八年级数学之正比例函数知识点总结
八年级数学《正比例函数一次函数和反比例函数》知识点
八年级数学《正比例函数、一次函数和反比例函数》知识点班级 姓名1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x 轴和y 轴上的点,不属于任何象限。
2、点的坐标的概念点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。
平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。
3、各象限内点的坐标的特征点P(x,y)在第一象限0,0>>⇔y x点P(x,y)在第二象限0,0><⇔y x点P(x,y)在第三象限0,0<<⇔y x点P(x,y)在第四象限0,0<>⇔y x4、坐标轴上的点的特征点P(x,y)在x 轴上0=⇔y ,x 为任意实数点P(x,y)在y 轴上0=⇔x ,y 为任意实数点P(x,y)既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0)5、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上⇔x 与y 相等点P(x,y)在第二、四象限夹角平分线上⇔x 与y 互为相反数6、和坐标轴平行的直线上点的坐标的特征位于平行于x 轴的直线上的各点的纵坐标相同。
位于平行于y 轴的直线上的各点的横坐标相同。
7、关于x 轴、y 轴或原点对称的点的坐标的特征点P 与点p ’关于x 轴对称⇔横坐标相等,纵坐标互为相反数点P 与点p ’关于y 轴对称⇔纵坐标相等,横坐标互为相反数点P 与点p ’关于原点对称⇔横、纵坐标均互为相反数8、点到坐标轴及原点的距离点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x 轴的距离等于y(2)点P(x,y)到y 轴的距离等于x(3)点P(x,y)到原点的距离等于22y x +9、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
八年级数学上第十八章 正比例函数和反比例函数
八年级数学上第十八章正比例函数和反比例函数18.1 函数(1)一、知识点分析1.变量与常量在问题研究的过程中,可以取不同数值的量叫做变量;在问题研究的过程中,保持数值不变的量叫做常量(或常数)2.函数的定义(1)在某个变化过程中有两个变量,设为x和y,如果在变量x的允许取值范围内,变量y 随着x的变化而变化,他们之间存在确定的依赖关系,那么变量y叫做变量x的函数,x叫做自变量,y叫做因变量。
(2)一般地,设在一个变化过程中有两个变量x和y,如果对于变量x允许取值范围内的每一个值,变量y都有唯一值与它对应,我们称y是x的函数,其中:x是自变量,y是因变量.函数的表示:y; f(x); y=f(x); y=g(x)3.函数解析式表达两个变量之间依赖关系的数学式子称为函数解析式在表示函数时,如果要把y表示成x的函数,其实就是用含x的代数式表示y。
例如:y=3x+5 即y=f(x)的形式注意:y2=x ,︱y︱=x (x 0) 和x=a (a是常数)不是函数y=x2,y=︱x︱和y=a(a是常数)是函数4.常值函数:形如y=a(a是常数)的函数叫常值函数(或常量函数)5.函数的定义域与函数值(1)函数的自变量允许取值的范围,叫做这个函数的定义域自变量的取值范围:①使含自变量的代数式有意义.②,使函数在实际情况下有意义.函数自变量的范围一般从三个方面考虑:①表达式是整式,自变量可取全体实数;②函数表达式是分式时,考虑分式的分母不能为0;③当函数表达式是二次根式时,被开方数非负数.(2)函数值:如果变量y是变量x的函数,那么对于x在定义域内取定的一个值a,变量y 的对应值叫做当x=a时的函数值6.函数和方程的区别和联系(1)函数研究的是某变化过程中的两个变量之间的关系;方程研究的是解的情况(2)y=f(x)形式的函数解析式是方程;但是方程不一定是函数解析式;f(x)形式的函数是代数式形式表示的函数,但不是方程。
正比例函数知识点总结
正比例函数知识点总结正比例函数是数学中一种重要的函数形式,也是高中数学中常见的函数类型之一。
它是指两个变量之间的关系是成正比的,即当一个变量增大(或减小)时,另一个变量也相应地增大(或减小)。
下面将从定义、性质、图像、应用等方面对正比例函数进行总结。
一、定义正比例函数又称为一次函数,它的数学定义为:如果两个变量x和y之间的比值恒定,即y与x的比值为常数k,则称y是x的正比例函数,记作y=kx。
其中k为比例系数,表示y与x之间的关系。
正比例函数可以看作是一条直线,其斜率为k,过原点(0,0)。
二、性质1. 常数k为正比例函数的比例系数,它决定了函数图像的斜率。
当k>0时,函数图像向上倾斜;当k<0时,函数图像向下倾斜。
2. 正比例函数的定义域为全体实数,值域为全体实数。
因为无论x 取任何实数,对应的y都可以通过比例系数k计算得出。
3. 正比例函数的图像经过原点(0,0),这是因为当x=0时,根据函数定义,y=k*0=0。
4. 当x>0时,y也大于0;当x<0时,y也小于0。
这是因为正比例函数的比例系数k为正,所以x的增大必然导致y的增大,x的减小必然导致y的减小。
三、图像正比例函数的图像为一条直线,过原点(0,0),斜率为k。
当k>0时,图像向上倾斜;当k<0时,图像向下倾斜。
当k=0时,函数图像为一条水平直线,即y=0。
四、应用正比例函数在实际生活中有许多应用,例如:1. 速度与时间的关系:当物体的速度恒定时,速度与时间成正比。
速度为正比例函数,时间为自变量,速度为因变量。
2. 成本与产量的关系:在某些生产过程中,成本与产量呈正比例关系。
成本为正比例函数,产量为自变量,成本为因变量。
3. 周长与半径的关系:在一个圆形中,周长与半径成正比。
周长为正比例函数,半径为自变量,周长为因变量。
4. 温度与气压的关系:在恒定的体积下,温度与气压成正比。
温度为正比例函数,气压为自变量,温度为因变量。
沪教版八年级数学第一学期18.1:函数的概念、正比例函数
第七讲 函数的概念、正比例函数函数的概念 一、知识点 1. 变量与常量在问题研究过程中,可以取不同数值的量叫做变量,保持数值不变的量叫做常量. 2. 函数的定义在某个变化过程中有两个变量x 和y ,如果在x 的允许取值范围内,变量y 随着x 的变化而变化,它们存在确定的依赖关系,那么变量y 叫做变量x 的函数,x 叫做自变量。
