电磁场知识总结

合集下载

高中物理电磁场基础知识学习笔记

高中物理电磁场基础知识学习笔记

高中物理电磁场基础知识学习笔记电磁场是高中物理中的一个重要概念,理解和掌握电磁场的基础知识对于学生的物理学习至关重要。

本文将通过分析性论述的方式,结合具体操作方法和实例,深入探讨高中物理电磁场基础知识的学习笔记。

一、电磁场的概念与特性在学习电磁场的基础知识时,首先需要了解电磁场的概念和特性。

电磁场是由电荷和电流所产生的物理现象,它包括静电场和磁场两个方面。

静电场是由静止电荷所产生的场,而磁场则是由运动电荷所产生的场。

电磁场具有电场线和磁力线两种方式来表示。

学生可以通过实验来直观地了解电磁场的概念和特性。

例如,可以通过将一个带正电的塑料棒靠近一个小金属球,观察小金属球受到的吸引力,从而感受到电场的作用;又如,可以通过将一个带电流的螺线管靠近一个小磁针,观察小磁针的偏转情况,从而感受到磁场的作用。

二、电场的性质和计算了解电场的性质和计算方法对于学生掌握电磁场的基础知识至关重要。

电场具有电势、电场强度和电场线三个重要性质。

1. 电势:电势是用来描述电场中每个位置的电位能的大小。

学生可以通过计算电荷在电场中的电势差来理解电势的概念。

例如,可以计算一个带正电的点电荷在两个位置之间的电势差,从而了解电势的计算方法。

2. 电场强度:电场强度是描述电场中电荷受力大小和方向的物理量。

学生可以通过计算电荷在电场中受到的力大小和方向来理解电场强度的概念。

例如,可以计算一个带正电的点电荷在某一位置上的电场强度,从而了解电场强度的计算方法。

3. 电场线:电场线是用来表示电场的方向和强度的曲线,它的方向与电场强度方向相一致。

学生可以通过绘制电场线图来了解电场的分布情况和特点。

例如,可以绘制一个带正电的点电荷所产生的电场线图,从而了解电场线的绘制方法。

三、磁场的特性和计算在掌握了电场的基础知识后,学生还需要学习磁场的特性和计算方法。

磁场具有磁感应强度、磁通量和安培力三个重要性质。

1. 磁感应强度:磁感应强度是描述磁场中磁力大小和方向的物理量。

电磁场与电磁波基础知识总结

电磁场与电磁波基础知识总结

电磁场与电磁波基础知识总结静电场是指电场和电荷之间关系稳定不变的情况下的电磁场。

在静电场中,电场的强度由电荷及其分布决定,遵循库仑定律。

静磁场是指磁场和磁荷之间关系稳定不变的情况下的电磁场。

在静磁场中,磁场的强度由磁荷及其分布决定,遵循比奥-萨伐尔定律。

静电场和静磁场所产生的相互作用称为电磁感应。

变化电磁场是指电荷和磁荷随时间变化而产生的电磁场。

在变化电磁场中,电场和磁场相互作用、相互产生、相互影响,遵循麦克斯韦方程组。

电场和磁场的变化会引起彼此的变化,形成电磁波的传播。

电磁波是电磁场的一种特殊表现形式,它是由电场和磁场相互作用而产生的一种能量传播方式。

电磁波是横波,垂直于电磁场传播方向的振动方向,传播速度等于真空中光速,约为3×10^8米/秒。

在电磁波中,电场和磁场的振幅相等、相位差为90°,并且电场和磁场的变化存在一定的关系,它们之间满足麦克斯韦方程组的关系式。

根据电磁波的频率范围,可以将电磁波分为射频波、微波、红外线、可见光、紫外线、X射线和γ射线等。

不同频率的电磁波所具有的性质和应用也不同,例如,微波可以用于通讯和加热食物,红外线可用于夜视和遥控等。

电磁场和电磁波在现代科学技术中有广泛的应用。

电磁波的发现和应用是无线通信、雷达、卫星通信、数字电视、手机等现代通讯技术的基础。

电磁波对物质的作用和能量的传递是放射治疗、医学诊断以及无线能量传输的基础。

电磁波与物质相互作用和散射形成了X射线检查、光电子学、红外光谱学等现代科学技术的核心原理。

总结起来,电磁场与电磁波是电磁学的基础知识。

电磁场是电场和磁场的总和,根据静态和动态特性可以分为静电场、静磁场和变化电磁场。

电磁波是电磁场的一种特殊表现形式,是由变化电磁场产生的能量传播方式。

电磁场和电磁波在现代科学技术中有广泛的应用。

深入理解和应用电磁场与电磁波的原理,对于掌握电磁学的基础知识和发展现代科学技术具有重要意义。

电磁场理论知识点总结

电磁场理论知识点总结

电磁场与电磁波总结第1章 场论初步一、矢量代数A ∙B =AB cos θA B ⨯=AB e AB sin θA ∙(B ⨯C ) =B ∙(C ⨯A ) = C ∙(A ⨯B ) A ⨯ (B ⨯C ) = B (A ∙C ) – C ∙(A ∙B ) 二、三种正交坐标系 1. 直角坐标系矢量线元x y z =++l e e e d x y z 矢量面元=++S e e e x y z d dxdy dzdx dxdy 体积元d V = dxdydz单位矢量的关系⨯=e e e x y z ⨯=e e e y z x ⨯=e e e z x y 2. 圆柱形坐标系矢量线元=++l e e e z d d d dz ρϕρρϕl 矢量面元=+e e z dS d dz d d ρρϕρρϕ 体积元dV = ρd ρd ϕd z 单位矢量的关系⨯=⨯⨯=e e e e e =e e e e zz z ρϕϕρρϕ3. 球坐标系矢量线元d l = e r d r + e θ r d θ+e ϕ r sin θd ϕ 矢量面元d S = e r r 2sin θd θd ϕ 体积元dv = r 2sin θd r d θd ϕ 单位矢量的关系⨯=⨯⨯=e e e e e =e e e e r r r θϕθϕϕθcos sin 0sin cos 0 001x r y z z A A A A A A ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ϕϕϕϕϕ sin cos sin sin cos cos cos cos sin sin sin cos 0x r y z A A A A A A ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦θϕθϕθϕθθϕθϕθϕϕ sin 0cos cos 0sin 010r r z A A A A A A ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦θϕϕθθθθ 三、矢量场的散度和旋度1.通量与散度=⋅⎰A SSd Φ0lim∆→⋅=∇⋅=∆⎰A S A A Sv d div v2. 环流量与旋度=⋅⎰A l ld Γmaxnrot =lim∆→⋅∆⎰A l A e lS d S3. 计算公式∂∂∂∇=++∂∂∂⋅A y x zA A A x y z11()∂∂∂∇=++∂∂∂⋅A zA A A zϕρρρρρϕ 22111()(sin )sin sin ∂∂∂∇=++∂∂∂⋅A r A r A A r r r r ϕθθθθθϕx y z ∂∂∂∇⨯=∂∂∂e e e A x y z x y z A A A ∂∂∂∇⨯=∂∂∂e e e A z z z A A A ρϕρϕρρϕρsin sin ∂∂∂∇⨯=∂∂∂e e e A r r zr r r A r A r A ρϕθθθϕθ 4. 矢量场的高斯定理与斯托克斯定理⋅=∇⋅⎰⎰A S A SVd dV⋅=∇⨯⋅⎰⎰A l A S lSd d四、标量场的梯度 1. 方向导数与梯度00()()lim∆→-∂=∂∆l P u M u M u ll 0cos cos cos ∂∂∂∂=++∂∂∂∂P u u u ulx y zαβγ cos ∇⋅=∇e l u u θgrad ∂∂∂∂==+∂∂∂∂e e e +e n x y z u u u u u n x y z2. 计算公式∂∂∂∇=++∂∂∂e e e x y z u u uu x y z1∂∂∂∇=++∂∂∂e e e z u u u u z ρϕρρϕ 11sin ∂∂∂∇=++∂∂∂e e e r u u uu r r r zθϕθθ 五、无散场与无旋场1. 无散场()0∇⋅∇⨯=A =∇⨯F A2. 无旋场()0∇⨯∇=u =∇F u六、拉普拉斯运算算子 1. 直角坐标系22222222222222222222222222222222∂∂∂∇=++∇=∇+∇+∇∂∂∂∂∂∂∂∂∂∂∂∂∇=++∇=++∇=++∂∂∂∂∂∂∂∂∂A e e e x x y y z zy y y x x x z z z x y zu u u u A A A x y zA A A A A A A A A A A A x y z x y z x y z,,2. 圆柱坐标系22222222222222111212⎛⎫∂∂∂∂∇=++ ⎪∂∂∂∂⎝⎭∂∂⎛⎫⎛⎫∇=∇--+∇-++∇ ⎪ ⎪∂∂⎝⎭⎝⎭A e e e z zu u uu zA A A A A A A ϕρρρρϕϕϕρρρρρϕρρϕρρϕ3. 