实验七 纯弯曲梁的正应力实验(共享)

合集下载

纯弯曲梁的正应力电测实验

纯弯曲梁的正应力电测实验

纯弯曲梁的正应力电测实验一、实验目的1.用电测法测量单一材料的矩形截面梁在纯弯曲状态时其横截面上正应力的大小及分布规律,并与理论计算值比较,从而验证梁的弯曲正应力理论公式。

2.初步掌握电测法原理和静态电阻应变仪的使用方法。

二、实验装置和仪器1.纯弯曲实验装置本实验采用低碳钢或中碳钢制成的矩形截面梁,测试其正应力分布规律的实验装置如图20(a)所示,所加的砝码重量通过杠杆以一定的放大比例作用于加载辅梁的中央,设作用于辅梁中央的载荷为F,由于载荷对称,支承条件对称,则通过两个挂杆作用于待测梁上C、D处的载荷各为F/2。

由待测梁的内力图可知CD段上的剪力Q=0,弯矩为一常量M=2aF ,即梁的CD段处于纯弯曲状态。

图20 弯曲正应力实验装置及试样贴片位置图2.静态电阻应变仪3.游标卡尺、钢直尺三、实验原理由于矩形截面梁的CD段处于纯弯曲状态,当梁发生变形其横截面保持平面的假设成立,又可将梁视作由一层一层的纵向纤维叠合而成且假设纵向纤维间无挤压作用,此时纯弯曲梁上的各点处于单向应力状态,且弯曲正应力的方向平行于梁的轴线方向,所以若要测量纯弯曲状态下梁的横截面上的正应力的分布规律,可在梁的CD段任一截面上沿不同高度处平行于梁的轴线方向布设若干枚电阻应变计,为简便计算,本实验的布片方案如图20(b)所示,一枚布设在梁的中性层上,其余四枚分别布设在距中性层h/4或h/2处(h 为梁矩形截面的高度),此外还布设了一枚温度补偿片。

当梁受载后,电阻应变计随梁的弯曲变形而产生伸长或缩短,使自身的电阻改变。

通过力学量的电测法原理,利用电阻应变仪即可测出梁横截面上各测点的应变值ε实。

由于本实验梁的变形控制在线弹性范围内,所以依据单向虎克定律即可求解相应各测点的应力值,即σ实=E ·ε实,E 为梁材料的弹性模量。

实验采用“等增量法”加载,即每增加等量的载荷ΔF ,测定一次各点相应的应变增量Δε实,并观察各点应变增量的线性程度。

纯弯曲正应力实验报告

纯弯曲正应力实验报告

纯弯曲正应力实验报告纯弯曲正应力实验报告引言:纯弯曲正应力实验是材料力学领域中的一项基础实验,通过对材料在受到纯弯曲力作用下的正应力分布进行测量和分析,可以了解材料的力学性能和变形特征。

本实验旨在通过对不同材料样本的纯弯曲正应力实验,探究材料的强度、韧性和变形能力。

实验目的:1. 了解纯弯曲正应力实验的原理和方法;2. 掌握纯弯曲正应力实验的操作技巧;3. 分析不同材料样本的正应力分布特点;4. 探究材料的强度、韧性和变形能力。

实验原理:纯弯曲正应力实验是通过施加一个纯弯曲力矩于材料上,使其产生弯曲变形。

在材料的中性轴附近,正应力呈线性分布,而在材料的表面,正应力最大。

根据材料的几何尺寸和应力分布,可以计算出材料的弯曲应力。

实验步骤:1. 准备不同材料样本,包括金属、塑料等;2. 将样本固定在弯曲试验机上,并调整试验机的参数,如加载速度、加载方式等;3. 施加纯弯曲力矩,记录下加载过程中的应变和应力数据;4. 根据实验数据,计算出材料的正应力分布和弯曲应力。

