴y ≠-21.故函数的值域是{y|y ∈R ,且y ≠-21}.(2)方法一 (换元法)∵1-x 2≥0,令x=sin α,则有y=|sin αcos α|=21|sin2α|,故函数值域为[0,21].方法二 y=|x|·,41)21(122242+--=+-=-x x x x∴0≤y ≤,21即函数的值域为⎥⎦⎤⎢⎣⎡21,0.9.若函数f (x )=21x 2-x+a 的定义域和值域均为[1,b ](b >1),求a 、b 的值.解 ∵f (x )=21(x-1)2+a-21 2∴其对称轴为x=1,即[1,b ]为f (x )的单调递增区间 4∴f (x )min =f (1)=a-21=1 ① 6f (x )max =f (b )=21b 2-b+a=b ② 8分由①②解得⎪⎩⎪⎨⎧==.3,23b a 12分13.已知函数f(x)=x 2-4ax+2a+6 (x ∈R ). (1)求函数的值域为[0,+∞)时的a(2)若函数的值均为非负值,求函数f(a)=2-a|a+3|的值域.解 (1)∵函数的值域为[0,+∞),∴Δ=16a 2-4(2a+6)=0⇒2a 2-a-3=0∴a=-1或a=23.(2)对一切x ∈R ,函数值均非负,∴Δ=8(2a 2-a-3)≤0⇒-1≤a ≤23,∴a+3>0,∴f(a)=2-a(a+3)=-a 2-3a+2=-(a+23)2+417(a ⎥⎦⎤⎢⎣⎡-∈23,1).∵二次函数f(a)在⎥⎦⎤⎢⎣⎡-23,1上单调递减,∴f (a )min =f )23(=-419,f (a )max =f (-1)=4,∴f(a)的值域为⎥⎦⎤⎢⎣⎡-4,419.20.已知二次函数f(x )的二次项系数为a,且不等式f(x)>-2x 的解集为(1,3).(1)若方程f(x)+6a=0有两个相等的根,求f(x)(2)若f(x)的最大值为正数,求a 的取值范围.解 (1)∵f (x )+2x >0的解集为(1,3 则可令f(x)+2x=a(x-1)(x-3),且a <0,f(x)=a(x-1)(x-3)-2x=ax 2-(2+4a)x+3①由方程 f(x)+6a=0得 ax 2-(2+4a)x+9a=0,②∴Δ=[-(2+4a )]2-4a ·9a=0,即5a 2-4a-1=0,解得a=1或a=-51.由于a <0,舍去a=1.将a=-51代入①式,得f(x)f(x)=- 51x 2-56x-53.(2)由f(x)=ax 2-2(1+2a)x+3a=a aa a aa x 14)21(22++-+-,及a <0,可得f(x)的最大值为-,142a a a ++由⎪⎩⎪⎨⎧<>++-,0,0142a a a a解得a <-2-3或-2+3<a <0.故当f(x)的最大值为正数时,实数a 的取值范围是(-∞,-2-3)∪(-2+3,0).函数的单调性与最大(小)值1.已知函数y=f(x)是定义在R 上的增函数,则下列对f(x)=0的根说法不正确的是 (填序号) ①有且只有一个 ②有2答案 ①②2.已知函数f (x )在区间[a ,b ]上单调,且f (a )·f (b )<0,则下列对方程f (x )=0在区间[a ,b ]上根的分布情况的判断有误的是 (填序号). ①至少有一实根 ②至多有一实根 ③没有实根 ④必有惟一的实根 答案 ①③2. 已知f(x)是R 上的增函数,若令F (x )=f (1-x )-f (1+x ),则F (x )是R 上的 函数(用“增”、“减”填空). 答案 减3.若函数f(x)=x 2+(a 2-4a+1)x+2在区间(-∞,1]上是减函数,则a 的取值范围是 . 答案 [1,3]4.若函数f(x)是定义在(0,+∞)上的增函数,且对一切x >0,y >0满足f(xy)=f(x)+f(y),则不等式f(x+6)+f(x)<2f(4)的解集为 . 答案 (0,2)5.已知函数f(x)=x 2-2x+3在闭区间[0,m ]上最大值为3,最小值为2,则m 的取值范围为 . 答案 [1,2]1.函数f(x)=ln(4+3x-x 2)的单调递减区间是 . 答案 [23,43.函数y=lg(x 2+2x+m)的值域是R ,则m 的取值范围是 . 答案 m ≤14.函数f(x)(x ∈R )的图象如下图所示,则函数g(x)=f(log a x) (0<a <1)的单调减区间是 . 答案 [a,1]5.已知f(x)=⎩⎨⎧≥<+-)1(log )1(4)13(x x x a x a a 是(-∞,+∞)上的减函数,那么a 的取值范围是 .答案 [71,31)6.若函数f(x)=(m-1)x 2+mx+3 (x ∈R )是偶函数,则f(x)的单调减区间是 .答案 [0,+∞)7.已知y=f(x)是定义在(-2,2)上的增函数,若f(m-1)<f(1-2m),则m 的取值范围是 答案 (-)32,21例1已知函数f(x)=a x +12+-x x (a >1).证明:函数f(x)在(-1,+∞)上为增函数. 证明 方法一 任取x 1,x 2∈(-1,+∞),不妨设x 1<x 2,则x 2-x 1>0,12x x a ->1且a 1x >0, ∴a ,0)1(12112>-=--x x x x x a a a 又∵x 1+1>0,x 2+1>0, ∴)1)(1()(3)1)(1()1)(2()1)(2(121221122*********++-=+++--+-=+--+-x x x x x x x x x x x x x x >0,于是f(x 2)-f(x 1)=a 12x x a -+12121122+--+-x x x x >0,故函数f(x)在(-1,+∞)上为增函数.方法二 f(x)=a x +1-13+x (a >1),求导数得f ′(x)=a x lna+2)1(3+x ,∵a >1,∴当x >-1时,a x lna >0,2)1(3+x >0,f ′(x)>0在(-1,+∞)上恒成立,则f(x)在(-1,+∞)上为增函数.方法三 ∵a >1,∴y=ax又y=13112+-+=+-x x x ,在(-1,+∞)上也是增函数.∴y=a x +12+-x x 在(-1,+∞)上为增函数.例2判断函数f(x)=12-x 在定义域上的单调性.解 函数的定义域为{x|x ≤-1或x ≥1},则f(x)=12-x ,可分解成两个简单函数.f(x)=)(,)(x u x u =x2-1的形式.当x ≥1时,u(x)为增函数,)(x u 为增函数.∴f (x )=12-x 在[1,+∞)上为增函数.当x ≤-1时,u (x)为减函数,)(xu∴f(x)=12-x 在(-∞,-1]上为减函数.9.已知f(x)在定义域(0,+∞)上为增函数,且满足f(xy)=f(x)+f(y),f(3)=1,试解不等式f(x)+f(x-8)≤2.解 根据题意,由f(3)=1,得f(9)=f(3)+f(3)=2.又f(x)+f(x-8)=f [x(x-8)],故f [x(x-8)]≤f(9).∵f (x )在定义域(0,+∞)上为增函数,∴⎪⎩⎪⎨⎧≤->->,9)8(080x x x x ,,解得8<x ≤9.10.函数f(x)对任意的实数m 、n 有f(m+n)=f(m)+f(n),且当x >0时有f(x)>0.(1)求证:f(x)在(-∞,+∞)(2)若f(1)=1,解不等式f [log 2(x 2-x-2)]<2.(1)证明 设x 2>x 1,则x 2-x 1>0.∵f(x 2)-f(x 1)=f(x 2-x 1+x 1)-f(x 1)=f(x 2-x 1)+f(x 1)-f(x 1)=f(x 2-x 1)>0, ∴f(x 2)>f(x 1),f(x)在(-∞,+∞)上为增函数. (2)解 ∵f(1)=1,∴2=1+1=f(1)+f(1)=f(2).又f [log 2(x 2-x-2)]<2,∴f [log 2(x 2-x-2)]<f(2).∴log 2(x2-x-2)<2,于是⎪⎩⎪⎨⎧<-->--.060222x x x x ,∴⎩⎨⎧<<->-<,32,21x x x 或即-2<x <-1或2<x <3.∴原不等式的解集为{x|-2<x <-1或2<x <3}.例4函数f(x)对任意的a 、b ∈R ,都有f(a+b)=f(a)+f(b)-1,并且当x >0时,f(x)> 1. (1)求证:f(x)是R(2)若f(4)=5,解不等式f(3m 2-m-2)<3.解 (1)设x 1,x 2∈R ,且x 1<x 2,则x 2-x 1>0,∴f(x 2-x 1)>1. 2f(x 2)-f(x 1)=f((x 2-x 1)+x 1)-f(x 1)=f(x 2-x 1)+f(x 1)-1-f(x 1)=f(x 2-x 1)-1>0. 5分 ∴f (x 2)>f(x 1).即f(x)是R 上的增函数. 7分(2)∵f (4)=f (2+2)=f (2)+f (2)-1=5∴f (2)=3, 10分∴原不等式可化为f(3m 2-m-2)<f(2),∵f(x)是R 上的增函数,∴3m 2-m-2<2, 12分解得-1<m <34,故解集为(-1, 34).2.求函数y=21log (4x-x 2)的单调区间.解 由4x-x 2>0,得函数的定义域是(0,4).令t=4x-x 2,则y= 21log t.∵t=4x-x 2=-(x-2)2+4,∴t=4x-x 2的单调减区间是[2,4),增区间是(0,2]. 又y=21log t 在(0,+∞)上是减函数,∴函数y=21log (4x-x 2)的单调减区间是(0,2],单调增区间是[2,4).4.已知定义在区间(0,+∞)上的函数f(x)满足f()21x x =f(x 1)-f(x 2),且当x >1时,f(x)<0. (1)求f(1)(2)判断f(x(3)若f(3)=-1,解不等式f(|x|)<-2.解 (1)令x 1=x 2>0,代入得f(1)=f(x 1)-f(x 1)=0,故f(1)=0.(2)任取x 1,x 2∈(0,+∞),且x 1>x 2,则21x x >1,由于当x >1时,f(x)<0,所以f )(21x x <0,即f(x 1)-f(x 2)<0,因此f(x 1)<f(x 2),所以函数f(x)在区间(0,+∞)上是单调递减函数.(3)由f(21x x )=f(x 1)-f(x 2)f()39=f(9)-f(3),而f(3)=-1,所以f(9)=-2.由于函数f(x)在区间(0,+由f(|x|)<f(9),得|x|>9,∴x >9或x <-9.因此不等式的解集为{x|x >9或x <-9}. 12.已知函数y=f(x)对任意x,y ∈R 均有f(x)+f(y)=f(x+y),且当x >0时,f(x)<0,f(1)=- 32.(1)判断并证明f(x)在R(2)求f(x)在[-3,3]上的最值. 解 (1)f(x)在R令x=y=0,f(0)=0,令x=-y 可得:f(-x)=-f(x),在R 上任取x 1<x 2,则x 2-x 1>0,∴f(x 2)-f(x 1)=f(x 2)+f(-x 1)=f(x 2-x 1).又∵x >0时,f(x)<0,∴f(x 2-x 1)<0,即f(x 2)<f(x 1).由定义可知f(x)在R 上为单调递减函数.(2)∵f(x)在R∴f (x )在[-3,3]上也是减函数.∴f (-3)最大,f(3)最小.f(3)=f(2)+f(1)=f(1)+f(1)+f(1)=3×(-)32=-2.∴f(-3)=-f(3)=2.即f(x)在[-3,3]上最大值为2,最小值为-2. 例3(1)y=4-223x x -+;(2)y=2x-x21-;(3)y=x+x4;(4)y=4)2(122+-++x x .解 (1)由3+2x-x 2≥0得函数定义域为[-1,3],又t=3+2x-x 2=4-(x-1)2.∴t ∈[0,4],t∈[0,2],从而,当x=1时,y min =2,当x=-1或x=3时,y max =4.故值域为[2,4].(2) 方法一 令x21-=t(t ≥0),则x=212t -.∴y=1-t 2-t=-(t+)212+45.∵二次函数对称轴为t=-21,∴在[0,+∞)上y=-(t+)212+45故y max =-(0+)212+45=1.故函数有最大值1,无最小值,其值域为(-∞,1].方法二 ∵y=2x 与y=-x21-均为定义域上的增函数,∴y=2x-x21-是定义域为{x|x ≤21}上的增函数,故y max =2×212121⨯--=1,无最小值.故函数的值域为(-∞,1].(3)方法一 函数y=x+x4是定义域为{x|x ≠0}上的奇函数,故其图象关于原点对称,故只讨论x >0时,即可知x <0时的最值.∴当x >0时,y=x+x4≥2xx 4⋅=4,等号当且仅当x=2时取得.当x <0时,y ≤-4,等号当且仅当x=-2时取得. 综上函数的值域为(-∞,-4]∪[4,+∞),无最值.方法二 任取x 1,x 2,且x 1<x 2,因为f(x 1)-f(x 2)=x 1+14x -(x 2+24x )=,)4)((212121x x x x x x --所以当x ≤-2或x ≥2时,f(x)递增,当-2<x <0或0<x <2时,f(x)递减.故x=-2时,f(x)最大值=f(-2)=-4,x=2时,f(x)最小值=f(2)=4,所以所求函数的值域为(-∞,-4]∪[4,+∞),无最大(小)值.(4y=2222)20()2()10()0(++-+-+-x x ,可视为动点M (x,0)与定点A (0,1)、B (2,-2)距离之和,连结AB ,则直线AB 与x 轴的交点(横坐标)即为所求的最小值点.y min =|AB|=13)21()20(22=++-,可求得x=32时,y min =13.显然无最大值.故值域为[13,+∞). 1.讨论函数f (x )=x+xa (a >0)的单调性.解 方法一 显然f (x )为奇函数,所以先讨论函数f (x )在(0,+∞)上的单调性,设x 1>x 2>0,f(x 1)-f(x 2) =(x 1+1x a)-(x 2+2x a )=(x 1-x 2)·(1-21x x a).∴当0<x 2<x 1≤a时,21x x a >1,则f (x 1)-f (x 2)<0,即f(x 1)<f(x 2),故f (x )在(0,a]上是减函数.当x 1>x 2≥a时,0<21x x a <1,则f (x 1)-f (x 2)>0,即f(x 1)>f(x 2),故f (x )在[a,+∞)上是增函数.∵f (x∴f(x)分别在(-∞,-a]、[a,+∞)上f(x)分别在[-a,0)、(0,a]上为减函数.a=0可得x=±a方法二由f ′(x)=1-2x当x>a时或x<-a时,f ′(x)>0,∴f(x)分别在(a,+∞)、(-∞,-a]上是增函数.同理0<x<a或-a<x<0时,f′(x)<0即f(x)分别在(0,a]、[-a,0)上是减函数.。

