医学影像物理学重点总结
(完整版)医学影像学考试重点总结,推荐文档
2 ° 溶骨型成骨肉瘤:肿瘤常起自骨松质,以溶骨性破坏为主。
X 线表现:大片状溶骨性骨质破坏区,界限不清,有三角形骨膜反应,瘤骨少或无。
3 ° 混合型成骨肉瘤:介于以上两者之间。
四、骨巨细胞瘤:
常见,好发于青壮年,因其具有复发、恶变和转移倾向,故将其分为良、恶性之间的一种特殊类
型。
X
线表现:
1、好发于长骨骨端,表现为密度减低的溶骨性改变,偏心性膨胀性生长,也可呈多房性透光区,
医学影像学总结 总论
一、X 线特点:
①X 线成像的电磁波 0.031~0.008nm,γ 线<X线<紫外线
②穿透性:电压越高穿透力越强;物体(组织)的密度和♘度越大,X 线透过越少(被组织吸收
越多),是成像基础
③荧光效应:激发某些荧光物质,形成透视
④感光效应:感光溴化银离子,形
成胶片
⑤电离效应:(生物效应):治疗作用与辐射防护 二、X 线成像的特点:
二、骨折 及线形骨折 5 种
b 原因:外伤性、病理性
c 数目:单发、多发、粉碎性
d 有无伤口:闭合性、开放性
e 常见类型:嵌入、青枝、线形、凹陷、撕脱、压缩、粉碎、多发、骨骺分离、病理骨折、应力
性骨折等
青枝骨折:儿童骨骼柔韧性较大→外力不易使骨质
①X 线穿过人体时的吸收衰减(组织密度和♘度有关); 表现为越白
②组织密度越高,在图像上
③通常人体组织被分为四个密度层次(从高到低):骨、软组织、脂肪、气体
④重叠平面成像(前后或左右重叠)
⑤锥形束投射成像(伴影失
真)
三、CT 的优缺点:
1°优点: ①反映器管和组织对 X 线的吸收程度;
间分辨力高
②像素越小,数目越多,构成的图像越细致,空
医学影像学重点(自己整理的)
5、骨龄:是指骨的原始骨化中心和继发骨化中心的出现及骨骺和干骺端骨性愈合的年龄。
(对诊断内分泌疾病和一些先天性畸形综合征有一定价值)6、骨质破坏:是局部骨质为病理组织所代替而造成的骨组织消失。
(见于炎症、肿瘤、肉芽肿) X线:骨质局限性密度下降,骨小梁消失,骨皮质边缘模糊。
1、骨质疏松:指一定体积单位内正常钙化的骨组织减少。
即骨组织的有机成分和钙盐都减少,但故内的有机成分和钙盐含量比例仍正常。
X线:骨质局限性密度下降,骨小梁变细,间隙变宽。
2 骨质软化:骨质软化――指一定单位体积内骨组织的有机成分正常,而矿物质含量减少。
X线表现为骨密度减低,骨小梁和骨皮质边缘模糊7、骨质坏死:是骨组织局部代谢停止,坏死的骨质称为死骨。
形成死骨的原因主要是血液供应中断(多见于慢性化脓性骨髓炎,也见于骨缺血性坏死和外伤骨折后)。
3、骨膜增生:骨膜反应是因骨膜受刺激,骨膜内层成骨细胞活动增加形成骨膜新生骨。
通常有病变存在。
X线:骨骼密度上升,骨皮质、小梁增厚。
8、骨膜三角(Codman三角):恶性肿瘤累及骨膜及骨外软组织,刺激骨膜成骨,肿瘤继而破坏骨膜所形成的骨质,其边缘残存骨质呈三角形高密度病灶,称为骨膜三角。
是恶性骨肿瘤的重要征象。
9、Colles骨折:又称伸展型桡骨远端骨折,为桡骨远端2~3㎝以内的横行或粉碎骨折,骨折远端向背侧移动,断端向掌侧成角畸形,可伴尺骨茎突骨折。
Colles’骨折的临床和影像学特点答:Colles’骨折为桡骨远端3cm范围内横行或粉碎性骨折,常见于中老年人,跌倒时,前臂旋前,手掌着地,引起伸展型桡骨远端骨折。
观察患肢呈银叉畸形、刺枪刀样畸形。
X线表现为:桡骨骨折远端向桡侧、背侧移位,掌侧成角,可见骨折线。
常合并下尺桡关节脱位和尺骨茎突骨折。
10、青枝骨折:在儿童,骨骼柔韧性大,外力不易使骨质完全断裂而形成不完全性骨折,仅表现为骨小梁和骨皮质的扭曲,看不到骨折线或只引起骨皮质发生皱折、凹陷或隆突。
医学影像物理学3篇
医学影像物理学第一篇:医学影像物理学概述医学影像物理学是医学影像学的一个重要分支,研究医学影像的物理学基础和技术应用,是现代医学影像诊断的基础。
本文将对医学影像物理学的概念、研究内容和应用进行介绍。
一、医学影像物理学的概念医学影像物理学是研究与医学影像有关的物理学基础和技术应用的学科。
它研究医学影像的物理学基础、技术原理及其应用,分析和评估医学影像质量,掌握医学影像质量控制的方法和技术,提高医学影像质量,保证医学影像诊断的准确性和可靠性。
二、医学影像物理学的研究内容医学影像物理学的研究内容包括以下几个方面:1、医学影像的物理学基础医学影像的物理学基础研究包括射线物理学、核物理学和电磁学等基础物理学和医学应用物理学中的相关内容。
其中,射线物理学是医学影像物理学的核心内容,主要涉及X射线的产生、传播、吸收、散射和成像原理等方面的知识。
2、医学影像技术的原理和应用医学影像技术的原理和应用研究包括X线摄影、CT、MRI、超声波和核医学等影像检查方法的原理和技术应用,掌握不同影像检查方法的适用范围和临床应用情况。
3、医学影像质量控制的方法和技术医学影像质量控制的方法和技术研究包括诊断质量的评估、分析和改善方法和技术,如曝光量的控制、成像参数的选择、图像质量的评估等。
4、医学影像安全与保护的技术和方法医学影像安全与保护的技术和方法研究包括对医学影像诊断过程中的患者、医护人员和环境等进行管理和保护,如防护措施、设备的保养和维护等。
三、医学影像物理学的应用医学影像物理学的应用广泛,主要包括以下几个方面:1、医学影像诊断医学影像物理学的主要应用是对患者进行影像诊断,根据影像分析病情,制定合适的治疗方案。
2、医疗设备的研究和开发医学影像物理学的研究成果还可用于医疗设备的研究和开发,提高影像设备的智能化、精准化、高效化和低辐射化等性能。
3、医学物理学研究医学影像物理学的研究方法和技术还可应用于医学物理学的研究中,用于研究人体的物理特性以及物理治疗等方面。
影像物理学总结复习资料