实验结果与分析:通过实验得到的数据,我们可以绘制出不同材料样本的正应力分布曲线。

根据曲线的变化特点,我们可以分析材料的强度、韧性和变形能力。

首先,正应力分布曲线的斜率表示了材料的强度。

斜率越大,说明材料的强度越高。

通过比较不同材料样本的斜率,我们可以评估材料的强度差异。

其次,正应力分布曲线的形状和曲线下的面积表示了材料的韧性。

曲线形状越平缓,说明材料的韧性越好。

曲线下的面积越大,表示材料的变形能力越高。

通过比较不同材料样本的曲线形状和曲线下的面积,我们可以评估材料的韧性和变形能力。

最后,我们还可以分析材料在不同加载条件下的正应力分布曲线。

通过比较不同加载速度、加载方式等对正应力分布曲线的影响,可以了解材料在不同应力条件下的变形特性。

结论:通过纯弯曲正应力实验,我们可以了解材料的强度、韧性和变形能力。

不同材料样本的正应力分布曲线可以反映材料的力学性能差异。

实验报告-纯弯曲梁

实验报告-纯弯曲梁

纯弯曲梁横截面上正应力的测定
实验日期实验地点报告成绩
实验者班组编号环境条件℃、%RH 一、实验目的:
二、使用仪器:
三、实验原理:
四、实验数据记录:
1、梁的受力简图、弯矩图及测点布置示意图:
2、相关尺寸及常数:试样编号:
3、应变增量的测量:单位:×10-6
实验指导教师(签名):
五、实验数据处理:
六、实验结果:
七、思考题:
1、两个材料不同、几何尺寸及受载情况完全相同的梁,在同一位置处测得的应变是否相同?应力呢?为什么?
2、由理论计算出来的L σ∆与实际测量出来的c σ∆之间的误差主要是何原因产生的?
批阅报告教师(签名): 八、问题讨论:。

纯弯曲梁正应力实验

纯弯曲梁正应力实验
每增加一级载荷,依次记录各点电阻应变片的应变读数,直到最终载荷。实验至少重复两次。 7.完成全部实验内容后,卸掉载荷,关闭电源,整理所用仪器、设备,清理实验现场,
将所用仪器设备复原,数据经指导教师检查签字。
实验表格
数据 项目 梁的几何 尺寸
纯弯曲梁正应力实验数据表
结果
数据 结果
项目
宽度 b=20mm 高度 h=40mm 跨距 a=160mm
层的距离 y。 3.拟定加载方案。先选取适当的初载 P。,估算最大载荷 Pmax(σmax≤0。7σs),分 4~6
级加载。 4.根据加载方案,调整好实验加载装置。 5.按实验要求接线。调整好电阻应变仪,检查整个测试系统是否处于正常工作状态。 6 加载。用均匀慢速加载至初载荷 P。,记下各点电阻应变仪的初读数。然后逐级加载,
实验原理
实验可采用半桥单臂、公共补偿、多点测量方法。加载采用增量法。即每增加等量的载 荷△P,测出各点的应变增量△ε,然后分别取各点应变增量的平均值△ε,依次求出各点 的应力增量
△σ实 i=E△ε实 i 将实测应力值与理论应力值进行比较,以验证弯曲正应力公式。
实验步骤
1.设计好本实验所需的各类数据表格。 2.测量矩形截面梁的宽度 b 和高度 h、载荷作用点到梁支点距离 a 及各应变片到中性
一点的正应力计算公式为
s = My Iz
式中 M 为弯矩; Iz 为横截面对中性轴的惯性矩; y 为所求应力点至中性轴的距离。由 上式可知,在弹性范围内,沿横截面高度正应力按线性规律变化,其最大应力产生在上、下 边缘,为
s弯截面模量。 为了测量梁在纯弯曲时横截面上正应力的分布规律,在梁的纯弯曲段沿梁的侧面不同 高度,平行于轴线贴有 7 片电阻应变片,如图所示。其中 3# 片位于中性层处, 2# 、 4# 片分 别距中性层上、下 h/ 4 处。 1# 、 1‘#、 5# 、 5‘#片分别位于上下表面。此外,在梁的上表面 沿横向粘贴 0# 应变片。

纯弯曲梁正应力测定 工程力学实验报告

纯弯曲梁正应力测定 工程力学实验报告

纯弯曲梁正应力测定一、 实验目的1.测定梁在纯弯曲时横截面上的正应力分布,验证平面假设理论和弯曲正应力公式。

2.学习电测应力实验方法。

二、 实验设备1.简支梁及加载装置。

2.电阻应变仪。

3.直尺,游标卡尺。

三、 实验原理根据弯曲梁的平面假设沿着梁横截面高度的正应力分布规律应当是直线。

为了验证这一假设,我们在梁的纯弯曲段内粘贴7片电阻应变片:1#、2#、3#、4#、5#、6#、7#,见指导书中图,由应变仪测出读数即知道沿着梁横面高度的正应力分布规律。

四、 实验步骤1.用游标卡尺测量梁的尺寸b 和h ,用钢尺量梁的支点至力作用点的距离d 。

2.将各点的应变片和温度补偿片以半桥的形式接入应变仪。

被测应变片接在AB 上,补偿片接在BC 上。

仪器操作步骤:1)半桥测量时将D 1DD 2接线柱用连接片连接起来并旋紧。

2)将标准电阻分别与A 、B 、C 接线柱相连。

3)接通电源开关。

4)按下“基零”键仪表显示“0000”或“-0000”(仪表内部已调好)。

5)按下“测量”键,显示测量值,将测量值调到“0000”或“-0000”。

6)按下“标定”键仪表显示-10000附近值,按照所使用应变片灵敏度K=2.17,调节灵敏度使显示为-9221。

7)将“本机、切换”开关置“切换”状态。

主机的 A 、B 、C 接线柱上的标准电阻去掉,将各被测量应变片一端分别与左上对应的各A (A 1~A 7)接线柱相连,公共输出端与一B 接线柱相连,温度补偿片接在B 、C 之间。