高三数学函数的定义域与值域试题答案及解析

高三数学函数的定义域与值域试题答案及解析

高三数学函数的定义域与值域试题答案及解析1.已知集合,则= .【答案】【解析】因为,所以,即=.【考点】函数的定义域,集合的运算.2.函数的定义域为()A.B.C.D.【答案】C【解析】由已知,解得,故选C.【考点】函数的定义域,对数函数的性质.3.以表示值域为R的函数组成的集合,表示具有如下性质的函数组成的集合:对于函数,存在一个正数,使得函数的值域包含于区间.例如,当,时,,.现有如下命题:①设函数的定义域为,则“”的充要条件是“,,”;②函数的充要条件是有最大值和最小值;③若函数,的定义域相同,且,,则;④若函数(,)有最大值,则.其中的真命题有 .(写出所有真命题的序号)【答案】①③④【解析】对①,若对任意的,都,使得,则的值域必为R;反之,的值域为R,则对任意的,都,使得.故正确.对②,比如函数属于B,但是它既无最大值也无最小值.故错误.对③,因为,而有界,故,所以.故正确.对④,.当或时,均无最大值.所以若有最大值,则,此时,.故正确【考点】1、新定义;2、函数的定义域值域.4.已知函数,.若存在使得,则实数的取值范围是.【答案】【解析】方程变形为,记函数的值域为,函数的值域为,设的取值范围为,则,作出函数和的图象,可见在上是增函数,在上是减函数,且,而函数的值域是,因此,因此.【考点】函数的图象,方程的解与函数的值域问题.5.设a∈,则使函数y=x a的定义域是R,且为奇函数的所有a的值是()A.1,3B.﹣1,1C.﹣1,3D.﹣1,1,3【答案】A【解析】当a=﹣1时,y=x﹣1的定义域是x|x≠0,且为奇函数;当a=1时,函数y=x的定义域是R且为奇函数;当a=时,函数y=的定义域是x|x≥0且为非奇非偶函数.当a=3时,函数y=x的定义域是R且为奇函数.故选A.6.函数的定义域为()A.B.C.D.【答案】A【解析】由二次根式的定义可得,所以函数的定义域为,故选A.【考点】定义域一次不等式7.设函数若是的三条边长,则下列结论正确的是_____ _.(写出所有正确结论的序号)①②,使不能构成一个三角形的三条边长;③若【答案】①②③【解析】由题意得.令,则是单调递减函数.对①,..②,令,因为是单调递减函数,所以在上一定存在零点,即,此时不能构成三角形的三边.③,为钝角三角形,则由余弦定理易知,即,又,且连续,所以使.故①②③都正确.【考点】1、函数的单调性;2、三角形.8.函数的定义域是.【答案】【解析】由题意,.【考点】函数的定义域.9.设函数若,则实数( )A.4B.-2C.4或D.4或-2【答案】C【解析】因为,所以得到或所以解得或.所以或.当可时解得.当时可解得.【考点】1.复合函数的运算.2. 分类讨论的思想.10.函数的定义域是( )A.B.C.D.【答案】A【解析】根据题意可得,所以该函数定义域为,故选A.【考点】定义域二次不等式11.如图,两个工厂A、B相距2km,点O为AB的中点,要在以O为圆心,2km为半径的圆弧MN上的某一点P处建一幢办公楼,其中MA⊥AB,NB⊥AB.据测算此办公楼受工厂A的“噪音影响度”与距离AP的平方成反比,比例系数为1;办公楼受工厂B的“噪音影响度”与距离BP的平方也成反比,比例系数为4,办公楼与A、B两厂的“总噪音影响度”y是A、B两厂“噪音影响度”的和,设AP为xkm.(1)求“总噪音影响度”y关于x的函数关系式,并求出该函数的定义域;(2)当AP为多少时,“总噪音影响度”最小?【答案】(1)y=(≤x≤)(2)AP=km【解析】(1)(解法1)如图,连结OP,设∠AOP=α,则≤α≤.在△AOP中,由余弦定理得x2=12+22-2×1×2cosα=5-4cosα,在△BOP中,由余弦定理得BP2=12+22-2×1×2cos(π-α)=5+4cosα,∴BP2=10-x2,∴y=.∵≤α≤,∴≤x≤,∴y=(≤x≤).(解法2)建立如图所示的直角坐标系,则A(-1,0),B(1,0),设P(m,n),则PA2=(m+1)2+n2,PB2=(m-1)2+n2.∵m2+n2=4,PA=x,∴PB2=10-x2(后面解法过程同解法1).(2)(解法1)y==[x2+(10-x2)]=(5+)≥(5+2)=,当且仅当,即x=∈[,]时取等号.故当AP=km时,“总噪音影响度”最小.(解法2)由y=,得y′=-.∵≤x≤,∴令y′=0,得x=,且当x∈时,y′<0;当x∈(,]时,y′>0.∴x=时,y=取极小值,也即最小值.故当AP=km时,“总噪音影响度”最小12.已知函数f(x)=x3(a>0且a≠1).(1)求函数f(x)的定义域;(2)讨论函数f(x)的奇偶性;(3)求a的取值范围,使f(x)>0在定义域上恒成立.【答案】(1){x|x∈R,且x≠0}(2)偶函数(3)a>1.【解析】(1)由于a x-1≠0,则a x≠1,所以x≠0,所以函数f(x)的定义域为{x|x∈R,且x≠0}.(2)对于定义域内任意的x,有f(-x)=(-x)3=-x3=-x3=x3=f(x)所以f(x)是偶函数.(3)①当a>1时,对x>0,所以a x>1,即a x-1>0,所以+>0.又x>0时,x3>0,所以x3>0,即当x>0时,f(x)>0.由(2)知,f(x)是偶函数,即f(-x)=f(x),则当x<0时,-x>0,有f(-x)=f(x)>0成立.综上可知,当a>1时,f(x)>0在定义域上恒成立.②当0<a<1时,f(x)=,当x>0时,0<a x<1,此时f(x)<0,不满足题意;当x<0时,-x>0,有f(-x)=f(x)<0,也不满足题意.综上可知,所求a的取值范围是a>113.函数f(x)=x2+2x-3,x∈[0,2]的值域为________.【答案】[-3,5]【解析】由f(x)=(x+1)2-4,知f(x)在[0,2]上单调递增,所以f(x)的值域是[-3,5].14.已知函数f(x)=-的定义域为R,则f(x)的值域是.【答案】【解析】∵2x>0,∈(0,1),∴-<-<,故函数值域为.15.函数f(x)=+lg的定义域是()A.(2,4)B.(3,4)C.(2,3)∪(3,4]D.[2,3)∪(3,4)【答案】D【解析】要使函数有意义,必须所以函数的定义域为[2,3)∪(3,4).16.函数的定义域为.【答案】【解析】要使函数有意义,则,解得.【考点】函数的定义域.17.函数f(x)=的定义域为________.【答案】(-1,0)∪(0,2]【解析】根据使函数有意义的条件求解.由得-1<x≤2,且x≠0.18.函数f(x)=+的定义域为().A.(-3,0]B.(-3,1]C.(-∞,-3)∪(-3,0]D.(-∞,-3)∪(-3,1]【答案】A【解析】由题意,解得-3<x≤0.19.函数f(x)=e x sin x在区间上的值域为 ().【答案】A【解析】f′(x)=e x(sin x+cos x).∵x∈,f′(x)>0.∴f(x)在上是单调增函数,∴f(x)=minf(0)=0,f(x)=f=.max20.设函数,若和是函数的两个零点,和是的两个极值点,则等于( )A.B.C.D.【答案】C【解析】,若和是函数的两个零点,即和是方程的两根,得到,,,由已知得和是的两根,所以,故选C.【考点】1.函数的零点;2.函数的极值点.21.函数的定义域为______________.【答案】【解析】为使有意义,须解得,所以函数的定义域为【考点】函数的定义域,对数函数的性质,简单不等式的解法.22.函数的定义域为( )A.;B.;C.;D.;【答案】C【解析】函数的定义域包含三个要求,由不等式组解得.所以选C.本题要注意的解法将不等式化为.由于函数是递增的,所以结合另两个的式子可得结论.【考点】1.偶次方根的定义域.2.分母的定义域.3.对数的定义域.23.函数的定义域是( )A.(-¥,+¥)B.[-1,+¥)C.[0,+¥]D.(-1,+¥)【答案】B【解析】依题意可得.故选B.本小题是考查函数的定义域问题;函数的偶次方根的被开方数要大于或等于零这种情况.函数的定义域是函数三要素之一,也是研究函数的首要组成部分,大致情况有四种.在接触函数的题型时就得考虑函数的定义域.【考点】函数的定义域.24.函数的单调递减区间是( )A.B.C.D.【答案】C【解析】由题意可知函数的定义域为..又有函数在上递增,所以函数在区间上是递减的.故选C.本小题主要是考查复合函数的单调性同增异减.另外要关注定义域的范围.这也是本题的关键.【考点】1.函数的定义域.2.复合函数的单调性.25.已知函数.(1)求函数的定义域;(2)若函数在上单调递增,求的取值范围.【答案】(1)若即时,;若即时,;若即时,.(2).【解析】(1)对数函数要有意义,必须真数大于0,即,这是一个含有参数的不等式,故对m分情况进行讨论;(2)根据复合函数单调性的判断法则,因为是增函数,要使得若函数在上单调递增,则函数在上单调递增且恒正,据些找到m满足的不等式,解不等式即得m的范围.试题解析:(1)由得:若即时,若即时,若即时,(2)若函数在上单调递增,则函数在上单调递增且恒正。

