几何体的表面积和体积公式大全

合集下载

常见几何体的表面积体积公式

常见几何体的表面积体积公式

常见几何体的表面积体积公式1、长方体V:体积s:面积a:长b:宽h:高(1)表面积(长×宽+长×高+宽×高)×2 {S=2(ab+ah+bh)(2)体积=长×宽×高(V=abh)2、圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径3、圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷34、正方体V:体积s:面积a:边长体积:边长×边长×边长扩展资料周长:1、正方形C周长S面积a边长周长=边长×4(C=4a)面积=边长×边长(S=a×a)2、长方形C周长S面积a边长周长=(长+宽)×2(C=2(a+b))面积=长×宽(S=ab)3、三角形s面积a底h高面积=底×高÷2(s=ah÷2)三角形高=面积×2÷底三角形底=面积×2÷高4、平行四边形s面积a底h高面积=底×高(s=ah)5、梯形s面积a上底b下底h高面积=(上底+下底)×高÷2(s=(a+b)×h÷2)6、圆形S面积C周长πd=直径r=半径(1)周长=直径×π=2×π×半径(C=πd=2πr)(2)面积=半径×半径×π。

空间几何体的表面积和体积公式大全

空间几何体的表面积和体积公式大全

空间几何体的表面积与体积公式大全一、 全(表)面积(含侧面积) 1、柱体① 棱柱② 圆柱 2、锥体①棱锥:h c S ‘底棱锥侧21=② 圆锥:l c S 底圆锥侧21=3、 台体① 棱台:h c c S)(21‘下底上底棱台侧+=②圆台:l c c S )(21下底上底棱台侧+=4、 球体① 球:r S 24π=球 ② 球冠:略 ③ 球缺:略 二、 体积 1、柱体① 棱柱 ② 圆柱 2、锥体① 棱锥 ② 圆锥3、① 棱台 ② 圆台 4、球体① 球:r V 334π=球② 球冠:略 ③ 球缺:略说明:棱锥、棱台计算侧面积时使用侧面的斜高h '计算;而圆锥、圆台的侧面积计算时使用母线l 计算。

三、 拓展提高 1、祖暅原理:(祖暅:祖冲之的儿子)夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。

最早推导出球体体积的祖冲之父子便是运用这个原理实现的。

2、阿基米德原理:(圆柱容球)圆柱容球原理:在一个高和底面直径都是r 2的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的32。

分析:圆柱体积:r r h S V r 3222)(ππ=⨯==圆柱圆柱侧面积:r h cS r r 242)2(ππ=⨯==圆柱侧因此:球体体积:r r V 3334232ππ=⨯=球 球体表面积:r S 24π=球通过上述分析,我们可以得到一个很重要的关系(如图)+ =即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、台体体积公式公式: )(31S SS S h V 下下上上台++=证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。

延长两侧棱相交于一点P 。

设台体上底面积为S 上,下底面积为S 下高为h 。

易知:PDC ∆∽PAB ∆,设h PE 1=, 则h h PF +=1由相似三角形的性质得:PFPEAB CD =即:hh hSS +=11下上(相似比等于面积比的算术平方根)整理得:SS h S h 上下上-=1又因为台体的体积=大锥体体积—小锥体体积 ∴h S S S h h S h h S V 下上下上下台)(31)(313131111+-=-+=代入:SS h S h 上下上-=1得:hS S S SS h S V 下上下上下上台31)(31+--=即:)(3131)(31S SS S h h S S S hS V 下下上上下上下上台++=++=∴)(31S SS S h V 下下上上台++=4、球体体积公式推导分析:将半球平行分成相同高度的若干层(层n ),n 越大,每一层越近似于圆柱,+∞→n 时,每一层都可以看作是一个圆柱。