球坐标系22222222111sin sin sin ⎛⎫∂∂∂∂∂⎛⎫∇=++ ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭u u uu r r r r r r θθθϕθϕ ⎪⎪⎭⎫⎝⎛∂∂+-∂∂+∇+⎪⎪⎭⎫⎝⎛∂∂--∂∂+∇+⎪⎪⎭⎫⎝⎛∂∂-∂∂---∇=∇ϕθθθϕθϕθθθθϕθθθθϕϕϕϕθθθϕθθA r A r A r A A r A r A r A A r A r A r A r A r r r r r 222222222222222222sin cos 2sin 1sin 2sin cos 2sin 12sin 22cot 22e e e A七、亥姆霍兹定理如果矢量场F 在无限区域中处处是单值的,且其导数连续有界,则当矢量场的散度、旋度和边界条件(即矢量场在有限区域V ’边界上的分布)给定后,该矢量场F 唯一确定为()()()=-∇+∇⨯F r r A r φ其中1()()4''∇⋅'='-⎰F r r r r V dV φπ1()()4''∇⨯'='-⎰F r A r r r V dV π第2章 电磁学基本规律一、麦克斯韦方程组 1. 静电场基本规律真空中方程: 0d ⋅=⎰SE S qε d 0⋅=⎰lE l 0∇⋅=E ρε0∇⨯=E 场位关系:3''()(')'4'-=-⎰r r E r r r r V q dV ρπε=-∇E φ 01()()d 4π''='-⎰r r |r r |V V ρφε介质中方程: d ⋅=⎰D S S qd 0⋅=⎰lE l ∇⋅=D ρ0∇⨯=E极化:0=+D E P εe 00(1)=+==D E E E r χεεεε极化电荷:==⋅P e PS n n P ρ=-∇⋅P P ρ 2. 恒定电场基本规律电荷守恒定律:0∂∇⋅+=∂J tρ 传导电流:=J E σ与运流电流:ρ=J v 恒定电场方程: d 0⋅=⎰J S Sd 0l ⋅=⎰E l 0∇⋅=J 0∇⨯E =3. 恒定磁场基本规律真空中方程:0 d ⋅=⎰B l lIμ d 0⋅=⎰SB S 0∇⨯=B J μ0∇⋅=B场位关系:03()( )()d 4π ''⨯-'='-⎰J r r r B r r r VV μ=∇⨯B A 0 ()()d 4π'''='-⎰J r A r r r V V μ 介质中方程:d ⋅=⎰H l l Id 0⋅=⎰SB S ∇⨯=H J 0∇⋅=B磁化:0=-BH M μm 00(1)=+B H =H =H r χμμμμ 磁化电流:m =∇⨯J M ms n =⨯J M e4. 电磁感应定律d d ⋅=-⋅⎰⎰SE l B S lddt ∂∇⨯=-∂B E t5. 全电流定律和位移电流全电流定律: d ()d ∂⋅=+⋅∂⎰⎰D H l J S lSt ∂∇⨯=+∂DH J t位移电流:d =DJ d dt6. Maxwell Equationsd ()d d d d d 0∂⎧⋅=+⋅⎪∂⎪∂⎪⋅=-⋅⎪∂⎨⎪⋅=⎪⎪⋅=⎪⎩⎰⎰⎰⎰⎰⎰⎰D H J S B E S D S B Sl S lS S V S l t l t V d ρ 0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩D H J BE D B t t ρ()()()()0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩E H E H E E H t t εσμερμ 二、电与磁的对偶性e m e m e m e e m m e e m mm e 00∂∂⎫⎧∇⨯=-∇⨯=⎪⎪∂∂⎪⎪∂∂⎪⎪∇⨯=+∇⨯=--⎬⎨∂∂⎪⎪∇=∇=⎪⎪⎪⎪∇=∇=⎩⎭⋅⋅⋅⋅B D E H D B H J E J D B D B t t&t t ρρm e e m ∂⎧∇⨯=--⎪∂⎪∂⎪∇⨯=+⇒⎨∂⎪∇=⎪⎪∇=⎩⋅⋅B E J D H J D B t t ρρ 三、边界条件 1. 一般形式12121212()0()()()0⨯-=⨯-=⋅-=⋅-=e E E e H H J e D D e B B n n S n Sn ρ2. 理想导体界面和理想介质界面111100⨯=⎧⎪⨯=⎪⎨⋅=⎪⎪⋅=⎩e E e H J e D e B n n S n S n ρ12121212()0()0()0()0⨯-=⎧⎪⨯-=⎪⎨⋅-=⎪⎪⋅-=⎩e E E e H H e D D e B B n n n n 第3章静态场分析一、静电场分析1. 位函数方程与边界条件位函数方程:220∇=-∇=ρφφε电位的边界条件:121212=⎧⎪⎨∂∂-=-⎪∂∂⎩s nn φφφφεερ111=⎧⎪⎨∂=-⎪∂⎩s const nφφερ(媒质2为导体) 2. 电容定义:=qC φ两导体间的电容:=C q /U任意双导体系统电容求解方法:2211⋅⋅===⋅⋅⎰⎰⎰⎰D SE S E l E lS Sd d q C U d d ε 3. 静电场的能量N 个导体:112==∑ne i i i W q φ连续分布:12=⎰e V W dV φρ电场能量密度:12D E ω=⋅e二、恒定电场分析1. 位函数微分方程与边界条件位函数微分方程:20∇=φ边界条件:121212=⎧⎪⎨∂∂=⎪∂∂⎩nn φφφφεε12()0⋅-=e J J n 1212[]0⨯-=J J e n σσ 2. 欧姆定律与焦耳定律欧姆定律的微分形式:=J E σ焦耳定律的微分形式:=⋅⎰E J VP dV3. 任意电阻的计算2211d d 1⋅⋅====⋅⋅⎰⎰⎰⎰E l E l J S E S SSU R G I d d σ(L R =σS)4.静电比拟法:C ——G ,ε——σ2211⋅⋅===⋅⋅⎰⎰⎰⎰D SE S E l E lS Sd d q C U d d ε2211d d d ⋅⋅===⋅⋅⎰⎰⎰⎰J S E SE lE lS S d I G U σ三、恒定磁场分析1. 位函数微分方程与边界条件矢量位:2∇=-A J μ12121211⨯⨯⨯A A e A A J n s ()=∇-∇=标量位:20m φ∇=211221∂∂==∂∂m m m m n nφφφφμμ 2. 电感定义:d d ⋅⋅===⎰⎰B S A l SlL IIIψ0=+i L L L3. 恒定磁场的能量 N 个线圈:112==∑Nm j j j W I ψ连续分布:m 1d 2A J =⋅⎰V W V 磁场能量密度:m 12H B ω=⋅ 第4章 静电场边值问题的解一、边值问题的类型● 狄利克利问题:给定整个场域边界上的位函数值()=f s φ ● 纽曼问题:给定待求位函数在边界上的法向导数值()∂=∂f s nφ● 混合问题:给定边界上的位函数及其向导数的线性组合:2112()()∂==∂f s f s nφφ ● 自然边界:lim r r φ→∞=有限值二、唯一性定理静电场的惟一性定理:在给定边界条件(边界上的电位或边界上的法向导数或导体表面电荷分布)下,空间静电场被唯一确定。

电磁感应、电磁场电磁波的知识点总结全

电磁感应、电磁场电磁波的知识点总结全

可编辑修改精选全文完整版高二物理电磁感应、电磁场电磁波的知识点总结2012.6一、产生感应电流的条件:1.磁通量发生变化(产生感应电动势的条件)2.闭合回路*引起磁通量变化的常见情况:(1)线圈中磁感应强度发生变化(2)线圈在磁场中面积发生变化(如:闭合回路中的部分导体做切割磁感线运动)(3)线圈在磁场中转动二、感应电流的方向判定:1.楞次定律:(适用磁通量发生变化)感应电流的磁场总是阻碍引起感应电流的磁通量的变化。

关于“阻碍”的理解:(1)“阻碍”是“阻碍原磁通量的变化”,而不是阻碍原磁场;(2)“阻碍”不是“阻止”,尽管“阻碍原磁通量的变化”,但闭合回路中的磁通量仍然在变化;(3)“阻碍”是“阻碍变化”,当原磁通量增加时,感应电流的磁场方向与原磁场方向相反——阻碍原磁通量的增加;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同——阻碍原磁通量的减少。

2.右手定则:(适用导体切割磁感应线)伸开右手,让拇指跟其余四指垂直,并且都跟手掌在一个平面内,让磁感线垂直从手心进入,拇指指向导体运动的方向,其余四指指的就是感应电流的方向。

其中四指指向还可以理解为:感应电动势高电势处。

*应用楞次定律判断感应电流方向的具体步骤①明确闭合回路中原磁场方向(穿过线圈中原磁场的磁感线的方向)。

②把握闭合回路中原磁通量的变化(φ原是增加还是减少)。

③依据楞次定律,确定回路中感应电流磁场的方向(B感取什么方向才能阻碍φ原的变化)。

④利用安培定则,确定感应电流的方向(B感和I感之间的关系)。

*楞次定律的拓展1.当闭合回路中磁通量变化而引起感应电流时,感应电流的效果总是阻碍原磁通量的变化。

(增反减同)2.当线圈和磁场发生相对运动而引起感应电流时,感应电流的效果总是阻碍二者之间的相对运动(来斥去吸)。

3.当线圈中自身电流发生变化而引起感应电流时,感应电流的效果总是阻碍原电流的变化(自感现象)。

三、感应电动势的大小:1. 法拉第电磁感应定律:在电磁感应现象中,电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。