高一数学函数的定义域与值域试题答案及解析

高一数学函数的定义域与值域试题答案及解析

高一数学函数的定义域与值域试题答案及解析1.函数的值域为()A.[0,3]B.[-1,0]C.[-1,3]D.[0,2]【答案】C.【解析】先将函数方程化为,,再由二次函数的图像知,当时,函数取得最小值且为-1;当时,函数取得最大值且为3.所以函数的值域为[-1,3]. 故应选C.【考点】二次函数的值域.2.函数的定义域为 .【答案】.【解析】∵,∴,∴函数的定义域为.【考点】函数的定义域.3.已知函数的值域是,则实数的取值范围是________________.【答案】【解析】由题意得:函数的值域包含,当时,满足题意;当时,要满足值域包含,需使得即或,综合得:实数的取值范围是.【考点】函数值域4.已知函数.(1)判断函数的奇偶性并证明;(2)当时,求函数的值域.【答案】(1)奇函数,(2).【解析】(1)判断函数奇偶性,从两个方面入手,一要判断定义域,若定义域不关于原点对称,则函数就为非奇非偶函数,二在函数定义域关于原点对称前提下,判断与的关系,如只相等,则为偶函数,如只相反,则为奇函数,如既相等又相反,则既为奇函数又为偶函数,如既不相等又不相反,则为非奇非偶函数,本题定义域为R,研究与的关系时需将负指数化为对应正指数的倒数,(2)研究函数的值域,一要看函数解析式的结构,本题是可化为型,二是结合定义域利用函数单调性求值域.试题解析:(1)∵,, 4分∴是奇函数. 5分(2)令,则. 7分∵,∴,∴,∴,所以的值域是. 10分【考点】函数奇偶性,函数值域.5.函数的定义域为 .【答案】【解析】由,所以函数的定义域为.【考点】函数的定义域.6.下列结论:①函数和是同一函数;②函数的定义域为,则函数的定义域为;③函数的递增区间为;④若函数的最大值为3,那么的最小值就是.其中正确的个数为 ( )A.0个B.1个C.2个D.3个【答案】A【解析】因为函数的定义域为R,的定义域为.所以①不成立. 由函数的定义域为,所以.所以函数要满足.所以函数的定义域为.故②不成立.因为函数的定义域为或所以递增区间为不正确,所以③不成立.因为函数y=与函数y=的图像关于y轴对称,所以④不正确.故选A.【考点】1.函数的概念.2.函数的定义域.3.函数的对称性.7.已知函数,则满足不等式的实数的取值范围为.【答案】【解析】,即。

函数的定义域与值域求法典型例题(解析版)

函数的定义域与值域求法典型例题(解析版)

专题13:函数的定义域与值域求法典型例题(解析版)函数定义域的常见其一、已知函数解析式型即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。

例1、求函数yx 2 2x 15的定义域。

x 3 82 x 5或x3 x 2x 15 0解:要使函数有意义,则必须满足即 x 5且x 11 x 3 8 0解得x 5或x 3且x 11即函数的定义域为x x 5或x 3且x 11 。

二、抽象函数型抽象函数是指没有给出解析式的函数,不能用常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的定义域,一般有两种情况。

(一)已知f (x )的定义域,求f g (x ) 的定义域。

其解法是:已知f (x )的定义域是[a ,b ]求f g (x ) 的定义域是解a g (x ) b ,即为所求的定义域。

例2、已知f (x )的定义域为[ 2,2],求f (x 1)的定义域。

2解: 2 x 2, 2 x 1 2,解得 3 x 23即函数f (x 1)的定义域为x 3 x 3(二)已知fg (x ) 的定义域,求f (x )的定义域。

2其解法是:已知f g (x ) 的定义域是[a ,b ]求f (x )的定义域的方法是:a x b ,求g (x )的值域,即所求f (x )的定义域。

例3、已知f (2x 1)的定义域为[1,2],求f (x )的定义域。

解: 1 x 2, 2 2x 4, 3 2x 1 5。

即函数f (x )的定义域是x |3 x 5 。

三、逆向思维型即已知所给函数的定义域求解析式中参数的取值范围。

特别是对于已知定义域为R ,求参数的范围问题通常是转化为恒成立问题来解决。

例4、已知函数ymx 2 6mx m 8的定义域为R 求实数m 的取值范围。

22分析:函数的定义域为R ,表明mx 6mx m 8 0,使一切x R 都成立,由x 项的系数是m ,所以应分m 0或m 0进行讨论。

《高一数学必修1》函数的概念、定义域、值域练习题(含答案)

《高一数学必修1》函数的概念、定义域、值域练习题(含答案)

函数的概念、定义域、值域练习题班级:高一(3)班 姓名: 得分:一、选择题(4分×9=36分)1.集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数是( )A .f (x )→y =12xB .f (x )→y =13x C .f (x )→y=23x D .f (x )→y =x 2.函数y =1-x 2+x 2-1的定义域是( ) A .[-1,1] B .(-∞,-1]∪[1,+∞) C .[0,1]D .{-1,1}3.已知f (x )的定义域为[-2,2],则f (x 2-1)的定义域为( )A .[-1,3]B .[0,3]C .[-3,3]D .[-4,4]4.若函数y =f (3x -1)的定义域是[1,3],则y =f (x )的定义域是( )A .[1,3]B .[2,4]C .[2,8]D .[3,9]5.函数y =f (x )的图象与直线x =a 的交点个数有( )A .必有一个B .一个或两个C .至多一个D .可能两个以上6.函数f (x )=1ax 2+4ax +3的定义域为R ,则实数a 的取值范围是( )A .{a |a ∈R }B .{a |0≤a ≤34}C .{a |a >34}D .{a |0≤a <34}7.某汽车运输公司购置了一批豪华大客车投入运营.据市场分析,每辆客车营运的利润y 与营运年数x (x ∈N )为二次函数关系(如图),则客车有营运利润的时间不超过( )年.A .4B .5C .6D .78.(安徽铜陵县一中高一期中)已知g (x )=1-2x ,f [g (x )]=1-x 2x 2(x ≠0),那么f ⎝ ⎛⎭⎪⎪⎫12等于( ) A .15 B .1 C .3D .309.函数f (x )=2x -1,x ∈{1,2,3},则f (x )的值域是( )A .[0,+∞)B .[1,+∞)C .{1,3,5}D .R二、填空题(4分)10.某种茶杯,每个2.5元,把买茶杯的钱数y(元)表示为茶杯个数x(个)的函数,则y=________,其定义域为________.(5分)11.函数y=x+1+12-x的定义域是(用区间表示)________.三、解答题(5分×3=15分)12.求下列函数的定义域.(1)y=x+1x2-4;(2)y=1|x|-2;(3)y=x2+x+1+(x-1)0.(10分×2=20分)13.(1)已知f(x)=2x-3,x∈{0,1,2,3},求f(x)的值域.(2)已知f(x)=3x+4的值域为{y|-2≤y≤4},求此函数的定义域.(10分×2=20分)14.(1)已知f(x)的定义域为[ 1,2 ] ,求f (2x-1)的定义域;(2)已知f (2x -1)的定义域为 [ 1,2 ],求f (x )的定义域;1.2.1 函数的概念答案一、选择题 1.[答案] C[解析] 对于选项C ,当x =4时,y =83>2不合题意.故选C.2.[答案] D[解析] 使函数y =1-x 2+x 2-1有意义应满意⎩⎪⎨⎪⎧1-x 2≥0x 2-1≥0,∴x 2=1,∴x =±1.3.[答案] C[解析] ∵-2≤x 2-1≤2,∴-1≤x 2≤3,即x 2≤3,∴-3≤x ≤ 3.4.[答案] C[解析] 由于y =f (3x -1)的定义域为[1,3],∴3x -1∈[2,8],∴y =f (x )的定义域为[2,8]。

高一数学函数经典练习题(含答案详细)

高一数学函数经典练习题(含答案详细)

高一数学函数经典练习题(含答案详细)一、求函数的定义域1、求下列函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3-3}$答案:首先化简得到 $y=\frac{x^2+2x-15}{x}$。

然后根据分式的定义,分母不能为零,即 $x\neq0$。

同时,分子中有$x-5$ 和 $x+3$ 两个因式,因此 $x\leq-3$ 或 $x\geq5$。

综合起来得到定义域为 $\{x|x\leq-3 \text{ 或 } x\geq5 \text{ 或 }x\neq0\}$。

⑵ $y=1-\frac{x-1}{2x+2}$答案:首先化简得到 $y=\frac{x+1}{2x+2}$。

然后根据分式的定义,分母不能为零,即 $x\neq-1$。

同时,分子中有 $x-1$ 和 $x+1$ 两个因式,因此 $x\geq0$。

综合起来得到定义域为 $\{x|x\geq0 \text{ 且 } x\neq-1\}$。

2、设函数 $f(x)$ 的定义域为 $[0,1]$,则函数 $f(x^2)$ 的定义域为 _。

_。

_;函数 $x-2f(x-2)$ 的定义域为答案:对于 $f(x^2)$,$x^2\in[0,1]$,因此 $x\in[-1,1]$。

综合起来得到定义域为 $\{x|-1\leq x\leq1\}$。

对于 $x-2f(x-2)$,$x-2(x-2)\in[0,1]$,即 $2\leq x\leq3$。

因此定义域为 $\{x|2\leq x\leq3\}$。

3、若函数 $f(x+1)$ 的定义域为 $[-2,3]$,则函数 $f(2x-1)$ 的定义域是;函数 $f(\frac{x+2}{x})$ 的定义域为。

答案:对于 $f(2x-1)$,$2x-1\in[-2,3]$,因此 $-1\leqx\leq2$。

综合起来得到定义域为 $\{x|-1\leq x\leq2\}$。

对于 $f(\frac{x+2}{x})$,$x\neq0$ 且 $\frac{x+2}{x}\in[-2,3]$,即 $-2x\leq x+2\leq3x$,解得 $-3\leq x\leq-1$ 或$x\geq2$。

高中数学函数的概念、定义域、值域和图象练习题(带解析)

高中数学函数的概念、定义域、值域和图象练习题(带解析)

高中数学函数的概念、定义域、值域和图象练习题(带解析)数学必修1(苏教版)2.1函数的概念和图象2.1.1 函数的概念、定义域、值域和图象“神舟七号”载人航天飞船离地面的距离随时刻的变化而变化;上网费用随着上网的时刻变化而变化;近几十年来,出国旅行人数日益增多,考古学家推算古生物生活的年代……这些问题如何描述和研究呢?基础巩固1.下列各图中,不可能表示函数y=f(x)的图象的是()答案:B2.下列四组中,f(x)与g(x)表示同一个函数的是()A.f(x)=4x4,g(x)=(4x)4B.f(x)=x,g(x)=3x3C.f(x)=1,g(x)=1x0,1x0D.f(x)=x2-4x+2,g(x)=x-2解析:选项A、C、D中两个函数的定义域不相同.答案:B3.已知函数f(x)=2x,x0,x+1,x0,且f(a)+f(1)=0,则a=()A.-3 B.-1C.1 D.3解析:当a0时,f(a)+f(1)=2a+2=0a=-1,与a0矛盾;当a0时,f (a)+f(1)=a+1+2=0a=-3,适合题意.答案:A4.定义域在R上的函数y=f(x)的值域为[a,b],则函数y=f(x+a)的值域为()A.[2a,a+b] B.[0,b-a]C.[a,b] D.[-a,a+b]答案:C5.已知f(x)=x2,x0,fx+1,x0,则f(2)+f(-2)的值为()A.6 B.5C.4 D.2解析:f(2)=22=4,f(-2)=f(-2+1)=f(-1)=f(-1+1)=f(0)=f(0+1)=f(1)=12=1,f(2)+f(-2)=4+1=5.答案:B6.函数y=x+1x的定义域为________.解析:利用解不等式组的方法求解.要使函数有意义,需x+10,x0,解得x-1,x0.原函数的定义域为{x|x-1且x0}.答案:{x|x-1且x0}7.函数f(x)=11-2x的定义域是________解析:由1-2xx12.答案:xx128.已知f(x)=3x+2,x1,x2+ax,x1.若f(f(0))=4a,则实数a=____ ____.解析:∵f(0)=2,f(f(0))=f(2)=4+2a.4+2a=4aa=2.答案:29.已知函数f(x)的定义域为[0,1],值域为[1,2],则f(x+2)的定义域是_ _______,值域是________.解析:∵f(x)的定义域为[0,1],0x+21,-2-1.即f(x+2)的定义域为[-2,-1],值域仍旧为[1,2].答案:[-2,-1][1,2]10.关于每一个实数x,设f(x)是y=4x+1,y=x+2和y=-2x+4三个函数中的最小值,则f(x)的最大值是________.解析:在同一坐标系中作出如下图象:图中实线部分为f(x),则A的纵坐标为f(x)的最大值,答案:8311.方程x2-|x|+a-1=0有四个相异实根,求实数a的取值范畴.解析:原方程可化为x2-|x|-1=-a,画出y=x2-|x|-1的图象.∵x0时,y=-54.x<0时,y=-54.由图象可知,只有当-54-1时,即a1,54时,方程才有四个相异实根.a的取值范畴是1,54.能力提升12.下列函数中,不满足f(2x)=2f(x)的是()A.f(x)=|x| B.f(x)=x-|x|C.f(x)=x+1 D.f(x)=-x解析:∵|2x|=2|x|,A满足;2x-|2x|=2(x-|x|)B满足;-2x=2(-x),D满足;2x+12(x+1);C不满足.答案:C13.(2021全国卷)已知f(x)的定义域为(-3,0),则函数f(2x-1)的定义域为()A.(-1,1) B.-1,12C.(-1,0) D.12,1解析:∵f(x)的定义域(-3,0),-32x-1-112.答案:B14.如左下图所示,液体从一圆锥形漏斗漏入圆柱形桶中,H是圆锥形漏斗中液面下降的距离,则H与下降时刻t(分钟)的函数关系用图象表示只可能是()答案:B15.已知函数f(x)=x21+x2,那么f(1)+f(2)+f12+f(3)+f13+f(4)+f 14=______.解析:f(x)=x21+x2,f1x=1x2+1,f(1)+f(2)+f12+f(3)+f13+f(4)+f14=12+1+1+1=72.答案:7216.已知函数f(3x+2)的定义域是(-2,1),则函数f(x2)-fx+23的定义域为________解析:∵f(3x+2)的定义域为(-2,1),-21,-43x+25.-45,-4x+235.-55.答案:(-5,5)17.已知a-12,0,函数f(x)的定义域是(0,1],求g(x)=f(x+a)+f(x -a)+f(x)的定义域.解析:由题设得0x+a1,0x-a1,01,即-a1-a,a1+a,01,∵-120,012,11-a32,121.不等式组的解集为-a1+a.g(x)的定义域为(-a,1+a].18.已知m,nN*,且f(m+n)=f(m)f(n),f(1)=2.求f2f1+f3f2+…+f 2021f2021的值.解析:∵f(1)=2,f(m+n)=f(m)f(n)(m,nN*),关于任意xN*,有f(x)=f(x-1+1)=f(x-1)f(1)=2f(x-1).“教书先生”可能是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当如何说也确实是让国人景仰甚或敬畏的一种社会职业。