体积与表面积的关系

体积与表面积的关系

体积与表面积的关系体积与表面积是几何学中的两个重要概念,它们在数学和物理学等领域中具有广泛的应用。

本文将探讨体积与表面积之间的关系,并分析其中的数学原理和物理应用。

一、体积的定义与计算公式体积是三维物体所占据的空间大小。

对于规则几何体,我们可以使用特定的公式来计算其体积:1. 正方体和长方体的体积公式:正方体的体积公式为V = a³,其中a表示正方体的边长。

长方体的体积公式为V = l × w × h,其中l、w和h分别表示长方体的长、宽和高。

2. 圆柱体和圆锥体的体积公式:圆柱体的体积公式为V = πr²h,其中r表示底面半径,h表示高度。

圆锥体的体积公式为V = (1/3)πr²h,其中r表示底面半径,h表示高度。

3. 球体的体积公式:球体的体积公式为V = (4/3)πr³,其中r表示球体的半径。

二、表面积的定义与计算公式表面积是三维物体外部所占据的面积大小。

同样地,对于规则几何体,我们可以使用特定的公式来计算其表面积:1. 正方体和长方体的表面积公式:正方体的表面积公式为A = 6a²,其中a表示正方体的边长。

长方体的表面积公式为A = 2lw + 2lh + 2wh,其中l、w和h分别表示长方体的长、宽和高。

2. 圆柱体和圆锥体的表面积公式:圆柱体的表面积公式为A = 2πr² + 2πrh,其中r表示底面半径,h表示高度。

圆锥体的表面积公式为A = πr² + πrl,其中r表示底面半径,l表示斜高线(母线)的长度。

3. 球体的表面积公式:球体的表面积公式为A = 4πr²,其中r表示球体的半径。

三、体积与表面积的关系体积和表面积之间存在一定的关系,特别是对于某些几何体而言。

以立方体为例,我们可以观察到体积和表面积之间的关系:对于边长为a的正方体来说,它的体积和表面积分别为V = a³、A = 6a²。

空间几何体的表面积及体积公式大全

空间几何体的表面积及体积公式大全

空间⼏何体的表⾯积及体积公式⼤全空间⼏何体的表⾯积与体积公式⼤全⼀、全(表)⾯积(含侧⾯积) 1、柱体①棱柱②圆柱 2、锥体①棱锥:h c S ‘底棱锥侧21=②圆锥:l c S 底圆锥侧213、台体①棱台:h c c S )(21‘下底上底棱台侧+=②圆台:l c c S )(21下底上底棱台侧+=4、球体①球:r S 24π=球②球冠:略③球缺:略⼆、体积 1、柱体①棱柱②圆柱 2、①棱锥②圆锥3、①棱台②圆台 4、球体①球:rV 334π=球②球冠:略③球缺:略说明:棱锥、棱台计算侧⾯积时使⽤侧⾯的斜⾼h '计算;⽽圆锥、圆台的侧⾯积计算时使⽤母线l 计算。

三、拓展提⾼ 1、祖暅原理:(祖暅:祖冲之的⼉⼦)夹在两个平⾏平⾯间的两个⼏何体,如果它们在任意⾼度上的平⾏截⾯⾯积都相等,那么这两个⼏何体的体积相等。

最早推导出球体体积的祖冲之⽗⼦便是运⽤这个原理实现的。

2、阿基⽶德原理:(圆柱容球)圆柱容球原理:在⼀个⾼和底⾯直径都是r 2的圆柱形容器内装⼀个最⼤的球体,则该球体的全⾯积等于圆柱的侧⾯积,体积等于圆柱体积的32。

分析:圆柱体积:r r h S V r 3222)(ππ=?==圆柱圆柱侧⾯积:r h cS r r 242)2(ππ=?==圆柱侧因此:球体体积:r r V 3334232ππ=?=球球体表⾯积:r S 24π=球通过上述分析,我们可以得到⼀个很重要的关系(如图)+ =即底⾯直径和⾼相等的圆柱体积等于与它等底等⾼的圆锥与同直径的球体积之和 3、台体体积公式公式: )(31S SS S h V 下下上上台++=证明:如图过台体的上下两底⾯中⼼连线的纵切⾯为梯形ABCD 。

延长两侧棱相交于⼀点P 。

设台体上底⾯积为S 上,下底⾯积为S 下⾼为h 。

易知:PDC ?∽PAB ?,设h PE 1=,则h h PF +=1由相似三⾓形的性质得:PFPEAB CD =即:hh hSS +=11下上(相似⽐等于⾯积⽐的算术平⽅根)整理得:SS h S h 上下上-=1⼜因为台体的体积=⼤锥体体积—⼩锥体体积∴h S S S h h S h h S V 下上下上下台)(31)(313131111+-=-+=代⼊:SS h S h 上下上-=1得:h S S S SS h S V 下上下上下上台31)(31+--=即:)(3131)(31S SS S h h S S S hS V 下下上上下上下上台++=++=∴)(3S S h V 下下上上台++=4、球体体积公式推导分析:将半球平⾏分成相同⾼度的若⼲层(层n ),n 越⼤,每⼀层越近似于圆柱,+∞→n 时,每⼀层都可以看作是⼀个圆柱。