3. 函数的定义域与函数值函数的自变量允许取值的范围叫做这个函数的定义域. 如果y 是x 的函数,那么对于x 在定义域内取定的一个值a ,变量y 的对应值叫做当x a =时的函数值.符号“()y f x =”表示y 是x 的函数,f 表示y 随x 变化而变化的规律. 二、例题讲解例1 物体所受的重力与它的质量之间有如下的关系:G mg =,其中,m 表示质量,G 表示重力,9.8g =牛/千克,物体所受的重力G 是不是它的质量m 的函数?解:物体所受的重力G 随它的质量m 的变化而变化,由G mg =可知,这两个变量之间存在确定的依赖关系,所以物体所受的重力G 是它的质量m 的函数.例2 汽车的速度为50千米/时,写出汽车匀速运动时行驶的路程y (千米)关于时间x (时)的函数解析式及定义域.分析: 本题依据公式“路程=时间X速度”列出数量关系,因为时间为非负数,所以定义域为0x ≥. 解:函数解析式为50y x =,定义域为0x ≥. 例3 求下列函数的定义域:(1)23y x =+; (2)11y x =-; (3)y = 解:(1)对于整式23x +,无论x 取什么实数,它都有意义,所以函数23y x =+的定义域是一切实数;(2)对于分式11x -,当1x =时,它没有意义.所以函数11y x =-的定义域是1x ≠;(3,当12x ≥-时,它有意义,所以函数y = 域是12x ≥-.说明:求函数的定义域应该根据解析式的特征进行思考. 例4 已知()f x =12f ⎛⎫- ⎪⎝⎭的值. 分析:函数与函数值是不同的概念.函数是指两个变量之间的某种关系,而函数值指的是当自变量取某一数值时,函数的一个对应值.求12f ⎛⎫- ⎪⎝⎭的值,就是当12x =-时,求21y x =-+的值,只需要把12x =-代入后计算即可. 解:131322.241212f ⎛⎫⨯- ⎪⎛⎫⎝⎭-==- ⎪⎝⎭⎛⎫-⨯-+ ⎪⎝⎭例5 等腰三角形的周长等于20cm ,请写出这个等腰三角形的底边长()x cm 和腰长()y cm 之间的解析式. 分析 根据周长的定义,得220x y +=,整理得20220,2xy x y -=-=, 即 1102y x =-+.函数解析式就是一个等式,求函数解析式时,有时可以利用一些现成的等式或公式,比如周长公式、面积公式等等.答案:1102y x =-+ 说明:1. 变量2x +是不是变量x 的函数?解: 对于代数式2x +,给定x 的一个值,可以求出这个代数式的一个值.所以2x +与x 有着确定的依赖关系,可以把变量2x +看做y .由函数的概念:在某个变化过程中有两个变量x 和y ,如果在x 的允许取值范围内,变量y 随着x 的变化而变化,它们之间存在确定的依赖关系,那么变量y 叫做变量x 的2. 对于“”中的“f ”怎样理解?答:记号“()f x ”表示“y 是x 的函数”,这个记号比较抽象,“f ”并不是表示一个变量,()f x 也不是表示“f ”与“x ”的积,而是指明在变化过程中的自变量为x ,用f 表示变量y 随着x 的变化而变化的规律;在同时研究几个函数时,应选用不同字母表示不同函数变量间相互依赖的变化规律,如()()g x h x 、等,以免引起混乱.三、 巩固练习1. 说出下列变化过程中,哪些量是常量,哪些量是变量,变量之间是函数关系吗? (1)正方形的周长C 与它的边长a ;(2)银行一年定期存款的本金x 元与利息y 元; (3)等腰三角形顶角的度数x 与底角的度数y ; (4)长方形的宽一定时,其长与面积; (5)等腰三角形的底边长与面积;(6)关系式y x=中的y 与x .答案:(1)变量是周长C 与边长a ,是函数关系;(2)变量是本金x 元与利息y 元,是函数关系; (3)变量是顶角的度数x 与底角的度数y ,是函数关系;(4)变量是长方形的宽与面积,是函数关系; (5)变量是等腰三角形的底边长与面积,不是函数关系;(6)变量是y 与x ,不是函数关系. 2. 写出下列个函数的定义域;(1)2y x =-; (2)y =答案: 一切实数 答案:1x ≥- (3)234y x x =+-; (4)11y x =-;答案:一切实数 答案:1x ≠(5)1y x x =+; (6)y =答案:0x ≠ 答案:0x ≥≠且x 23. 在ABC 中,它的底边长是a ,底边上的高是h ,则三角形面积12S ah=,当a 为定长时,在此式子中( A ).A. S 、h 是变量,a 是常量B. ,,S h a 是变量,12是常量 C. ,a h 是变量,1,2S 是常量 D. S 是变量,1,,2a h是常量4. 下列函数中,自变量的取值范围是113x <<的是( D ).A.y =B.y =C.y = D.y = 5. 如果()f x =()3f =___6. 已知()234x f x x +=+,则()0f =___34____,f=____814_____. 7. 若12y x y -=+,则y 用x 的代数式表示为y =___211x x+-___.8. 设某种电报收费标准是每个字0.1元,写出电报费y (元)与字数x (个)之间的函数关系式,并求自变量x 的取值范围.答案:()0.10y x x x =≥且是整数 提高题1. 若函数2221x x y x --=-,则与函数值0y =对应的x 的值是( D ). A. 1x =-或2x =B. 1x =或2x =-C. 1x =-且2x =D. 2x = 2. 把一块边长为20厘米的正方形铁皮,四角各截去边长为x 厘米的小正方形后折成一个无盖盒子,则盒子的容积V (立方厘米)关于自变量x (厘米)的函数解析式为__()2202V x x =-__,定义域为_010x <<_. 3. 洗衣机在洗衣的过程中经历了进水、清洗、排水等过程.下图能反映洗衣机工作时的水量y (升)与时间x (分)之间关系的图像大致是( C )A.正比例函数 一、知识点1. 正比例函数的概念如果两个变量的每一组对应值的比值是一个非零常数,那么称两个变量成正比例.用数学符号语言记为yk x =或()0y kx k =≠.解析式形如()0y kx k =≠的函数叫做正比例函数,其中,常数k 叫做比例系数,正比例函数y kx =的定义域是一切实数.2. 正比例函数的图像和基本性质 XXX二、例题 例1 若函数()31m y m x -=-是正比例函数,则m =_________,函数的图像经过_________象限.分析 由正比例函数的解析式可知,31m -=,所以4m =.把4m =代入函数解析式,得3y x =,再由正比例函数的性质,得到它的图像经过第一、三象限. 解:4m =,图像经过第一、三象限. 例2 若y 与21x +成正比例,且函数图像经过点()3,1A -,求y 与x 的函数解析式. 分析 由y 与21x +成正比例,可以设()()210y k x k =+≠.再把点A 的坐标()3,1-代入函数解析式,即可求出k 的值,这种求函数解析式的方法叫做待定系数法.解:y 与21x +成正比例,∴ 设()()210y k x k =+≠.把点A()3,1-代入,得15k =-,()1215y x ∴=-+例3 已知点()11,x y 和()22,x y 在正比例函数()2y k x =-的图像上,当12x x >时,12y y <,那么k 的取值范围是多少? 分析 由条件当12x x >时,12y y <,联系正比例函数的图像和性质,可知函数值y 随着x 的值增大而减小,即比例系数小于零.解 :由题意,函数值y 的值随着x 的值增大而减小,0,2k k ∴<<例4 直角三角形的一条直角边是6,写出它的面积y 关于另一条直角边x 的函数关系式并画出这个函数的图像.解:由直角三角形的面积公式,得162x y ⨯=.()30y x x ∴=>说明:由于直角三角形的边长为正数,在画函数图像时要特别注意自变量x 的取值范围,因为定义域为X0x >,此时函数图像为一条射线,并且要除去端点.1. 如何理解正比例函数的性质:当0k >时,y 随着x 的值增大而逐渐增大,当0k <时,y 随着x 的值增大而逐渐减小?答:从解析式来看,当0k >时,若12x x <,由不等式的性质有12kx kx <,即12y y <;当0k <时,若12x x <由不等式的性质有12kx kx >,即12y y >;也可以结合正比例函数的图像去理解:当0k >时,从左往右看,直线上的点的横坐标从小到大逐渐变化,点的位置随着从低到高逐渐变化,说明此时函数值y 相应地从小到大逐渐变化.当0k <时类似.2. 学习函数的性质要掌握的一个重要数学思想是“数形结合”,学会利用函数的图像直观的研究函数的性质.三、 巩固练习 1. 