高二数学互斥事件、对立事件教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
互斥事件、对立事件
【学习目标】
1.理解互斥事件、对立事件的概念和实际意义,能根据它们的定义来辨别一些事件是
2
3
4
【基础知识精讲】
本节内容主要有两部分:一是互斥事件、对立事件的基本概念,二是互斥事件概率加法
1
如果两个事件A和B不可能同时发生,则称A和B互斥(互不相容).从集合的角度看,是指这两个事件所含的结果组成的集合不相交,则A∩B=∅.易知,必然事件与不可能事件是互斥的.如果A1,A2,…,A n中的任何两个都是互斥事件,那么我们就说,事件A1,A2,…,A n彼此互斥.从集合的角度看,n个事件彼此互斥,是指由各个事件所含的结果组成的集合彼此各不相交.例如,从一堆产品(其中正品和次品都多于2个)中任取2件,其中:(1)“恰有一件次品和恰有两件次品”就是互斥事件;(2)“至少有一件次品和全是次品”就不是互斥事件;(3)“至少有一件次品和
再如,掷一个六个面上分别刻有1、2、3、4、5、6六个数字的正方体玩具。事件A:向上的数字大于4;事件B:向上的数字小于3;两种事件不可能同时出现,则A、B是互斥事件.若事件A向上的数字大于4,事件B向上的数字为偶数,则A、B两事件不是互斥的.因为向上的数字为6时,既是事件A发生,又是事件B
2
如果A与B是互斥事件,且在一次试验中A与B必有一个发生,则称它们为对立(互逆)事件.从集合的角度看,由事件B所含的结果组成的集合,是全集中由事件A所含的结果组
成的集合的补集.也即满足条件:A∩B=∅且A∪B=U,通常事件A的对立事件记作A.由
定义知,互斥事件是对立事件的必要不充分条件.即对立事件一定是互斥事件,但互斥事件不一定是对立事件.如掷正方体玩具向上的面的数字大于4和向上的数字小于3两个事件,A、B是互斥的但不是对立.因为A、B两个事件可以都不发生.若事件A是向上的数字为偶
数,事件B是向上的数字为奇数,则A、B是对立事件,对立事件A和A的概率性质为P(A)+P(A)=1,即两个对立事件的概率和为1
3.互斥事件A与B
由于集合是可以运算的,可用集合表示的事件也能进行某些运算.设A、B是两个事件,那么“在同一试验中,A或B至少有一个发生”这一事件,则称为A与B的和,记作A+B (或A∪B).教材仅限于两互斥事件的和事件.推而广之,“A1+A2+…+A n”表示这样一
A2,…,A n
个事件:在同一试验中,A
4
两互斥事件的和的概率,等于这两事件的概率的和.即P (A +B )=P (A )+P (B ).更一般地,有限个彼此互斥事件的和的概率,等于这些事件的概率的和.即)()(11i n
i n i i A P A P ∑∑===
利用这一定理来求概率的步骤是:(1)要确定这诸事件彼此互斥;(2)这诸事件中有一发生;(3)先求出这诸事件分别发生的概率,再求其和.值得注意的是:(1)(2
)两
5
对立事件的概率和等于1,即P (A )+P (A )=1
.通常,当直接求某一事件的概率
6
在求某些稍复杂的事件的概率时,通常有两种方法:一是将所求事件的概率化成一些彼此互斥的事件的概率的和;二是先求此事件的对立事件的概率,
利用概率的可加性及对立事
1
互斥事件是不可能同时发生的事件,它可以是两个事件之间,也可以是多个事件之间;对立事件首先应
[例1]某县城有两种报纸甲、乙供居民订阅,记事件A 为“只订甲报”,事件B 为“至少订一种报”,事件C 为“至多订一种报”,事件D 为“不订甲报”,事件E
为“一种报也
(1)A 与C ;(2)B 与E ;(3)B 与D ;(4)B 与C ;(5)C 与E
解:(1)由于事件C “至多订一种报”中有可能只订甲报,即事件A 与事件C 有可能同时发生,故A 与C
不是互
(2)事件B “至少订一种报”与事件E “一种报也不订”是不可能同时发生的,故B 与E 是互斥事件.由于事件B 发生可导致事件E 一定不发生,且事件E 发生会导致事件B 一定不发生,故B 与
E
(3)事件B “至少订一种报”中有可能只订乙报,即有可能不订甲报,即事件B 发生,事件D 也可能发生,故B 与
D
(4)事件B “至少订一种报”中有这些可能:“只订甲报”“只订乙报”“订甲、乙两种报”.事件C “至多订一种报”中有这些可能:“什么也不订”“只订甲报”“只订乙报”.由于这两个事件可能同时发生,故B 与
C
(5)由(4)的分析,事件E “一种报也不订”只是事件C 的一种可能,事件C 与事件E 有可能同时发生,故C 与
E
2
从集合角度看,几个事件彼此互斥,是指各个事件所含的结果组成的集合彼此互不相交.而在对立事件中,由事件A 所含的结果组成的集合,是全集中由事件A
所含的结果组
[例2]如果事件A 、B 互斥,那么(
A .A +
B 是必然事件
B .A +B
C .A 与B 一定互斥
D .A 与B
解:对于选项A :事件A +B 相当于集合A ∪B ,显然它不一定为全集,故不一定为必然事件,不能选A
对于选项B :事件A +B 相当于集合)()()(B A U B U A U ⋂-=-⋃-,由于A 、B 互斥,故A ∩B =∅,所以U B A U =⋂-)(,即A +B 为必然事件,故选B
对于选项C 、D 评注:利用集合思想可以帮助我们理解基本概念,也可以帮助我们判断一些命题的真假,
其关键在于事件A 、B 所对应的集合与全集U
3
[例3]向假设的三个相邻的军火库投掷一个炸弹,炸中第一个军火库的概率为0.025,其余两个各为0.1
解:设以A 、B 、C 分别表示炸中第一、第二、第三军火库这三个事件,则P (A )=0.025,P (B )=P (C )=0.1
又设D 表示军火库爆炸这个事件,则有D =A +B +C ,其中A 、B 、C 是互斥事件,因为
∴P (D )=P (A )+P (B )+P (C )=0.025+0.1+0.1=0.225
评注:对于一个较复杂的事件,一般将其分解成几个简单的事件,当这些事件彼此互斥
值得注意的是,如果两个事件不互斥,就不能运用概率加法公式.例如把抛掷一个正方体玩具(各面分别标有数1~6)作为一次试验,事件A 表示出现奇数(指向上的数是奇数),事件B 表示向上的数不超过3,那么A 与B 就不互斥,因为如果出现1或3,都表示A 与B 同时发生了.现在再看A +B 这一事件,这个事件包括4种结果,出现1、2、3和5,所以 P (A +B )=
32,而P (A )=21,P (B )=21,显然P (A +B )≠P (A )+P (B 4
所谓对立事件就是某事件的反面,用集合观点看就是某集合的补集,当某个事件包含的情况(即基本事件)太多时,或者含有“至多”“至少”这样的字眼时,可考虑对立事件.
[例4]一批产品共100件,其中5件是废品,任抽10件进行检查,求下列事件的概率.
(1)10
(2)10
策略:10件产品中恰有0、1、2、3、4、5
解:设A i 为事件“10件产品中恰有i 件废品”,其中i =0、1、2、3、4、5,易知A i (i =0,1,…,5