高中几何体公式大全

高中几何体公式大全

高中几何体公式大全高中几何体公式大全高中学习几何体是数学中非常重要的部分,同时几何体也是日常生活中常见的物品。

在学习几何体时,必须要掌握各种几何体的公式,才能更好地掌握几何体的性质和计算。

以下是高中几何体公式大全,供大家参考:一、球体球体是三维空间中的一种几何体,具有很多特殊的性质。

在计算球体的表面积和体积时,需要知道球体的半径。

1. 表面积公式球体表面积公式为:4πr²,其中π为圆周率,r为球的半径。

2. 体积公式球体体积公式为:(4/3)πr³,其中π为圆周率,r为球的半径。

二、圆柱体圆柱体是一种无底面的几何体,在日常生活中很常见,例如笔筒、桶等。

在计算圆柱体的表面积和体积时,需要知道圆柱体的半径和高度。

1. 表面积公式圆柱体表面积公式为:2πrh + 2πr²,其中π为圆周率,r为圆柱体底面的半径,h为圆柱体的高度。

2. 体积公式圆柱体体积公式为:πr²h,其中π为圆周率,r为圆柱体底面的半径,h为圆柱体的高度。

三、圆锥体圆锥体是一种由一条直线旋转形成的几何体,在日常生活中常见于冰激凌筒、鼓等物品上。

在计算圆锥体的表面积和体积时,需要知道圆锥体的半径和高度。

1. 表面积公式圆锥体表面积公式为:πr(l+r),其中π为圆周率,r为圆锥体底面的半径,l为圆锥体的母线。

2. 体积公式圆锥体体积公式为:(1/3)πr²h,其中π为圆周率,r为圆锥体底面的半径,h为圆锥体的高度。

四、立方体立方体是一种六面体,所有的面都是正方形,在日常生活中非常常见。

在计算立方体的表面积和体积时,需要知道立方体的边长。

1. 表面积公式立方体表面积公式为:6a²,其中a为立方体的边长。

2. 体积公式立方体体积公式为:a³,其中a为立方体的边长。

五、棱柱体棱柱体是由若干个相同的平面多边形依次相连形成的几何体,在日常生活中常见于手表的外盒、笔筒等。

在计算棱柱体的表面积和体积时,需要知道棱柱体的底面面积和高度。

空间几何体的体积与面积的全部公式

空间几何体的体积与面积的全部公式

空间⼏何体的体积与⾯积的全部公式空间⼏何体的体积与⾯积的全bai部公式:1、圆柱体(duR为圆柱体上下底圆zhi半径,h为圆柱体⾼)S=2πdaoR²+2πRhV=πR²h2、圆锥体(r为圆锥体低圆半径,h为其⾼)S=πR²+πR[(h²+R²)的平⽅根]V=πR²h/33、正⽅体(a为边长)S=6a²V=a³4、长⽅体(a为长,b为宽,c为⾼)S=2(ab+ac+bc)V=abc5、棱柱(S为底⾯积,h为⾼)V=Sh6、棱锥(S为底⾯积,h为⾼)V=Sh/37、棱台(S1和S2分别为上、下底⾯积,h为⾼)V=h[S1+S2+(S1S2)^1/2]/38、圆柱(r为底半径,h为⾼,C为底⾯周长,S底为底⾯积,S侧为侧⾯积,S表为表⾯积)C=2πr,S底=πr²,S侧=ChS表=Ch+2S底V=S底h=πr²h9、圆台(r为上底半径,R为下底半径,h为⾼)S= πR²+πrl+πRl+πr²V=πh(R²+Rr+r²)/310、球(r为半径,d为直径)S=4πr²V=4/3πr^3=πd^3/6扩展资料:巧记空间⼏何体中的⾯积和体积公式的⽅法:1. ⾯积问题:空间⼏何体的⾯积主要分为两类:侧⾯积和表⾯积,其中的重点是旋转体的侧⾯积公式。