填空:(1)如果正比例函数的图像过点(1,-2),那么它的解析式是_2y x =-__;函数的图像经过第__二、四__象限.(2)正比例函数2y x =-的图像上一点横坐标为2,纵坐标是__-4___, 函数值随x 的值增大而__减小___. (3)由图写直线PO 的解析式:___34y x =___. (4)某函数具有下列两条性质:① 它的图像是经过 原点(0,0)的一条直线;② y 的值随x 的值增大而增大.请你举出一个满足上述条件的函数:____2y x =_(答案不唯一)___. 2. 选择:(1)下列函数中,正比例函数的是( B )A.3y x =B. 32y x =- C.213x y += D. 2y x = (2)下列各点中,在直线2y x =上的点有( A ).A.21⎫-⎪⎪⎝⎭ B. (2,2 C. 5,10D. ()2,1-(3)函数y kx =的图像经过点(1,4),那么()2y k x=-的图像经过第( B )象限.P-3/2-20yXA. 一、三B. 二、四C. 一、二D. 三、四 3. 已知y 是x 的正比例函数,当2x =时,12y =(1)求y 与x 的函数解析式; (2)求当x =y 的值; (3)在直角坐标系内画出该函数的图像. 答案:(1)14y x =;(2)4y =;(3)略 4. 正比例函数2112y k x k ⎛⎫=++- ⎪⎝⎭的图像经过第二、四象限,求函数的解析式.答案:12y x =-5. 已知3y -与x 成正比例函数,且它的图像经过点(2,7) (1)求y 与x 的函数解析式; (2)求当4x =时,y 的值; (3)求当3y =-时,x 的值.答案:(1)23y x =+; (2)11; (3)-3 6. 如果28my mx -=是正比例函数,而且对于它的每一组非零的对应值(),x y ,有0xy <.求m 的值.答案:-37. 小明早上骑自行车离开家去学校,下图反映了小明离开家的距离y (米)与时间x (分)之间的关系.根据图像回答:(1) 小明家与学校的距离是___3000__米;(2) 小明骑自行车的平均速度是___200___米/分; (3) 写出小明汽车途中,离开家的距离y (米)与时间x (分)的函数关系式及定义域:___()200015y x x =≤≤提高题1. 正比例函数y kx =的图像上有一点A ,过点A 向x 轴作垂线,垂足为点B ,点B 的坐标为(2,0).若三角形OAB 的面积为6,试求k 的值. 答案:3或-32. 已知正比例函数的自变量x 减小2时,对应的函数值增加4.求该正比例函数的解析式. 答案:2y x =-3. 已知点()()122,,1,A y B y -是正比例函数y kx =的图像上的两个点.若12y y >,试判断k 的取值范围. 答案:0k <家庭作业一、 填空题: 1. 若()21m y m x=+是正比例函数,则m =___1___.2. 已知函数()g x =,则()2g =___3___. 3. 在直角坐标系中,若点(),4M x -和点()3,N y 关于x 轴对称,则x y +=_7__.4. 如果正比例函数3xy =的图像过点()6,k ,那么k =___2___. 5. 已知矩形的周长为12,若矩形一边长为x ,面积为y ,则y 与x 的函数关系式及定义域是__()2606y x x x =-+<<___.6. 若等腰三角形顶角的度数为y ,底角的度数为x ,则y 与x 的函数关系式及定义域是__()1802090y x x =-<<___.7. 若等腰三角形的周长是20cm ,腰长与底边长分别是ycm 和xcm ,那么y 与x 的函数关系式为__102xy =-__,定义域为__010x <<__. 8. 若()25y a x b =+-+是正比例函数,且其图像恰为第二、四象限的角平分线,则a b +=__2__. 9. 若等腰梯形的周长为20cm ,上底长ycm ,底角为30,腰长xcm ,则y 与x 的函数关系式为__2102y x +=-__.10. 若y 成正比例,且当4x =时,3y =-则当32x =时,y =__-___. 二、选择题11. 若()2,P x y 是1P 关于y 轴的对称点,而点1P 在第三象限内,则( A )A. 0,0x y >>B. 0,0x y ><C. 0,0x y <<D. 0,0x y <> 12. 若点()111,P x y 与()222,P x y 在同一个正比例函数的图像上,则( D )A. 1212x x y y +=+;B. 1212x x y y -=-;C.1212y y x x =; D. 1221x y x y =. 13. 平面直角坐标系中有点()4,3A -,那么点A 到x 轴的距离是( A )A. 3 ;B. -3 ;C. 4 ;D. -4. 14. 点()11,A x y 与()11,B y y 之间的距离是( A )A. 11x y -;11y - ;C.D. 15. 下列问题中,两个变量成正比例的是( D ) A. 三角形的面积一定,它的底边与底边上的高; B. 等边三角形的面积与它的高;C. 长方形的一边长确定,它的周长与另一边长;D. 商品的价格确定时,销售额与销售量;E. 点到横坐标的距离确定时,它的纵坐标与横坐标;F. 商品的价格确定时,利润与成本. 三、 简答题16. 求下列函数的定义域:(1)322612y x x x =--+; (2)y =;答案:一切实数 答案:72x ≥(3)6y x =-; (3)y =答案:126x x ≥-≠且 答案:143x <17. 已知()225f x x =-+,求()()5+13f f a f a ⎛⎫- ⎪⎝⎭、、.答案:5539f ⎛⎫-=-⎪⎝⎭;()225f a a =-+;2243a a --+ 18. 已知正比例函数23y x =-. (1) 当x 取何值时,3y >-; (2) 当x 取何值时,3y =-; (3) 当x 取何值时,3y <-;(4) 画出图像,并结合图像说明理由. 答案:(1)()()999;2;3(4)222x x x <=>略 四、综合题已知函数()0y kx k =≠的图像与函数34y x =的图像关于y 轴对称,依照要求画图,并完成以下各 (1) 在函数34y x =的图像上取一点A (横坐标为4),点A 的坐标是__()4,3__;设点A 关于y 轴对称的点为A ’,那么A ’的坐标是__()4,3-__;(2) 过原点和点A ’画直线OA ’,它与直线34y x =关于y 轴对称吗?___对称____; (3) 如果在函数34y x =的图像上选取另一点B ,点B 关于y 轴对称的点B ’在直线OA ’上吗? ________在_______;(4) 已知函数()0y kx k =≠的图像与函数34y x =的图像关于y 轴对称,那么k 的值是多少? _____34y x =-____.x(分)。
初中数学知识归纳正比例函数与反比例函数
初中数学知识归纳正比例函数与反比例函数初中数学知识归纳—正比例函数与反比例函数正比例函数与反比例函数是初中数学中常见且重要的概念。
本文将对这两种函数进行归纳和总结。
一、正比例函数正比例函数指的是当自变量x的取值不同时,函数值与自变量的关系保持不变的函数。
正比例函数通常使用y=kx表示,其中k为比例常数。
1. 特征正比例函数的特征在于函数图象为经过原点的直线;而且,随着自变量的增大或减小,函数值也相应地增大或减小。
2. 例子例如,假设有一家超市销售的香蕉,单价为2元/斤。
若购买的香蕉重量为x斤,总价格为y元,则可表示为y=2x。
这个函数表达式就是一个正比例函数,其中比例常数k=2。