电磁场与电磁波课程知识点总结

电磁场与电磁波课程知识点总结

电磁场与电磁波课程知识点总结1 麦克斯韦方程组的理解和掌握 (1)麦克斯韦方程组⎰⎰⎰⎰⎰⎰=∙=∙∇=∙=∙∇∙∂∂-=∙∂∂-=⨯∇∙∂∂+=∙∂∂+=⨯∇ss l s l s s d B B Q s d D D s d t B l d E t B E s d tD J l d H t D J H 0)(ρ本构关系: E J HB EDσμε===(2)静态场时的麦克斯韦方程组(场与时间t 无关)⎰⎰⎰⎰=∙=∙∇=∙=∙∇=∙=⨯∇=∙=⨯∇ss l l s d B B Qs d D D l d E E Il d H J H 0000ρ2 边界条件(1)一般情况的边界条件nn n sT t t sn s n n sn tt n B B B B a J H H J H H a D D D D a E E E E a 21212121212121210)())(0)==-∙=-=-⨯=-=-∙==-⨯((ρρ(2)介质界面边界条件(ρs = 0 J s = 0)nn n t t n n n n t t n B B B B a H H H H a D D D D a E E E E a 21212121212121210)(0)0)(0)==-∙==-⨯==-∙==-⨯(((1)基本方程0022=∙==∇-=∇=∙=∙∇=∙=⨯∇⎰⎰⎰A Apsl ld E Qs d D D l d E E ϕϕϕερϕρ本构关系: E Dε=(2)解题思路● 对称问题(球对称、轴对称、面对称)使用高斯定理或解电位方程(注意边界条件的使用)。

● 假设电荷Q ——> 计算电场强度E ——> 计算电位φ ——> 计算能量ωe =εE 2/2或者电容(C=Q/φ)。

(3)典型问题● 导体球(包括实心球、空心球、多层介质)的电场、电位计算; ● 长直导体柱的电场、电位计算;● 平行导体板(包括双导体板、单导体板)的电场、电位计算; ● 电荷导线环的电场、电位计算; ● 电容和能量的计算。

物理学中的电磁场理论知识点

物理学中的电磁场理论知识点

物理学中的电磁场理论知识点电磁场理论是物理学中重要的一部分,它描述了电荷体系所产生的电磁场以及电磁场与电荷之间的相互作用。

本文将介绍电磁场的概念、电场和磁场的性质以及麦克斯韦方程组等电磁场的基本知识点。

一、电磁场的概念电磁场是指由电荷或电流体系所产生的电场和磁场的总和。

电场是由电荷引起的一种力场,可使带电粒子受力;磁场则是由电流引起的一种力场,可对磁性物质施加力。

二、电场的性质1. 电场的强度:电场强度定义为单位正电荷所受的电场力,通常用E 表示,其大小与电荷量和距离有关。

2. 电场线:电场线是用来表示电场分布的曲线,其方向与电场强度方向相同。

电场线的密度反映了电场强度的大小。

3. 高斯定律:高斯定律描述了电场与电荷之间的关系,它指出电场通过闭合曲面的通量与闭合曲面内的总电荷成正比。

三、磁场的性质1. 磁感应强度:磁感应强度是磁场的基本物理量,用 B 表示,其大小与电荷量和距离无关。

它描述了磁场对磁性物质产生的作用力。

2. 磁场线:磁场线是用来表示磁场分布的曲线,其方向与磁感应强度的方向相同。

磁场线呈环状,从北极经南极形成闭合曲线。

3. 法拉第电磁感应定律:法拉第电磁感应定律描述了磁场变化引起感应电动势的现象。

它说明了磁场变化对电荷运动的影响。

四、麦克斯韦方程组麦克斯韦方程组是描述电磁场的基本方程,它由麦克斯韦总结了电场和磁场的性质而得出。

麦克斯韦方程组包括四个方程,分别是:1. 麦克斯韦第一方程(高斯定律):它描述了电场通过闭合曲面的通量与闭合曲面内的总电荷成正比。

2. 麦克斯韦第二方程(法拉第电磁感应定律):它描述了磁场变化引起感应电动势的现象,即电场沿闭合回路的环路积分与磁场变化的速率成正比。

3. 麦克斯韦第三方程(安培环路定律):它描述了环绕闭合回路的磁场强度与通过闭合回路的总电流之间的关系。

4. 麦克斯韦第四方程(法拉第电磁感应定律的推广):它说明了变化的电场可以产生磁场,反之亦然。

电场和磁场之间存在着相互转化的关系。

电磁场理论知识点总结

电磁场理论知识点总结

电磁场理论知识点总结电磁场与电磁波总结第1章场论初步⼀、⽮量代数A ?B =AB cos θA B ?=AB e AB sin θA ?(B ?C ) = B ?(C ?A ) = C ?(A ?B ) A ? (B ?C ) = B (A ?C ) – C ?(A ?B ) ⼆、三种正交坐标系 1. 直⾓坐标系⽮量线元 x y z =++l e e e d x y z⽮量⾯元 =++S e e e x y z d dxdy dzdx dxdy 体积元 d V = dx dy dz单位⽮量的关系 ?=e e e x y z ?=e e e y z x ?=e e e z x y 2. 圆柱形坐标系⽮量线元 =++l e e e z d d d dz ρ?ρρ?l ⽮量⾯元 =+e e z dS d dz d d ρρ?ρρ? 体积元 dV = ρ d ρ d ? d z 单位⽮量的关系 ?=?? =e e e e e =e e e e zz z ρ??ρρ?3. 球坐标系⽮量线元 d l = e r d r + e θ r d θ + e ? r sin θ d ? ⽮量⾯元 d S = e r r 2sin θ d θ d ? 体积元 dv = r 2sin θ d r d θ d ? 单位⽮量的关系 ?=??=e e e e e =e e e e r r r θ?θ??θcos sin 0sin cos 0 001x r y z z A A A A A A ??=-sin cos sin sin cos cos cos cos sin sin sin cos 0x r y z A A A A A A=--θ?θ?θ?θθ?θ?θ??sin 0cos cos 0sin 010r r z A A A A A A=-θ??θθθθ三、⽮量场的散度和旋度1. 通量与散度=??A S Sd Φ 0lim→?=??=??A S A A Sv d div v2. 环流量与旋度=??A l ?ld Γ maxnrot =lim→A l A e ?lS d S3. 计算公式=++A y x zA A A x y z11()=++A zA A A z ?ρρρρρ? 22111()(sin )sin sin =++A r A r A A r r r r ?θθθθθ?x y z ?=e e e A x y z x y z A A A=?e e e A z z z A A A ρ?ρρρ?ρ sin sin=?e e e A r r zr r r A r A r A ρθθθ?θ 4. ⽮量场的⾼斯定理与斯托克斯定理=A S A SVd dV ?=A l A S ?l四、标量场的梯度 1. ⽅向导数与梯度00()()lim→-?=??l P u M u M u llcos cos cos =++P uu u ulx y zαβγ cos ??=?e l u u θ grad = =+e e e +e n x y zu u u uu n x y z2. 计算公式=++???e e e xy zu u uu x y z1=++???e e e z u u u u z ρρρ? 11sin =++???e e e r u u u u r r r zθ?θθ五、⽆散场与⽆旋场1. ⽆散场 ()0=A =??F A2. ⽆旋场 ()0=u =?F u六、拉普拉斯运算算⼦ 1. 直⾓坐标系222222222222222222222222222222=++?=?+?+??=++?=++?=++A e e e x x y y z zy y y x x x z z z x y zu u u u A A A x y zA A A A A A A A A A A A x y z x y z x y z,,2. 圆柱坐标系22222222222222111212=++ =?--+?-++? ? ??????A e e e z z u u uu zA A A A A A A ?ρρρρρρρρρ?ρρ?ρρ?3. 球坐标系22222222111sin sin sin =++ ? ??????????u u uu r r r r r r θθθ?θ? ???+-??+?+???--??+?+???----=θθθ?θ?θθθθ?θθθθθθθ?θθA r A r A r A A r A r A r A A r A r A r A r A r r r r r 2 22222222222222222sin cos 2sin 1sin 2sin cos 2sin 12sin 22cot 22e e e A 七、亥姆霍兹定理如果⽮量场F 在⽆限区域中处处是单值的,且其导数连续有界,则当⽮量场的散度、旋度和边界条件(即⽮量场在有限区域V ’边界上的分布)给定后,该⽮量场F 唯⼀确定为()()()=-?+??F r r A r φ其中 1()()4''??'='-?F r r r r V dV φπ1()()4''??'='-?F r A r r r V dV π第2章电磁学基本规律⼀、麦克斯韦⽅程组 1. 静电场基本规律真空中⽅程: 0d ?=SE S ?qεd 0?=?lE l ? 0=E ρε 0??=E 场位关系:3''()(')'4'-=-?r r E r r r r V q dV ρπε =-?E φ 01()()d 4π''='-?r r |r r |V V ρφε介质中⽅程: d ?=?D S ?S qd 0?=?lE l ? ??=D ρ 0??=E极化:0=+D E P ε e 00(1)=+==D E E E r χεεεε极化电荷:==?P e PS n n P ρ =-??P P ρ 2. 恒定电场基本规律电荷守恒定律:0+=?J tρ传导电流: =J E σ与运流电流:ρ=J v恒定电场⽅程: d 0?=?J S ?Sd 0l=E l 0=J 0E =3. 恒定磁场基本规律真空中⽅程:0 d ?=?B l ?lI µd 0?=?SB S ? 0=B J µ 0=B场位关系:03()( )()d 4π ''?-'='-?J r r r B r r r VV µ =??B A 0 ()()d 4π'''='-?J r A r r r V V µ 介质中⽅程:d ?=?H l ?l Id 0?=?SB S ? ??=H J 0??=B磁化:0=-BH M µ m 00(1)=+B H =H =H r χµµµµ 磁化电流:m =??J M ms n =?J M e4. 电磁感应定律d d ?=-SE l B S ?lddt =-BE t5. 全电流定律和位移电流全电流定律:d ()d ??=+D H l J S ?lSt =+DH J t位移电流: d =DJ d dt6. Maxwell Equationsd ()d d d d d 0=+?=-??==D H J S B E S D S B Sl S l S SV S l t l t V d ρ 0=+???=-?==?D H J B E D B t t ρ ()() ()()0=+???=-?==?E H E H E E H t t εσµερµ ⼆、电与磁的对偶性e m e m e m e e m m e e m mm e 00=-??==+??=--?=?=?????=?=??B D E H D B H J E J D B D B t t &t t ρρ m e e m ??=--?=+==B E J D H J D B tt ρρ三、边界条件 1. ⼀般形式12121212()0()()()0-=-=-=-=e E E e H H J e D D e B B n n S n Sn ρ2. 理想导体界⾯和理想介质界⾯111100?=??===e E e H J e D e B n n Sn S n ρ 12121212()0()0()0()0-=-=-=-=e E E e H H e D D e B B n n n n 第3章静态场分析⼀、静电场分析1. 位函数⽅程与边界条件位函数⽅程: 220?=-电位的边界条件:121212=??-=-?s nn φφφφεερ 111=??=-?s const nφφερ(媒质2为导体) 2. 电容定义:=qC φ两导体间的电容:=C q /U任意双导体系统电容求解⽅法:2211===D SE S E lE l蜒SS d d q C U d d ε3. 静电场的能量N 个导体: 112==∑ne i i i W q φ连续分布: 12=?e V W dV φρ电场能量密度:12D E ω=?e⼆、恒定电场分析1. 位函数微分⽅程与边界条件位函数微分⽅程:20?=φ边界条件:121212=??=?nn φφφφεε 12()0?-=e J J n 1212[]0?-=J J e n σσ 2. 欧姆定律与焦⽿定律欧姆定律的微分形式: =J E σ焦⽿定律的微分形式: =??E J V3. 任意电阻的计算2211d d 1??====E l E l J SE SSSUR G Id d σ(L R =σS )4. 静电⽐拟法:C —— G ,ε —— σ2211===D SE S E lE l蜒SS d d q C U d d ε 2211d d d ??===J S E SE lE lS S d I G Uσ三、恒定磁场分析1. 位函数微分⽅程与边界条件⽮量位:2?=-A J µ 12121211A A e A A J n s µµ()=?-=标量位:20m φ?= 211221??==??m m m m n nφφφφµµ 2. 电感定义:d d ??===??B S A l ?SlL IIIψ=+i L L L3. 恒定磁场的能量 N 个线圈:112==∑Nm j j j W I ψ连续分布:m 1d 2A J =??V W V 磁场能量密度:m 12H B ω=? 第4章静电场边值问题的解⼀、边值问题的类型●狄利克利问题:给定整个场域边界上的位函数值()=f s φ●纽曼问题:给定待求位函数在边界上的法向导数值()?=?f s nφ●混合问题:给定边界上的位函数及其向导数的线性组合:2112()()?==?f s f s nφφ●⾃然边界:lim r r φ→∞=有限值⼆、唯⼀性定理静电场的惟⼀性定理:在给定边界条件(边界上的电位或边界上的法向导数或导体表⾯电荷分布)下,空间静电场被唯⼀确定。