高中数学函数的定义域测试题(含答案)

高中数学函数的定义域测试题(含答案)

高中数学函数的定义域测试题(含答案)高二数学函数的定义域与值域、单调性与奇偶性苏教版【本讲教育信息】一. 教学内容:函数的定义域与值域、单调性与奇偶性二. 教学目标:理解函数的性质,能够运用函数的性质解决问题。

三. 教学重点:函数性质的运用.四. 教学难点:函数性质的理解。

[学习过程]一、知识归纳:1. 求函数的解析式(1)求函数解析式的常用方法:①换元法(注意新元的取值范围)②待定系数法(已知函数类型如:一次、二次函数、反比例函数等)③整体代换(配凑法)④构造方程组(如自变量互为倒数、已知f(x)为奇函数且g(x)为偶函数等)(2)求函数的解析式应指明函数的定义域,函数的定义域是使式子有意义的自变量的取值范围,同时也要注意变量的实际意义。

(3)理解轨迹思想在求对称曲线中的应用。

2. 求函数的定义域求用解析式y=f(x)表示的函数的定义域时,常有以下几种情况:①若f(x)是整式,则函数的定义域是实数集R;②若f(x)是分式,则函数的定义域是使分母不等于0的实数集;③若f(x)是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合;④若f(x)是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合;⑤若f(x)是由实际问题抽象出来的函数,则函数的定义域应符合实际问题.3. 求函数值域(最值)的一般方法:(1)利用基本初等函数的值域;(2)配方法(二次函数或可转化为二次函数的函数);(3)不等式法(利用基本不等式,尤其注意形如型的函数)(4)函数的单调性:特别关注的图象及性质(5)部分分式法、判别式法(分式函数)(6)换元法(无理函数)(7)导数法(高次函数)(8)反函数法(9)数形结合法4. 求函数的单调性(1)定义法:(2)导数法:(3)利用复合函数的单调性:(4)关于函数单调性还有以下一些常见结论:①两个增(减)函数的和为_____;一个增(减)函数与一个减(增)函数的差是______;②奇函数在对称的两个区间上有_____的单调性;偶函数在对称的两个区间上有_____的单调性;③互为反函数的两个函数在各自定义域上有______的单调性;(5)求函数单调区间的常用方法:定义法、图象法、复合函数法、导数法等(6)应用:比较大小,证明不等式,解不等式。

高中数学求函数定义域和值域专题训练含答案

高中数学求函数定义域和值域专题训练含答案

高中数学求函数定义域和值域专题训练含答案姓名:__________ 班级:__________考号:__________一、填空题(共1题)1、已知函数的定义域为,值域是,则的值域是,的定义域是.二、计算题(共8题)1、试求下列函数的定义域与值域:(1)f(x)=(x-1)2+1,x∈{-1,0,1,2,3};2、试求下列函数的定义域与值域:f(x)=(x-1)2+1;3、试求下列函数的定义域与值域:f(x)=;4、试求下列函数的定义域与值域:f(x)=x-.5、求下列函数的定义域:6、求下列函数的定义域:7、已知函数其定义域为[0,2][8,10].(1)当t=2时,求函数的值域;(2)当t=2时,求函数的反函数;(3)当在定义域内有反函数时,求t的取值范围.8、已知函数(1)求的定义域;(2)求的值域;(3)设为锐角,且,求的值。

三、解答题(共11题)1、(1)求函数的定义域;(2)若函数的定义域为,求函数的定义域;(3)求函数的值域.2、(1)求函数的定义域;(2)求函数的值域;(3)已知函数的值域为,求的值.3、(1)求函数的定义域。

(2)求函数的值域。

4、若,函数(其中)(1)求函数的定义域;(2)求函数的值域5、已知函数f(x)=lg(x-1).(1)求函数f(x)的定义域和值域;(2)证明f(x)在定义域上是增函数.6、求函数y=的定义域与值域;7、设函数(1) 求f(x)的定义域(2) 求函数f(x)的值域8、(1)设全集,集合,若,求;(2)求函数的定义域和值域.9、已知函数,(1)若函数定义域为,求的值;(2)若函数值域为,求的值;(3)若在单调递增,求的取值范围;10、求下列函数的定义域和值域:11、求下列函数的定义域和值域;============参考答案============一、填空题1、二、计算题1、 (1)函数的定义域为{-1,0,1,2,3},则f(-1)=[(-1)-1]2+1=5,同理可得f(0)=2,f(1)=1,f(2)=2,f(3)=5,所以函数的值域为{1,2,5}.2、函数的定义域为R,因为(x-1)2+1≥1,所以函数的值域为{y|y≥1}..;3、函数的定义域是{x|x≠1},y==5+,所以函数的值域为{y| y≠5}.4、)要使函数式有意义,需x+1≥0,即x≥-1,故函数的定义域是{x|x≥-1}.设t=,则x=t2-1(t≥0),于是f(t)=t2-1-t=(t-)2-.又因为t≥0,故f(t)≥-.所以函数的值域是{y|y≥-}.5、6、7、解:(1)当t=2时,在[0,2]上为单调减函数,此时的取值范围是[-3,1]在[8,10]上为单调递增函数,此时的取值范围是[33,61]的值域是[-3,1][33,61].(2)当时,得当得.互换x, y,得所求反函数为.(3)由于所以当的定义域内有反函数时,结合图像知有以下情况:(Ⅰ);(Ⅱ)当其中由则(Ⅱ中)综上所述,所求t的取值范围是。

高一数学函数的定义域与值域试题答案及解析

高一数学函数的定义域与值域试题答案及解析

高一数学函数的定义域与值域试题答案及解析1.已知函数的定义域为,的定义域为,则A.B.C.D.【答案】D【解析】函数的定义域M=,的定义域为N=;则【考点】函数的定义域2.函数的定义域为()A.B.C.D.【答案】D.【解析】由函数的解析式可得,Lgx-1≠0, x>0,即 0<x<10或10<x,故函数定义域为 ,故选D.【考点】函数定义域.3.已知,函数.(1)当时,画出函数的大致图像;(2)当时,根据图像写出函数的单调减区间,并用定义证明你的结论;(3)试讨论关于x的方程解的个数.【答案】(1)详见解析;(2)详见解析;(3)详见解析.【解析】(1)当a=2时,,作出图象;(2)由(1)写出函数y=f(x)的单调递增区间,再根据单调性定义证明即可;(3)由题意知方程的解得个数等价于函数的图像与直线的交点个数.即函数的图象与直线的交点个数.试题解析:(1)如图所示3分(2)单调递减区间: 4分证明:设任意的5分因为,所以于是,即6分所以函数在上是单调递减函数 7分(3) 由题意知方程的解得个数等价于函数的图像与直线的交点个数.即函数的图象与直线的交点个数又,注意到,当且仅当时,上式等号成立,借助图像知 8分所以,当时,函数的图像与直线有1个交点; 9分当,时,函数的图像与直线有2个交点; 10分当,时,函数的图像与直线有3个交点;12分.【考点】1.绝对值的函数;2.函数的值域;3.函数的零点.4.已知定义在上的函数为单调函数,且,则 .【答案】【解析】设,令,则由题意得:,即;再令,则由题意得:,即,,∵函数为上的单调函数,解得:,即.【考点】函数值域,不等式恒成立,等比数列前n项和.5.已知函数且的图象经过点.(1)求函数的解析式;(2)设,用函数单调性的定义证明:函数在区间上单调递减;(3)解不等式:.【答案】(1),(2)详见解析,(3)或.【解析】(1)求函数的解析式,只需确定的值即可,由函数且的图象经过点,得,再由得,(2)用函数单调性的定义证明单调性,一设上的任意两个值,二作差,三因式分解确定符号,(3)解不等式,一可代入解析式,转化为解对数不等式,需注意不等号方向及真数大于零隐含条件,二利用函数单调性,去“”,注意定义域.试题解析:(1),解得:∵且∴; 3分(2)设、为上的任意两个值,且,则6分,在区间上单调递减. 8分(3)方法(一):由,解得:,即函数的定义域为; 10分先研究函数在上的单调性.可运用函数单调性的定义证明函数在区间上单调递减,证明过程略.或设、为上的任意两个值,且,由(2)得:,即在区间上单调递减. 12分再利用函数的单调性解不等式:且在上为单调减函数., 13分即,解得:. 15分方法(二): 10分由得:或;由得:,13分. 15分【考点】函数解析式,函数单调性定义,解不等式.6.函数的定义域为___ _____.【答案】【解析】开偶次方根即,所以.【考点】函数定义域及指数函数.7.函数的定义域为____________;【答案】.【解析】定义域是使函数式有意义的自变量的取值集合..【考点】函数的定义域.8.函数的定义域是______________.【答案】【解析】求定义域就是使式子各部分都有意义;注意定义域写成区间形式.要使有意义则解得且所以定义域为【考点】函数自变量的取值范围.9.已知函数(1)用定义证明在上单调递增;(2)若是上的奇函数,求的值;(3)若的值域为D,且,求的取值范围.【答案】(1)设且则即在上单调递增;(2);(3).【解析】(1)在定义域内任取,证明,即,所以在上单调递增;(2)因为,是上的奇函数,所以,即,代入表达式即可得;(3)可求得的值域,由可得不等式,所以.试题解析:(1)设且 1分则 3分即 5分在上单调递增 6分(2)是上的奇函数8分即11分(用得必须检验,不检验扣2分)(3)由14分的取值范围是 16分【考点】1、函数单调性的证明;2、奇函数的定义;(3)函数的值域.10.规定,则函数的值域为A.B.C.D.【答案】A【解析】根据题意,,函数在是增函数,,即函数的值域为,故选:A.【考点】二次函数的值域11.规定,则函数的值域为A.B.C.D.【答案】A【解析】根据题意,,函数在是增函数,,即函数的值域为,故选:A.【考点】二次函数的值域12.已知函数是偶函数,那么函数的定义域为()A.B.C.D.【答案】B【解析】由函数是偶函数,可得对称轴,得a= ;即解不等式,解得,故选B.【考点】1、偶函数的性质;2、定义域的求法;3、对数不等式的解法.13.实数是图象连续不断的函数定义域中的三个数,且满足,则在区间的零点个数为()A.2B.奇数C.偶数D.至少是2【答案】D【解析】此题主要考查学生对函数零点存在性定理掌握情况,因为,所以在区间上至少存在一个零点,同理在区间上也至少存在一个零点,又因为、,故正确答案是D.【考点】1.函数定义域;2.函数零点存在性定理.14.函数的值域是__________.【答案】【解析】利用函数单调性求值域设则由在上是增函数,所以值域为【考点】复合函数的值域.15.函数的定义域为()A.(0,2]B.(0,2)C.D.【答案】C【解析】由题意知所以,故的定义域为,故选C.【考点】函数的定义域16.函数的定义域是 ( ).A.[-1,+∞)B.(-∞,0)∪(0,+∞)C.[-1,0)∪(0,+∞)D.R【答案】C【解析】函数的定义域就是使函数式有意义的自变量x的取值范围,本题中要求所以正确答案为C.【考点】函数的定义域.17.函数的定义域为【答案】【解析】要使函数有意义需满足【考点】函数定义域点评:函数定义域是使函数有意义的自变量的取值范围或题目中给定的自变量的范围18.已知函数.(1)求它的定义域,值域;(2)判定它的奇偶性和周期性;(3)判定它的单调区间及每一区间上的单调性.【答案】(1)的定义域为,值域为(2)既不是奇函数也不是偶函数(3)单调增区间为[();单调减区间为(().【解析】解:(1)由得又因为0<,所以的定义域为,值域为定义域关于原点不对称,故既不是奇函数也不是偶函数;,其中是周期函数,且最小正周期是.,,,即,,即,,即单调增区间为[();单调减区间为(().【考点】三角函数的性质点评:解决的关键是熟练的运用正弦函数的性质来得到其周期和单调性,属于基础题。