3. 性质正比例函数具有以下性质:(1)随着自变量的增大,函数值也随之增大;(2)随着自变量的减小,函数值也随之减小;(4)函数图象为直线;(5)不存在与x轴和y轴交点。
二、反比例函数反比例函数指的是当自变量x的取值不同时,函数值与自变量的乘积保持不变的函数。
反比例函数通常使用y=k/x表示,其中k为比例常数。
1. 特征反比例函数的特征在于函数图象为一个关于坐标轴交于原点的双曲线;而且,随着自变量的增大,函数值呈现下降趋势,反之亦然。
2. 例子例如,假设一辆汽车以60km/h的速度行驶,从A地到B地需要2小时。
如果车速不变,以相同的速度行驶,则从A地到C地需要3小时。
此时,行驶路程d与时间t的关系可以表示为d=60/t。
这个函数表达式就是一个反比例函数,其中比例常数k=60。
3. 性质反比例函数具有以下性质:(1)随着自变量的增大,函数值呈现下降趋势;(2)随着自变量的减小,函数值呈现上升趋势;(4)函数图象为一个关于坐标轴交于原点的双曲线。
三、正比例函数与反比例函数的对比1. 图形特点正比例函数图象为通过原点的直线,而反比例函数图象为一个关于坐标轴交于原点的双曲线。
2. 函数关系正比例函数的函数值随着自变量的增大或减小而相应地增大或减小;反比例函数的函数值与自变量的乘积保持不变。
函数的正比例知识点总结
函数的正比例知识点总结1. 定义和特点正比例函数是描述两个变量之间成正比关系的函数。
在正比例函数y=kx中,k被称为比例系数,表示y和x之间的比例关系。
当x增加时,y也随之增加;x减少时,y也随之减少。
因此,正比例函数的图象通常是一条通过原点的直线。
正比例函数的特点如下:- 通过原点:正比例函数的图像都通过原点(0,0),因为当x=0时,y=0,即k*0=0。
- 一般形式:正比例函数的一般形式为y=kx,其中k为常数。
- 方向一致:当x增加时,y也增加;x减少时,y也减少。
2. 图像和性质正比例函数的图像通常是一条通过原点的直线。
例如,y=2x和y=0.5x分别表示比例系数为2和0.5的正比例函数,它们的图像分别是一条斜率为2和斜率为0.5的直线。
正比例函数具有以下性质:- 斜率固定:正比例函数的图像的斜率即为比例系数k,表示y和x之间的比例关系。
- 通过原点:正比例函数的图像都通过原点(0,0)。
- 正相关性:x和y之间是正相关的,即当x增加时,y也增加;x减少时,y也减少。
3. 实际应用正比例函数在日常生活和科学领域中有着广泛的应用,如物理学、经济学、工程学等。
以下是一些实际应用的例子:- 距离和时间:当一个物体以匀速直线运动时,它的位移和时间成正比。
位移和时间之间的关系可以用正比例函数来描述,即位移=速度*时间。
- 价格和数量:在经济学中,价格和数量之间通常有着正比例的关系。
当商品的价格上涨时,消费者购买的数量通常会减少;反之亦然。
- 温度和压强:在物理学中,温度和气体的压强之间也通常成正比。
当温度上升时,气体的压强也会相应上升。
4. 解题方法解决正比例函数问题的关键是确定比例系数k。
一旦得到比例系数k,就可以轻松地求出任意x对应的y值,或者求出任意y对应的x值。
另外,当已知正比例函数经过一点时,可以使用此点的坐标和函数的一般形式来求出比例系数k。
5. 难点及解决方法在学习正比例函数时,学生可能会遇到以下难点:- 理解比例系数k的意义:学生可能对比例系数k的含义不够理解,认为它只是一个数字,缺少具体含义。
人教版八年级数学下《正比例函数》知识全解
《正比例函数》知识全解课标要求理解正比例函数的概念,会区分什么样的函数是正比例函数,理解正比例函数解析式中k的意义,会画正比例函数的图像,掌握正比例函数的图像和性质。
知识结构(1)正比例函数:一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数。
正比例函数都是常量与自变量的乘积的形式。
属于下节所学内容“一次函数”的特殊情况,正比例函数是一种比较简单的反映两个变量对应规律的模型。
(2)正比例函数的图象与性质①正比例函数的图象是一条经过坐标原点的直线,所以我们也称正比例函数y=kx为直线y=kx。
两点确定一条直线,因此画正比例函数图象时,只需连接(0,0)点和(1,k)点即可。
②k的值决定了直线经过的象限、图象从左到右的变化趋势以及函数的增减性:当k>0时,直线经过一、三象限,从左到右上升,y随x的增大而增大;当k<0时,直线经过二、四象限,从左到右下降,y随x的增大而减小。
内容解析我们研究函数问题是从最简单的正比例函数开始的。
教材从实例出发,对正比例函数的一般形式、函数图象、以及函数随自变量的变化规律(即函数的性质)等方面进行了详细地剖析。
这也是我们今后学习其它类型函数的研究模式。
教材还力求通过对一些实际问题的探讨,使学生能尽快地进入用函数来解决问题的情境;遇到函数问题能迅速建立起对应模型,让学生明白用函数来分析问题是一种较为实用、广泛的方法。
重点难点本节的重点是:(1)知道正比例函数的一般形式;(2)会简单、正确地画出正比例函数的图象;(3)熟练掌握正比例函数的性质。
难点是:熟练掌握正比例函数的性质。
教法引导从一些实际问题入手,让学生进一步体会函数用途的广泛性。
通过让学生动手画正比例函数的图象,总结正比例函数图象特点及性质.学法建议学习时要积极动手动脑,通过自己动手画图象,总结出正比例函数的有关知识;另外加强小组间的交流,只有生生之间不断交流、探讨,才能发现问题、解决问题。
正比例函数知识点总结初中
正比例函数知识点总结初中一、正比例函数的概念正比例函数是指函数的导数也是一个常数的函数,它的图象是一条通过原点的直线。
正比例函数的一般形式可以表示为y=kx,其中k是一个常数,称为比例系数。
当x增大时,y也随之增大,且它们之间的比值始终保持不变,这就是正比例函数的特点。
二、正比例函数的性质1. 正比例函数的图象是一条通过原点的直线,且斜率为k。
2. 正比例函数的导数恒为常数k。
3. 正比例函数与y轴平行,可以用y=kx表示。
4. 正比例函数的比例系数k决定了函数图象在坐标系中的倾斜程度和方向。
三、正比例函数的图象和性质分析1. 当k大于0时,正比例函数的图象向右上方倾斜;当k小于0时,图象向左下方倾斜。
2. 当k=0时,正比例函数的图象平行于x轴,函数的图象将是一条通过原点的水平直线。
3. 正比例函数的图象不会有拐点,因为它是一条直线。
四、正比例函数的应用1. 在现实生活中,许多问题可以用正比例函数来描述,比如速度和时间的关系、商品价格和数量的关系等。
2. 在数学学习中,正比例函数的性质可以帮助我们快速理解和求解一些数学问题。
3. 正比例函数也是其他函数的基础,通过研究与比例函数相似的函数,可以更好地理解其他类型的函数。
五、正比例函数的解题技巧1. 当给出一个问题时,首先要明确问题中涉及到的变量和它们之间的关系。
2. 根据问题中的已知条件,列出正比例函数的表达式,并通过图象或计算找出比例系数k。
3. 利用正比例函数的性质,解决问题。
4. 在实际问题中,要注意对函数图象的正确理解,避免出现计算错误。
六、常见错误及解决方法1. 误解正比例函数图象的性质,导致问题解法错误。
解决方法:加强对正比例函数图象特点的理解,多进行实例分析和练习。
2. 对正比例函数的比例系数k概念理解不清,导致计算错误。
解决方法:通过具体的实例及练习,加强对比例系数k的理解,掌握计算方法。
3. 在问题中容易混淆正比例函数和其他函数,导致问题解决错误。
初中数学知识总结正比例函数知识总结
初中数学知识总结正比例函数知识总结今天为大家精心准备了一篇有关高中文理分科应如何选择的相关内容,以供大家阅读!