电磁场高考知识点

电磁场高考知识点

电磁场高考知识点电磁场是高考物理科目中的一个重要知识点,涵盖了电场和磁场两个方面。

在现代科技日益发展的背景下,电磁场的应用越来越广泛,掌握相关知识点对于理解和应用电子技术至关重要。

首先,我们先来了解一下电场。

电场是由带电粒子或带电体所产生的力场。

在物理学中,描述电场的主要量是电场强度。

电场强度的方向是从正电荷指向负电荷。

我们通常采用箭头表示电场的方向和强度。

电荷量的大小决定了电场的强度,电场的强度与距离的平方成反比。

接下来,我们转向磁场。

磁场是由带电粒子运动或磁石产生的力场。

磁场的主要量是磁感应强度。

磁感应强度的方向由南极指向北极。

磁体的磁场强度随距离迅速衰减,可以通过铁属下铁粉实验来展示。

电场和磁场是密不可分的。

安培定律是描述电流和磁场之间的关系的定律。

电流通过一个导线时,会在周围产生一个磁场。

安培定律的数学表达形式是:磁感应强度等于导线上电流元素乘以安培常数除以距离的平方。

在电磁场的理论基础上,我们了解到电磁波的产生与传播也是与电磁场相关的。

电磁波是由变化的电场和磁场相互作用而产生的一种波动现象。

电磁波的传播速度与真空中的光速相等。

电磁波可以分为可见光、无线电波、微波等多种类型,不同类型的电磁波在波长和频率上有所不同。

电磁场的应用十分广泛。

电磁波的应用涉及到通讯、雷达、医学、物理等多个领域。

无线通信依赖于电磁波的传播,雷达利用电磁波的反射和接收实现目标探测。

医学中的核磁共振成像利用磁场的强弱差异来捕捉人体内部的图像。

电磁场的研究对于我们理解和应用这些技术都起到了至关重要的作用。

除了直接应用领域,电磁场还与其他科学领域紧密相连,比如量子物理学、相对论、粒子物理学等。

琳达尔效应以及闪电等现象的解释都需要用到电磁场的相关知识。

在学习电磁场的过程中,我们需要掌握一些重要的数学工具,如矢量和矢量运算。

电磁场的描述离不开矢量的概念,矢量的代数运算能够帮助我们对电磁场进行精确的描述和计算。

在高考中,电磁场通常是一个重要的考点。

电磁场理论知识点总结

电磁场理论知识点总结

电磁场理论知识点总结1.麦克斯韦方程组:麦克斯韦方程组是电磁场理论的核心方程,它由四个方程组成,分别是高斯定律、法拉第电磁感应定律、安培环路定律和法拉第电磁感应定律的积分形式。