被测点(应变片号) 6 4 2 1 3 5 7 接线端子(通道号) 1 2 3 4 5 6 78)切换开关, 按次序所有点的平衡都调节在0000或-0000值上。

9)转动手轮,使梁加载荷,逐点测量、记录应变值。

采用增量法加载,每次0.5kN 。

注意不能超载。

0.5 kN , 初载荷调零; 1.0 kN , 1.5 kN ,2.0 kN ,2.5 kN ,读出应变值10)实验结束。

纯弯曲梁的正应力电测实验

纯弯曲梁的正应力电测实验

纯弯曲梁的正应力电测实验一、实验目的1.用电测法测量单一材料的矩形截面梁在纯弯曲状态时其横截面上正应力的大小及分布规律,并与理论计算值比较,从而验证梁的弯曲正应力理论公式。

2.初步掌握电测法原理和静态电阻应变仪的使用方法。

二、实验装置和仪器1.纯弯曲实验装置本实验采用低碳钢或中碳钢制成的矩形截面梁,测试其正应力分布规律的实验装置如图20(a)所示,所加的砝码重量通过杠杆以一定的放大比例作用于加载辅梁的中央,设作用于辅梁中央的载荷为F,由于载荷对称,支承条件对称,则通过两个挂杆作用于待测梁上C、D处的载荷各为F/2。

由待测梁的内力图可知CD段上的剪力Q=0,弯矩为一常量M=2aF ,即梁的CD段处于纯弯曲状态。

图20 弯曲正应力实验装置及试样贴片位置图2.静态电阻应变仪3.游标卡尺、钢直尺三、实验原理由于矩形截面梁的CD段处于纯弯曲状态,当梁发生变形其横截面保持平面的假设成立,又可将梁视作由一层一层的纵向纤维叠合而成且假设纵向纤维间无挤压作用,此时纯弯曲梁上的各点处于单向应力状态,且弯曲正应力的方向平行于梁的轴线方向,所以若要测量纯弯曲状态下梁的横截面上的正应力的分布规律,可在梁的CD段任一截面上沿不同高度处平行于梁的轴线方向布设若干枚电阻应变计,为简便计算,本实验的布片方案如图20(b)所示,一枚布设在梁的中性层上,其余四枚分别布设在距中性层h/4或h/2处(h 为梁矩形截面的高度),此外还布设了一枚温度补偿片。

当梁受载后,电阻应变计随梁的弯曲变形而产生伸长或缩短,使自身的电阻改变。

通过力学量的电测法原理,利用电阻应变仪即可测出梁横截面上各测点的应变值ε实。

由于本实验梁的变形控制在线弹性范围内,所以依据单向虎克定律即可求解相应各测点的应力值,即σ实=E ·ε实,E 为梁材料的弹性模量。

实验采用“等增量法”加载,即每增加等量的载荷ΔF ,测定一次各点相应的应变增量Δε实,并观察各点应变增量的线性程度。

实验七 纯弯曲梁的正应力实验

实验七 纯弯曲梁的正应力实验

实验七 纯弯曲梁的正应力实验一、实验目的1.测定梁纯弯曲时的正应力分布规律,并与理论计算结果进行比较,验证弯曲正应力公式。

2.掌握电测法的基本原理。

二、实验设备1.纯弯曲梁实验装置。

2.静态电阻应变仪。

三、实验原理已知梁受纯弯曲时的正应力公式为z I y M ⋅=σ 式中M 为纯弯曲梁横截面上的弯矩,z I 为横截面对中性轴Z 的惯性矩,y 为横截面中性轴到欲测点的距离。

本实验采用铝制的箱形梁,在梁承受纯弯曲段的侧面,沿轴向贴上五个电阻变应片,如图7-1所示,1R 和5R 分别贴在梁的顶部和低部,2R 、4R 贴在 4H y ±=的位置,3R 在中性层处。

当梁受弯曲时,即可测出各点处的轴向应变实i ε(i=1、2、3、4、5)。

由于梁的各层纤维之间无挤压,根据单向应力状态的胡克定律,求出各点的实验应力为:实i σ= ⋅E 实i ε(=i 1、2、3、4、5)式中,E 是梁材料的弹性模量。

这里采用的增量法加载,每增加等量的载荷△P ,测得各点相应的应变增量为△实i ε,求出△实i ε的平均值实i ε∆,依次求出各点的应力增量△实i σ为:△实i σ = ⋅E 实i ε∆ (7-1)把△实i σ与理论公式算出的应力增量:i σ∆理 = zi I y M ⋅∆ (7-2) 加以比较从而验证理论公式的正确性。