【正比例函数公式】正比例函数要领:一般地,两个变量x,y 之间的关系式可以表示成形如y=kx(k为常数,且k0)的函数,那么y就叫做x的正比例函数。
正比例函数的性质
定义域:R(实数集)
值域:R(实数集)
奇偶性:奇函数
单调性:
当0时,图像位于第一、三象限,从左往右,y随x的增大而增大(单调递增),为增函数;
当k0时,图像位于第二、四象限,从左往右,y随x的增大而减小(单调递减),为减函数。
周期性:不是周期函数。
对称性:无轴对称性,但关于原点中心对称。
图像:
正比例函数的图像是经过坐标原点(0,0)和定点(1,k)两点的一条直线,它的斜率是k,横、纵截距都为0。
正比例函数的图像是一条过原点的直线。
正比例函数y=kx(k0),当k的绝对值越大,直线越“陡”;当k 的绝对值越小,直线越“平”。
正比例函数求法设该正比例函数的解析式为y=kx(k0),将点的坐标代入上式得到k,即可求出正比例函数的解析式。
另外,假设
求正比例函数与其它函数的交点坐标,那么将两个的函数解析式联立成方程组,求出其x,y值即可。
正比例函数图像的作法
1、在x允许的范围内取一个值,根据解析式求出y的值;
2、根据第一步求的x、y的值描出点;
3、作出第二步描出的点和原点的直线(因为两点确定一直线)。
温馨提示:正比例函数属于一次函数,但一次函数却不一定是正比例函数。
初二数学基础知识点归纳总结(2篇)
初二数学基础知识点归纳总结一次函数一、正比例函数与一次函数的概念:一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。
一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做一次函数.当b=0时,y=kx+b即为y=kx,所以正比例函数,是一次函数的特例.二、正比例函数的图象与性质:(1)图象:正比例函数y=kx(k是常数,k≠0))的图象是经过原点的一条直线,我们称它为直线y=kx。
(2)性质:当k>0时,直线y=kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k0,b>0图像经过一、二、三象限;(2)k>0,b<0图像经过一、三、四象限;(3)k>0,b=0图像经过一、三象限;(4)k<0,b>0图像经过一、二、四象限;(5)k<0,b<0图像经过二、三、四象限;(6)k<0,b=0图像经过二、四象限。
一次函数表达式的确定求一次函数y=kx+b(k、b是常数,k≠0)时,需要由两个点来确定;求正比例函数y=kx(k≠0)时,只需一个点即可.5.一次函数与二元一次方程组:解方程组从“数”的角度看,自变量(x)为何值时两个函数的值相等.并求出这个函数值解方程组从“形”的角度看,确定两直线交点的坐标.数据的分析数据的代表:平均数、众数、中位数、极差、方差1.平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。
2.平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分。
3.平行四边形的判定:两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形。
4.三角形的中位线平行于三角形的第三边,且等于第三边的一半。
5.直角三角形斜边上的中线等于斜边的一半。
6.矩形的定义:有一个角是直角的平行四边形。
八年级数学下册正比例函数(基础)知识点归纳及典型例题解析
正比例函数(基础)知识点归纳及典型例题解析 【学习目标】1. 理解正比例函数的概念,能正确画出正比例函数y kx=的图象;的图象; 2. 能依据图象说出正比例函数的主要性质,解决简单的实际问题.的实际问题.【要点梳理】【正比例函数,知识要点】 要点一、正比例函数的定义1、正比例函数的定义一般的,形如y kx = (k 为常数,且k ≠0)的函数,叫做正比例函数叫做正比例函数..其中k 叫做比例系数叫做比例系数. . 2、正比例函数的等价形式 (1)、y 是x 的正比例函数;的正比例函数;(2)、y k x =(k 为常数且k ≠0); (3)、若y 与x 成正比例;成正比例; (4)、k xy =(k 为常数且k ≠0).要点二、正比例函数的图象与性质正比例函数y kx =(k 是常数,k ≠0)的图象是一条经过原点的直线,我们称它为直线y kx =.当k >0时,直线y kx =经过第一、经过第一、三象限,三象限,三象限,从左向右上升,从左向右上升,从左向右上升,即随着即随着x 的增大y 也增大;当k <0时,直线y kx =经过第二、四象限,从左向右下降,即随着x 的增大y 反而减小反而减小. .要点三、待定系数法求正比例函数的解析式由于正比例函数y kx =(k 为常数,k ≠0 )中只有一个待定系数k ,故只要有一对x ,y 的值或一个非原点的点,就可以求得k 值. 【典型例题】类型一、正比例函数的定义1、已知1(2)m y m x -=+,当m 为何值时,y 是x 的正比例函数?函数?【思路点拨】正比例函数的一般式为(0)y kx k =¹,要特别注意定义满足0k ¹,x 的指数为1. 【答案与解析】解:由题意得,2011m m +¹ìïí-=ïî解得解得m =2 ∴当m =2时,y 是x 的一次函数的一次函数. .【总结升华】理解正比例函数的概念应抓住解析式中的两个主要特征:(1)k 不等于零;(2)x 的指数是1. 举一反三:【变式】如果函数23(2)m y m x -=+是正比例函数,那么m 的值是值是________________________..【答案】解:由定义得220,31,m m +¹ìí-=î 解得 2.2.m m ¹-ìí=±î ∴m =2. 类型二、正比函数的图象和性质2、(2018秋•灵武市校级期中)在同一直角坐标系上画出函数y=2x y=2x,,y=y=﹣﹣x ,y=y=﹣﹣0.6x 的图象.的图象. 【思路点拨】分别在每个函数图象上找出两点,画出图象,根据函数图象的特点进行解答即可.图象,根据函数图象的特点进行解答即可. 【答案与解析】解:列表:解:列表:描点,连线:描点,连线:【总结升华】本题考查的是用描点法画函数的图象,具体步骤是列表、描点、连线具体步骤是列表、描点、连线. .3、(2018春•马山县期末)已知正比例函数y=kx (k ≠0)的图象经过点(﹣6,2),那么函数值y 随自变量x 的值的增大而的值的增大而 .(填“增大”或“减小”) 【思路点拨】根据正比例函数的性质来判断根据正比例函数的性质来判断. . 【答案】减小;减小;【解析】解:把点(﹣6,2)代入y=kx ,得到:2=﹣6k ,解得k=﹣<0,则函数值y 随自变量x 的值的增大而减小.