图像灰度主要由T1 决定:短TE,短TR;图像灰度主要由T2决定:长TE ,长TR;质子密度加权图像:短TE,长TR。
混响时间及其成因1界面间多次反射2声波引起固有振动3介质不均匀性引起散射超声回波所携带的信息1反射回波主要携带结构信息2散射回波主要携带组织信息足跟效应(阳极效应) 厚靶周围X射线分布,越靠近阳极靶一侧X射线辐射强度下降得越多X射线与物质相互作用时,底能端发生的是光电效应,中间部分主要发生康普顿效应,高能端主要发生电子对效应光电线性衰减系数,指X射线光子通过单位距离的吸收物质,因光电效应而导致的衰减。
引入对比剂:形成密度差异,显示形态功能阳性对比剂原子序数大,密度高,吸收强,荧光屏上显示浓黑影像,胶片上为淡白影像阴性对比剂原子序数小,密度低,吸收弱,荧光屏上显示淡白影像,胶片上为浓黑影像。
评价医学影像质量的参数有对比度模糊与细节可见度噪声与信噪比伪影畸变数字图像处理的主要方法:图像增强技术图像恢复灰度变换法数字减影血管造影有三种方法时间减影能量减影混合减影传统X-CT的扫描方式:单束平移-旋转方式;窄扇形束扫描平移-旋转方式;旋转-旋转方式;静止-旋转扫描方式;电子束扫描方式。
传统CT扫描的技术缺憾:每次扫描完必需停止扫描而回原位,同时扫描床移动一小段距离后静止。
使用较小螺距的CT可以增加原始扫描数据量,提高重建断层图像质量,但增加了扫描时间和受检体辐射剂量弛豫(一种向原有平衡状态恢复的过程)纵向弛豫,是指纵向磁化逐渐恢复为的过程;横向弛豫,是指横向磁化逐渐衰减恢复为零的过程化学位移:均匀静磁场中,处于不同化学环境下的同一种自旋核会受到不同磁场B的作用,因而会有不同的共振频率,这种共振频率的差异称为化学位移。
自由感应衰减信号:磁化强度矢量在自由旋进的情况下所产生的MR信号。
临床上用的三种序列脉冲:自旋回波反转恢复和梯度回波决定X射线衰减程度的因素,X射线本身的性质,另外三个属于吸收物质的性质,即物质密度原子序数每千克物质含有的电子数胶片宽容度是指感光材料按特性曲线直线及胶片线性关系正确记录被检体反差范围部分照射量范围,称曝光宽容度度图像的模糊度与成像系统的空间分辨率关系较大,成像系统的空间分辨率是成像系统区分或分开相互靠近的物体的能力,习惯用单位距离内可分辨线对的数目来表示。
医学影像物理学重点总结
医学影像物理学重点总结医学影像物理学是研究医学影像学领域中的物理原理、技术和应用的学科。
它在医学诊断和治疗中起着至关重要的作用。
本文将对医学影像物理学的重点内容进行总结,帮助读者更好地了解和掌握这一领域。
一、X射线成像X射线成像是医学影像学中最常用的技术之一。
它能够通过对人体部位进行X射线照射,并利用不同组织对X射线的吸收程度不同来获取影像。
在X射线成像中,我们需要掌握以下几个重点内容:1. X射线的生成和相互作用:了解X射线是如何产生的,及其与物质的相互作用,包括吸收、散射和透射等。
2. X射线剂量学:研究X射线对人体的辐射剂量,以保证影像质量的同时最大限度地降低辐射对患者的伤害。
3. 放射学模式成像:掌握不同的放射学模式成像,如正位、侧位、斜位等,以获取更全面准确的影像信息。
4. 影像质量评价:学习如何评估X射线影像的质量,包括对比度、分辨率、噪声等指标的计算和分析。
二、磁共振成像(MRI)磁共振成像利用静态磁场、梯度磁场和射频脉冲磁场对人体进行成像。
它可以提供高分辨率的解剖学和功能学信息,常用于检查脑部、关节和脊柱等部位。
在学习磁共振成像时,我们需重点关注以下内容:1. 磁共振成像原理:了解核磁共振现象和磁共振成像的基本原理,包括梯度磁场的产生、射频脉冲的应用等。
2. 磁共振脉序:学习不同的磁共振脉序,如T1加权、T2加权、FLAIR等,了解其原理和应用场景。
3. 影像对比增强技术:了解影像对比增强技术,如增强剂的应用和增强图像的质量评价。
4. 平扫和增强扫描的区别:掌握平扫和增强扫描的区别,学习如何根据不同临床情况选择适合的扫描方式。
三、超声成像超声成像是一种无创的成像技术,利用超声波与人体组织的声学特性相互作用,生成图像。
它在妇产科、心脏科、肝脏等领域有广泛应用。
在研究超声成像时,我们应着重了解以下几点:1. 超声波的产生和传播:学习超声波的产生原理、传播特性和不同组织对声波的反射、衍射和吸收等现象。
人卫4版医学影像物理学(附答案)
医学影像物理学第一章X射线物理一:名词解释1.实际焦点:灯丝发射的电子,经聚焦加速后撞击在阳极靶上的面积称为实际焦点。
2.有效焦点:X射线管实际焦点的投影称为有效焦点。
3.X射线强度:是指单位时间内通过垂直于X射线传播方向上的单位面积上的光子数量与能量乘积的总和。
4.足跟效应(阳极效应):愈靠近阳极,X射线强度下降愈多的现象。
5.光电效应:X射线光子与物质原子的轨道电子发生相互作用,把全部能量传递给这个电子,电子挣脱原来束缚成为自由电子。
原子的电子轨道出现一个空位而处于激发态,它将通过发射特征X射线或俄歇电子的形式很快回到基态,这个过程称为光电效应。
6.康普顿效应:当入射X射线光子和原子内一个轨道电子发生相互作用时,光子损失一部分能量并改变运动方向,电子获得能量而挣脱原子,这个过程称为康普顿效应。
7.电子对效应:当X射线光子从原子核旁经过时,在原子核库仑场的作用下形成一对正负电子,这个过程称为电子对效应。
8.X射线的质(线质):表示X射线的硬度,即穿透物质本领的大小。
二:简答1.产生X射线需要哪些条件?电子源、高速电子流、X射线靶。
2.影响X射线管有效焦点大小的因素有哪些?靶倾角θ、实际焦点长度A。
3.影响X射线能谱的因素:(1)从阴极向阳极加速的电子不是都具有峰值动能,这与整流和高压发生器的类型有关。
(2)诊断X射线管靶相对比较厚。
(3)低能的X射线更容易被靶自身吸收。
(4)外部滤过几乎总是加在X射线管组件上,这些附加滤过会选择性的从线束中滤掉低能X射线。