从图 7-l 的试验装置可知,a P M ⋅∆=∆21 (7-3)图7-1 纯弯曲梁装置四、实验步骤1.拟定加载方案。

在0~20kg 的范围内分4级进行加载,每级的载荷增量kg P 5=∆。

2. 接通应变仪电源,把测点1的应变片和温度补偿片按半桥接线法接通应变仪,具体做法是:将测点1的应变片接在应变仪的A 、B 接线柱上,将温度补偿片接在B 、C 接线柱上。

调整应变仪零点(或记录应变仪的初读数)。

3.每增加一级载荷(kg P 5=∆),记录引伸仪读数一次,直至加到20kg 。

注意观察各级应变增量情况。

纯弯曲梁的正应力试验

纯弯曲梁的正应力试验

实验六纯弯曲梁的正应力实验一、实验目的1. 梁在纯弯曲时横截面上正应力大小和分布规律;2. 验证纯弯曲梁的正应力计算公式;3. 测定泊松比μ;4. 掌握电测法的基本原理;二、实验设备1. 材料力学多功能实验台;2. 静态数字电阻应变仪一台;3. 矩形截面梁;4. 游标卡尺;三、实验原理1. 测定弯曲正应力本实验采用的是低碳钢制成的矩形截面试件,当力F 作用在辅助梁中央A 点时,通过辅助梁将压力F 分解为两个集中力2/F 并分别作用于主梁(试件)的B 、C 两点。

实验装置受力简图如下图所示。

根据内力分析,BC 段上剪力0=S F ,弯矩Fa M 21=,因此梁的BC 段发生纯弯曲。

在BC 段中任选一条横向线(通常选择BC 段的中间位置),在离中性层不同高度处取5个点,编号分别为①、②、③、④、⑤,在5个点的位置处沿着梁的轴线方向粘贴5个电阻应变片,如下图所示。

D C B a F/2F/2E a ⑥ ⑤ ①② ④ ③ hb根据单向受力假设,梁横截面上各点均处于单向应力状态,应用轴向拉伸时的胡克定律,即可通过测定的各点应变,计算出相应的实验应力。

采用增量法,各点的实测应力增量表达式为:i i E 实实εσ∆=∆式中:i 为测量点的编号,i =1、2、3、4、5;i 实ε∆ 为各点的实测应变平均增量;为各点的实测应力平均增量; 纯弯梁横截面上正应力的理论表达式为:z i i I y M ⋅=σ ; 增量表达式为: zi i I y M ⋅∆=∆σ 通过同一点实测应力的增量与理论应力增量计算结果比较,算出相对误差,即验证纯弯曲梁的正应力计算公式。

以截面高度为纵坐标,应力大小为横坐标,建立平面坐标系。

将5个不同测点通过计算得到的实测应力平均增量以及各测点的测量高度分别作为横坐标和纵坐标标画在坐标平面内,并连成曲线,即可与横截面上应力理论分布情况进行比较。

2. 测定泊松比在梁的下边缘纵向应变片⑤附近,沿着梁的宽度方向粘贴一片电阻应变片⑥(电阻应变片⑥也可贴在梁的上边缘),测出沿宽度方向的应变,利用公式εεν'=,确定泊松比。

纯弯曲梁的正应力实验报告

纯弯曲梁的正应力实验报告

姓名:班级:学号:实验报告纯弯曲梁的正应力实验一、实验目的:1.测定梁在纯弯曲时横截面上正应力大小和分布规律2.验证纯弯曲梁的正应力公式二、实验设备及工具:1.材料力学多功能试验台中的纯弯曲梁实验装置2.数字测力仪、电阻应变仪三、实验原理及方法:在纯弯曲条件下,根据平面假设和纵向纤维间无挤压的假设,可得到梁横截面上任意一点的正应力,计算公式:σ=My/I z为测量梁横截面上的正应力分布规律,在梁的弯曲段沿梁侧面不同高度,平行于轴线贴有应变片。

贴法:中性层一片,中性层上下1/4梁高处各一片,梁上下两侧各一片,共计五片。

采用增量法加载,每增加等量荷载△P(500N)测出各点的应变增量△ε,求的各点应变增量的平均值△ε实i,从而求出应力增量:σ实i=E△ε实i将实验应力值与理论应力值进行比较,已验证弯曲正应力公式。

四、原始数据:五、实验步骤:1.打开应变仪、测力仪电源开关2.连接应变仪上电桥的连线,确定第一测点到第五测点在电桥通道上的序号。

3. 检查测力仪,选择力值加载单位N或kg,按动按键直至显示N上的红灯亮起。

按清零键,使测力计显示零。

4.应变仪调零。

按下“自动平衡”键,使应变仪显示为零。

5.转动手轮,按铭牌指示加载,加力的学生要缓慢匀速加载,到测力计上显示500N,读数的学生读下5个测点的应变值,(注意记录下正、负号)。

用应变仪右下角的通道切换键来显示第5测点的读数。

以后,加力每次500N,到3000N 为止。

6.读完3000N应变读数后,卸下载荷,关闭电源。

六、实验结果及处理:1.各点实验应力值计算根据上表数据求得应变增量平均值△εPi,带入胡克定律计算各点实验值:σ实i=E△εPi×10-62.各点理论应力值计算载荷增量△P=500N弯矩增量△M=△P/2×a应力理论值计算σ理i=∆M∙YiI z(验证的就是它)3.绘出实验应力值和理论应力值的分布图以横坐标表示各测点的应力σ实和σ理,以纵坐标表示各测点距梁中性层的位置。