指数函数的解析式、定义域、值域练习题含答案

指数函数的解析式、定义域、值域练习题含答案

指数函数的解析式、定义域、值域练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 已知集合A={x|x2−4x+3<0},B={y|y=2x,x>1},则A∩(∁R B)=().A.(1,2]B.[2,3)C.(1,3)D.(0,2]2. 设集合A={x|y=2x}, B={x|x3−x<0}则∁A B=( )A.(−∞,0)∪(3,+∞)B.(−∞,0]∪[3,+∞)C. [0,3]D.[3,+∞)3. 若函数y=(2a−1)x(x是自变量)是指数函数,则a的取值范围是()A.a>0且a≠1B.a≥0且a≠1C.a>且a≠1D.a4. 若函数f(x)=(a2−a−1)a x是指数函数,则()A.a=lB.a=2C.a=1或a=2D.a>0且a≠15. 函数f(x)=a x(a>0,且a≠1)的图象经过点P(3,127),则f(−2)=()A.19B.√33C.13D.96. 已知集合A={x|1+5x−3≤0},B={y|y=2x},则A∩B=()A.[−2,3)B.[−2,3]C.(0,3)D.(0,3]7. 下列函数中,不能化为指数函数的是( )A.y=2x⋅3xB.y=2x−1C.y=32xD.y=4−x8. 已知函数f(x)=a x(a>1),则函数f(f(x))的值域是()A.(0, +∞)B.(1, +∞)C.[1, +∞)D.R)x2+2x−1的值域是()9. 函数y=(12A.(−∞, 4)B.(0, +∞)C.(0, 4]D.[4, +∞)10. 函数f(x)=(a2−3a+3)⋅a x是指数函数,则a的值为()A.1B.3C.2D.1或311. 若关于x的方程:9x+(4+a)⋅3x+4=0有解,则实数a的取值范围为()A.(−∞, −8)∪[0, +∞)B.(−8, −4)C.[−8, −4]D.(−∞, −8]12. 已知函数y=(a−1)x是指数函数,且当x<0时,y>1,则实数a的取值范围是________.13. 若函数y=(2a2−3a+2)a x是指数函数,则a=________.14. 若函数y=(m−3)a x+2−n(a>0,且a≠1)是指数函数,则m=________,n=________.15. 已知2a=7,则a=________;已知x+x−1=4,则x2+x−2=________.)−x2+2x+8的值域是________.16. 函数y=(12(x>0)的值域为________.17. 函数f(x)=2x1+2x+118. 函数y=(a2−3a+1)⋅a x是指数函数,则a等于________.).19. 已知函数f(x)=a x(a>0且a≠1)的图象经过点(2, 19(1)求a的值;(2)比较f(2)与f(b2+2)的大小;(3)求函数f(x)=a x2−2x(x≥0)的值域.20. 若函数y=(a2−3a+3)⋅a x是指数函数,求实数a的值.21. 函数f(x)=a⋅2x+2−x(a∈R).(1)当a=0时,求函数y=f(x2−1)的值域;(2)当x<0时,函数y=f(x)−4有两个零点,求实数a的取值范围.22. 已知函数y=a x(a>0,且a≠1)在[2,4]上的最大值与最小值之和为20,记f(x)=xa x+√2.(1)求a的值;(2)求证:f(x)+f(1−x)为定值;(3)求f(12021)+f(22021)+⋯+f(20202021)的值.23. 已知幂函数f(x)=(m−1)2x m2−4m+2在(0,+∞)上单调递增,函数g(x)=2x−k.(1)求m的值;(2)当x∈[1,2)时,记f(x),g(x)的值域分别为集合A,B,且A∩B=B,求实数k的取值范围.24. 已知函数f(x)=(13)ax2−4x+3,(1)若a=−1,求f(x)的单调区间;(2)若f(x)有最大值3,求a的值.(3)若f(x)的值域是(0, +∞),求a的取值范围.25. 设函数f(x)=3x−2x3x+2x.(1)判断f(x)的奇偶性并证明;(2)当x∈[−1,+∞)时,求f(x)的值域.参考答案与试题解析指数函数的解析式、定义域、值域练习题含答案一、选择题(本题共计 11 小题,每题 3 分,共计33分)1.【答案】A【考点】指数函数的定义、解析式、定义域和值域一元二次不等式的解法交、并、补集的混合运算【解析】利用二次不等式的解法得A={x|1<x<3},利用指数函数的单调性得B,再利用集合的运算得解.【解答】解:由题设得A={x|1<x<3},B={y|y=2x,x>1}={y|y>2},∁R B={y|y≤2},所以A∩(∁R B)=(1,2].故选A.2.【答案】C【考点】分式不等式的解法指数函数的定义、解析式、定义域和值域补集及其运算【解析】此题暂无解析【解答】<0}={x|x<0或x>3}解:∵A={x|y=2x}=R, B={x|x3−x∴∁A B={x|0≤x≤3},即∁A B=[0,3].故选C.3.【答案】C【考点】指数函数的定义、解析式、定义域和值域【解析】根据指数函数的定义,列出不等式组求出a的取值范围.【解答】函数y=(2a−1)x(x是自变量)是指数函数,则,解得a >且a ≠1;所以a 的取值范围是{a|a >且a ≠1}.4.【答案】B 【考点】指数函数的定义、解析式、定义域和值域【解析】根据指数函数的定义,列出不等式组求出a 的值.【解答】函数f(x)=(a 2−a −1)a x 是指数函数,所以{a 2−a −1=1a >0a ≠1, 解得a =2.5.【答案】D【考点】指数函数的定义、解析式、定义域和值域【解析】把点的坐标代入函数解析式求出a 的值,写出函数解析式,计算f(−2)的值.【解答】因为函数f(x)=a x 的图象过点P(3,127), 所以a 3=127,解得a =13,所以f(x)=(13)x , 所以f(−2)=(13)−2=9. 6.【答案】C【考点】指数函数的定义、解析式、定义域和值域交集及其运算【解析】此题暂无解析【解答】解:∵ 1+5x−3≤0,y =2x ,解得−2≤x <3,y >0,∴ A ∩B =(0,3).故选C .7.【答案】B【考点】指数函数的定义、解析式、定义域和值域【解析】对于A,y =2x ⋅3x =6x 是指数函数;对于B,y =2x−1=2x−1不是指数函数;对于C,y =32x =9x 是指数函数;对于D,y =4−x =(14)x 是指数函数. 【解答】解:根据指数函数的定义可得:对于A ,y =2x ⋅3x =(2⋅3)x =6x ,是指数函数;对于B ,y =2x−1=2x 2,不是指数函数;对于C ,y =32x =(32)x =9x ,是指数函数;对于D ,y =4−x =(4−1)x =(14)x,是指数函数.故选B .8.【答案】B【考点】函数的值域及其求法指数函数的定义、解析式、定义域和值域【解析】此题暂无解析【解答】此题暂无解答9.【答案】C【考点】指数函数的定义、解析式、定义域和值域【解析】本题是一个复合函数,求其值域可以分为两步来求,先求内层函数的值域,再求函数的值域,内层的函数是一个二次型的函数,用二次函数的性质求值域,外层的函数是一个指数函数,和指数的性质求其值域即可.【解答】解:由题意令t =x 2+2x −1=(x +1)2−2≥−2∴ y =(12)t ≤(12)−2=4 ∴ 0<y ≤4故选C10.【答案】C【考点】指数函数的定义、解析式、定义域和值域【解析】由指数函数的定义,得a 2−3a +3=1,且a >0,a ≠1,解出即可.【解答】解:由指数函数的定义,得{a 2−3a +3=1,a >0,且a ≠1,解得:a =2.故选C .11.【答案】D【考点】指数函数的定义、解析式、定义域和值域【解析】可分离出a +4,转化为函数f(x)=−32x +43x 的值域问题,令3x =t ,利用基本不等式和不等式的性质求值域即可.【解答】解:∵ a +4=−32x +43x ,令3x =t(t >0),则−32x +43x =−(t +4t )因为(t +4t )≥4,所以−32x +43x≤−4, ∴ a +4≤−4,所以a 的范围为(−∞, −8]故选D .二、 填空题 (本题共计 7 小题 ,每题 3 分 ,共计21分 ) 12.【答案】(1,2)【考点】指数函数的定义、解析式、定义域和值域【解析】讨论指数函数的底数,确定指数函数的性质,从而确定参数范围.【解答】解:由题意可知:当a −1>1,即a >2时,若x <0,此时函数y =(a −1)x ∈(0,1),不合题意,舍去;当0<a −1<1,即1<a <2时,若x <0,此时函数y =(a −1)x ∈(1,+∞),满足题意. 综上:1<a <2.故答案为:(1,2).13.【答案】12【考点】指数函数的定义、解析式、定义域和值域【解析】指数函数是形式定义,即y =a x ,(a >0,且a ≠1),从而求a .【解答】解:由题意得,{a >0,a ≠1,2a 2−3a +2=1,解得a =12,故答案为:12.14.【答案】4,2【考点】指数函数的定义、解析式、定义域和值域【解析】依题意,建立关于m ,n 的方程组,解出即可.【解答】由函数y =(m −3)a x +2−n 是指数函数可得{m −3=12−n =0 ,解得{m =4n =2. 15.【答案】log 27,14【考点】指数函数的定义、解析式、定义域和值域正整数指数幂有理数指数幂的运算性质及化简求值【解析】利用指数式与对数式的互化,求出a 的值,对x +x −1=4两边平方,利用完全平方公式即可求出x 2+x −2的值.【解答】由2a =7可得:a =log 27,∵ x +x −1=4,∴ (x +x −1)2=x 2+2+x −2=16, ∴ x +x −1=14,16.【答案】[1512,+∞)【考点】二次函数的性质指数函数的定义、解析式、定义域和值域【解析】此题暂无解析【解答】解:设函数g(x)=−x 2+2x +8, ∵ a =−1<0,∴ 函数开口向下,有最大值, 当x =−b 2a =−22×(−1)=1时,g(x)max =g(1)=−12+2×1+8=9, ∴ 函数g =−x 2+2x +8的值域为(−∞,9], ∵ y =(12)x 为减函数,∴ 函数y =(12)−x2+2x+8的最小值为(12)9=1512, ∴ 函数y =(12)−x2+2x+8的值域为[1512,+∞). 故答案为:[1512,+∞).17.【答案】(13,12) 【考点】指数函数的定义、解析式、定义域和值域 函数的值域及其求法【解析】解:f(x)=12+2−x .∵ x >0,∴ −x <0,0<2−x <1,∴ 13<f (x )<12.故答案为:(13,12).【解答】解:f(x)=12+2−x .∵ x >0,∴ −x <0,0<2−x <1,∴ 13<f (x )<12.故答案为:(13,12).18.【答案】3【考点】指数函数的定义、解析式、定义域和值域【解析】根据指数函数的定义是y =a x (a >0且a ≠1),列出条件表达式,求出a 的值.【解答】解:根据题意,得;{a >0a ≠1a 2−3a +1=1, 解得a =3.故答案为:3.三、 解答题 (本题共计 7 小题 ,每题 10 分 ,共计70分 )19.【答案】解:(1)f(x)=a x (a >0且a ≠1)的图象经过点(2, 19), ∴ a 2=19,∴ a =13.(2)∵ f(x)=(13)x 在R 上单调递减,又2<b 2+2,∴ f(2)≥f(b 2+2).(3)∵ x ≥0,x 2−2x ≥−1,∴ (13)x2−2x ≤(13)−1=3, ∴ 0<f(x)≤(0, 3].【考点】指数函数单调性的应用指数函数的定义、解析式、定义域和值域【解析】(1)代值计算即可,(2)根据指数函数的单调性即可求出,(3)根据指数函数的单调性和二次函数函数的性质即可求出.【解答】解:(1)f(x)=a x (a >0且a ≠1)的图象经过点(2, 19), ∴ a 2=19,∴ a =13. (2)∵ f(x)=(13)x 在R 上单调递减, 又2<b 2+2,∴ f(2)≥f(b 2+2).(3)∵ x ≥0,x 2−2x ≥−1,∴ (13)x2−2x ≤(13)−1=3, ∴ 0<f(x)≤(0, 3].20.【答案】解:∵ 函数y =(a 2−3a +3)⋅a x 是指数函数,∴ a 2−3a +3=1且a >0且a ≠1,即a 2−3a +2=0,解得a =1(舍)或a =2.故a =2.【考点】指数函数的定义、解析式、定义域和值域【解析】根据指数函数的性质解方程a 2−3a +3=1即可.【解答】解:∵ 函数y =(a 2−3a +3)⋅a x 是指数函数,∴ a 2−3a +3=1且a >0且a ≠1,即a 2−3a +2=0,解得a =1(舍)或a =2.故a =2.21.【答案】解:(1)a =0时f (x )=2−x ,所以f (x 2−1)=21−x 2,令t =1−x 2,t ∈(−∞,1],此时y =2t ,t ≤1因为y =2t 在(−∞,1]上是增函数,所以0<y ≤2,所以y =f (x 2−1)的值域是(0,2].(2)当x <0时,y =f (x )−4=a ⋅2x +12x −4=a⋅(2x )2−4⋅2x +12x 有两个零点,所以a ⋅(2x )2−4⋅2x +1=0在(−∞,0)上有两个不等的实根,即a =4⋅2x −1(2x )2=42x −(12x )2,令u =12x ∈(1,+∞),则a =−u 2+4u 有两不等实根,因为y =−(u −2)2+4在(1,2]上是增函数,在(2,+∞)上是减函数,且当u =1时,y =3,当u =2时,y =4,所以a ∈(3,4).【考点】指数函数的单调性与特殊点指数函数的定义、解析式、定义域和值域函数的零点与方程根的关系函数的零点【解析】无无【解答】解:(1)a =0时f (x )=2−x ,所以f (x 2−1)=21−x 2,令t =1−x 2,t ∈(−∞,1],此时y =2t ,t ≤1因为y =2t 在(−∞,1]上是增函数,所以0<y ≤2,所以y =f (x 2−1)的值域是(0,2].(2)当x <0时,y =f (x )−4=a ⋅2x +12x −4=a⋅(2x )2−4⋅2x +12x 有两个零点,所以a ⋅(2x )2−4⋅2x +1=0在(−∞,0)上有两个不等的实根,即a =4⋅2x −1(2x )2=42x −(12x )2, 令u =12x ∈(1,+∞),则a =−u 2+4u 有两不等实根,因为y =−(u −2)2+4在(1,2]上是增函数,在(2,+∞)上是减函数,且当u =1时,y =3,当u =2时,y =4,所以a ∈(3,4).22.【答案】(1)解:函数y =a x (a >0,且a ≠1)在[2,4]上的最大值与最小值之和为20, 而函数y =a x 在[2,4]上是单调函数,∴ a 2+a 4=20,解得a =2或−2(舍),∴ a =2.(2)证明:由(1)知,a =2,∴ f (x )=x2x +√2, ∴ f (x )+f (1−x )=x 2x +√21−x21−x +√2 =2x2x +√222+√2×2x=x 2x +√2+√2√2+2x =1.(3)解:由(2)知,f(x)+f(1−x)=1, ∵ 12021+20202021=1,22021+20192021=1, 10102021+10112021=1,∴ f (12021)+f (22021)+⋯+f (20202021) =[f (12021)+f (20202021)]+[f (22021)+f (20192021)]+⋯+[f (10102021)+f (10112021)]=1010. 【考点】指数函数单调性的应用指数函数的定义、解析式、定义域和值域根式与分数指数幂的互化及其化简运算指数函数的性质【解析】【解答】(1)解:函数y =a x (a >0,且a ≠1)在[2,4]上的最大值与最小值之和为20, 而函数y =a x 在[2,4]上是单调函数,∴ a 2+a 4=20,解得a =2或−2(舍),∴ a =2.(2)证明:由(1)知,a =2,∴ f (x )=x2x +√2,∴ f (x )+f (1−x )=x2x +√21−x 21−x +√2 =2x2x +√222+√2×2x =x 2x +√2+√2√2+2x=1. (3)解:由(2)知,f(x)+f(1−x)=1,∵ 12021+20202021=1,22021+20192021=1, 10102021+10112021=1, ∴ f (12021)+f (22021)+⋯+f (20202021)=[f (12021)+f (20202021)]+[f (22021)+f (20192021)]+⋯+[f (10102021)+f (10112021)]=1010. 23.【答案】解:(1)由题可得:{(m −1)2=1,m 2−4m +2>0,解得m =0.(2)由(1)得f (x )=x 2对称轴为x =0,又x ∈[1,2),∴ f(x)值域A =[1,4).∵ g (x )=2x −k 在x ∈[1,2)单调递增,∴ g(x)值域B =[2−k,4−k).∵ A ∩B =B ,∴ B ⊆A ,∴ {2−k ≥1,4−k ≤4,解得:0≤k ≤1.【考点】幂函数的性质幂函数的概念、解析式、定义域、值域指数函数的定义、解析式、定义域和值域集合的包含关系判断及应用【解析】【解答】解:(1)由题可得:{(m −1)2=1,m 2−4m +2>0,解得m =0.(2)由(1)得f (x )=x 2对称轴为x =0,又x ∈[1,2),∴ f(x)值域A =[1,4).∵ g (x )=2x −k 在x ∈[1,2)单调递增,∴ g(x)值域B =[2−k,4−k).∵ A ∩B =B ,∴ B ⊆A ,∴ {2−k ≥1,4−k ≤4,解得:0≤k ≤1.24.【答案】解:(1)当a =−1时,f(x)=(13)−x 2−4x+3,令g(x)=−x 2−4x +3,由于g(x)在(−∞, −2)上单调递增,在(−2, +∞)上单调递减,而y =(13)t 在R 上单调递减,所以f(x)在(−∞, −2)上单调递减,在(−2, +∞)上 单调递增,即函数f(x)的递增区间是(−2, +∞),递减区间是(−∞, −2).)ℎ(x),由于f(x)有最大值3,(2)令ℎ(x)=ax2−4x+3,y=(13所以ℎ(x)应有最小值−1,=−1,因此12a−164a解得a=1.即当f(x)有最大值3时,a的值等于1.(3)由指数函数的性质知,)ℎ(x)的值域为(0, +∞).要使y=(13应使ℎ(x)=ax2−4x+3的值域为R,若a≠0,则ℎ(x)为二次函数,其值域不可能为R.因此只能有a=0.故a的取值范围是a=0.【考点】复合函数的单调性对数函数、指数函数与幂函数的衰减差异指数函数综合题函数的最值及其几何意义指数函数的定义、解析式、定义域和值域【解析】)−x2−4x+3,令g(x)=−x2−4x+3,结合指数函数的单(1)当a=−1时,f(x)=(13调性,二次函数的单调性和复合函数的单调性,可得f(x)的单调区间;(2)令ℎ(x)=ax2−4x+3,y=ℎ(x),由于f(x)有最大值3,所以ℎ(x)应有最小值−1,进而可得a的值.(3)由指数函数的性质知,要使y=ℎ(x)的值域为(0, +∞).应使ℎ(x)=ax2−4x+ 3的值域为R,进而可得a的取值范围.【解答】)−x2−4x+3,解:(1)当a=−1时,f(x)=(13令g(x)=−x2−4x+3,由于g(x)在(−∞, −2)上单调递增,在(−2, +∞)上单调递减,)t在R上单调递减,而y=(13所以f(x)在(−∞, −2)上单调递减,在(−2, +∞)上单调递增,即函数f(x)的递增区间是(−2, +∞),递减区间是(−∞, −2).)ℎ(x),由于f(x)有最大值3,(2)令ℎ(x)=ax2−4x+3,y=(13所以ℎ(x)应有最小值−1,=−1,因此12a−164a解得a =1.即当f(x)有最大值3时,a 的值等于1.(3)由指数函数的性质知,要使y =(13)ℎ(x) 的值域为(0, +∞).应使ℎ(x)=ax 2−4x +3的值域为R ,若a ≠0,则ℎ(x)为二次函数,其值域不可能为R . 因此只能有a =0.故a 的取值范围是a =0.25.【答案】解:(1)f(x)为奇函数,理由:f(−x)=3−x −2−x 3−x +2−x=13x −12x 13x +12x=2x −3x3x ⋅2x 3x +2x3x ⋅2x=2x −3x3x +2x ,则有−f(−x)=3x −2x3x +2x =f(x),∴ f(x)为奇函数.(2)f(x)=3x −2x 3x +2x =3x ⋅(2−x )−13x (2−x )+1=(32)x −1(32)x +1=1−2(32)x +1, 令g(x)=(32)x ,当x ∈[−1,0]时,g(x)∈[23,1],∴ f(x)∈[−15,0],当x ∈(0,+∞)时,g(x)∈(1,+∞),∴ f(x)∈(0,1),∴ 综上所述,当x ∈[−1,+∞)时,f(x)的值域为[−15,1). 【考点】指数函数的定义、解析式、定义域和值域奇偶性与单调性的综合奇函数函数的值域及其求法【解析】(1)根据函数奇偶性的定义判断f(x)的奇偶性.(2)根据函数单调性的定义判断和证明函数的单调性.【解答】解:(1)f(x)为奇函数,理由:f(−x)=3−x −2−x 3−x +2−x =13x −12x 13x +12x =2x −3x3x ⋅2x 3x +2x3x ⋅2x=2x −3x 3x +2x ,则有−f(−x)=3x −2x 3x +2x =f(x),∴ f(x)为奇函数.(2)f(x)=3x −2x 3x +2x =3x ⋅(2−x )−13x (2−x )+1=(32)x −1(32)x +1=1−2(32)x +1, 令g(x)=(32)x ,当x ∈[−1,0]时,g(x)∈[23,1],∴ f(x)∈[−15,0],当x ∈(0,+∞)时,g(x)∈(1,+∞),∴ f(x)∈(0,1),∴ 综上所述,当x ∈[−1,+∞)时,f(x)的值域为[−15,1).。