4.影响X射线强度的因素:(1)靶物质的原子序数(2)管电流(3)管电压(4)过滤物质5.X射线与物质相互作用的类型:主要类型:光电效应,康普顿效应,电子对效应。
次要类型:有相干散射,光核反应等。
6.产生硬X射线和软X射线需要哪些条件?硬X射线:管压U增大、靶原子序数增大、滤过物质增大。
软X射线:管压U减小、靶原子序数减小、X射线管壁薄。
三:计算题:1.X射性管,管电压10kV,求最短波长。
(医学影像物理学)08CT图像重建方式总结
逆问题理论在CT图像重建中的应用
1 逆问题理论
逆问题理论是指通过观测结果来推断原始事物的性质或参数的数学方法。在CT图像重建 中,逆问题理论可以帮助我们从有限的投影数据中还原出高质量的图像。
2 重建算法改进
通过逆问题理论的应用,可以改进重建算法,提高图像的分辨能力和准确度,更好地满 足临床医学的需求。
迭代重建算法
数学模型与迭代计算
迭代重建算法通过迭代计算将多 个投影数据反投影,借助数学模 型逐步逼近真实的图像信息,从 而得到高质量的重建图像。
迭代算法优势
迭代算法能够更好地处理边缘信 息较强的病变,提高图像的辨别 度,使图像细节更加清晰。
迭代算法挑战
迭代算法计算复杂度高,耗时较 长,对计算机性能要求较高。此 外,迭代次数的选择也会直接影 响重建结果的质量。
总结与展望
CT图像重建是医学影像学领域的核心技术之一,不断发展和改进的重建算法 将推动医学诊断和治疗的进步,为人类健康事业作出更大的贡献。
(医学影像物理学)08CT图 像重建方式总结
了解CT图像重建的基本原理及不同的重建算法,以及逆问题理论在此领域的 应用,并探讨该技术的发展和趋势。
CT图像重建的基本原理
CT图像重建的基本原理是通过计算机处理多个X射线断层扫描图像,并根据射线通过人体的不同程度吸收来重 建人体内部结构的三维图像。
滤波重建算法
CT图像重建的发展和趋势
1
发展历程
CT图像重建技术经历了从一维重建到二维重建再到三维重建的发展历程,不断 提高图像的质量和分辨能力。
2
三维CT图像
未来的趋势是发展更先进的三维CT图像重建技术,以生成更精确、更详细的患 者解剖结构信息,并为医学诊断和治疗提供更准确的数据支持。
医学影像物理学__复习大纲整理
医学影像物理学__复习大纲整理医学影像物理学复习大纲整理作为医学影像学的重要分支,医学影像物理学在医学影像学中发挥着重要的作用。
它研究有关医学图像的产生、获取、处理、解释和应用的物理学原理和方法。
下面我们来复习一下医学影像物理学的相关内容。
一、X射线成像1. X射线的发现和特性X射线由威廉·康拉德·伦琴于1895年发现,它是一种高能电磁辐射。
X射线具有穿透性、可离子化、吸收性和荧光性等特性。
2. X射线成像原理X射线通过人体组织的不同吸收和散射反应产生物理图像。
利用X射线管、滤光器、衰减器、偏振器等器材,可以将X射线成像成传统的平片、增强型平片、CT图像、传统CT图像以及数字化X射线成像等多种形式。
3. X射线成像质量控制医学影像物理学通过对X射线成像质量的控制和评估,保证了医学影像的准确性和可靠性。
质量控制包括线性加速器工作周期、膜曝光容积产品、曝光指数、空气质量指数等。
二、放射性核素成像1. 放射性核素的物理特性放射性核素是具有放射性的同位素,可以释放出高能射线。
放射性核素成像利用放射性核素释放的射线成像人体内部的代谢和生理活动。
2. 放射性核素成像原理放射性核素成像利用放射性核素经内脏、血液、骨骼等部位的代谢和血流进行成像。
通过控制放射性核素的剂量和监测检测器的信号可以得到清晰的放射性核素成像。
3. 放射性核素成像质量控制医学影像物理学通过对放射性核素成像仪器和设备的校准、伽马相机灵敏度和分辨率的评估,保证了放射性核素成像的准确性和可靠性。
三、磁共振成像1. 磁共振成像原理磁共振成像利用高强度的磁场和无线电波来成像人体内部组织的结构和功能。
通过对磁场梯度和脉冲信号的控制和解析,可以生成清晰、详细的磁共振成像。
2. 磁共振成像质量控制医学影像物理学通过保证磁场强度、磁场均匀性、梯度线性度、接收通道等参数的准确性和稳定性,来保证磁共振成像的质量。
3. 磁共振成像的应用磁共振成像在临床诊断中具有广泛的应用。
医学影像物理学
医学影像物理学医学影像物理学是医学影像学中的一个重要分支,它涉及到医学影像技术的原理和应用。
通过使用物理学的知识和技术,医学影像物理学帮助医学影像师和医生分析、诊断和治疗疾病。
一、简介医学影像物理学研究的内容广泛,包括影像的产生、检测和处理等方面。
它涉及到多种影像技术,如X射线摄影、核医学、超声波和磁共振成像等。
医学影像物理学的发展对于医学影像诊断的准确性和效率都起到了重要的促进作用。
二、影像的产生与检测1. X射线摄影X射线摄影是一种利用X射线穿透物质和不同组织密度差异来形成影像的技术。
它通过X射线管产生的X射线照射被检查的部位,然后使用X射线感应器进行检测。
医学影像物理学研究如何控制X射线的剂量和质量,以及如何优化影像的质量和分辨率。
2. 核医学核医学是利用放射性同位素来产生影像的技术。
它通过给患者注射放射性同位素并使用相应的探测器来检测体内的放射性信号。
医学影像物理学研究如何选择合适的放射性同位素和探测器,以及如何处理和解读核医学影像。
3. 超声波超声波成像是利用声波在不同组织中传播速度不同的原理来产生影像的技术。
它通过向患者体内发射超声波,并使用接收器来接收反射回来的信号。
医学影像物理学研究超声波的成像原理、参数选择和图像处理方法,以提高超声波影像的质量。
4. 磁共振成像磁共振成像(MRI)是利用核磁共振现象来产生影像的技术。
它通过患者放置在强磁场中,并使用无线电波来激发和接收氢原子核的信号。
医学影像物理学研究如何优化MRI的脉冲序列、参数设置和图像重建算法,以获得清晰的MRI影像。