梁的纯弯正应力实验报告

梁的纯弯正应力实验报告

梁的纯弯正应力实验报告梁的纯弯正应力实验报告引言:梁是一种常见的结构元件,广泛应用于建筑、桥梁、机械等领域。

在实际工程中,梁的受力状态是非常重要的,而纯弯正应力是梁受力状态中的一种典型情况。

本实验旨在通过对梁的纯弯正应力进行实验研究,探究梁的受力规律,为工程设计和实践提供参考。

实验目的:1. 了解梁的受力特点,掌握梁的纯弯正应力的计算方法;2. 掌握实验仪器的使用,学会进行梁的纯弯正应力实验;3. 分析实验结果,验证梁的受力理论,提高实验操作和数据处理的能力。

实验原理:梁的纯弯正应力是指在梁的跨度方向上,上下表面受到相等大小、反向作用的弯矩,使得梁产生弯曲变形。

在梁的纯弯正应力状态下,梁上任意一点的应力是纯弯应力,即只有剪应力,没有正应力。

实验装置:1. 弯曲试验机:用于施加弯矩,产生梁的弯曲变形;2. 梁:选择合适的材料和尺寸,用于进行实验。

实验步骤:1. 准备工作:选择合适的梁材料和尺寸,根据实验要求调整弯曲试验机的参数;2. 实验操作:将梁固定在弯曲试验机上,施加适当的弯矩,记录梁的变形情况;3. 数据采集:使用应变计等仪器,测量梁上不同位置的应变值,并记录;4. 数据处理:根据实验数据,计算梁上不同位置的剪应力,并绘制应力分布曲线;5. 结果分析:对实验结果进行分析,验证梁的受力理论,探讨梁的纯弯正应力规律。