对于多⾯体的⾯积,其各个⾯都是多边形,这个在⼩学阶段就研究过了。

其中,只需要记住圆台的侧⾯积公式就够了。

将圆台侧⾯打开,是⼀个扇环,很像⼀个梯形。

所以圆台的侧⾯积就按照梯形来进⾏计算,就很容易理解。

如下图所⽰:圆台侧⾯积公式对于圆柱和圆锥的侧⾯积公式,不需要单独去记忆,只需要将其看成⼀个特殊的圆台就⾏了。

圆柱体就是上下底相同的圆台,圆锥体就是上底为0的圆台。

2. 体积问题:按照上⾯的思路,把柱体和椎体看成⼀个特殊的台体,因此也只需要记住⼀个台体的体积公式就可以啦。

高中数学的归纳立体几何中的常见体积和表面积公式总结

高中数学的归纳立体几何中的常见体积和表面积公式总结

高中数学的归纳立体几何中的常见体积和表面积公式总结立体几何是高中数学中的一个重要的部分,它主要研究各种几何体的性质和计算相关的参数,如体积和表面积等。

在归纳立体几何的学习过程中,了解和掌握常见的体积和表面积公式是非常关键的。

本文将总结和归纳高中数学中常见的立体几何体的体积和表面积公式,帮助学生更好地掌握这一知识点。

一、三角柱和三棱柱:三角柱和三棱柱是最简单的几何体之一,它们的体积和表面积计算公式如下:三角柱的体积公式为:V = 底面积 ×高三角柱的表面积公式为:S = 2 ×底面积 + 三个侧面的面积之和三棱柱的体积公式为:V = 底面积 ×高三棱柱的表面积公式为:S = 2 ×底面积 + 三个侧面的面积之和其中,底面积可以根据给定的形状进行计算,高是指底面到上底的垂直距离。

二、长方体和正方体:长方体和正方体是具有六个面的立体体,它们的体积和表面积计算公式如下:长方体的体积公式为:V = 长 ×宽 ×高长方体的表面积公式为:S = 2 × (长 ×宽 + 长 ×高 + 宽 ×高)正方体的体积公式为:V = 边长^3 (边长的三次方)正方体的表面积公式为:S = 6 ×边长^2 (边长的二次方)其中,长、宽、高、边长分别表示长方体和正方体的相关参数。

三、圆柱体和圆锥体:圆柱体和圆锥体是由圆形底面和侧面组成的立体体,它们的体积和表面积计算公式如下:圆柱体的体积公式为:V = 圆底面积 ×高圆柱体的表面积公式为:S = 2 ×圆底面积 + 侧面积圆锥体的体积公式为:V = 1/3 ×圆底面积 ×高圆锥体的表面积公式为:S = 圆底面积 + 侧面积其中,圆底面积可以根据给定的半径计算,高是指底面到上底的垂直距离,侧面积是指侧面的曲面积分。

四、球体:球体是由曲面构成的立体体,它的体积和表面积计算公式如下:球体的体积公式为:V = 4/3 × π × 半径^3 (半径的三次方)球体的表面积公式为:S = 4π × 半径^2 (半径的二次方)其中,π是一个常数,约等于3.14159,半径是指从球心到球面上的任意一点的距离。