这些方程描述了电场和磁场随空间和时间的变化规律。

2.电场和磁场的相互作用:根据麦克斯韦方程组,电场和磁场相互作用,通过电场的变化会产生磁场,而通过磁场的变化会产生电场。

这种相互作用是电磁波传播的基础。

3.电磁波的传播:根据麦克斯韦方程组的解,电磁波以光速在真空中传播,它是由电场和磁场相互耦合而成的波动现象。

电磁波的传播速度不同于物质中的电磁波传播速度,它是真空中的最大可能速度。

4.电磁感应现象:根据法拉第电磁感应定律,当一个导体中的磁场发生变化时,会在导体中产生感应电流。

这个现象被广泛应用于发电机、变压器等电磁设备中。

5.静电场和静磁场:当电荷和电流都不随时间变化时,产生的电场和磁场称为静电场和静磁场。

在静电场中,电场符合高斯定律;在静磁场中,磁场符合安培环路定律。

静电场和静磁场的研究对于理解电磁场的基本性质和应用具有重要意义。

6.电磁辐射和辐射场:根据麦克斯韦方程组的解,加速的电荷会辐射出电磁波。

这种辐射就是电磁辐射,它是电磁波传播的一种形式。

辐射场是指由电磁辐射产生的电场和磁场。

7.电磁波的频率和波长:电磁波的频率和波长是描述电磁波特性的两个重要参数。

频率指的是电磁波单位时间内振动的次数,单位是赫兹;波长指的是电磁波的一个完整振动周期所对应的空间距离,单位是米。

8.电磁场的能量和动量:根据电磁场的能量密度和动量密度的定义,可以推导出电磁场的能量和动量公式。

电磁场携带能量和动量,可以与物质相互作用,这是实现无线通信、光学传输等现代科技的基础。

9.电磁场的边界条件:电磁场在介质边界上的反射和折射现象可以通过电磁场的边界条件来描述。

边界条件包括麦克斯韦方程组的边界条件和介质的边界条件,它们确定了电磁场在边界上的行为和传播规律。

电磁学的基础知识

电磁学的基础知识

电磁学的基础知识电磁学是物理学中的一个重要分支,研究电荷和电磁场之间的相互作用。

从静电学到电动力学,从麦克斯韦方程组到电磁辐射,掌握电磁学的基础知识对于理解电磁现象和应用电磁技术具有关键意义。

一、电荷和电场在电磁学中,最基本的概念是电荷和电场。

电荷是物质的基本属性,可以分为正电荷和负电荷。

正负电荷之间相互吸引,同类电荷之间相互排斥。

电场则是电荷周围所产生的力场,负责传递相互作用力。

二、库仑定律库仑定律描述了电荷之间的相互作用力。

根据库仑定律,电荷对之间的相互作用力与电荷之间的距离成正比,与电荷的大小成正比。

三、电场强度电场强度是电场中单位正电荷所受的力,用E表示。

对于点电荷,电场强度的大小与距离的平方成反比。

由于电荷的性质,电场是以向外的径向方向存在。

四、电势差和电位电势差是指电场中两点之间的电势能差,用V表示。

单位正电荷从一个点移动到另一个点时所做的功,就是电势差。

电势差与电场强度的积成正比。

五、电场线电场线是描述电场空间分布的图形。

电场线以电场强度方向为切线,线的密度表示电场强度的大小。

电场线从正电荷出发,进入负电荷或者无穷远。

六、电荷分布电荷分布可以分为均匀分布和非均匀分布。

对于均匀分布的电荷,可以通过积分来求解电场。

对于非均匀分布的电荷,则需要运用高斯定律或者数值计算来求解。

七、电场能量电场能量是指电荷在电场中所具有的能量。

电场能量与电荷的大小和电势差的平方成正比。

八、电场的叠加原理在多个电荷存在的情况下,各电荷所产生的电场可以叠加。

即总电场等于各电荷所产生的电场之和。

九、电流和电阻电流是指电荷在单位时间内通过导体的数量,用I表示。

电流的方向被约定为正电荷从正极流向负极。

电阻则是导体对电流的阻碍程度。

根据欧姆定律,电流与电压成正比,与电阻成反比。

十、电阻与电导率电阻与电导率成反比,电导率是导体的属性。

电导率越大,电阻越小。

常见的导体包括金属和电解质。

十一、麦克斯韦方程组麦克斯韦方程组是描述电磁场的基本方程。

完整版电磁场理论复习总结

完整版电磁场理论复习总结

完整版电磁场理论复习总结1.1 标量场和⽮量场1.2 三种常⽤的正交坐标系1.3标量场的梯度哈密顿算符:(⼀e —e —e z)x y z2.梯度的垄本运算公式1) VC-0 (C^S)2) V(Cu)⼆CVw3) V((/ ⼟巧⼆可肿⼟V7附4) V(/a T) = Z/V V +T V;/5) VF(u) = F r(u)Vu6) V(-) = -l(rV?/-i/Vv)v vFF cF7) ^7(^ v) = —Vw + — Vvdu dv式中:U育常報;级⽢为半标变最遢載;3”梯度的重要性质16CJ55 「「⼩V x V/z = 0产⽣场的场源所在的空闾位国点称为源点上记为am或7 场所在的疇间⾫置点称为场贞「记为(x,y\2}或⼫源点到场点的距S?j?=|r-r| 从源点指向场点的⽮量为^ = r-F例3求鸥叫哙呻?刃畑%&R⾐⽰对仗」4运算R表⽰对运算.R^r-r1^J(x-A?)r+(y-/>:BR 、BR 、BR—MY臥叫帝M还W(R) = ARWR = ^-\R(lii dii fir ?S A dS A. A y A zdivA lim ——V 0 V x y zdivA A x A y A z Ax y zA e x( A z A y) e y( A x A z) e z(⼊sy z z x x y1) V Y C=02) Vx(i = A3) V x(H ±B) —V XJ1±V>.54) V x (u = uV y /< + V u KX B)=2J-V XJ4-J4-V X5l f ***** 4;jd' V x Vy - 0! 7)V (VxJ)-O:W屜囲焉唉屋?熾常数,址为标量函数「du电磁总复习第⼀章⽮量分析l ?Eit ⼗dit ?duIt= 0 r ——+ 0 L ——+&——标量场⼼的梯度. ex cy czV u =—yir rotAc'R ex R_y-y r漁—R 忑RVR = -RR'⽮童场的雄度1.4⽮量场的通量与散度三. 散度的运算公式])V C-02)V(Arl) = )tV^4) V (u A) =wV .4 + 4 Vw 沐为常数」为标量函数)- (IA5) V J(rt) - V// —du四、⾼斯定理(散度定理)L v知⼀丄%物理詳5G穿过⼀封闭曲⾓的总谓呈等于⽮虽散度的休秘分1.5⽮量场的环流与旋度-------------------- V VV v ?c A dl rotA nlim --S 0Sr r re x e y e zir irot A Ax y zA x A y A z4-症度计算相关公式:标葷场的梯度的旌度恒为零1G:2D3*酶点录场点df Rmax三、斯托克斯定理物理含义;—个⿂量场旋度的⾯税分導于演⽮量沿此由⾯周界的曲线眦四、⽮量场擬度的重要性质⼙(Vxj^O任意⽮量场I?度的散度等于議⽮量场有两种不同性质的源:(1)散度源(标量)(2)旋度源(⽮量)。

高三电磁场知识点总结详细

高三电磁场知识点总结详细

高三电磁场知识点总结详细电磁场是物理学中的一个重要概念,对于高三学生来说,电磁场是必修课程中的一个重点内容。

本文将详细总结高三电磁场的知识点,帮助学生们复习和理解相关知识。

第一部分:电磁场基础知识1. 电磁场的概念- 电磁场是由电荷体系形成的以电场和磁场为基本特征的力场。

2. 静电场与静磁场- 静电场:由静止的电荷所产生的电场。

- 静磁场:由静止的电荷所产生的磁场。

3. 电磁感应定律- 法拉第电磁感应定律:导体中的磁通量变化会产生感应电动势。

- 感应电动势的大小与导体中磁通量变化率成正比。

第二部分:电磁场的基本定律1. 库仑定律- 库仑定律描述了两个点电荷间相互作用力的大小与距离的关系。

- 库仑定律公式:F = k * (q1 * q2) / r^22. 电场的叠加原理- 多个电荷同时存在时,它们产生的电场可以通过叠加原理求和得到。

3. 磁场的基本性质- 磁场是由带电粒子运动或者电流产生的。

- 磁场具有方向性,用磁力线表示。

第三部分:电场与电势1. 电势能- 电荷在电场中具有电势能,电势能与电荷的大小、电势差和电场强度有关。

- 电势能的计算公式:Ep = q * V2. 电位- 电位是指某一点的电势能与单位正电荷之比。

- 电位的计算公式:V = U / q3. 静电平衡- 静电平衡要求电场内的电势能相等,即电荷处于平衡状态。

第四部分:电流与磁场1. 安培环路定理- 安培环路定理描述了电流通过闭合回路所产生的磁场的性质。

- 安培环路定理公式:∮B·dl = μ0 * I2. 磁场的磁感应强度- 磁感应强度描述了磁场中的力场作用强度。

- 磁感应强度的计算公式:B = F / (q * v * sinθ)第五部分:电磁感应与电磁波1. 电磁感应现象- 电磁感应现象是指磁场变化时在导体中感应出电流的现象。

2. 法拉第电磁感应定律- 法拉第电磁感应定律描述了磁通量变化导致感应电动势的产生。

- 法拉第电磁感应定律公式:ε = -ΔΦ / Δt3. 麦克斯韦方程组- 麦克斯韦方程组总结了电场和磁场的关系以及它们对物质的作用。

高中物理电磁学知识点归纳大全

高中物理电磁学知识点归纳大全

高中物理电磁学知识点归纳大全一、电场。

1. 电荷与库仑定律。

- 电荷:自然界存在两种电荷,正电荷和负电荷。

电荷的多少叫电荷量,单位是库仑(C)。

- 库仑定律:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的平方成反比,作用力的方向在它们的连线上。