史上最全面的函数定义域值域求法好题集含详解

史上最全面的函数定义域值域求法好题集含详解

史上最全面的函数定义域、值域的求法好题集一、单选题1 .函数y = ∕(x+l )的值域是[-2,3],则函数y = "x-2)的值域是( )A. [-1,4]B. [1,6]C. [-2,3]D. [-3,2]2 .己知函数/(1)=1。

82(--+6工+ 7)的值域记为集合4,函数g (χ) = Ji6-0的值域为B ,则有(),・/、 sin4x + √3cos4x 八函数∕(x) == ----------- - ------- 的值域为()sin2x-√3 cos 2xg(x) + x+4,x< g(x)、 :、,则函数/(幻的值域 g(x)-x,x≥g(x)—Q.CUC + 3cι +1, x < 1,, , 的值域为R,则实数。

的取值范围是()A. (一2,2)B. (-U )C. [-M]D. [-2,2]6. 函数∕∙(χ)二工-2+2-』在区间(0,4]上的值域为(A.xc / 15η B∙ (-∞,-]4C∙ [|,2] D. (—8,2]A.9、[一:,+8)4 B. 9 —,0(1,÷∞)4C. 97一二,。

(二,+8)4 4 D∙ 9—,0 D (2,+”5) 4 A. β⊂QΛB. A ⊂ C κBC. Au83∙ 若函数V= ∕(Λ)的值域为则函数 ∕7(.v)∕(.v) +的值域为() /(二)A.B. C.5 1() 2 ’ 3D.4.已知函数∕(x) = lnx-0r 2+(4z-l)x + 6z(4z > 0)的值域与函数∕(∕(x))的值域相同,则。

的取值范围为(A. (0』B.(L+8)C.D. 4一,+835. 7. 8. 已知∕(x) =lnx,x≥∖A. (-00,-1]B. (-1,0)C. [-1,0)D. [-1,09.己知函数 ∕(x) = ------ --- 2sinx + 3x'在区间[-2,2]的值域为, ∣jiιj m+n =3Λ +1 ()取值范围是()A. (l,+∞)B. (2,+∞)cosx. x<a,11.若函数∕(x) = { 1 的值域为[T1],则实数4的取值范围是(),x a x A. [l,+oo) B. (―00,—1]C. (0, 1] D∙ (—1,0)12 .已知函数八力的定义域A ,值域是3 = {y ∣Q<y≤M' g(x)定义域C,值域是 3 = {y c≤ y≤d^.甲:如果任意再wA,存在々£0,使得/(5)二g(毛),那么4口。

定义域问题 专项训练-2022-2023学年高一上学期数学人教A版(2019)必修第一册(含解析)

定义域问题 专项训练-2022-2023学年高一上学期数学人教A版(2019)必修第一册(含解析)