高中数学的几何体表面积和体积公式是哪些

高中数学的几何体表面积和体积公式是哪些

高中数学的几何体表面积和体积公式是哪些高中数学的几何体表面积和体积公式1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高)3、正方体:表面积:S=6a2,体积:V=a3(a-边长)4、长方体:表面积:S=2(ab+ac+bc)体积:V=abc(a-长,b-宽,c-高)5、棱柱:体积:V=Sh(S-底面积,h-高)6、棱锥:体积:V=Sh/3(S-底面积,h-高)7、棱台:V=h[S1+S2+(S1S2)^1/2]/3(S1上底面积,S2下底面积,h-高)8、拟柱体:V=h(S1+S2+4S0)/6(S1-上底面积,S2-下底面积,S0-中截面积,h-高)9、圆柱:S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h(r-底半径,h-高,C—底面周长,S底—底面积,S侧—侧面积,S表—表面积)10、空心圆柱:V=πh(R^2-r^2)(R-外圆半径,r-内圆半径,h-高)11、直圆锥:V=πr^2h/3(r-底半径,h-高)12、圆台:V=πh(R2+Rr+r2)/3(r-上底半径,R-下底半径,h-高)13、球:V=4/3πr^3=πd^3/6(r-半径,d-直径)14、球缺:V=πh(3a2+h2)/6=πh2(3r-h)/3(h-球缺高,r-球半径,a-球缺底半径)15、球台:V=πh[3(r12+r22)+h2]/6(r1球台上底半径,r2-球台下底半径,h-高)16、圆环体:V=2π2Rr2=π2Dd2/4(R-环体半径,D-环体直径,r-环体截面半径,d-环体截面直径)数学基础差的学生如何提高数学成绩基础薄弱的同学提高数学成绩的方法数学基础打牢,是个非常重要的事,很多及格成绩不到的同学,基本是连计算和公式都不是很过关。

对于这一类学生有以下几点建议。

几何体的表面积和体积公式

几何体的表面积和体积公式

几何体的表面积和体积公式一、柱体。

1. 棱柱。

- 表面积公式:- 直棱柱的表面积S = 2S_底+S_侧,其中S_底为底面多边形的面积,S_侧为侧面积。

若直棱柱底面多边形的边长为a,边数为n,棱柱的高为h,则S_侧=nah。

- 体积公式:V = S_底h,h为棱柱的高。

2. 圆柱。

- 表面积公式:S = 2π r^2+2π rh,其中r为底面半径,h为圆柱的高。

- 体积公式:V=π r^2h。

二、锥体。

1. 棱锥。

- 表面积公式:S = S_底+S_侧,棱锥的侧面积S_侧等于各个侧面三角形面积之和。

若棱锥底面多边形的边长为a,边数为n,斜高(侧面三角形底边上的高)为h',则S_侧=(1)/(2)nah'。

- 体积公式:V=(1)/(3)S_底h,h为棱锥的高。

2. 圆锥。

- 表面积公式:S=π r^2+π rl,其中r为底面半径,l为母线长。

- 体积公式:V = (1)/(3)π r^2h,h为圆锥的高。

三、台体。

1. 棱台。

- 表面积公式:S = S_上底+S_下底+S_侧,棱台的侧面积S_侧=(1)/(2)(n(a + b)h'),其中n为底面边数,a为上底面多边形的边长,b为下底面多边形的边长,h'为斜高。

- 体积公式:V=(1)/(3)h(S_上底+S_下底+√(S_上底)S_{下底}),h为棱台的高。

2. 圆台。

- 表面积公式:S=π r^2+π R^2+π l(R + r),其中r为上底面半径,R为下底面半径,l为母线长。

- 体积公式:V=(1)/(3)π h(r^2+R^2+rR),h为圆台的高。

四、球体。

- 表面积公式:S = 4π R^2,其中R为球的半径。

- 体积公式:V=(4)/(3)π R^3。

空间几何体的表面积和体积公式大全

空间几何体的表面积和体积公式大全

空间几何体的表面积与体积公式大全全(表)面积(含侧面积)1、柱体①棱柱]----------------A S侧=Ch ■ S全=2S底* S侧②圆柱J _______ ___2、锥体①棱锥:S棱锥侧=^2c底h②圆锥:S圆锥侧=托底l3、台体①棱台:②圆台:S棱台侧S棱台侧_ 1二2(C上底C下底)h_ 1=2 (C上底.C下底)1* S全=S上+ S侧+ S下4、球体①球:S球=4r2②球冠:略③球缺:略S下S下体积1、柱体①棱柱]--------------卜V柱=Sh②圆柱J2、锥体①棱锥r②圆锥」1V柱=3S h3、台体1①棱台]V台=gh (S上NS上S^ +S下)②圆台J V圆台=3兀h (r上+Q r上r下+ r下)4、球体①球:V球=4二r'②球冠:略③球缺:略说明:棱锥、棱台计算侧面积时使用侧面的斜高h计算;而圆锥、圆台的侧面积计算时使用母线I计算。

三、拓展提高1、祖暅原理:(祖暅:祖冲之的儿子)夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。

最早推导出球体体积的祖冲之父子便是运用这个原理实现的2、阿基米德原理:(圆柱容球)圆柱容球原理:在一个高和底面直径都是2r的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的-。