三、影像的处理与应用1. 图像重建与处理医学影像物理学研究各种图像重建和处理方法,以提高影像的质量和分辨率。
例如,通过采用滤波技术、去噪算法和锐化算法等来增强影像的对比度和细节,从而帮助医生更准确地进行诊断。
2. 影像配准和融合医学影像物理学还研究不同影像之间的配准和融合方法。
通过将不同影像的信息进行配准和叠加,可以提供更全面的解剖结构和病变信息,有助于医生的诊断和治疗计划。
医学物理学基础知识总结
医学物理学基础知识总结医学物理学是一门将物理学原理和方法应用于医学领域的交叉学科,它对于理解人体的生理和病理过程、诊断和治疗疾病都具有重要的意义。
下面我们来详细了解一下医学物理学的一些基础知识。
一、医学影像物理学医学影像在疾病的诊断和治疗中起着至关重要的作用。
1、 X 射线成像X 射线具有很强的穿透能力,不同组织对 X 射线的吸收程度不同。
当 X 射线穿过人体时,在胶片或探测器上形成明暗不同的影像,从而显示出人体内部的结构。
例如,在胸部 X 光片中,可以清晰地看到肺部、心脏和骨骼的形态。
2、磁共振成像(MRI)利用磁场和射频脉冲使人体组织中的氢原子核发生共振,然后接收共振信号并进行处理,得到组织的图像。
MRI 对软组织的分辨能力较高,能够清晰地显示大脑、脊髓、关节等部位的结构。
3、计算机断层扫描(CT)通过围绕人体旋转的 X 射线源和探测器,获取多个角度的 X 射线投影数据,然后通过计算机重建出断层图像。
CT 对于检测骨骼、肺部和腹部等部位的病变具有很高的准确性。
4、超声成像利用超声波在人体组织中的传播和反射特性来成像。
它具有无创、实时、便携等优点,常用于妇产科、心血管科等领域的检查。
二、核医学物理学核医学利用放射性核素进行诊断和治疗。
1、放射性核素显像将放射性药物引入人体,通过探测放射性核素发出的射线,获得器官或组织的功能和代谢信息。
例如,甲状腺显像可以评估甲状腺的功能和形态。
2、放射性核素治疗利用放射性核素释放的射线对病变组织进行照射,达到治疗的目的。
如碘-131 治疗甲状腺功能亢进症和甲状腺癌。
三、放疗物理学放疗是治疗肿瘤的重要手段之一。
1、放射源包括 X 射线机、钴-60 治疗机和直线加速器等。
不同的放射源具有不同的能量和剂量分布特点。
2、剂量学准确计算肿瘤和正常组织所接受的剂量,以确保治疗效果并减少副作用。
这涉及到辐射场的测量、剂量计算算法等。
3、治疗计划设计根据患者的肿瘤位置、形状和大小,以及周围正常组织的情况,制定最优的放疗方案,使肿瘤接受足够的剂量,同时保护正常组织。
医学影像物理学复习资料汇总
S df d p -=X 射线物理学一、X 射线的基本特性1. X 射线在均匀的、各向同性的介质中,是直线传播,具有光的一切特性,具有波粒二象性。
2. X 射线不带电,不受外界磁场和电场影响;3. X 射线具有贯穿本领;(不同组织穿透性不同:骨骼--软组织--脂肪--肺、肠道)4. X 射线的荧光作用;(X 射线照射荧光物质可发出荧光)透视、增感屏5. X 射线的电离作用;( X 光子撞击电子--一次电离--撞击其它原子--二次电离) X 射线损伤和治疗基础6.X 射线的热作用;7. X 射线的化学和生物效应:与物质进行光化学反应,生物体内电离和激发作用二、X 射线的产生医学成像用的X 射线辐射源都是利用高速运动的电子撞击靶物质而产生的。
1. 产生X 射线的四个条件:(1)具有电子源(阴极)产生发射电子;(2)有加速电子使其增加动能的电位差(高管电压)(3)有一个高度真空(P<10-4Pa )的环境(玻璃外壳) ,使电子在运动过程中尽可能减少能量损耗,保护灯丝不被氧化。
(4)有一个受电子轰击而辐射X 射线的物体(阳极靶)三、X 射线管的阴极体作用:① 使电子初聚焦:达到初聚焦作用,增加X 线的产生率。
② 防止二次电子危害:阴极体可收集二次电子,防止危害。
四、阳极的作用:1,、是一个导电体,它接收从阴极发射出的电子并将它们传导至与X 射线管相连的电缆,2、使其能返回高压发生器;3、为靶提供机械支撑;良好的热辐射体。
五、焦点:1、实际焦点:灯丝发射的电子,经聚焦加速后,撞击在阳极靶上的面积。
2、有效焦点:X 射线管的实际焦点在垂直于X 射线管轴线方向上投影的面积,即X 射线照射在胶片上的有效面积。
3、补充:影响焦点大小的因素有哪些?答:灯丝的形状、大小及在阴极体中的位置、管电流、管电压和阳极的靶角θ有关。
管电流升高,焦点变大;管电压升高,焦点变小。
4、实际焦点和有效焦点大小的影响:答:实际焦点面积增大,散热好,但有效焦点面积也增大,胶片影像模糊;实际焦点面积减小,阳极靶单位面积上的电子密度增大,实际焦点温度增大,阳极损坏;5、焦点对成像的影响:有效焦点越小,影像越清晰;有效焦点为点光源时:胶片图象边界清晰;有效焦点为面光源时:胶片图象边界模糊有半影;半影大小为:为使图象清晰,要减小半影,可减小S 和d (小焦点,短距离);管电流增大,焦点增大,影像质量下降;管电压增大,焦点增大,影像质量下降;六、能量损失形式分:1、碰撞损失(collisionloss):(占电子总能量的99%)高速电子与阳极靶原子核的外层电子相互作用而损失的能量;全部转化为热能。
医学影像物理学重点
医学影像物理学重点医学影像物理学是医学领域中的一门重要学科,它研究的是医学影像学的物理原理和相关技术。
作为现代医学影像学的基础,医学影像物理学在医学诊断和治疗中起着至关重要的作用。
本文将重点介绍医学影像物理学的几个关键领域。
1. 放射学物理学放射学物理学是医学影像物理学的重要分支,它研究的是放射学成像技术的物理原理和参数。
放射学成像技术包括X射线摄影、计算机断层扫描(CT)和核磁共振成像(MRI)等。
放射学物理学主要关注影像质量的提高和辐射剂量的控制,其中辐射剂量管理在临床实践中具有重要意义。