高一数学定义域问题专项训练学校:___________姓名:___________班级:___________考号:___________一、单选题1.己知函数()f x ()()2f x f x -+的定义域为( ) A .[)0,∞+ B .[]4,0-C .[]0,2D .[]0,42.函数()ln 1x f x += )A . (),1-∞B . ()1,1-C .()(),11,-∞+∞D . (,1]-∞3.已知()f x =A ,集合{12}B x ax =∈<<R ∣,若B A ⊆,则实数a 的取值范围是( )A .[2,1]-B .[1,1]-C .(,2][1,)-∞-+∞D .(,1][1,)∞∞--⋃+4.函数()f x ) A .()2,+∞B .[)1,-+∞C .()1,+∞D .()0,25.已知函数()21f x +的定义域为[]12-,,则函数()1f x y x =+的定义域为( )A .{}|12x x -<≤B .{}|15x x -<≤C .1|12x x ⎧⎫-<≤⎨⎬⎩⎭D .{|15}x x -≤≤6.设定义在R 上的函数()f x 满足()02f =,且对任意的x 、R y ∈,都有()()()()1223f xy f x f y f y x +=⋅--+,则y =A .[)2,-+∞B .[)1,-+∞C .(],1-∞D .(],2∞-二、多选题7.给出下列四个结论,其中正确的是( )A .函数21log sin 2y x ⎛⎫=- ⎪⎝⎭的定义域为()π2π2π,2πZ 33k k k ⎛⎫++∈ ⎪⎝⎭B .函数()f x ()g xC .函数()2f x +的定义域为[]0,2,则函数()2f x 的定义域为2,⎡⎤-⋃⎣⎦D .函数()2f x =的最小值为28.下列选项正确的是( )A .()12f x x =-的定义域是[)()1,22,-+∞B .若函数()21f x -的定义域为(]1,3-,则函数()31f x +的定义域为(]1,7C .函数()22f x x x =-+在[]2,1-的值域为[]28,D .函数2y x =+17,8⎛⎤-∞ ⎥⎝⎦9.已知函数()12f x x =-,则下列结论中正确的是( )A .()f x 是偶函数B .()f x 在(),2-∞-上单调递增C .()f x 的值域为RD .当()2,2x ∈-时,()f x 有最大值10.下列说法正确的是( )A .函数()f x =()[),23,∞∞--⋃+ B .()2x f x x=和()g x x =表示同一个函数C .函数()1f x x x =-的图象关于坐标原点对称D .函数()f x 满足()()21f x f x x --=-,则()213f x x =+ 三、填空题 11.已知函数()()2log 124f x x =+-,则函数的定义域为_______. 12.函数的值域是________.13.已知函数()23f x -的定义域为[]1,4-,设函数()F x =()F x 的定义域是______.14.函数()1f x x =-的定义域为[]0,4,则函数()()22y f x f x =+⎡⎤⎣⎦的值域为______.15.函数2cos 14⎛⎫=+- ⎪⎝⎭y x π的值域是_________.四、解答题(共0分) 16.求下列函数的定义域:(1) ()01y x =-(2)y =17.已知函数()y f x =的表达式()f x ()y f x =的定义域.18.已知函数()()()22lg 111,R f x a x a x a ⎡⎤=-+-+∈⎣⎦.(1)若()f x 的定义域为R ,求实数a 的取值范围; (2)若()f x 的值域为R ,求实数a 的取值范围.参考答案:1.C【分析】根据二次根式的性质,结合复合函数的定义域性质进行求解即可.【详解】由()24022f x x x -≥⇒-≤≤,于是有2202222x x x -≤≤⎧⇒≤≤⎨-≤-≤⎩, 故选:C 2.B【分析】根据二次根式、分母不为零的性质,结合对数型函数的定义域进行求解即可.【详解】由函数的解析式可知101110x x x +>⎧⇒-<<⎨->⎩,故选:B 3.B【分析】先根据二次不等式求出集合A ,再分类讨论集合B,根据集合间包含关系即可求解.【详解】()f x =A ,所以210x -≥,所以1x ≥或1x ≤-, ①当0a =时,{102}B x x =∈<<=∅R∣,满足B A ⊆,所以0a =符合题意; ①当0a >时,12{}B x x a a =∈<<R ∣,所以若B A ⊆,则有11a≥或21a ≤-,所以01a <≤或2a ≤-(舍)①当0<a 时,21{}B x x a a =∈<<R ∣,所以若B A ⊆,则有11a≤-或21a ≥(舍),10a -≤<,综上所述,[1,1]a ∈-,故选:B. 4.A【分析】根据函数解析式,列出相应的不等式组,解不等式可得答案 【详解】要使()f x =有意义,只需240x ->,解得2x >,故函数()f x =的定义域是()2,+∞故选:A5.B【分析】根据抽象函数的定义域可得()f x 的定义域为[]1,5-,进而可求解.【详解】()21f x +的定义域为[]12-,,所以[][]12,2115x x ∈-∴+∈-,,, 因此()f x 的定义域为[]1,5-,所以()1f x y x =+的定义域满足15,10x x -≤≤+≠ ,即15,x -<≤ 故选:B 6.A【分析】通过赋值法求出函数()y f x =解析式,然后令()0f x ≥,即可求出函数y =定义域.【详解】令0x y ==,得()()()2102033f f f =-+=,令1y =,则()()()()132123323f x f x f x f x x +=--+=--,①令1x =,则()()()()132231f y f y f y f y +=--+=+,即()()11f x f x +=+,① 联立①①得()()()()132311f x f x x f x f x ⎧+=--⎪⎨+=+⎪⎩,解得()2f x x =+,对于函数y =20x +≥,解得2x ≥-.因此,函数y =[)2,-+∞,故选A.【点睛】本题考查抽象函数解析式的求解,解题时要充分利用已知条件利用赋值法求解,考查运算求解能力,属于中等题. 7.BC【分析】分别根据对数函数的性质,函数相等,抽象函数的定义域和函数的最值对四个选项逐项验证即可求解.【详解】对于A ,要使函数21log sin 2y x ⎛⎫=- ⎪⎝⎭有意义,则有1sin 02x ->,即1sin 2x >,由正弦函数的图像可知:π5π2π2π,Z 66k x k k +<<+∈, 所以函数21log sin 2y x ⎛⎫=- ⎪⎝⎭的定义域为π5π(2π,2π)(Z)66k k k ++∈,故选项A 错误;对于B ,因为函数()f x =[1,1]-,函数()g x =义域也是[1,1]-,定义域相同,对应法则相同,所以值域也相同,所以函数()f x =与()g x B 正确;对于C ,因为函数()2f x +的定义域为[]0,2,所以02x ≤≤,则224x ≤+≤,由224x ≤≤2x ≤≤或2x -≤≤()2f x 的定义域为2,⎡⎤-⋃⎣⎦,故选项C 正确;对于D ,因为函数()22f x ==(2)t t ≥,则函数可化为1(2)y t t t=+≥,因为函数1y t t=+在[2,)+∞上单调递增,所以15222y ≥+=,也即函数()252f x ≥,所以函数()2f x =的最小值为52,故选项D 错误, 故选:BC . 8.AD【分析】对于A 根据被开偶次根式满足不小于零,分母不等于零求解. 对于B 根据抽象函数的定义域求解,对于C 先把二次函数写成顶点式,然后根据二次函数的性质来求解, 对于D ,把根式换元转化成二次函数求解.【详解】A 函数()12f x x =-的定义域满足1020x x +≥⎧⎨-≠⎩则x ∈[)()1,22,-+∞所以函数()12f x x -的定义域是[)()1,22,-+∞,故A 正确.B 若函数()21f x -的定义域为(]1,3-,所以满足(](]1,3,213,5x x ∈--∈-又因为函数()21f x -与函数()31f x +为同一对应法则,所以(]44313,5,33x x ⎛⎤+∈-∴∈- ⎥⎝⎦,所以B 不正确.C 因为函数()[]22172,2,124f x x x x x ⎛⎫=-+=-+∈- ⎪⎝⎭,所函数()min 17,24f x f ⎛⎫== ⎪⎝⎭()()()()2max 22228f x f =-=---+=所以函数()[]22,2,1f x x x x =-+∈-的值域为7,84⎡⎤⎢⎥⎣⎦故C 不正确.D 令0t t =≥,则21x t =-,所以2y x =()[)22117212,0,48y t t t t ⎛⎫=-+=--+∈+∞ ⎪⎝⎭,即当14t =,y 有最大值为178所以函数2y x =17,8⎛⎤-∞ ⎥⎝⎦,所以D 正确.故选:AD9.ABD【分析】A 选项,根据分母不为0得到定义域,再由奇偶性的定义判断A 正确; B 选项,先求出()12f x x =-在()2,+∞上均单调递减,结合奇偶性得到B 正确; C 选项,由()12f x x =-在()0,2和()2,+∞上的单调性结合奇偶性得到()f x 的值域,C 错误;D 选项,根据()f x 在()2,2x ∈-上的单调性得到最大值.【详解】对于A ,由20x -≠得函数()f x 定义域为{}2x x ≠±,所以()()122f x x x =≠±-.由()()1122f x f x x x -===---,可得函数()f x 为偶函数,其图象关于y 轴对称,故A 正确;对于B ,当0x >且2x ≠时,函数()12f x x =-,该函数图象可由函数1y x =图象向右平移2个单位得到, 所以函数()12f x x =-在()0,2和()2,+∞上均单调递减, 由偶函数性质,可知()f x 在(),2-∞-上单调递增,故B 正确; 对于C ,由B 可得,当0x >且2x ≠时,函数()12f x x =-在()0,2和()2,+∞上均单调递减,所以该函数在()()0,22,+∞的值域为()1,0,2⎛⎫-∞-⋃+∞ ⎪⎝⎭;又因为函数()f x 为偶函数,且()102f =-,所以()f x 在其定义域上的值域为()1,0,2⎛⎤-∞-+∞ ⎥⎝⎦,故C 错误;对于D ,当()2,2x ∈-时,函数()f x 在()2,0-上单调递增,在()0,2上单调递减,所以()f x 有最大值为()102f =-,故D 正确.故选:ABD .10.AC【分析】求出函数的定义域可判断A ;由同一函数的定义可判断B ;由奇偶性可判断C ;由方程组法求出()f x 可判断D 【详解】对于A :由302x x -≥+解得3x ≥或<2x -,所以函数()f x =()[),23,∞∞--⋃+,故A 正确; 对于B :()2x f x x=的定义域为()(),00,∞-+∞,()g x x =的定义为(),-∞+∞,定义域不相同,所以()2x f x x =和()g x x =不是同一个函数,故B 错误;对于C :()1f x x x=-的定义域为()(),00,∞-+∞,关于原点对称,且()()11f x x x f x x x ⎛⎫-=+=--=- ⎪-⎝⎭,所以()1f x x x =-为奇函数, 所以函数()1f x x x=-的图象关于坐标原点对称,故C 正确;对于D :因为函数()f x 满足()()21f x f x x --=-, 所以()()21f x f x x --=--,由()()()()2121f x f x x f x f x x ⎧--=-⎪⎨--=--⎪⎩解得()113f x x =+,故D 错误;故选:AC11.()5,3-【分析】根据具体函数的定义域求法考虑限制条件即可求解. 【详解】函数()()2log 124f x x =-, 要使解析式有意义需满足:501240x x +>⎧⎨->⎩,解得53x x >-⎧⎨<⎩,53x ∴-<<,即函数()f x 的定义域为()5,3-,故答案:()5,3-. 12.[-4,0]【详解】试题分析:由题意得2sin()2[4,0]6y x π=--∈-考点:三角函数值域13.(]1,3【分析】由()23f x -的定义域得出5235x --,进而由25125870x x x -≤-≤⎧⎨-+->⎩得出所求.【详解】因为函数()23f x -的定义域为[]1,4-,所以14x -,5235x --即25125870x x x -≤-≤⎧⎨-+->⎩,解得13x <≤故函数()12f x F x -=则函数()F x 的定义域是(]1,3故答案为:(]1,3 14.1,42⎡⎤-⎢⎥⎣⎦【分析】由()f x 定义域可求出()()22y f x f x =+⎡⎤⎣⎦定义域,化简后再由二次函数求出值域即可.【详解】由题意可知,()()22y f x f x =+⎡⎤⎣⎦要有意义,则需20404x x ⎧≤≤⎨≤≤⎩,即02x ≤≤,即函数定义域为[0,2],又2221(1)22y x x x x =-+-=-,对称轴方程为12x =, 所以当12x =时,min 12y =-,当2x =时,max 4y =,所以函数值域为1,42⎡⎤-⎢⎥⎣⎦,故答案为:1,42⎡⎤-⎢⎥⎣⎦15.[3,1]-【分析】根据x R ∈,得到[]cos 1,14π⎛⎫+∈- ⎪⎝⎭x ,从而求得函数2cos 14⎛⎫=+- ⎪⎝⎭y x π的值域.【详解】因为x R ∈,所以4x R π+∈,所以[]cos 1,14π⎛⎫+∈- ⎪⎝⎭x ,所以[]2cos 13,14π⎛⎫=+-∈- ⎪⎝⎭y x ,所以函数2cos 14⎛⎫=+- ⎪⎝⎭y x π的值域是[3,1]-.故答案为:[3,1]-【点睛】本题主要考查余弦函数的性质,还考查了运算求解的能力,属于中档题. 16.(1)()()1,11,-+∞(2)[1,0)(0,1]-⋃【分析】根据函数的解析式,列出自变量需满足的不等式组,即可求得答案.【详解】(1)函数0()1y x =-1020110x x x -≠⎧⎪⎪≥⎨+⎪+≠⎪⎩,解得1x >- ,且1x ≠, 所以这个函数的定义域为()()1,11,-+∞.(2)函数y =2201010x x x ⎧--≥⎪+≥⎨≠确定,解不等式组,得2110x x x -≤≤⎧⎪≥-⎨⎪≠⎩,即[1,0)(0,1]x ∈-⋃,所以函数y =[1,0)(0,1]-⋃.17.答案见解析【分析】解不等式22320x ax a -+≥,可得函数()y f x =定义域.【详解】注意到()()2232020x ax a x a x a -+≥⇔--≥当0<a 时,()()2202,a a x a x a x a <--≥⇒≤或x a ≥,得函数定义域是(,2][,)a a -∞⋃+∞;当0a =时,()()2200R x a x a x x --≥⇔≥⇔∈,得函数定义域是R ;当0a >时,()()220,a a x a x a x a >--≥⇒≤或2x a ≥,得函数定义域是(,][2,)a a -∞⋃+∞.综上:当0<a 时,函数定义域是(,2][,)a a -∞⋃+∞;当0a =时,函数定义域是R ;当0a >时,函数定义域是(,][2,)a a -∞⋃+∞.18.(1)5,[1,)3⎛⎫-∞-⋃+∞ ⎪⎝⎭(2)[-53,-1]【分析】(1)当210a -=时,直接求出()f x 的定义域进行判断;当210a -≠时,转化为二次函数y =()()22111a x a x -+-+的图象开口向上,与x 轴没有交点,再根据二次函数知识可求出结果.(2)当210a -=时,直接求出()f x 的值域进行判断;当210a -≠时,转化为二次函数()()()22111t x a x a x =-+-+的图象开口向上,且与x 轴有交点,根据二次函数知识可求出结果.【详解】(1)因为()f x 的定义域为R ,则()()221110a x a x -+-+>在R 上恒成立.①当210a -=时,a =±1,若1a =,则1>0恒成立,()f x 的定义域为R ,符合题意; 若1,210a x =--+>,得12x <,()f x 的定义域为1(,)2-∞.不符合题意. ①当210a -≠时,则有()()22210Δ1410a a a ⎧->⎪⎨=---<⎪⎩, 解得53a <-或1a >,综上所述:实数a 的取值范围为5,[1,)3⎛⎫-∞-⋃+∞ ⎪⎝⎭.(2)记()()()()22111,0t x a x a x t x =-+-+>的解集为D ,即为函数f (x )的定义域.因为()()lg f x t x =的值域为R ,则对x D ∀∈时,函数f (x )的值域为(0,+∞). ①当210a -=时,1a =±.若()1,1a t x ==,()0f x =,()f x 的值域为{0},不符合题意;若()1,21a t x x =-=-+,1(,)2D =-∞,()f x 的值域为(0,)+∞,符合题意.①当210a -≠时,则有:()()22210Δ1410a a a ⎧->⎪⎨=---≥⎪⎩, 解得513a -≤<-,综上所述:实数a 的取值范围为[-53,-1]。