表达式为F = k(q_1q_2)/(r^2),其中k = 9.0×10^9N· m^2/C^2。

2. 电场强度。

- 定义:放入电场中某点的电荷所受的电场力F与它的电荷量q的比值,叫该点的电场强度,E=(F)/(q)。

单位是N/C或V/m。

- 点电荷的电场强度:E = k(Q)/(r^2)(Q为场源电荷电荷量)。

- 电场强度的叠加:电场中某点的电场强度为各个点电荷单独在该点产生的电场强度的矢量和。

3. 电场线。

- 电场线是为了形象地描述电场而引入的假想曲线。

电场线从正电荷或无穷远出发,终止于负电荷或无穷远;电场线越密的地方电场强度越大。

4. 电势与电势差。

- 电势:电荷在电场中某一点的电势能与它的电荷量的比值,φ=(E_p)/(q)。

单位是伏特(V)。

- 电势差:电场中两点间电势的差值,U_AB=φ_A - φ_B,也等于把单位正电荷从A点移到B点电场力所做的功,U_AB=frac{W_AB}{q}。

5. 等势面。

- 电场中电势相等的点构成的面叫等势面。

等势面与电场线垂直;电场线总是从电势高的等势面指向电势低的等势面。

6. 电容器与电容。

- 电容器:两个彼此绝缘又相距很近的导体可组成一个电容器。

- 电容:电容器所带电荷量Q与电容器两极板间电势差U的比值,C=(Q)/(U),单位是法拉(F),1F = 1C/V。

平行板电容器的电容C=(varepsilon S)/(4πkd)(varepsilon为介电常数,S为极板正对面积,d为极板间距)。

二、电路。

1. 电流。

- 定义:电荷的定向移动形成电流,I=(Q)/(t),单位是安培(A)。

高三物理电磁场知识点

高三物理电磁场知识点

高三物理电磁场知识点电磁场是物理学中一个重要的概念,它描述了电荷和电流周围空间的物理特性。

在高三物理学习中,电磁场是一个重要的知识点,本文将介绍高三物理电磁场的相关知识。

一、电磁感应1. 法拉第电磁感应定律法拉第电磁感应定律是描述电磁感应现象的基本规律。

它表明,当闭合回路中的磁通发生变化时,会在闭合回路中诱导出电动势和电流。

公式表示为ε = -dΦ/dt,其中ε为感应电动势,Φ代表磁通量,dt表示时间的微分。

2. 纳日尔定律纳日尔定律是描述磁场中感应电流方向的规律。

根据纳日尔定律,感应电流的方向总是使得产生它的磁场发生变化的方式。

二、电磁波1. 麦克斯韦方程组麦克斯韦方程组是电磁场理论的基本方程组,它由麦克斯韦提出并总结了电磁场的基本规律。

麦克斯韦方程组包括四个方程:电场高斯定律、电场环路定律、磁场高斯定律和磁场环路定律。

2. 电磁辐射电磁辐射是电磁波的传播方式。

电磁波具有电场和磁场的相互作用,它们垂直传播,并以光速传播。

电磁波可以根据频率分为不同的波段,包括射频、微波、红外线、可见光、紫外线、X射线和γ射线。

三、电磁场的应用1. 电动机和发电机电动机和发电机是利用电磁场相互作用的原理来实现能量转换的设备。

电动机将电能转换为机械能,而发电机则将机械能转换为电能。

2. 电磁炉和感应加热电磁炉和感应加热利用电磁感应的原理来实现加热功能。

通过产生交变磁场来激发物体内部的感应电流,从而产生热量。

3. 电磁波的应用电磁波在通信、雷达、医学诊断等领域有着广泛的应用。

无线通信利用电磁波的传播特性来进行信息传输,而医学诊断则利用电磁波的穿透能力来观察人体内部的结构和组织。

四、电磁场的符号表示和单位1. 电场强度和磁感应强度的符号表示电场强度用E表示,磁感应强度用B表示。

2. 电场强度和磁感应强度的单位电场强度的国际单位是N/C,磁感应强度的国际单位是T(特斯拉)。

五、电磁场的性质1. 电场和磁场的荷质量参量电荷是电磁场相互作用的物理量,它具有电量和质量。

电磁场知识点总结

电磁场知识点总结

高考物理知识归纳(磁场、电磁感应)磁场 基本特性,来源,成闭方向(小磁针静止时极的指向,磁感线的切线方向,外部(N →S)内部(S →N)组合曲线要熟悉五种典型磁场的磁感线空间分布(正确分析解答问题的关健)脑中要有各种磁源产生的磁感线的立体空间分布观念;会从不同的角度看、画、识 各种磁感线分布图 能够将磁感线分布的立体、空间图转化成不同方向的平面图(正视、符视、侧视、剖视图) 安培右手定则:电产生磁 安培分子电流假说,磁产生的实质(磁现象电本质)奥斯特和罗兰实验 安培左手定则(与力有关) 磁通量概念一定要指明“是哪一个面积的、方向如何”且是双向标量F 安=B I L⇒推导 f 洛=q B v 建立电流的微观图景(物理模型)从安培力F=ILBsin θ和I=neSv 推出f=qvBsin θ。

典型的比值定义(E=q F E=k2r Q ) (B=L I F B=k2r I) (u=q w b a →qW 0A A →=ϕ) ( R=I u R=S Lρ) (C=uQC=d k 4s πε)磁感强度B :由这些公式写出B 单位,单位⇔公式B=L I F ; B=S φ ; E=BLv ⇒ B=Lv E ; B=k 2rI(直导体) ;B=μNI (螺线管)qBv = mR v 2⇒ R =qB mv ⇒ B =qRmv;vv v d uE B qE qBv du ===⇒= 电学中的三个力:F电=q E =q du F 安=B I L f 洛= q B v注意:①、B ⊥L 时,f 洛最大,f 洛= q B v(f 、B 、v 三者方向两两垂直且力f 方向时刻与速度v 垂直)⇒导致粒子做匀速圆周运动。

②、B || v 时,f 洛=0⇒做匀速直线运动。

③、B 与v 成夹角时,(带电粒子沿一般方向射入磁场),可把v 分解为(垂直B 分量v ⊥,此方向匀速圆周运动;平行B 分量v || ,此方向匀速直线运动。

工程师中的电磁学知识点梳理

工程师中的电磁学知识点梳理

工程师中的电磁学知识点梳理电磁学是物理学的一个重要分支,它研究电场和磁场的产生、相互作用以及它们对物质的影响。

在工程师的工作中,电磁学的知识是不可或缺的。

本文将对工程师中的电磁学知识点进行梳理和总结。

一、电场和电势1. 高斯定律:电场穿过一个闭合曲面的通量与其所围成的电荷量成正比。

2. 电势:电荷在电场中具有的能量,单位电荷的电势称为电位。

二、磁场和磁感应强度1. 洛伦兹力:带电粒子在磁场中受到的力。

2. 安培环路定理:沿闭合路径的磁场积分等于围绕该路径的电流总和的一倍。

三、电磁感应和法拉第定律1. 法拉第电磁感应定律:磁场的变化会在回路中产生感应电动势。

2. 楞次定律:感应电动势的方向总是使产生它的磁场变化减小的方向相反。

四、电磁波和电磁谱1. 电磁波的特性:电场和磁场通过空间传播的横波。

2. 电磁谱:按照频率和波长划分不同类型的电磁辐射。

五、Maxwell方程组1. 麦克斯韦方程组:总结了电场和磁场的相互作用规律。

2. 平面波的传播:根据麦克斯韦方程组,推导出电磁波的传播方程。

六、电磁场的辐射和天线1. 辐射场和近场:电磁场远离辐射源后的传播行为。

2. 天线:将电流转化为电磁辐射的装置,常见的有偶极子天线和微带天线。

七、电磁兼容性和干扰抑制1. 电磁兼容性:电子设备在电磁环境中正常工作的能力。

2. 干扰抑制:采取措施降低电子设备之间的相互干扰。

八、传感器和电磁测量1. 传感器:将非电量转化为电信号的装置,常见的有温度传感器和压力传感器。

2. 电磁测量:利用电磁场进行物理量测量的方法,如电磁流量计和磁共振成像。

九、电磁波的应用1. 通信技术:利用电磁波进行信息传输,如无线电通信和光纤通信。

2. 医学影像:利用电磁波进行人体部位的检查和诊断,如X射线和核磁共振。

总结:工程师中的电磁学知识点包括电场和电势、磁场和磁感应强度、电磁感应和法拉第定律、电磁波和电磁谱、Maxwell方程组、电磁场的辐射和天线、电磁兼容性和干扰抑制、传感器和电磁测量以及电磁波的应用。

电磁学知识点总结

电磁学知识点总结

电磁学知识点总结1. 静电学- 电荷与库仑定律- 基本电荷的定义- 电荷守恒原理- 库仑定律的表述及应用- 电场与电场强度- 电场的物理意义- 电场强度的计算- 电场线的概念- 电势与电势能- 电势的定义- 电势能与电势差- 电势的计算- 电容与电容器- 电容的定义- 电容器的工作原理- 并联与串联电容器的计算- 静电感应与电介质- 静电感应现象- 电介质的极化- 电位移矢量D2. 直流电路- 欧姆定律- 欧姆定律的表述- 电阻的概念与计算- 基尔霍夫定律- 基尔霍夫电流定律- 基尔霍夫电压定律- 直流电路分析- 节点分析法- 环路分析法- 电功率与能量- 电功率的计算- 能量守恒原理3. 磁场- 磁场与磁力线- 磁场的描述- 磁力线的绘制- 安培定律与毕奥萨法尔定律 - 安培定律的表述- 毕奥萨法尔定律与磁矩 - 磁通与磁感应强度- 磁通的定义- 磁感应强度B的计算- 电磁感应- 法拉第电磁感应定律- 楞次定律- 互感与自感- 互感的概念- 自感系数的计算- RLC串联电路的谐振4. 交流电路- 交流电的基本概念- 交流电的周期与频率- 瞬时值、有效值与峰值- 交流电路中的电阻、电容与电感 - 阻抗的概念- 电容与电感在交流电路中的行为 - 交流电路分析- 相量法- 功率因数与功率- 变压器原理- 变压器的工作原理- 理想变压器的电压与功率变换5. 电磁波- 电磁波的产生- 振荡电路与电磁波的产生- 电磁波的传播- 电磁波的性质- 波长、频率与速度的关系- 电磁谱的分类- 电磁波的应用- 无线通信- 医学成像6. 电磁学的现代应用- 微波技术- 微波的特性与应用- 光纤通信- 光纤的工作原理- 光纤通信的优势- 电磁兼容性- 电磁干扰的来源与影响- 电磁兼容性设计的原则本文提供了电磁学的基础知识点总结,涵盖了从静电学到电磁波及其应用的主要内容。