2. 超声影像物理学超声波成像是一种常用的无创检查手段,广泛应用于临床诊断。
超声影像物理学研究的是超声波的产生原理、传播特性以及影像的形成。
它对于超声成像器的调整、性能评估以及图像质量的控制和提高都有着重要意义。
3. 核医学物理学核医学物理学是研究核医学成像技术的物理原理和技术参数的学科。
核医学包括单光子发射计算机断层扫描(SPECT)和正电子发射断层扫描(PET)等,这些技术在神经科学、心血管学和肿瘤学等领域具有广泛的应用。
核医学物理学的研究内容包括放射性同位素的引入和选择、仪器的调节和保养以及图像质量的评估等。
4. 磁共振成像物理学磁共振成像(MRI)是一种非侵入性的医学影像技术,对于检测人体内脏器官结构和病变有着很高的分辨率。
磁共振成像物理学研究MRI的物理原理,包括强磁场的产生、脉冲序列的设计和图像的重建算法。
该学科与核磁共振波谱学有着联系,共同构成了核磁共振技术的理论基础。
5. 医学图像处理医学图像处理是将数学、物理学和计算机科学等技术应用于医学影像数据的处理和分析。
它包括图像重建、去噪、增强、分割以及模式识别等方面。
医学图像处理的发展使得影像学在医学研究和诊断中发挥了更大的作用,为临床医生提供了更多的信息和支持。
总结:医学影像物理学是一门学科内容丰富、应用广泛的学科,它不断推动医学影像技术的发展和进步。
医学影像物理学重点-2024鲜版
核磁共振成像设备结构组成及工作原理
设备结构组成
主要包括磁体、梯度系统、射频系统、计算机系统以及患者 承载系统等部分。
2024/3/27
工作原理
通过强大的磁场和射频脉冲作用于人体组织,利用不同组织 间弛豫时间的差异形成对比度,从而得到人体内部结构的图 像。
13
不同类型核磁共振成像技术比较
自旋回波序列(SE)
02
01
环境因素控制
保持室内恒定的照明、温度和湿度条件,减 少外部干扰。
04
03
2024/3/27
26
2024/3/27
谢谢聆听
27
辅助治疗方案制定
通过对病灶的精确定位和定量分析,医学影像物理学有 助于医生制定个性化的治疗方案。
03
促进医学研究与教育
医学影像物理学不仅为医学研究提供了重要的技术手段 ,同时也为医学教育提供了丰富的教学资源。
5
相关学科交叉与融合
与医学影像学关系
医学影像物理学是医学影像学的基础 学科,为其提供理论和技术支持。
扩散加权成像(DWI)
通过测量水分子的扩散运动来反映组织微观结构的变化 ,常用于脑梗死等疾病的早期诊断。
磁共振血管成像(MRA)
利用流动血液与静止组织之间的信号差异来显示血管结 构,无需注射造影剂即可实现无创性血管检查。
磁共振水成像(MRH)
利用重T2加权技术使含水器官和组织呈现高信号,从 而清晰显示其形态和结构。
14
04
超声成像技术
2024/3/27
15
超声波产生及传播特性
超声波产生
利用压电效应或磁致伸缩效应,将电能转换为机械能,产生超声波。
超声波传播特性
医学影像技术相关专业知识考点总结
医学影像技术相关专业知识考点总结医学影像技术是医学领域中非常重要的一个分支,它通过各种影像设备和技术,帮助医生诊断疾病,并监测治疗效果。
在医学影像技术的学习和工作中,有许多专业知识是必须要掌握的。
本文将对医学影像技术相关的一些重要考点进行总结,希望能够对相关专业的学生和从业者有所帮助。
一、放射物理学1.放射线的物理性质:了解放射线的产生、传播和相互作用的基本原理,以及放射线的特性和规律。
2.放射线的剂量学:掌握放射线剂量的计量单位、剂量的定义和计算方法,以及放射剂量对人体的影响及防护措施。
二、医学影像设备1. X射线成像:了解X射线成像设备的工作原理、特点和应用范围,以及在临床中的具体运用。
2. CT扫描:掌握CT扫描的原理、技术特点和图像重建方法,以及在不同病症诊断中的应用。
3. MRI成像:了解MRI成像的物理原理、脉序和成像方法,以及在临床诊断和研究中的应用。
4.超声成像:掌握超声成像的原理、技术特点和图像解剖学,以及在妇产科、心脏科等领域中的应用。
三、医学影像解剖学1.常见解剖结构:掌握人体各系统的解剖结构、部位和相互关系,熟悉正常解剖学图像。
2.异常解剖学表现:了解不同病理状态下的解剖结构变化,如肿瘤、损伤、器官功能异常等的影像特征。
四、影像诊断学1.影像学表现:掌握各种疾病在影像上的特征表现,包括形态学、密度、信号强度、血管影像等方面。
2.诊断要点:了解各种疾病的特殊影像学表现和诊断要点,如肺部结节、脑卒中、骨折等的影像学诊断方法。
五、医学影像信息学1. PACS系统:了解医学影像数字化和信息化的基本原理,熟悉PACS系统的构成和功能。
2. DICOM标准:掌握DICOM标准的内容和应用,了解医学影像信息的标准化和互操作性。
六、辐射安全与保护1.辐射防护知识:了解医学影像工作者的辐射防护知识,包括剂量监测、个人防护装备等。
2.辐射安全法规:熟悉我国和国际上的相关辐射安全法规和标准,以及医学影像工作者的职业健康管理规定。
医学影像物理学
医学影像物理学1、X射线的基本特性:X射线的穿透作用、X射线的荧光作用、X射线的电离作用、X射线的热作用、X射线的化学和生物效应。
2、X射线的质:又称线质,表示X射线的硬度,即X射线穿透物体的能力与光子能量的大小有关,光子的能量越大穿透能力越强,越不容易被物体吸收。
3、X射线的量:垂直于X射线束的单位面积上、单位时间内通过的光子数称为X射线的量。
4、光电效应:入射光子与原子的内层电子作用时,将全部能量交给电子,获得能量的电子摆脱原子核的束缚而成为自由电子(光电子),而光子本身整个被原子吸收的过程称为光电效应。
5、在光电效应过程中产生:(1)负离子(光电子、俄歇电子);(2)正离子(丢失电子的原子);(3)标识X射线。