实验结果与讨论:通过实验测量得到的应变数据,可以计算出梁上不同位置的剪应力值。

根据剪应力的分布情况,可以绘制出应力分布曲线。

实验结果表明,在梁的纯弯正应力状态下,梁上的剪应力呈线性分布,且最大剪应力出现在梁的中心位置。

这与梁的受力理论相符合。

实验的误差主要来自于测量仪器的精度和实验操作的不确定性。

为了提高实验结果的准确性,可以采用更精密的测量仪器,并进行多次重复实验,取平均值。

此外,对于梁的材料和尺寸的选择也会对实验结果产生影响,需要根据具体情况进行合理的选择。

结论:通过对梁的纯弯正应力进行实验研究,我们了解了梁的受力特点,掌握了梁的纯弯正应力的计算方法。

梁的纯弯曲正应力实验报告

梁的纯弯曲正应力实验报告

梁的纯弯曲正应力实验报告梁的纯弯曲正应力实验报告引言:梁是一种常见的结构元件,广泛应用于建筑、桥梁和机械等领域。

在实际使用中,梁常常会承受弯曲载荷。

了解梁在弯曲载荷下的力学性能对于设计和优化结构非常重要。

本实验旨在通过纯弯曲实验,研究梁在弯曲过程中的正应力分布规律。

实验原理:在纯弯曲实验中,梁在两端受到相等大小的力矩作用,使梁产生弯曲变形。

根据梁的几何形状和力学性质,可以推导出梁在弯曲过程中的正应力分布规律。

根据梁的截面形状和材料性质,可以计算出梁在不同位置的正应力值。

实验装置:本实验使用了一台弯曲试验机和一根标准梁。

弯曲试验机通过施加力矩,使梁产生弯曲变形。

标准梁的截面形状和材料性质已知,可以用于测量和计算梁在不同位置的正应力。

实验步骤:1. 将标准梁放置在弯曲试验机上,并固定好。

2. 调整弯曲试验机的参数,使两端施加相等大小的力矩。

3. 在梁上选择几个不同位置,使用应变计测量该位置的应变值。

4. 根据应变值和标准梁的材料性质,计算出该位置的正应力值。

5. 重复步骤3和步骤4,测量和计算其他位置的正应力值。

6. 绘制出梁在不同位置的正应力分布曲线。

实验结果:通过实验测量和计算,得到了梁在不同位置的正应力值。

根据实验数据,可以绘制出梁在弯曲过程中的正应力分布曲线。

实验结果显示,梁在上表面受压,下表面受拉,且最大正应力出现在梁的截面中心位置。

正应力随着距离截面中心的距离增加而逐渐减小。

讨论和分析:通过实验结果的分析,可以得出以下结论:1. 梁在弯曲过程中受到的正应力分布规律符合理论推导的结果。

2. 梁的截面形状和材料性质对正应力分布有重要影响。

不同形状和材料的梁,在相同弯曲载荷下,其正应力分布可能存在差异。

3. 梁的弯曲变形会导致正应力集中。

在梁的截面中心位置,正应力达到最大值。

因此,在设计和优化梁结构时,需要考虑正应力集中问题。

结论:本实验通过纯弯曲实验,研究了梁在弯曲过程中的正应力分布规律。

实验结果表明,梁在上表面受压,下表面受拉,且最大正应力出现在梁的截面中心位置。

实验七 纯弯曲梁的正应力实验(doc)

实验七 纯弯曲梁的正应力实验(doc)

实验七纯弯曲梁的正应力实验
(doc)
实验七纯弯曲梁的正应力实验:
目的: 1、利用纯弯曲梁的正应力实验,测量出梁材的断面系数和位移系数。

2、通过观察变形情况,了解梁材的本构关系。

原理:纯弯曲梁的正应力实验是一种测定梁材的断面系数和位移系数的实验方法。

在梁材处于纯弯曲状态时,其纵向挠度受支承限制,梁材只能在竖直方向变形,而水平方向处于不变形状态,因此,该实验就是利用纯弯曲梁的竖直变形进行测量。

实验步骤: 1、将梁材设置在实验装置上,并确定梁材的长度和断面尺寸; 2、将梁材中部悬空,并用负载支撑梁材的两端; 3、将负载按照实验要求的步进单位,逐步增加; 4、在每种负载状态下,记录梁材竖直变形的量值; 5、用记录的数据,计算梁材的断面系数和位移系数。

实验七 纯弯曲梁的正应力实验[DOC]

实验七 纯弯曲梁的正应力实验[DOC]

实验七纯弯曲梁的正应力实验[DOC]
实验目的:研究梁的中间点和两端点载荷作用下,现对象梁的变形和应力响应关系;测量梁的悬臂梁跨度;实现双轴载荷下梁的变形和应力的测量。

实验原理:该实验中的梁采用的是纯弯曲(非支承梁),根据应力方程和变形方程,可将变形和应力计算出来;悬臂梁跨径由始及终支点的水平位移量和圆半径决定。

实验仪器:梁材、载荷架、千分表、探头等测试器具。

实验步骤:
1. 将测试材料准备好,将梁安放到载荷架上,并调节支点的位置,使梁跨径恒定。

2. 调节载荷架,给两端点施加线性载荷,以产生纯弯的梁曲线。

3. 使用千分表和探头记录梁曲线的支点位置,从而计算梁跨径。

4. 根据应力方程和变形方程,计算梁中间点和两端点处的应力和变形量。

实验结果:
通过测量和计算,实验获得以下结果:
梁跨度:397 mm
中间点应力:234 MPa
两端点应力:110 MPa。

纯弯梁弯曲的应力分析实验报告

纯弯梁弯曲的应力分析实验报告

一、实验目的1. 梁在纯弯曲时横截面上正应力大小和分布规律2. 验证纯弯曲梁的正应力计算公式3. 测定泊松比m4. 掌握电测法的基本原理 二、实验设备多功能实验台,静态数字电阻应变仪一台,矩形截面梁,游标卡尺 三、实验原理 1. 测定弯曲正应力本实验采用的是用低碳钢制成的矩形截面试件,实验装置简图如下所示。

计算各点的实测应力增量公式:i i E 实实εσ∆=∆计算各点的理论应力增量公式:zi i I My ∆=∆σ2.测定泊松比计算泊松比数值:εεμ'=四、实验步骤1.测量梁的截面尺寸h 和b ,力作用点到支座的距离以及各个测点到中性层的距离;2.根据材料的许用应力和截面尺寸及最大弯矩的位置,估算最大荷载,即:[]σabh 3F 2max ≤,然后确定量程,分级载荷和载荷重量; 3.接通应变仪电源,分清各测点应变片引线,把各个测点的应变片和公共补偿片接到应变仪的相应通道,调整应变仪零点和灵敏度值;4.记录荷载为F 的初应变,以后每增加一级荷载就记录一次应变值,直至加到n F ;5.按上面步骤再做一次。

根据实验数据决定是否再做第三次。

五、实验数据及处理梁试件的弹性模量11101.2⨯=E Pa梁试件的横截面尺寸h = 40.20 ㎜,b = 20.70 ㎜支座到集中力作用点的距离d = 90 ㎜各测点到中性层的位置:1y = 20.1 ㎜ 2y = 10.05 ㎜3y = 0 ㎜4y = 10.05 ㎜ 5y = 20.1 ㎜六、应力分布图(理论和实验的应力分布图画在同一图上)七、思考题1.为什么要把温度补偿片贴在与构件相同的材料上?答:应变片是比较高精度的传感元件,必须考虑温度的影响,所以需要把温度补偿片贴在与构件相同的材料上,来消除温度带来的应变。