【总结升华】此题主要考查了正比例函数的性质,关键是确定函数中k 的值,当k >0时,随着y 的增大x 也增大;当k <0时,随着y 的增大x 反而减小反而减小. . 举一反三: 【变式】(20182018•伊宁市校级一模)下列关于正比例函•伊宁市校级一模)下列关于正比例函数y=y=﹣﹣5x 的说法中,正确的是(的说法中,正确的是( ) A .当x=1时,时,y=5 y=5B .它的图象是一条经过原点的直线.它的图象是一条经过原点的直线C .y 随x 的增大而增大的增大而增大D .它的图象经过第一、三象限.它的图象经过第一、三象限 【答案】B ;解:解:A A 、当x=1时,时,y=y=y=﹣﹣5,错误;,错误;B 、正比例函数的图象是一条经过原点的直线,正确;确;C 、根据k <0,得图象经过二、四象限,,得图象经过二、四象限,y y 随x 的增大而减小,错误;的增大而减小,错误;D 、图象经过二四象限,错误;、图象经过二四象限,错误; 故选B .【正比例函数,例3】4、如图所示,在同一直角坐标系中,一次函数1y k x =、2y k x =、3y k x =、4y k x = 的图象分别为1l 、2l 、3l 、4l ,则下列关系中正确的是(则下列关系中正确的是( )A .1k <2k <3k <4kB .2k <1k <4k <3kC .1k <2k <4k <3kD .2k <1k <3k <4k【答案】B ;【解析】首先根据直线经过的象限,知:2k <0,1k <0,4k >0,3k >0,再根据直线越陡,|k |越大,知:2||k >|1k |,|4k |<|3k |.则2k <1k <4k <3k【总结升华】此题主要考查了正比例函数图象的性质,首先根据直线经过的象限判断k 的符号,再进一步根据直线的平缓趋势判断k 的绝对值的大小,最后判断四个数的大小数的大小..类型三、正比函数应用5、如图所示,射线l 甲、l 乙分别表示甲、乙两名运动员在自行车比赛中所走路程s 与时间t 的函数关系,则他们行进的速度关系是(关系,则他们行进的速度关系是().A .甲比乙快.甲比乙快B B .乙比甲快.乙比甲快C C .甲、乙同速.甲、乙同速D .不一定.不一定 【思路点拨】观察图象,在t 相同的情况下,有s s>乙甲,故易判断甲乙的速度大小.【答案】A ;【解析】由s vt =知,s v t=,观察图象,在t 相同的情况下,有ss>乙甲,故有s s vv t t=>=甲乙乙甲.【总结升华】此问题中,l 甲、l 乙对应的解析式y kx =中,k 的绝对值越大,速度越快.的绝对值越大,速度越快.举一反三:【变式】如图,【变式】如图,OA OA OA,,BA 分别表示甲、乙两名学生运动的函数图象,图中s 和t 分别表示运动路程和时间,根据图象判断快者的速度比慢者的速度每秒快(速度每秒快() A.2.5米 B.2米 C.1.5米D.1米【答案】C ;提示:从图中可以看出甲用了8秒钟跑了64米,速度是8米/秒,乙用了8秒钟跑了52米,速度是132米/秒,所以快者的速度比慢者的速度每秒快1.5米.。
初二数学知识点总结_1
初二数学知识点总结初二数学知识点总结1一次函数(1)正比例函数:一般地,形如y=kx(k是常数,k?0)的函数,叫做正比例函数,其中k叫做比例系数;(2)正比例函数图像特征:一些过原点的直线;(3)图像性质:①当k>0时,函数y=kx的图像经过第一、三象限,从左向右上升,即随着x的增大y也增大;②当k<0时,函数y=kx的图像经过第二、四象限,从左向右下降,即随着x的增大y反而减小;(4)求正比例函数的解析式:已知一个非原点即可;(5)画正比例函数图像:经过原点和点(1,k);(或另外一个非原点)(6)一次函数:一般地,形如y=kx+b(k、b是常数,k?0)的函数,叫做一次函数;(7)正比例函数是一种特殊的一次函数;(因为当b=0时,y=kx+b即为y=kx)(8)一次函数图像特征:一些直线;(9)性质:①y=kx与y=kx+b的倾斜程度一样,y=kx+b可看成由y=kx平移|b|个单位长度而得;(当b>0,向上平移;当b<0,向下平移)②当k>0时,直线y=kx+b由左至右上升,即y随着x的增大而增大;③当k<0时,直线y=kx+b由左至右下降,即y随着x的增大而减小;④当b>0时,直线y=kx+b与y轴正半轴有交点为(0,b);⑤当b<0时,直线y=kx+b与y轴负半轴有交点为(0,b);(10)求一次函数的解析式:即要求k与b的值;(11)画一次函数的图像:已知两点;用函数观点看方程(组)与不等式(1)解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值;从图像上看,这相当于已知直线y=kx+b,确定它与x轴交点的横坐标的值;(2)解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围;(3)每个二元一次方程都对应一个一元一次函数,于是也对应一条直线;(4)一般地,每个二元一次方程组都对应两个一次函数,于是也对应两条直线。
初中数学:正比例函数和反比例函数知识点
初中数学:正比例函数和反比例函数知识点【考点剖析】一.函数定义:在某个变化过程中有两个变量x和y,在变量x的允许取值范围内,变量y随x的变化而变化,他们之间存在确定的依赖关系,那么变量y叫x的函数.函数记号:()y f x =,()f a 表示x=a时的函数值.设()f x 为整式,则函数()y f x =的定义域:一切实数;函数1()y f x =的定义域:满足()0f x ≠的实数;函数y =的定义域:满足()0f x ≥的实数.二.正比例函数的概念(1)如果两个变量的每一组对应值的比值是一个常数(这个常数不等于零),那么就说这两个变量成正比例,用数学式子表示两个变量x 、y 成正比例,就是yk x =,或表示为y kx =(x 不等于0),k 是不等于零的常数.(2)解析式形如y kx =(k 是不等于零的常数)的函数叫做正比例函数,其中常数k 叫做比例系数.正比例函数y kx =的定义域是一切实数.确定了比例系数,就可以确定一个正比例函数的解析式三.正比例函数的图象(1)一般地,正比例函数y kx =(k 是常数,0k ≠)的图象是经过(00),,(1)k ,这两点的一条直线,我们把正比例函数y kx =的图象叫做直线y kx =;(2)图像画法:列表、描点、连线.四.正比例函数的性质(1)当0k>时,正比例函数的图像经过第一、三象限;自变量x的值逐渐增大时,y的值也随着逐渐增大.(2)当0k<时,正比例函数的图像经过第二、四象限;自变量x的值逐渐增大时,y的值则随着逐渐减小.五、反比例函数的概念1、如果两个变量的每一组对应值的乘积是一个不等于零的常数,我们就说这两个变量成反比例.用数学式子表示两个变量x、y成反比例,就是xy k=,或表示为kyx=,其中k是不等于0的常数.2、解析式形如kyx=(k是常数,0k≠)的函数叫做反比例函数,其中k叫做比例系数.3、反比例函数kyx=的定义域是不等于零的一切实数.