6、康普顿效应:入射当入射光子与原子的外层轨道电子(自由电子)相互作用时,光子的能量部分交给轨道电子,光子的频率改变后发生偏转以新的方向散射出去即散射光子,获得足够能量的轨道电子形成反冲电子,这个过程称为康普顿效应。
7、(1)光蜕变:能量在10MeV以上的X光子与物质作用时发生光蜕变。
(2)电子对效应:只有当入射X射线的光子能量大于 1.02MeV时才能发生电子对效应。
8、X射线的衰减:X射线与物质相互作用过程中,物质吸收了X射线后,X射线强度的减弱,即为衰减。
包括距离所致的扩散衰减和物质所致的吸收衰减。
9、影响X线衰减的因素:(1)X线的能量:入射光子的能量越大,穿透力越强,光电效应发生的概率下降,X线衰减越少,透过的X线强度越大。
(2)吸收物质的密度:吸收物质的密度越大,X 线衰减越大。
人体的组织密度大致分为三类,即高密度组织、中等密度组织、低密度组织。
(3)吸收物质的原子序数:吸收物质的原子序数越大,X线衰减越大。
(4 )吸收物质的每克物质的电子数越大,X线衰减越大。
10、X射线摄影基本原理:用胶片代替荧光屏,透过人体的X射线作用在胶片上,由于X射线的光化学作用,使胶片感光,因各组织器官的密度、厚度不同,对X射线的衰减不同,对胶片的感光程度也就不同,于是形成X射线影像。
影像物理总结重点
影像物理总结重点第一章 X 射线物理第一节 X 射线的产生1.X 射线产生条件:电子源、高速电子流、阳极靶2.靶去倾角越小,有效焦点的长度越小,即有效焦点的面积越小;实际焦点越大有效焦点的面积也增大,影像在胶片上所形成影像的清晰度;焦点上α射线增强度的差别主要是由灯丝,聚焦罩和加在聚焦罩上的电压来决定。
3.电子与原子的外层电子作用而损失的能量统称为碰撞损失。
凡属电子与原子核或原子的内层电子作用而损失的能量统称为辐射损失。
100KV 管电压下,电子撞击在钨靶上,99.1%的能量以碰撞损失,仅有0.9%的能量产生X 射线。
4.连续X 射线:韧致辐射是高速电子与靶原子核发生相互作用的结果,韧致辐射能谱连续。
短波极限(λmin ),h νmax =eU ,λmin =eU hc ,λmin =U 24.1(nm)。
连续X 射线的短波极限只与管电压有关,而与其他因素无关。
5.特征X 射线:如果高速电子没有与靶原子的外层电子作用,而是与内层电子发生作用,就会产生特征辐射,特征辐射的谱是线状的。
X 射线的能量等于发生跃迁的来年各个轨道电子的结合能之差。
只有当入射电子的动能大于靶原子的某一壳层电子的结合能时,才能产生特征X 射线。
而入射电子的动能完全由管电压决定。
因此,管电压U 须满足eU ≥Wi6.影响X 射线能谱的大小和相对位置的因素①管电流:能谱的幅度②管电压:能谱的幅度和位置③附加滤过:能谱幅度,在低能时更加有效④靶材料:能谱的幅度和标识X 射线谱的位置⑤管电压波形:能谱幅度,在高能时更加有效第二节 X 射线辐射场的空间分布1.X 射线强度:X 射线在空间某一点的强度是指单位时间内通过垂直于X 射线传播方向上的单位面积上的光子数量与能量乘积的总和。
X 射线强度是由光子数目和光子能量两个因素决定的 I=N-hv2.X 射线的量与质:X 射线的量决定于X 射线束中的光子数。
X 射线的质只与光子的能量有关,而光子的能量又由管电压和滤过厚度有关。
医学影像物理
1、 产生X 射线的基本条件:(1)电子源(2)强电场(3)高速电子流①高真空度空间 ②阳极靶2、 实际焦点:灯丝发射的电子,经聚焦加速后撞击在阳极靶上的面积有效焦点:X 射线管的实际焦点在垂直与X 射线管轴线方向上投影的面积靶倾角:靶的表面相对于X 射线输出方向的夹角三者关系:设实际焦点长度为A ,宽度为B ,经过投影后,有效焦点的宽度b 仍等于实际焦点的宽度,而有效焦点的长度a 则变成了 Asin θ,比实际焦点的长度短,可见靶倾角越小,有效焦点长度越小,即有效焦点的面积越小。
3、 产生连续X 射线机制:由于每个高速电子与靶原子作用时的相对位置不同,所以各相互作用对应的辐射损失也不同,因而发出的X 射线光子的能量也互不相同。
4、 短波极限:在波长减小的方向上,曲线都存在一个最短波长,称短波极限。
(λ min)U 是管电压,以“KV ”为单位。
5、 影响X 射线发射谱的因素:⑴电子动能⑵多次作用⑶低能X 射线吸收⑷外部滤过6、 X 射线的量:X 射线光子数目。
X 射线的质:是X 射线光子的能量。
7、 诊断放射学中光电效应:利: 影像质量好:1)无散射线,减少了照片灰雾2)增加吸收差别,对比度高 弊:射线通过光电效应可全部被人体吸收,增加L 了受检者的辐射剂量。
8、 诊断放射学中的康普顿效应:(1)从受检者身上产生的散射线能量与原射线相差很少,并且散射线比较对称地分布在整个空间,医生和技术人员必须重视,并采取相应的防护措施。
(2) 散射线增加了照片的灰雾,降低了影像的对比度,但与光电效应相比受检者的剂量较低。
9、 X 射线的基本特性:(1)穿透作用(2)荧光作用(3)电离作用(4)热作用(5)化学和生物效应10、连续X 射线的衰减规律:当连续X 射线穿过物质层其质和量都有变化。
特点是:X 射线强度变小,硬度变大(质提高)。
这是由于低能光子易被吸收,导致X 射线束通过物质后,高能电子在射线束中所占比例相对增高的缘故。
(完整word版)医学影像物理学__复习大纲整理
医学影像物理学复习整理(四种成像技术的物理原理,基本思想等)第一章:X射线物理第一节:X射线的产生医学成像用的X射线辐射源都是利用高速运动的电子撞击靶物质而产生的。
1. 产生X射线的四个条件:(1)电子源(2)高速电子流(3)阳极靶(4)真空环境2.X射线管结构及其作用(阴极,阳极,玻璃壁)(1)阴极:包括灯丝,聚焦杯,灯丝为电子源,聚焦杯调节电流束斑大小和电子发射方向。
(2)阳极:接收阴极发出的电子;为X射线管的靶提供机械支撑;是良好的热辐射体。