2.影响实验结果的主要因素是什么?答:影响本实验的主要因素:实验材料生锈,实验仪器精度以及操作的过程。

一、实验目的和要求:1) 用电测法测定纯弯曲梁受弯曲时A A -(或B B -)截面各点的正应力值,与理论计算值进行比较。

纯弯曲梁的正应力实验

纯弯曲梁的正应力实验
(5)实验完毕,卸掉砝码,整理数据。
纯弯 曲梁 的正 应力 实验
(1)梁的基本参数。 (2)实验记录表格。 (3)将各点的σ实和σ理描绘在同一个σOy 坐标系中,分别作出σ实-y和σ理-y分布曲线, 以便进行比较,从而检验梁的弯曲正应力理论公 式的正确性。
15.4 材料 剪切 弹性 模量G 的测

实验用到的仪器包括WSG-80型纯弯曲正应力试 验台、静
实验梁为低碳钢制成的矩形截面梁,根据实验装置 图、实验受力图可知,施加的砝码重量通过杠杆以一定 的比例作用于副梁的中央并通过两个挂杆作用于实验梁 C,D处,其荷载各为F/2。CD段处于纯弯曲状态。
(1)测定矩形截面梁的宽度b和高度h,荷载作用点 至梁支座距离a,并测量各应变片距中性层的距离y。
(2)正确地将各测点应变片和温度补偿片分别接到 电阻应变仪的相应接线柱上。
(3)接通应变仪的电源,完成预热工作后,设置应 变仪的灵敏系数,并将各窗口读数清零。
(4)加载。首先挂上砝码托作为初荷载,记录各测 点的应变值εi。采用增量法逐级加载,分四次加载,每加 载一次记录一次应变值,直至加载完毕。
在梁中CD段任选一截面,距中性层不同高度处,等 距离地粘贴五片电阻应变片,每片相距h/4,此外还布 设一个温度补偿片。试验中,采用半桥接线法将各测点 的工作应变片和温度补偿片连接在应变电桥的相邻桥臂 上,按照电阻应变仪的操作规程将电桥预调平衡,加载 后即可从应变仪上读出各测点的应变值ε实。
纯弯 曲梁 的正 应力 实验
1.1实验目的及仪器设备
纯弯曲梁的正 应力实验
1.2实验原理 1.3实验步骤
1.4实验数据处理
理论分析可知,梁发生纯弯曲变形时,横截面 上只有正应力,以中性轴为界,一侧为拉应力,一 侧为压应力,且正应力的大小与点到中性轴的距离 成正比。本节用实验测定矩形截面简支梁承受纯弯 曲时横截面上正应力的大小及其分布规律,并与理 论值进行比较,以验证弯曲正应力公式,并初步掌 握电测法原理和静态电阻应变仪的使用方法。

纯弯曲梁上正应力测量实验

纯弯曲梁上正应力测量实验

纯弯曲梁上正应力测量实验1 实验目的⑴掌握多点静态应变、应力的测量方法;⑵用电测法测量矩形梁在纯弯曲时正应力的分布大小及金属材料泊松比μ; ⑶通过正应力测量的结果分析,验证理论计算正应力公式。

2 设备仪器⑴电子万能试验机一台; ⑵纯弯曲测试梁一根; ⑶静态电阻应变仪一台。

3 实验原理实验装置如图6—1,在矩形梁中间取截面I —I 。

该截面上共有6个测点,其中上表面2个测点:一个纵向、一个横向;下表面一个纵向测点;侧面等分布置3个纵向测点。

各测点上已粘贴电阻应变片。

当电子万能试验机对矩形梁施加压力时,可分别测得6个测点处微应变的大小。

其中5个纵向粘贴电阻应变片测出的应变就是该点弯曲正应力作用产生的,且满足虎克定律。

由此得到该点正应力:E σε=式中E 为材料弹性常数 E=200GPa而上表面的横向粘贴电阻应变片则是为测量泊松比μ准备的。

/μεε=横向纵向4 实验步骤:⑴、按单臂测量组桥方式把6个电阻应变片顺序接入静态电阻应变仪的6个测量电桥中,分别测出6个被测点在载荷作用下的微应变值。

⑵、开启电子万能试验机,按等量加载程序对试验梁加载。

当F=0时,将静态电阻应变仪上所接电桥的输出值调为0。

然后,当F 依次每增加500N 时,分别记录该电桥测出的微应变值,直至加载程序结束。

附:实验数据记录表(表6-1)5 实验结果处理由弯曲理论知纯弯曲梁的横截面上各点的正应力大小 σ=-My/I z 式中M 为弯矩;y 为欲求点到弯曲中性轴的距离;I z 为梁的横截面对中性轴Z 的惯性矩,且有I z =bh 3/12 所以,可理论计算截面I —I 上5个点的纯弯曲正应力大小和方向。