六、反比例函数的图像1、反比例函数kyx=(k是常数,0k≠)的图像叫做双曲线,它有两支.七、反比例函数的性质1、当0k>时,函数图像的两支分别在第一、三象限;在每个象限内,当自变量x的值逐渐增大时,y的值随着逐渐减小.2、当0k<时,函数图像的两支分别在第二、四象限;在每个象限内,当自变量x的值逐渐增大时,y的值随着逐渐增大.3、图像的两支都无限接近于x轴和y轴,但不会与x轴和y轴相交.八.正比例函数与反比例函数正比例函数反比例函数定义形如(0)y kx k=≠的常数的函数,其中k是比例系数形如(0)ky kx=≠的常数的函数,其中k是比例系数定义域一切实数不等于零的一切实数图像经过原点(0,0)和点(1,k)的一条直线;双曲线,它有两支性质当0k>时,正比例函数的图像经过第一、三象限;y的值随x的值增大而增大;当0k>时,反比例函数的图像经过第一、三象限;在每一个象限内,y的值随x的值增当0k<时,正比例函数的图像经过第二、四象限;y的值随x的值增大而减小。
初中数学正比例函数的性质知识点总结
初中数学正比例函数的性质知识点总结正比例函数是初中数学中的重要内容之一。
在学习正比例函数时,我们需要掌握一些与正比例函数相关的性质。
本文将对初中数学正比例函数的性质进行总结,帮助同学们更好地理解和应用正比例函数。
一、正比例函数的定义正比例函数是指当自变量x的值发生变化时,与之相应的因变量y的值也发生相应的变化,并且这种变化满足比例关系。
正比例函数的定义可以用数学表达式y=kx来表示,其中k为比例常数。
二、正比例函数的图像特点1. 图像位于原点正比例函数的图像一般经过坐标系的原点(0,0),即当x=0时,y=0。
2. 图像通过第一象限由于正比例函数的性质,当x为正数时,y也为正数。
因此,图像一般位于第一象限。
3. 图像是一条直线正比例函数的图像是一条直线,直线的斜率为y/x=k。
4. 图像的斜率代表比例关系正比例函数图像的斜率,即斜率k,代表了自变量和因变量之间的比例关系。
当k>0时,表示正比例关系;当k<0时,表示反比例关系。
三、正比例函数的性质1. 零比例关系若正比例函数的比例常数k等于0,则称为零比例关系。
在零比例关系中,无论自变量x取何值,因变量y都等于0。
2. 直线的斜率相等性质两条正比例函数的图像斜率相等时,它们表示的比例关系相同。
即如果函数y=k1x和y=k2x满足k1=k2,则表示两个函数表达的是相同的正比例关系。
3. 比例恒定性质正比例函数的比例关系是恒定的,即无论自变量的取值如何,比例关系始终保持不变。
这意味着如果函数y=kx成立,则对于自变量x的任意取值,都有y与x的比值恒定为k。
4. 比例关系可逆性质正比例函数的比例关系是可逆的,即如果自变量x与因变量y之间存在正比例关系,那么因变量y与自变量x之间也存在正比例关系。
四、常见问题及解答1. 如何确定正比例函数的比例常数k?要确定正比例函数的比例常数k,可以利用已知条件中的任意一对自变量和因变量的数值。
将其中一对数值代入y=kx中,求解得到k的值。
初二数学正比例反比例一次函数知识点总结
正比例、反比例、一次函数第一象限(+,+),第二象限(-,+)第三象限(-、-)第四象限(+,-);x 轴上的点的纵坐标等于0,反过来,纵坐标等于0的点都在x 轴上,y 轴上的点的横坐标等于0,反过来,横坐标等于0的点都在y 轴上,若两个点关于x 轴对称,横坐标相等,纵坐标互为相反数;若两个点关于y 轴对称,纵坐标相等,横坐标互为相反数;若两个点关于原点对称,横坐标、纵坐标都是互为相反数。
原点(x ,y ) (x ,-y );(x ,y ) (-x ,y );(x ,y ) (-x ,-y )对称1、 一次函数,正比例函数的定义(1)如果y=kx+b(k,b 为常数,且k ≠0),那么y 叫做x 的一次函数。
(2)当b =0时,一次函数y=kx+b 即为y=kx(k ≠0).这时,y 叫做x 的正比例函数。
注:正比例函数是特殊的一次函数,一次函数包含正比例函数。
2、正比例函数的图象与性质(1)正比例函数y=kx(k ≠0)的图象是过(0,0)(1,k )的一条直线。
3、一次函数的图象与性质一次函数y=kx+b(k ≠0)的图象是必过点(0,b )和点(-k b ,0)的一条直线。
注:(0,b )是直线与y 轴交点坐标,(-kb ,0)是直线与x 轴交点坐标.x 轴 对称 y 轴 对称4、一次函数y=kx+b(k≠0, k b 为常数)中k 、b的符号对图象的影响(1)k>0, b>0⇔直线经过一、二、三象限(2)k>0, b<0⇔直线经过一、三、四象限(3)k<0, b>0⇔直线经过一、二、四象限(4)k<0, b<0⇔直线经过二、三、四象限5、对一次函数y=kx+b 的系数k, b 的理解。
(1)k(k ≠0)相同,b 不同时的所有直线平行,即直线l 1:y=k 1x+b 1;直线l 2:y=k 2x+b 2( k 1,k 2均不为零,k 1,b 1,k 2, b 2为常数)k 1=k 2 k 1=k 2l 1∥l 2平行 l 1与l 2重合b 1≠b 2 b 1=b 2(2)k(k ≠0)不同,b 相同时的所有直线恒过y 轴上一定点(0,b ),例如:直线y=2x+3, y=-2x+3, y=21x+3均交于y 轴一点(0,3) 6、直线的平移:所谓平移,就是将一条直线向左、向右(或向上,向下)平行移动,平移得到的直线k 不变,直线沿y 轴平移多少个单位,可由公式︱b 1-b 2︱得到,其中b 1,b 2是两直线与y 轴交点的纵坐标,直线沿x 轴平移多少个单位,可由公式︱x 1-x 2︱求得,其中x 1,x 2是由两直线与x 轴交点的横坐标。
正比例函数详细知识点总结
正比例函数详细知识点总结一、正比例函数的定义1、正比例函数的定义给定两个变量x和y,如果存在一个常数k,使得当x增大k倍时,y也增大k倍,那么称y是x的正比例函数。
我们可以用数学式表示为:y = kx其中,k为常数,称为比例系数。
2、比例系数的含义比例系数k表示两个变量之间的比例关系。
当k>1时,表示y随着x的增大而增大,当0<k<1时,表示y随着x的增大而减小,当k=1时,表示y和x成正比例关系。
3、正比例函数的定义域和值域对于正比例函数y=kx,定义域为实数集R,即x可以是任意实数;值域也为实数集R。
二、正比例函数的性质1、图像特点正比例函数的图像是一条经过原点的直线。
当k>1时,图像是从原点开始向上倾斜的直线;当0<k<1时,图像是从原点开始向下倾斜的直线;当k=1时,图像是经过原点的斜率为1的直线。
2、性质(1)通过原点正比例函数的图像必经过原点,因为当x=0时,y=0。
(2)斜率性质正比例函数的图像斜率为k,斜率表示函数随着自变量的变化而变化的速率。