(3)玻璃壁:提供真空环境。
3.a.实际焦点:灯丝发射的电子,经聚焦加速后撞击在阳极靶上的面积称为实际焦点。
b.有效焦点:X射线管的实际焦点在垂直于X射线管轴线方向上投影的面积,称为有效焦点。
c.有效焦点的面积为实际焦点面积的sinθ倍。
(θ为靶与竖直方向的夹角)补充:影响焦点大小的因素有哪些?答:灯丝的形状、大小及在阴极体中的位置和阳极的靶角θ有关。
4.碰撞损失:电子与原子外层电子作用而损失的能量。
5.辐射损失:电子与原子内层电子或原子核作用而损失的能量。
6.管电流升高,焦点变大;管电压升高,焦点变小。
7.a.标识辐射:高速电子与原子内层电子发生相互作用,将能量转化为标识辐射。
b.韧致辐射:高速电子与靶原子核发生相互作用,将能量转化为韧致辐射。
6.连续X射线的短波极限只与管电压有关。
且与其成反比。
7.X射线的产生机制:电子与物质的相互作用,X射线是高速运动的电子在与物质相互作用中产生的。
韧致辐射是产生连续X射线的机制。
*影响X射线发射谱的因素:8.X射线的基本特征(1)X射线的穿透作用(2)荧光作用(3)电离作用(4)热作用(5)化学和生物效应*X射线的穿透作用是X射线医学影像学的基础。
第二节:X射线辐射场的空间分布1.X射线强度:X射线在空间某一点的强度是指单位时间内通过垂直于X射线传播方向上的单位面积上的光子数量与能量乘积的总和。
补充:X射线强度是由光子数量和光子能量两个因素决定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
医学影像物理学重点总结2020-09-02医学影像物理学重点总结X射线管:产生X射线的装置,阴极是X射线管的负极,由灯丝和聚焦罩构成;阳极是射线管的正极焦点,灯丝发出的电子经聚焦加速后撞击在阳极板上的面积称为实际焦点,是实际的是实际的射线源X射线源有效焦点,x射线管的实际焦点在垂直于x射线管的轴线方向上投影的面积x射线的量是x射线光子的数目,表示x射线的硬度,即穿透物质本领的大小,x射线质是x射线光子的能量,决定于x射线束中的光子数足跟效应阳极效应,厚靶周围x射线强度的空间分布,越靠近阳极一侧的x射线辐射强度下降的时间减影,在对比剂进入欲显示血管区域之前,利用计算机技术采集一帧图像中存于存储器中,作为掩模,他与在时间上顺序出现的充有对比剂的血管图像一对一的进行相减,使相对固定的图像部分被消除,突出了对比剂影像的对比度,这种减影方式称为能量减影,在欲显示血管引入碘对比剂后,分别用略低于和略高于碘k缘能量33kev 的x射线曝光,由于碘在不同能量下衰减特征有较大差别,而其他组织差别不大,将这两种能量条件下曝光的影像进行数字减影处理,可突出减影图像中碘的对比度,消除其他无关组织结构对图像的影响,这种减混合减影,在时间减影和能量减影的基础上,先做高能和低,像的剪影图像,来得到一系列的双能减影图像,在这些双能减影图像中,软组织像已经被消除,在用时间减影法处理这些双能减影图像以消除骨骼等背景,由于软组织像是用能量剪影法消除的,因此软组织的运动将不会产生影响数字减影血管造影,造影前后获的数字图像进行数字减影,在剪影图像中消除骨骼软组织等结构使浓度很低的对比剂所充盈的血管在剪影图像中显示出来,有较高的图像对比度为什么通过能量减影可分别显示软组织或骨的图像?答:光电效应的发生概率与X射线光子的能量、物质的密度、有效原子序数有关,是钙、骨骼、碘造影剂等高密度物质衰减X射线光子能量的主要方式;而康普顿效应的发生概率与物质有效原子序数无关,与X射线光子的能量略有关系,与物质的每克电子数有关(但因除氢外其它所有物质的每克电子数均十分Csych001 接近,故所有物质康普顿质量衰减系数几乎相同)。
医学影像诊断X射线摄片所使用的X射线束,在穿过人体组织的过程中,主要因发生光电效应和康普顿效应而衰减,常规X射线摄影照片所得到的图像中包含这两种衰减效应的综合信息。
能量减影摄影照片利用骨与软组织对不同能量X射线的衰减方式不同(不同有效原子序数物质发生光电效应的差别会在对不同能量X射线的衰减变化中更强烈地反映出来),及康普顿效应的产生在很大范围内与入射X射线的能量无关,可忽略不计的特点,将两种效应的信息进行分离,选择性去除骨或软组织的衰减信息,便可得到分离的软组织像或骨像。
影响x射线摄影图像质量的因素(1)影响图像对比度的因素①x射线胶片特性的影响②被检者的影响,组织成分,体厚③光子能量的.影响④散射线的影响,造成图像对比度降低。
(2)模糊对x射线影像质量的影响①模糊源与图像总模糊度:运动模糊焦点模糊,检测器模糊②模糊对影像质量的影响:降低了影像的对比度,减低细节可见度③噪声对影像质量的影响:掩盖微小细节④x射线影像中的伪影与畸变数字图像处理的主要方法:对比度增强(灰度变换法,直图修正法)图像平滑技术(邻域平均法,频域低通滤波)图像锐化技术(频域高通滤波,伪彩色显示)图像分割技术,兴趣区定量估值何谓层厚? 它与哪些因素有关?层厚本意指断层的厚度。
传统CT和单螺旋CT通常层厚由X线束在扫描野。
中心处扫描断层的有效厚度决定,这个厚度一般用扫描野中心处层厚灵敏度曲线的半高宽表示。
影响层厚的因素有准直器的准直孔径,检测器的有效受照宽度(尤其是MSCT),内插算法等。
以横断面为例,凡是影响在断层内外沿人体长轴方向的X射线能量分布情况的因素都将影响层厚的有效厚度。
何谓CT值? 它与衰减系数的数值有什么关系?答:按相对于水的衰减计算出来的衰减系数的相对值被称为CT值。
CT值的定义为:CT值是CT影像中每个像素所对应的物质对X射线线性平均衰减量大小的表示。
实际中,均以水的衰减系数μw作为基准,若某种物质的平均衰减系数为μ,则其对应的CT值由下式给出 CT =k(μ-μw)/μw值的标尺按空气的CT值=-1 000HU和水的CT值=0HU作为两个固定值标定,这样标定的根据是因空气和水的CT值几乎不受X线能量影响。