把5个点上F=500N 时的弯曲正应力求得之后可与实验测出的这5个点上弯曲正应力作比较。

实验测出的正应力i i E σε=(i=1、2…5)式中E=200Gpa ;i 是5个纵向粘贴应变片的序列数;εi 是第i 点应变增量的平均值。

F/2F/2I-I图6-1实验装置图计算实验测出的材料泊松比61/μεε=6 思考题:⑴弯曲正应力大小是否受材料弹性常数E 的影响? ⑵弯曲正应力沿梁的高度上是怎样分布?。

纯弯曲梁的正应力实验报告

纯弯曲梁的正应力实验报告

姓名:(一) 班级: 学号:实验报告纯弯曲梁的正应力实验一、实验目的:1.测定梁在纯弯曲时横截面上正应力大小和分布规律2.验证纯弯曲梁的正应力公式二、实验设备及工具:1.材料力学多功能试验台中的纯弯曲梁实验装置2.数字测力仪、电阻应变仪三、实验原理及方法:在纯弯曲条件下,根据平面假设和纵向纤维间无挤压的假设,可得到梁横截面上任意一点的正应力,计算公式:zM yI σ⋅=为测量梁横截面上的正应力分布规律,在梁的弯曲段沿梁侧面不同高度,平行于轴线贴有应变片。

贴法:中性层一片,中性层上下1/4梁高处各一片,梁上下两侧各一片,共计五片。

采用增量法加载,每增加等量荷载△P (500N )测出各点的应变增量△ε,求的各点应变增量的平均值△ε实i ,从而求出应力增量:σ实i =E △ε实i将实验应力值与理论应力值进行比较,已验证弯曲正应力公式。

四、原始数据:五、实验步骤:1. 打开应变仪、测力仪电源开关2.连接应变仪上电桥的连线,确定第一测点到第五测点在电桥通道上的序号。

3. 检查测力仪,选择力值加载单位N或kg,按动按键直至显示N上的红灯亮起。

按清零键,使测力计显示零。

4.应变仪调零。

按下“自动平衡”键,使应变仪显示为零。

5.转动手轮,按铭牌指示加载,加力的学生要缓慢匀速加载,到测力计上显示500N,读数的学生读下5个测点的应变值,(注意记录下正、负号)。

用应变仪右下角的通道切换键来显示第5测点的读数。

以后,加力每次500N,到3000N 为止。

6.读完3000N应变读数后,卸下载荷,关闭电源。

六、实验结果及处理:1.各点实验应力值计算根据上表数据求得应变增量平均值△εPi,带入胡克定律计算各点实验值:σ实i=E△εPi×10-62.各点理论应力值计算载荷增量△P = 500N弯矩增量△M = △P/2×L P应力理论值计算(验证的就是它)3.绘出实验应力值和理论应力值的分布图以横坐标表示各测点的应力σ实和σ理,以纵坐标表示各测点距梁中性层的位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验七纯弯曲梁的正应力实验(共享)
纯弯曲梁的正应力实验是利用梁的中性线来确定梁的正应力和受力分布的一种实验方法。

实验以有关的原理及其实施步骤来进行:
1.进行实验的前期准备:准备实验装置,其中包括梁本身,梁上安装实验位移传感器,垂直负荷应力传感器。

2.设定初始参数,即静态偏载、动态偏载、梁长度等参数并根据梁的材料特性计算中
性线位置,再用实验施加负荷,将应力传感器安装在梁的中性线位置,用应力传感器测量
两端的端受力,沿着梁轴线测量偏载点到梁中性线的距离。

3.在进行实验前,一定要进行梁轴线和梁中性线的精确定位,在测量受力时,要对位
置和方向进行准确控制,不要出现偏移。

4.实验中采用双脚踏开关控制负载机构,先施加次低偏载,测量偏载点到梁中性线的
距离,保证准确无误,在施加负载时,采用步进或以一定的速率施加,这样可以更好的控
制实验,并得到较准确的结果。

5.在实验过程中,观察梁表面贴有位移传感器的位移值,以及经受负荷的梁,来标定
梁的中性线位置。

6.最后,根据获得的实验结果,利用原理计算梁的应力分布,并逐步确定整个梁受力
情况,得出梁的空间应力场,以此来确定梁弯曲受力形式,进而对梁进行结构设计与优化。

实验完成后,应及时对影响实验结果的各种参数和气象条件进行记录,以确保实验结
果可靠可验。

为了能够更好的了解实验结果以及梁的受力情况,应提出相应的分析和改进
措施,以深入认识梁的受力形态,并进一步改结构设计及优化。

相关文档
最新文档