每个部分都详细列出了关键概念、定律和应用,旨在为读者提供一个全面且系统的电磁学知识框架。

物理高中知识点总结选修二

物理高中知识点总结选修二

物理高中知识点总结选修二第一章电磁场的基本概念电磁场是指电荷和电流所产生的力场,包括静电场和磁场。

电荷和电流是电磁场的源,它们的存在和运动产生了电场和磁场。

在电磁场中,电场和磁场相互作用,形成了电磁现象。

在电磁场中,电荷和电流受到电场力和磁场力的作用,发生运动。

电荷是物质中的基本粒子,带电粒子产生的物质称作电子,未带电的物质称作中子,而电子与质子所带的电量大小相等,而符号相反,所以质子带正电。

电荷受力为Coulomb力。

单位电量为库仑量。

磁场由磁极造成,包括北极和南极,并且又孤立的磁单极,因此产生磁场的磁力线是环绕磁体的,磁极间的相互作用遵循磁力的叠加原理,磁力的大小遵守库仑定律,则单位磁通量为韦伯。

电磁场存在于空间中,可以通过电荷和电流的产生,可以通过环路定理与Gauss定理应用到电磁中,即可知道磁场的产生,电场的环路可知变化的磁通量,以及电场的闭合曲面则可知外加电荷数目。

第二章电磁感应现象与电磁感应定律电磁感应定律是反映电磁感应现象的定律。

当一磁束的率于闭合导体回路中变化时,产生感应电动势,即法拉第电磁感应定律。

法拉第电磁感应定律可以推导出电磁感应定律。

电磁感应定律的实验研究和理论分析共同揭示了磁场和电场之间的相互转化关系,以及能量的转化问题。

当闭合回路在磁场中有运动时,由于磁通量的变化,就会在回路中产生感应电动势。

电磁感应定律包括法拉第电磁感应定律和楞兹定律。

电磁感应定律的应用有很多,可以用于发电机的工作原理,是电磁学重要的应用之一。

第三章电磁感应现象的应用电磁感应现象的应用有很多,如变压器、感应电炉、感应电动机、电磁波等。

其中变压器是一种基于电磁感应现象而工作的重要设备。

变压器通过变换线圈的匝数和电流强度,实现了电压的升降,广泛应用于电力传输系统中。

感应电炉则是利用感应电动势的原理实现加热材料,广泛应用于冶金、机械制造、化工等各个行业。

感应电动机则是一种利用电磁感应现象工作的电动机,是现代工业中不可或缺的设备。

高二物理电磁场知识点全

高二物理电磁场知识点全

高二物理电磁场知识点一、磁场磁极和磁极之间的相互作用是通过磁场发生的。

电流在周围空间产生磁场,小磁针在该磁场中受到力的作用。

磁极和电流之间的相互作用也是通过磁场发生的。

电流和电流之间的相互作用也是通过磁场产生的。

磁场是存在于磁体、电流和运动电荷周围空间的一种特殊形态的物质,磁极或电流在自己的周围空间产生磁场,而磁场的基本性质就是对放入其中的磁极或电流有力的作用。

二、磁现象的电本质1.罗兰实验正电荷随绝缘橡胶圆盘高速旋转,发现小磁针发生偏转,说明运动的电荷产生了磁场,小磁针受到磁场力的作用而发生偏转。

2.安培分子电流假说法国学者安培提出,在原子、分子等物质微粒内部,存在一种环形电流-分子电流,分子电流使每个物质微粒都成为微小的磁体,它的两侧相当于两个磁极。

安培是最早揭示磁现象的电本质的。

一根未被磁化的铁棒,各分子电流的取向是杂乱无章的,它们的磁场互相抵消,对外不显磁性;当铁棒被磁化后各分子电流的取向大致相同,两端对外显示较强的磁性,形成磁极;注意,当磁体受到高温或猛烈敲击会失去磁性。