3分析:圆柱体积:V圆柱=Sh =(二「2)2r=2^r'圆柱侧面积:S圆柱侧=C h =(2 r) 2r = 4二「因此:球体体积:V球=2 2二J=4二r33 3球体表面积:S球=4 r2即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和3、台体体积公式公式:V台=1h (S上+ S下)证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 延长两侧棱相交于一点P设台体上底面积为S上,下底面积为S下P 高为h。

易知:PDC s .>PAB ,设PE = h i,则PF =h i h由相似三角形的性质得:CD PEAB PFA整理得:h 1 : =S上hPS 下-VS上又因为台体的体积=大锥体体积一小锥体体积1 11 1 二V台=3S 下(h 1h K3S 上h^3h 1(S下一S上) 下h代入:h= i S 上芬得: V台=3胪L(S下—S"3S 下hJS下3*SrS31 ___ I ------ ------ 1即: V 台=3 S上h (S下S上)3S下人二 V 台=3h (S 上S 上S 下S下)球体体积公式推导即:ShiS 下-h lh (相似比等于面积比的算术平方根)1 ______________=3h (S上S 上S 下S下)4、分析:将半球平行分成相同高度的若干层( n 层),n 越大,每一层越近似于圆柱,n “ •「时,每一层都可以看作是个圆柱。