(3)单调性当k>0时,正比例函数为增函数;当k<0时,正比例函数为减函数。
三、正比例函数的解题方法1、确定比例系数在解题时,首先需要确定比例系数k,可以通过已知条件或者数据关系来确定。
2、构建函数关系根据已知条件构建出正比例函数的函数式。
3、解题步骤(1)根据已知条件确定比例系数k;(2)构建出正比例函数的函数式;(3)应用正比例函数的性质和图像特点进行问题分析和解答。
四、正比例函数的应用正比例函数在实际问题中有着广泛的应用,尤其在数学建模和物理问题中常常出现。
下面举例说明正比例函数的应用:1、代买水果小明要在市场上代买水果,水果摊上的价格是正比例关系,每斤水果的价格是3元,小明要买的数量和购买的金额之间也是正比例关系。
如果他要买5斤水果,需要支付多少钱?解题步骤:(1)根据已知条件确定比例系数k为3;(2)构建出正比例函数的函数式y=3x;(3)代入x=5即可求得所需支付的金额为15元。
八年级数学,y与x+3成正比例,求y与x之间的函数关系式
八年级数学,y与x+3成正比例,求y与x之间的函数关系式
一、正比例的概念
正比例是指两个变量之间成线性关系,当其中一个变量的值改变时,另一个变
量值也会成比例发生改变,即y与x之间为正比例关系,即y/x=常数。
二、正比例的函数关系式
y与x + 3正比,则y=k * (x + 3),其中k是一个常数,由于不知道两者之
间的比例,所以k是我们不知道的。
此时我们可以用实验来确定k的值,只要给出任意一组x和y的值,就可以算出哪个k值对应的所求的函数,即使更多的组合的点,也可以求出更多的k的值,从而求得函数关系式。
三、函数关系式的解析
给定y与x+3成正比例,我们可以用函数来表示,即y=k * (x + 3),这句式
表达的意思是,当x+3发生变化时,y也会成比例发生变化,只要给定一组x+3和
y的值,就可以算出对应的k的值,从而得到应变的函数关系式。
四、函数关系式的实例
以15,21为例,可以求出k的值为3。
即y=3 * (15 + 3),即y=3 * 18,即
y=54
又以20,30为例,则k的值为1.5。
即y=1.5 * (20 + 3),即y=1.5 * 23,
即y=34.5
因此,y与x+3成正比例,函数关系式为y=k * (x + 3),其中k是一个未知数,可以通过任意一组实验值来确定k的值,从而求出函数关系式。
五、总结
正比例是两个变量之间的线性关系,当其中一个变量的值发生改变时,另一个
变量值也会成比例发生改变,函数关系式可以表示这一关系。
y与x + 3成正比例,函数关系式为:y=k * (x + 3),我们可以用一组的实验值来确定k的值,从而求
得函数关系式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学之正比例函数知识点总结
正比例函数是初中函数知识点中的基础。
都说八年级是初中阶段的分水岭,学好了数学成绩自然而然能上去一大截,那么对于函数这个重点知识来说,当然是同学们学习的重点。
学好函数从正比例函数开始,今天极客数学帮就来给同学们整理了关于正比例函数的知识点。
正比例函数定义:
一个人在抚顺很孤单,想找一个聊的来的人,我在Soul等你
广告
一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数。
正比例函数属于一次函数,但一次函数却不一定是正比例函数。
正比例函数是一次函数的特殊形式,即一次函数y=kx+b中,若b=0,即所谓“y轴上的截距”为零,则为正比例函数。
正比例函数的关系式表示为:y=kx(k为比例系数)
当k>0时(一三象限),k越大,图像与y轴的距离越近。
函数值y随着自变量x的增大而增大。
展开剩余81%
当k<0时(二四象限),k越小,图像与y轴的距离越近。
自变量x的值增大时,y的值则逐渐减小。
正比例函数性质:
定义域值域奇偶性周期性
R(实数集)R(实数集)奇函数不是周期函数
单调性:
当k>0时,图像位于第一、三象限,从左往右,y随x的增大而增大(单调递增),为增函数;
当k<0时,图像位于第二、四象限,从左往右,y随x的增大而减小(单调递减),为减函数。
对称性:
对称点:关于原点成中心对称
对称轴:自身所在直线;自身所在直线的垂直平分线
正比例函数的定义经典例题
1.对于正比例函数y=2x,当x=1时,函数值y=______.
分析:
对于正比例函数y=2x,
当x=1时,函数值y=2×1=2.
故答案为:2.
2.正比例函数y=3x是过点(0,______)与(1,______)的一条直线.
分析:
∵正比例函数的一般形式为y=kx,
∴当x=0时,y=0,
∴正比例函数的图象一定经过(0,0)点,
当x=1时,y=3,则图象过(1,3)点.
故答案为:0,3.
3.正比例函数y=2x的图象所过的象限是( )
A.第一、三象限
B.第二、四象限
C.第一、二象限
D.第三、四象限
分析:
选A.
∵正比例函数y=2x中,k=2>0,
∴此函数的图象经过第一、三象限.
4.请写出一个图象经过第一、三象限的正比例函数的解析式
分析:
设此正比例函数的解析式为y=kx(k≠0),
∵此正比例函数的图象经过第一、三象限,∴k>0,
∴符合条件的正比例函数解析式可以为:y=x(答案不唯一).
答案:y=x(答案不唯一)
5.已知正比例函数y=kx(k≠0),点(2,-3)在函数图象上,则y随x的增大而________(增大或减小).
分析:
∵点(2,-3)在正比例函数y=kx(k≠0)的图象上,∴2k=-3,
解得:k=-(3/2),∴正比例函数解析式是:y=-(3/2)x,
∵k=-(3/2)<0,∴y随x的增大而减小.
答案:减小
练习题
1.下列函数表达式中,y是x的正比例函数的是()
A. y=﹣2x^2 B. y=x/3C. y=1/(4x) D. y=x﹣2
2.若y=x+2﹣b是正比例函数,则b的值是()
A. 0 B.﹣2 C. 2D.﹣0.5
4.下列说法正确的是()
A.圆面积公式S=πr^2 中,S与r成正比例关系
B.三角形面积公式S=(1/2)ah中,当S是常量时,a与h成反比例关系
C.y=(1/x)+1中,y与x成反比例关系
D.y=(x-1)/2中,y与x成正比例关系
5.下列各选项中的y与x的关系为正比例函数的是()
A.正方形周长y(厘米)和它的边长x(厘米)的关系
B.圆的面积y(平方厘米)与半径x(厘米)的关系
C.如果直角三角形中一个锐角的度数为x,那么另一个锐角的度数y与x间的关系
D.一棵树的高度为60厘米,每个月长高3厘米,x月后这棵的树高度为y厘米
6.若函数y=(m﹣3)x|m|﹣2 是正比例函数,则m值为()A. 3 B.﹣3 C.±3 D.不能确定
7.已知正比例函数y=(k﹣2)x+k+2的k的取值正确的是()A. k=2 B.k≠2 C. k=﹣2 D.k≠﹣2。