3.磁现象的电本质运动的电荷(电流)产生磁场,磁场对运动电荷(电流)有磁场力的作用,所有的磁现象都可以归结为运动电荷(电流)通过磁场而发生相互作用。

三、磁场的方向规定:在磁场中任意一点小磁针北极受力的方向亦即小磁针静止时北极所指的方向就是那一点的磁场方向。

四、磁感线1.磁感线的概念:在磁场中画出一系列有方向的曲线,在这些曲线上,每一点切线方向都跟该点磁场方向一致。

2.磁感线的特点:(1)在磁体外部磁感线由N极到S极,在磁体内部磁感线由S极到N极。

(2)磁感线是闭合曲线。

(3)磁感线不相交。

(4)磁感线的疏密程度反映磁场的强弱,磁感线越密的地方磁场越强。

3.几种典型磁场的磁感线:(1)条形磁铁。

(2)通电直导线。

①安培定则:用右手握住导线,让伸直的大拇指所指的方向跟电流方向一致,弯曲的四指所指的方向就是磁感线环绕的方向;②其磁感线是内密外疏的同心圆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁场知识总结12一、麦克斯韦方程、本构关系、边界条件麦克斯韦方程⎪⎪⎪⎩⎪⎪⎪⎨⎧=⋅∇=⋅∇∂∂-=⨯∇∂∂+=⨯∇ρD B t B E t D J H0 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⋅=⋅⋅∂∂-=⋅⋅⎪⎪⎭⎫ ⎝⎛∂∂+=⋅⎰⎰⎰⎰⎰⎰⎰V SS SC S dV S dD S d B S d t B l dE Sd t D J l d H ρ0C 本构关系⎪⎩⎪⎨⎧===E J H B E D σμε ⎪⎩⎪⎨⎧=+=+=E J M H B PE Dσμε)(00 边界条件 ⎪⎪⎩⎪⎪⎨⎧=-⨯=-⨯=⋅-=⋅-0)()(0)()(21212121E E e J H H e e B B e D D ns nn snρ ⎪⎪⎩⎪⎪⎨⎧=-=-=-=-021212121t ts tt n n sn n E E J H H B B D Dρ3二、静电场源与库仑力源:电荷,⎰=''')(x dx r q ρ,库仑力(库仑定律),()'13'04i Ni ii r r r r q q F --=∑=πε,电场强度,000lim q FE q→= ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-==⎪⎭⎫ ⎝⎛∆∆==⎪⎭⎫ ⎝⎛∆∆==⎪⎭⎫ ⎝⎛∆∆=→∆→∆→∆点电荷密度线电荷密度面电荷密度体电荷密度)()(lim )(lim )(lim )('''0'''0'''0''''r r q r dl dq l q r dSdq S q r dV dqV q r l lS S V δρρρρ ()()()()⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧--------=∑⎰⎰⎰=点电荷线电荷面电荷体电荷'13'0'3'''0'3'''0'3'''041)(41)(41)(41)(iN i i i l l SS V r r r r q dl r r r r r dS r r r r r dV r r r r r r Eπερπερπερπε辅助函数ϕ-∇=E ,⎰⋅==Q Pl d r E r P)()()(ϕϕ4⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧+-+-+-+-=⎰⎰⎰∑=线电荷面电荷体电荷点电荷系l l S S V N i iiC dl r r r C dS rr r C dV r r r Cr r q r '''''''''1')(41)(41)(4141)( ρπερπερπεπεϕ场方程 E E P E D r εεεε00==+=⎩⎨⎧=⨯∇=⋅∇0E D ρ⎪⎩⎪⎨⎧=⋅==⋅⎰⎰⎰0lV S l d E qdV S d Dρ ⎪⎩⎪⎨⎧=⨯∇=⋅∇0E E ερ⎪⎩⎪⎨⎧=⋅==⋅⎰⎰⎰01lV S l d E q dV S d E ερε ερϕ-)(2=∇r 0)(2=∇r ϕ 边界条件⎩⎨⎧=-⨯=⋅-0)()(2121E E e e D D n snρ ⎩⎨⎧=-=-02121t t sn n E E D Dρ ⎪⎩⎪⎨⎧=∂∂-∂∂=S n nρϕεϕεϕϕ-2211215电容ϕqC = U qq C ==21-ϕϕ i ii nj j i ij i C C q ϕϕϕ+-=∑≠1)(能量与静电力⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=∑⎰⎰⎰=多导体线电荷面电荷体电荷ni i i l l SS V e qdl dS dV W 121212121ϕϕρϕρϕρ ⎰⋅=Ve dV D E W 21 D E w e ⋅=21 常数=∂∂-=q er rW F 常数=∂∂=ϕrW F e r6三、静磁场源与安培力源:电流,⎰⎰⋅==S S S d J i d I ,安培力(安培定律),()⎰⎰⨯⨯=213212111220124C C R R l d I l d I Fπμ, 磁感应强度,()⎰--⨯=C rr r r l d I r B 3'''04)( πμ,毕奥—萨伐尔定律,()3''0'4)(r r rr l Id r B d --⨯=πμ ⎪⎪⎩⎪⎪⎨⎧=⎪⎭⎫ ⎝⎛∆∆==⎪⎭⎫ ⎝⎛∆∆=→∆→∆面电流密度体电流密度dl di e l i e J ds di e s i e J t l t s n s n 00lim lim()()⎪⎪⎩⎪⎪⎨⎧--⨯--⨯=⎰⎰面电流密度体电流密度S s V dS r r r r r J dV r r r r r J r B '3'''0'3'''0)(4)(4)( πμπμ辅助函数磁矢位:A B ⨯∇=,0=⋅∇A (库伦规范),⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+-+-+-=⎰⎰⎰线电流面电流体电流l S V C r r dl I Cd r r r J C dV rr r J r A ''0S '''0'''04S )(4)(4)( πμπμπμ7磁标位:m r H ϕ-∇=)(场方程 rBB M B H μμμμ00==-=⎩⎨⎧=⋅∇=⨯∇0B JH⎪⎩⎪⎨⎧=⋅=⋅=⋅⎰⎰⎰0SS C S d B I S d J l d H ⎩⎨⎧=⨯∇=⋅∇J B B 00μ ⎪⎩⎪⎨⎧=⨯=⋅⎰⎰I l d B S d B lS 00μJ A μ-=∇202=∇A 02=∇m ϕ边界条件⎩⎨⎧=-⨯=⋅-sn n J H H e e B B )(0)(2121⎩⎨⎧=-=-st t n n J H H B B 21210⎪⎩⎪⎨⎧==⎪⎪⎭⎫ ⎝⎛⨯∇-⨯∇⨯21221111AA J A A e S n μμ ⎪⎩⎪⎨⎧∂∂=∂∂=n n m m m m 221121ϕμϕμϕϕ电感I I L L L i i ψ+ψ=+=00 ⎰⎰-⋅=ψ=211221112124C C r r l d l d I Mπμ (纽曼公式)8能量与静磁力∑=ψ=Ni i i m I W 121 ⎪⎪⎪⎩⎪⎪⎪⎨⎧⋅⋅⋅=∑⎰⎰⎰=多导体面电流体电流N i i i i i S S V m l d I A dSA J dV A J W 1212121 ⎰⋅=V m dV B H W 21 B H w m⋅=21常数=∂∂=I mrW F常数=ψ∂∂-=r WF m9四、恒定电场源恒定电流,dt dqt q i t =⎪⎭⎫ ⎝⎛∆∆=→∆0lim ,⎰⎰⎰∂∂-=-=⋅=VV S dV t dV dt d S d J I ρρ ,0=∂∂+⋅∇t J ρ 辅助函数 ϕ-∇=E场方程 E Jσ=⎩⎨⎧=⨯∇=⋅∇00E J ⎪⎩⎪⎨⎧=⋅=⋅⎰⎰CS dl E S d J 0002=∇ϕ 边界条件⎩⎨⎧=-⨯=-⋅0)(0)(2121E E e J J e n n⎩⎨⎧=-=-02121t t n n E E J J ⎪⎩⎪⎨⎧∂∂=∂∂=n n221121ϕσϕσϕϕ 电导⎰⎰⎰⎰⋅⋅=⋅⋅==N PS N PS ld E S d E l d E dS J UI G PP σεσ=C G10五、时变电磁场源变化电场t D ∂∂ 和变化磁场tB∂∂辅助函数磁矢位:A B ⨯∇=,t A ∂∂-=⋅∇ϕεμ (洛伦兹规范) 磁标位:ϕ∇-∂∂-=tAE场方程⎪⎩⎪⎨⎧=+=+=E J M H B P E D σμε)(00 ⎪⎩⎪⎨⎧===EJ H B E Dσμε ⎪⎪⎪⎩⎪⎪⎪⎨⎧=⋅∇=⋅∇∂∂-=⨯∇∂∂=⨯∇00D B t B E t D H ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⋅=⋅⋅∂∂-=⋅⋅⎪⎪⎭⎫ ⎝⎛∂∂=⋅⎰⎰⎰⎰⎰⎰SS SC S S dD S d B S d t B l dE S d t D l d H 00C11边界条件⎪⎪⎩⎪⎪⎨⎧=-⋅=-⋅=-⨯=-⨯s nn n sn D D e B B e E E e J H H e ρ)(0)(0)()(21212121⎪⎪⎩⎪⎪⎨⎧=-=-=-=-s n nnn t t st t D D B B E E J H H ρ2121212100波动方程无源介质区:0-222=∂∂∇t E E εμ,0-222=∂∂∇tH H εμ 导电媒质中:0-222=∂∂∂∂-∇t E t E E εμμσ,0-222=∂∂∂∂-∇t H t H H εμμσ 有源空间:J t H H t J t E E ⨯-∇=∂∂∇∇+∂∂=∂∂∇222222-,-εμερμεμ 达朗贝尔方程:J t A A μεμ-=∂∂∇222- ερϕεμϕ-=∂∂∇222-t ,⎪⎩⎪⎨⎧-=∇-=∇ερϕμ22J A(场量不随时间变化) 电磁能量与波印亭矢量)],(),([21),(),(21),(),(21),(22t r H t r E t r H t r B t r E t r D t r w με+=⋅+⋅=12⎰⎰⎰⎰⎰⋅+⎪⎭⎫⎝⎛+=⋅+⎪⎭⎫ ⎝⎛⋅+⋅=⋅⨯V V V V S dVJ E dV H E dt d dV J E dV H B E D dt d S d H E2221212121)(-με(坡印廷定理)坡印亭矢量:H E ⨯=S ,),(),(t)(r,S t r H t r E⨯=时谐电磁场⎥⎦⎤⎢⎣⎡=t j m e r A t r A ω)(Re ),( )()()(r j m m e r A r A φ =t∂∂ωj ⎪⎪⎩⎪⎪⎨⎧=⋅∇=⋅∇-=⨯∇+=⨯∇)()(0)()()()()()(r r D r B r B j r E r D j r J r H ρωω ⎪⎪⎩⎪⎪⎨⎧=⋅∇=⋅∇-=⨯∇=⨯∇00E H H j E E j H ωμωε 理想介质中时谐电磁场的波动方程:022=+∇E k E ,022=+∇H k H ,εμω=k有耗媒质(导电媒质):ωσεεjc -=,"'μμμj c -=13⎪⎪⎩⎪⎪⎨⎧=⋅∇=⋅∇-=⨯∇=⨯∇00E H H j E Ej H c ωμωε 022=+∇E k E c ,022=+∇H k H c ,c c c k μεω= 瞬时坡印廷矢量:])(Re[])(Re[),(t j tj e r H e r E t r S ωω ⨯= 平均坡印廷矢量:[])()(Re 21)(*r H r E r S av ⨯=平均能量密度:[][]⎪⎩⎪⎨⎧⨯=⨯=)()(Re 41),()()(Re 41),(**r H r B t r w r E r D t r w mav eav14六、基础与其它矢量代数θcos AB B A =⋅ ,θsin AB e B A n =⨯,)()()B A C A C B C B A ⨯⋅=⨯⋅=⨯⋅(,)()()(B A C C A B C B A ⋅-⋅=⨯⨯0)(=⨯∇⋅∇A ,0)(=∇⨯∇u ,B A A B B A ⨯∇⋅-⨯∇⋅=⨯⋅∇)(,A A A 2)(∇-⋅∇∇=⨯∇⨯∇坐标转换圆柱坐标与直角坐标转换:⎪⎩⎪⎨⎧===z z y x φρφρsin cos ,⎪⎪⎩⎪⎪⎨⎧=⎪⎭⎫⎝⎛=+=z z x y y x arctan 22φρ直角坐标与球坐标转换:⎪⎩⎪⎨⎧===θφθφθcos sin sin cos sin r z r y r x ,⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛++=++=x y z y x z z y x r arctan arccos222222φθ15球坐标与圆柱坐标转换:⎪⎩⎪⎨⎧===θφφθρcos sin r z r ,⎪⎪⎩⎪⎪⎨⎧=⎪⎭⎫⎝⎛=+=φφρθρz z r arctan 22场论基础哈密顿算子:z e y e x e z y x∂∂+∂∂+∂∂=∇ ,z e e e z ∂∂+∂∂+∂∂=∇ φρρφρ1,φθθφθ∂∂+∂∂+∂∂=∇sin 11r e r e r e r 普拉斯算子:2222222z u y u x u u ∂∂+∂∂+∂∂=∇,2222221zu u u u ∂∂+∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂=∇φρρρρ, 2222222sin 1sin sin 11φθθθθθ∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂=∇ur u r r u r r r u 梯度: z u e y u e x u e u grad u z y x∂∂+∂∂+∂∂==∇ )(,z u e u e u e u z ∂∂+∂∂+∂∂=∇ φρρφρ1,φθθφθ∂∂+∂∂+∂∂=∇ur e u r e r u e u r sin 11 散度:z A y A x A A div A z y x ∂∂+∂∂+∂∂==⋅∇ ,zA A A A z∂∂+∂∂+∂∂=⋅∇φρρρρφρ1)(1 , φθθθθφθ∂∂+∂∂+∂∂=⋅∇A r A r r A r rA r sin 1)(sin sin 1)(12216散度定理: ⎰⎰⋅∇=⋅VSdV A S d A旋度: zy x z y xA A A z y x e e e A ∂∂∂∂∂∂=⨯∇,zzA A A z e e e A φρφρρφρρρ∂∂∂∂∂∂=⨯∇1,φθφθθφθθθA r rA A r e r e r e r A r r sin sin sin 12∂∂∂∂∂∂=⨯∇ 斯托克斯定理: ⎰⎰⋅⨯∇=⋅SCS d A l d A 几个重要定理格林定理:()⎰⎰⎰⋅∂∂=⋅∇=∇⋅∇+∇S S VS d nS d dVψϕψϕψϕψϕ2()()⎰⎰⎰⋅⎪⎭⎫ ⎝⎛∂∂-∂∂=⋅∇∇=∇∇S S VS d n n S d dV ϕψψϕϕψψϕϕψψϕ--22唯一性定理:假设一个矢量场的散度和旋度在全区域内确定,且在包围区域的封闭面上的法向分量也确定,则这个矢量场在区域内是唯一。

相关文档
最新文档