CT值的单位为“亨”(HU),规定μ为能量是73keV的X射线在水中的衰减系数,μw =19.5m-1。
式中k称为分度因子,按CT值标尺,取k=1 000,故实用的定义式应表为CT=(μ-μw)/μw ×1000HU普通X射线摄影像与X-CT图像最大不同之处是什么?答:普通X射线摄影像是重叠的影像,而X-CT图像是数字化的断层图像。
x-CT的指导思想:x-CT是运用扫描并采集投影的物理技术,以确定x射线在体内的衰减系数为基础,采用一定算法,经计算计运算处理,求解出人体组织的衰减系数值在某剖面上的二维剖面的矩阵后,在转为图像上的灰度分布,从而实现建立断层解剖图像的现代医学成像技术。
本质是衰减系数成像。
医学影像物理学重点总结X射线管:产生X射线的装置,阴极是X射线管的负极,由灯丝和聚焦罩构成;阳极是射线管的正极焦点,灯丝发出的电子经聚焦加速后撞击在阳极板上的面积称为实际焦点,是实际的是实际的射线源X射线源有效焦点,x射线管的实际焦点在垂直于x射线管的轴线方向上投影的面积x射线的量是x射线光子的数目,表示x射线的硬度,即穿透物质本领的大小,x射线质是x射线光子的能量,决定于x射线束中的光子数足跟效应阳极效应,厚靶周围x射线强度的空间分布,越靠近阳极一侧的x射线辐射强度下降的时间减影,在对比剂进入欲显示血管区域之前,利用计算机技术采集一帧图像中存于存储器中,作为掩模,他与在时间上顺序出现的充有对比剂的血管图像一对一的进行相减,使相对固定的图像部分被消除,突出了对比剂影像的对比度,这种减影方式称为能量减影,在欲显示血管引入碘对比剂后,分别用略低于和略高于碘k缘能量33kev 的x射线曝光,由于碘在不同能量下衰减特征有较大差别,而其他组织差别不大,将这两种能量条件下曝光的影像进行数字减影处理,可突出减影图像中碘的对比度,消除其他无关组织结构对图像的影响,这种减混合减影,在时间减影和能量减影的基础上,先做高能和低,像的剪影图像,来得到一系列的双能减影图像,在这些双能减影图像中,软组织像已经被消除,在用时间减影法处理这些双能减影图像以消除骨骼等背景,由于软组织像是用能量剪影法消除的,因此软组织的运动将不会产生影响数字减影血管造影,造影前后获的数字图像进行数字减影,在剪影图像中消除骨骼软组织等结构使浓度很低的对比剂所充盈的血管在剪影图像中显示出来,有较高的图像对比度为什么通过能量减影可分别显示软组织或骨的图像?答:光电效应的发生概率与X射线光子的能量、物质的密度、有效原子序数有关,是钙、骨骼、碘造影剂等高密度物质衰减X射线光子能量的主要方式;而康普顿效应的发生概率与物质有效原子序数无关,与X射线光子的能量略有关系,与物质的每克电子数有关(但因除氢外其它所有物质的每克电子数均十分Csych001 接近,故所有物质康普顿质量衰减系数几乎相同)。
医学影像诊断X射线摄片所使用的X射线束,在穿过人体组织的过程中,主要因发生光电效应和康普顿效应而衰减,常规X射线摄影照片所得到的图像中包含这两种衰减效应的综合信息。
能量减影摄影照片利用骨与软组织对不同能量X射线的衰减方式不同(不同有效原子序数物质发生光电效应的差别会在对不同能量X射线的衰减变化中更强烈地反映出来),及康普顿效应的产生在很大范围内与入射X射线的能量无关,可忽略不计的特点,将两种效应的信息进行分离,选择性去除骨或软组织的衰减信息,便可得到分离的软组织像或骨像。
影响x射线摄影图像质量的因素(1)影响图像对比度的因素①x射线胶片特性的影响②被检者的影响,组织成分,体厚③光子能量的.影响④散射线的影响,造成图像对比度降低。
(2)模糊对x射线影像质量的影响①模糊源与图像总模糊度:运动模糊焦点模糊,检测器模糊②模糊对影像质量的影响:降低了影像的对比度,减低细节可见度③噪声对影像质量的影响:掩盖微小细节④x射线影像中的伪影与畸变数字图像处理的主要方法:对比度增强(灰度变换法,直图修正法)图像平滑技术(邻域平均法,频域低通滤波)图像锐化技术(频域高通滤波,伪彩色显示)图像分割技术,兴趣区定量估值何谓层厚? 它与哪些因素有关?层厚本意指断层的厚度。
传统CT和单螺旋CT通常层厚由X线束在扫描野。
中心处扫描断层的有效厚度决定,这个厚度一般用扫描野中心处层厚灵敏度曲线的半高宽表示。
影响层厚的因素有准直器的准直孔径,检测器的有效受照宽度(尤其是MSCT),内插算法等。
以横断面为例,凡是影响在断层内外沿人体长轴方向的X射线能量分布情况的因素都将影响层厚的有效厚度。
何谓CT值? 它与衰减系数的数值有什么关系?答:按相对于水的衰减计算出来的衰减系数的相对值被称为CT值。
CT值的定义为:CT值是CT影像中每个像素所对应的物质对X射线线性平均衰减量大小的表示。
实际中,均以水的衰减系数μw作为基准,若某种物质的平均衰减系数为μ,则其对应的CT值由下式给出 CT=k(μ-μw)/μw值的标尺按空气的CT值=-1 000HU和水的CT值=0HU作为两个固定值标定,这样标定的根据是因空气和水的CT值几乎不受X线能量影响。
CT值的单位为“亨”(HU),规定μ为能量是73keV的X射线在水中的衰减系数,μw =19.5m-1。
式中k称为分度因子,按CT值标尺,取k=1 000,故实用的定义式应表为CT=(μ-μw)/μw ×1000HU普通X射线摄影像与X-CT图像最大不同之处是什么?答:普通X射线摄影像是重叠的影像,而X-CT图像是数字化的断层图像。
x-CT的指导思想:x-CT是运用扫描并采集投影的物理技术,以确定x射线在体内的衰减系数为基础,采用一定算法,经计算计运算处理,求解出人体组织的衰减系数值在某剖面上的二维剖面的矩阵后,在转为图像上的灰度分布,从而实现建立断层解剖图像的现代医学成像技术。
本质是衰减系数成像。