几何体的体积与表面积计算公式

几何体的体积与表面积计算公式

几何体的体积与表面积计算公式几何体是指由一定数量的平面或曲面围成的空间图形。

在几何学中,计算几何体的体积和表面积是常见的问题。

本文将介绍一些常见几何体的计算公式,并展示如何应用这些公式进行计算。

一、立方体的体积与表面积立方体是最简单的几何体之一,它的六个面都是正方形。

假设立方体的边长为a,则它的体积V可以通过公式V = a³计算得出。

而立方体的表面积S可以通过公式S = 6a²计算得出。

二、长方体的体积与表面积长方体是由三个相互垂直的长方形组成的几何体。

假设长方体的长、宽和高分别为l、w和h,则它的体积V可以通过公式V = lwh计算得出。

而长方体的表面积S可以通过公式S = 2lw + 2lh + 2wh计算得出。

三、圆柱体的体积与表面积圆柱体是由一个底面和一个平行于底面的圆面围成的几何体。

假设圆柱体的底面半径为r,高为h,则它的体积V可以通过公式V = πr²h计算得出,其中π≈3.14。

而圆柱体的表面积S可以通过公式S = 2πrh +2πr²计算得出。

四、球体的体积与表面积球体是由所有与一个给定点的距离不超过某个固定值的点组成的几何体。

假设球体的半径为r,则它的体积V可以通过公式V = (4/3)πr³计算得出。

而球体的表面积S可以通过公式S = 4πr²计算得出。

五、金字塔的体积与表面积金字塔是由一个多边形底面和从底面所有顶点到一个顶点的三角形面所围成的几何体。

金字塔的体积与表面积的计算公式则根据底面的形状而有所不同。

如果底面是正方形,则金字塔的体积V可以通过公式V = (1/3) * a²* h计算得出,其中a是底面边长,h是高度。

如果底面是正三角形,则金字塔的体积V可以通过公式V = (1/3) * (a² * h)计算得出,其中a是底面边长,h是高度。

六、圆锥体的体积与表面积圆锥体是由一个圆形底面和从底面一个固定点到底面上所有点的线段所围成的几何体。

空间几何体表面积和体积公式

空间几何体表面积和体积公式

空间几何体表面积和体积公式空间几何体是在三维空间中存在的物体,它们可以有不同的形状和大小。

对于任何空间几何体,我们都可以计算出它的表面积和体积。

表面积是指几何体外部的总表面面积。

不同类型的几何体有不同的计算公式。

对于立方体来说,它的表面积等于六个面的面积之和。

每个面的面积都相等,可以通过计算边长的平方来得到。

所以立方体的表面积公式为:表面积 = 6 * a^2 (其中a为边长)。

对于球体来说,它的表面积等于球的半径的平方乘以4π。

所以球体的表面积公式为:表面积= 4π * r^2 (其中r为半径)。

对于圆柱体来说,它的表面积由两个圆面和一个侧面组成。

圆柱的底面积为π * r^2,所以两个圆面的面积之和为2π * r^2。

侧面是一个矩形,它的长等于圆周长2πr,宽等于圆柱的高h。

所以圆柱体的表面积公式为:表面积= 2π * r^2 + 2πrh。

体积是指几何体所占据的空间大小。

与表面积一样,不同类型的几何体有不同的计算公式。

对于立方体来说,它的体积等于边长的立方。

所以立方体的体积公式为:体积 = a^3 (其中a为边长)。

对于球体来说,它的体积等于4/3乘以π乘以半径的立方。

所以球体的体积公式为:体积= (4/3)π * r^3 (其中r为半径)。

对于圆柱体来说,它的体积等于底面积乘以高。

所以圆柱体的体积公式为:体积= π * r^2 * h (其中r为底面半径,h为高)。

除了立方体、球体和圆柱体,还有许多其他类型的空间几何体,它们的表面积和体积公式也各不相同。

想要计算某个具体几何体的表面积和体积,需要根据其特定的形状和尺寸选择相应的计算公式进行计算。

空间几何体的表面积与体积公式大全

空间几何体的表面积与体积公式大全
(2)正四而体的外接球
外接球的半径
4
(3)规律:
:u 正四而体
=3 品 兀:2
① 正四面体的内切球与外接球的球心为同一点;
② 正四面体的内切球与外接球的球心在高线上;
③ 正四面体的内切球与外接球的的半径之和等于高;
④ 正四面体的内切球与外接球的半径之比等于 1: 3
⑤ 正四面体内切球与外接球体积之比为:1: 27
(2)外接球
正方体与其体内最大的正四而体有相同的外接球。(理由:过不共面的
四点确定一个球。)正方体与其体内最大的正面体有四个公共顶点。所 以它们共球。
回顾:①两点定线②三点定面③三点定圆④四点定球
如图:
(a) 正方体的体对角线=球直径 (b) 正四面体的外接球半径二?高
4
(C)正四面体的棱长=正方体棱长 X 72 (d) 正方体体积:正四面体体积=3: 1 (e) 正方体外接球半径与
1
方法 1:展平分析:(最重要的方法) 如图:取立体图形中的关键平面图形进行分析!
/ Ft''、、 /』)''、、、
连接 DO 并延长交平面 ABC 于点 G,连接 GO, /
X:;盖]
连接 DO,并延长交 BC 于点 E,则 A、G、E B 笔共线< J A —c 在平面 AED 中,由相似
知识可得:
成正方体进行分析。如图:
1 文档来源为:从网络收集整理.word 版本可编借.
文档收集于互联网,已重新整理排版 word 版本可编辑•欢迎下载支持. 此时,正四面体与正方体有共同的外接球。
正四面体的棱长为“,则正方体棱长
正方体的外接球直径为其体对角线 D 亠嗨号
•••正四面体的外接球半径为: 2=也

几何体的表面积和体积公式

几何体的表面积和体积公式
3
S h
O S
棱锥的体积公式也是 V 1 Sh 3
h C
A
B
探究
探究棱锥与同底等高的棱柱体积之间的关系? 它也是同底同高的棱柱的体积的 1
3

圆台(棱台)的体积可以利用两个锥体
体 的体积差,得到台体体积公式:
V 1 (S ` S `S S)h 3
其是S‘,S分别为上底面面积,h为圆台(棱台)高。
1. 柱体、锥体、台体的表面积
正方体、长方体的表面积就是各个面的面积之和。
探究
棱柱、棱锥、棱台也是由多个平面图形 围成的几何体,它们的展开图是什么?如 何计算它们的表面积?
棱柱的侧面展开图是由平行四边形组成的平面图形 棱锥的侧面展开图是由三角形组成的平面图形
棱台的侧面展开图是由梯形组成的平面图形
例3 有一堆规格相同的铁制(铁的密度是7.8g / cm3) 六角螺帽(如下图)共重5.8kg,已知底面是正六边形, 边长为12mm,内孔直径10mm,高为10mm,问这堆螺帽
大约有多少个(取3.14) ?
个数 V总/V每个螺帽
V螺帽 V棱柱 -V圆柱
V总 m / 5.81000 7.8 743 .59cm3
2、柱体、锥体、台体的体积
正方体、长方体,以及圆柱的体积公式可以统
一为:

V = Sh(S为底面面积,h为高)
体 一般棱柱的体积公式也是V = Sh,其中S为
底面面积,h为高(即上下底面的距离)
h s
锥 圆锥的体积公式是 V 1 Sh
3
体 (其中S为底面面积,h为高)
它是同底同高的圆柱的体积的 1
A
r、
l
D
S扇SAC r、 SA r(、 r r、lr、)

计算三维几何体的体积和表面积

计算三维几何体的体积和表面积

计算三维几何体的体积和表面积立方体
立方体是一个具有六个相等的正方形面的三维几何体。

它的体积公式和表面积公式如下:
- 体积公式:边长的立方
- 表面积公式:6倍边长的平方
长方体
长方体是一个具有六个不同大小的矩形面的三维几何体。

它的体积公式和表面积公式如下:
- 体积公式:长乘以宽乘以高
- 表面积公式:2倍长乘以宽加上2倍长乘以高加上2倍宽乘以高
圆柱体
圆柱体是一个有两个平行圆面和一个连接这两个圆面的曲面的三维几何体。

它的体积公式和表面积公式如下:
- 体积公式:底面积的圆半径的平方乘以高
- 表面积公式:两倍底面积的圆半径加上底面积的圆周长乘以高
圆锥体
圆锥体是一个有一个圆面和一个从圆面上的每个点到一个顶点的曲面的三维几何体。

它的体积公式和表面积公式如下:
- 体积公式:底面积的圆半径的平方乘以高除以3
- 表面积公式:底面积的圆周长乘以斜面的斜高加上底面积
球体
球体是一个在三维空间中由所有离一个中心点的距离不超过一个给定常数的点组成的集合。

它的体积公式和表面积公式如下:
- 体积公式:4/3乘以π乘以半径的立方
- 表面积公式:4乘以π乘以半径的平方
以上是计算常见三维几何体体积和表面积的公式和方法。

根据
具体的三维几何体类型,选择相应的公式和方法进行计算即可。


果你需要更复杂的计算,例如不规则形状的体积和表面积,可能需
要使用数值计算方法或更高级的几何学技巧来解决。

在这种情况下,建议咨询数学专家或采用专业的计算软件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何体的表面积和体积公式大全
几何体的表面积,体积计算公式
1、圆柱体:
表面积:2πRr+2πRh 体积:πR²h (R为圆柱体上下底圆半径,h为圆柱体高)
2、圆锥体:
表面积:πR²+πR[(h²+R²)的平方根] 体积:πR²h/3 (r为圆锥体低圆半径,h为其高, 3、正方体
a-边长,S=6a²,V=a³
4、长方体
a-长,b-宽,c-高S=2(ab+ac+bc) V=abc
5、棱柱
S-底面积h-高V=Sh
6、棱锥
S-底面积h-高V=Sh/3
7、棱台
S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/3
8、拟柱体
S1-上底面积,S2-下底面积,S0-中截面积
h-高,V=h(S1+S2+4S0)/6
9、圆柱
r-底半径,h-高,C—底面周长
S底—底面积,S侧—侧面积,S表—表面积C=2πr
S底=πr²,S侧=Ch ,S表=Ch+2S底,V=S底h=πr²h
10、空心圆柱
R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)
11、直圆锥
r-底半径h-高V=πr^2h/3
12、圆台
r-上底半径,R-下底半径,h-高V=πh(R²+Rr+r²)/3
13、球
r-半径d-直径V=4/3πr^3=πd^3/6
14、球缺
h-球缺高,r-球半径,a-球缺底半径V=πh(3a²+h²)/6 =πh²(3r-h)/3
15、球台
r1和r2-球台上、下底半径h-高V=πh[3(r1²+r2²)+h²]/6
16、圆环体
R-环体半径D-环体直径r-环体截面半径d-环体截面直径
V=2π2Rr²=π2Dd²/4
17、桶状体
D-桶腹直径d-桶底直径h-桶高
V=πh(2D²+d²)/12 ,(母线是圆弧形,圆心是桶的中心)
V=πh(2D²+Dd+3d²/4)/15 (母线是抛物线形)。

相关文档
最新文档