高一数学函数的定义域与值域试题答案及解析

高一数学函数的定义域与值域试题答案及解析

高一数学函数的定义域与值域试题答案及解析1.已知(1)若,求x的范围;(2)求的最大值以及此时x的值.【答案】(1)(2),.【解析】(1)根据向量的数量积公式,化简f(x)≥1得cos2x-cosx≤0,从而得到0≤cosx≤1.再由余弦函数的图象与性质解此不等式,即可求出x的范围;(2)由(1)得f(x)=sin2x+cosx,利用同角三角函数的关系化简、配方得f(x)═,由此可得cosx=时,f(x)的最大值为,根据余弦函数的图象与性质,可得相应x的值..试题解析:解:(1),(2)【考点】1.平面向量数量积的运算;2.正弦函数的定义域和值域.2.注:此题选A题考生做①②小题,选B题考生做①③小题.已知函数是定义在R上的奇函数,且当时有.①求的解析式;②(选A题考生做)求的值域;③(选B题考生做)若,求的取值范围.【答案】①;②;③【解析】①当时,,根据可推导出时的解析式。

注意最后将此函数写成分段函数的形式。

②本题属用分离常数项法求函数值域。

当时将按分离常数项法将此函数化为,根据自变量的范围可推导出函数值的范围,因为此函数为奇函数所以值域也对称。

故可得出的值域。

③本题属用单调性“知二求一”解不等式问题。

所以应先判断此函数的单调性。

同②当时将化为,可知在上是增函数,因为为奇函数,所以在上是增函数。

根据单调性得两自变量的不等式,即可求得的取值范围。

试题解析:解:①∵当时有∴当时,∴∴()∴(6分)②∵当时有∴又∵是奇函数∴当时∴(A:13分)③∵当时有∴在上是增函数,又∵是奇函数∴是在上是增函数,(B:13分)∵∴∴【考点】函数的奇偶性及值域,函数的单调性。

考查转化思想。

3.已知函数且的图象经过点.(1)求函数的解析式;(2)设,用函数单调性的定义证明:函数在区间上单调递减;(3)解不等式:.【答案】(1),(2)详见解析,(3)或.【解析】(1)求函数的解析式,只需确定的值即可,由函数且的图象经过点,得,再由得,(2)用函数单调性的定义证明单调性,一设上的任意两个值,二作差,三因式分解确定符号,(3)解不等式,一可代入解析式,转化为解对数不等式,需注意不等号方向及真数大于零隐含条件,二利用函数单调性,去“”,注意定义域.试题解析:(1),解得:∵且∴; 3分(2)设、为上的任意两个值,且,则6分,在区间上单调递减. 8分(3)方法(一):由,解得:,即函数的定义域为; 10分先研究函数在上的单调性.可运用函数单调性的定义证明函数在区间上单调递减,证明过程略.或设、为上的任意两个值,且,由(2)得:,即在区间上单调递减. 12分再利用函数的单调性解不等式:且在上为单调减函数., 13分即,解得:. 15分方法(二): 10分由得:或;由得:,13分. 15分【考点】函数解析式,函数单调性定义,解不等式.4.已知则_ .【答案】7【解析】因为,所以代入,即,因为,所以代入,得,故得.【考点】分段函数及解析式.5.给出以下命题:①若、均为第一象限角,且,且;②若函数的最小正周期是,则;③函数是奇函数;④函数的周期是;⑤函数的值域是.其中正确命题的个数为()A.3B.2C.1D.0【答案】D【解析】对于①来说,取,均为第一象限,而,故;对于②,由三角函数的最小正周期公式;对于③,该函数的定义域为,定义域不关于原点对称,没有奇偶性;对于④,记,若,则有,而,,显然不相等;对于⑤,,而当时,,故函数的值域为;综上可知①②③④⑤均错误,故选D.【考点】1.命题真假的判断;2.三角函数的单调性与最小正周期;3.函数的奇偶性;4.函数的值域.6.函数的定义域为.【答案】【解析】要是此函数有意义,所以有,所以定义域为【考点】(1)函数定义域的求法,(2)偶次根号下被开方数大于等于0,对数中真数大于07.若函数()在上的最大值为23,求a的值.【答案】或【解析】利用整体思想令,则,其图像开口向上且对称轴为,所以二次函数在上单调递减,在上是增函数.下面分两种情况讨论:当时,在R上单调递减,当时是的增区间,所以时y取最大值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例1: ⑴若函数)(x f 的定义域是[0,1],求)21(x f -的定义域;
⑵若)12(-x f 的定义域是[-1,1],求函数)(x f 的定义域;
⑶已知)3(+x f 定义域是[)5,4-,求)32(-x f 定义域.
(观察法)例2. 求函数x 3y -=的值域。

1.求函数2+=x y 的值域。

(配方法)例3. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域。

2.求函数242y x x =-++([1,1]x ∈-)的值域。

(反函数法)例4.求函数34
56x y x +=
+值域。

3. 求函数1x 2x 31y +-=的值域。

4.求函数125
x y x -=+的值域。

(换元法)例5.求函数1x x y -+=的值域。

5.函数y =x +
x 21-的值域是( ) A.(-∞,1]
B.(-∞,-1]
C.R
D.[1,+∞)
6.求函数2y x =
(有界性)例6.求函数2211
x y x -=+的值域。

(判别式法)例7.求函数的值域22221
x x y x x -+=++
例1:⑴ 函数)21(x f -是由A 到B 上的函数x u 21-=与B 到C 上的函数)(u f y =复合而成的函数.
函数)(x f 的定义域是[0,1], ∴B=[0,1],即函数x u 21-=的值域为[0,1].
∴1210≤-≤x ,∴021≤-≤-x ,即
210≤≤x , ∴函数)21(x f -的定义域[0,21
]. ⑵ 函数)12(-x f 是由A 到B 上的函数12-=x u 与B 到C 上的函数)(u f y =复合而成的函数.
)12(-x f 的定义域是[-1,1], ∴A=[-1,1],即-11≤≤x ,
∴1123≤-≤-x ,即12-=x u 的值域是[-3,1], ∴)(x f y =的定义域是[-3,1]. 要点2:若已知)(x f 的定义域为A ,则)]([x g f 的定义域就是不等式A x g ∈)(的x 的集合;若已知)]([x g f 的定义域为A ,则)(x f 的定义域就是函数)(x g )(A x ∈的值域。

⑶ 函数)3(+x f 是由A 到B 上的函数3+=x u 与B 到C 上的函数)(u f y =复合而成的函数.
)3(+x f 的定义域是[-4,5), ∴A=[-4,5)即54<≤-x ,∴831<+≤-x 即3+=x u 的值域B=[-1,8)
又)32(-x f 是由'A 到'B 上的函数32'-=x u 与B 到C 上的函数)(u f y =复合而成的函数,而'B B =,从而32'-=x u 的值域)8,1['-=B ∴8321<-≤-x ∴,1122<≤x ∴2111<≤x
∴)32(-x f 的定义域是[1,211
).
例2.解:∵0x ≥ 3x 3,0x ≤-≤-∴ 故函数的值域是:]3,[-∞
1.解:因为0≥x ,所以22≥+x ,
所以函数2+=x y 的值域为[)+∞,2。

例3.解:将函数配方得:4)1x (y 2+-= ∵]2,1[x -∈
由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max = 故函数的值域是:
[4,8]
2.解:2242(2)6y x x x =-++=--+,
因为[1,1]x ∈-,所以2[3,1]x -∈--,所以2
1(2)9x ≤-≤
所以23(2)65x -≤--+≤,即35y -≤≤
所以函数242y x x =-++([1,1]x ∈-)的值域为[3,5]-。

例4.
346456345635x y y xy y x x x y +-=⇒+=+⇒=+-,分母不等于0,即35y ≠ 4.解:因为177(25)112
222525225
x x y x x x -++-===-++++, 所以7
2025
x ≠+,所以12y ≠-, 所以函数125x y x -=+的值域为1{|}2
y y ≠-。

例5.解:令t 1x =-,)0t (≥ 则1t x 2+= ∵
43)21t (1t t y 22++=++= 又0t ≥,由二次函数的性质可知 当0t =时,1y min = 当0t →时,+∞→y 故函数的值域为),1[+∞
5.解析:令x 21-=t (t ≥0),则x =2
12t -. ∵y =212t -+t =-2
1 (t -1)2+1≤1 ∴值域为(-∞,1].
6.
解:令t 0t ≥),则212
t x -=, 所以221
51()24
y t t t =-++=--+ 因为当12t =,即38x =时,max 54
y =,无最小值。

所以函数2y x =5(,]4-∞。

例6.解:由函数的解析式可以知道,函数的定义域为R ,对函数进行变形可得 2(1)(1)y x y -=-+,
因为1y ≠,所以211
y x y +=--(x R ∈,1y ≠), 所以101
y y +-≥-,所以11y -≤<, 所以函数2211
x y x -=+的值域为{|11}y y -≤< 例7.解:2
10x x ++> 恒成立,∴函数的定义域为R. 由22221
x x y x x -+=++ 得()()22120y x y x y -+++-= 。

① 当20y -=即2y =时,300,0x x R +=∴=∈;
② 当20y -≠即2y ≠时,x R ∈ 时,方程()()2
2120y x y x y -+++-=恒有实根. ()()22
1420y y ∴=+-⨯-≥ 15y ∴≤≤且2y ≠. ∴原函数的值域为[]1,5.。

相关文档
最新文档