数轴动点问题
数轴动点问题6题型
数轴动点问题6题型
数轴动点问题是数学中常见的一类问题,涉及到数轴上点的移动和位置变化。
一般来说,数轴动点问题可以分为以下六种题型:
1. 绝对值不等式问题,这类问题涉及到数轴上的点在满足绝对值不等式时的位置。
例如,求解 |x 3| < 5 这样的不等式,需要在数轴上确定满足条件的 x 的取值范围。
2. 区间划分问题,这类问题要求根据给定条件在数轴上划分区间,例如求解不等式 2x 1 > 5 时,需要确定 x 的取值范围,从而将数轴划分成若干个区间。
3. 方程与不等式问题,涉及到方程和不等式的问题,例如求解x^2 4x + 3 > 0 这样的不等式时,需要确定 x 的取值范围,也就是数轴上点的位置。
4. 线段长度问题,这类问题需要根据数轴上点的位置来求解线段的长度,例如求解两点之间的距离。
5. 几何位置问题,涉及到几何位置关系的问题,例如求解点到
直线的距离等。
6. 运动问题,这类问题涉及到数轴上点的运动,例如求解两点之间的相对位置关系、速度等。
在解决数轴动点问题时,通常需要画出数轴图示,明确标出各个点的位置,然后根据题目要求进行分析和计算。
希望以上内容能够帮助你更好地理解数轴动点问题的不同题型。
数轴的动点问题公式
数轴的动点问题公式
数轴的动点问题是指一个点在数轴上按一定规律运动的问题。
为了描述这个运动过程,我们可以使用公式来表示动点的位置。
假设数轴上的起点为0,动点在某个时刻的位置为x。
动点按照某个速度v向左或向右运动,那么在经过t单位时间后,动
点的位置可以用下面的公式表示:
x=x0+vt
其中,x0表示初始位置,v表示速度,t表示时间。
如果速
度为正,表示向右移动;如果速度为负,表示向左移动。
如果动点在数轴上做匀速直线运动,那么速度v是常数,这
时可以将公式简化为:
x=x0+vt
如果动点在数轴上做加速或减速运动,速度v是变化的,那
么我们需要根据具体的问题来确定速度v的表达式。
常见的加
速或减速运动可以用以下几种公式表示:
匀加速运动:v=v0+at,其中v0表示初始速度,a表示加
速度。
匀减速运动:v=v0at,其中v0表示初始速度,a表示减速度。
自由落体运动:h=h0+v0t+(1/2)gt^2,其中h0表示初始高度,v0表示初始速度,g表示重力加速度。
希望上述内容能够对您有所帮助!如有任何疑问,请随时向我提问。
初中数轴上的动点问题
初中数轴上的动点问题1. 什么是数轴上的动点问题数轴嘛,大家都知道,就像一条有方向的线,上面有好多数。
动点问题呢,就是有个点在这个数轴上动来动去的。
比如说,这个点可能从一个数开始,然后按照一定的速度或者规则在数轴上移动。
这就像一个小蚂蚁在一根标了数字的绳子上爬,它一会儿在这个数字这儿,一会儿又跑到另一个数字那儿了。
动点问题可有趣啦,它就像是数轴这个舞台上的小演员,不停地变换位置,而我们呢,就要根据它的表演规则来搞清楚一些事情,比如它什么时候会到达某个特定的数,或者它在移动过程中和其他固定的点或者其他动点之间的距离关系。
2. 常见的动点问题类型求动点与定点的距离。
比如说,有一个点A在数轴上表示3,有个动点P从0开始,以每秒2个单位的速度向右移动,那我们就要算出经过几秒钟,点P和点A的距离是多少。
这就像是在玩一个追逐游戏,一个是站着不动的目标,一个是跑来跑去的追逐者,我们要算出他们之间的距离变化。
动点相遇问题。
就像有两个动点,一个从数轴左边出发,一个从右边出发,它们朝着对方移动,速度也不一样。
我们就得算出它们什么时候会在数轴上的某个地方相遇,就好像两个人在一条路上相对走来,什么时候会碰面一样。
还有动点的中点问题。
假如有两个动点,那它们之间的中点位置会随着它们的移动而改变,我们要找出这个中点在不同时刻所表示的数。
这就像是两个人拉着一根绳子的两端,绳子的中间点会随着他们的走动而移动,我们要知道这个中间点在任何时候的位置。
3. 解决数轴上动点问题的小技巧一定要先确定动点的起始位置和运动方向。
这就好比你要知道小蚂蚁从哪里出发,是向左还是向右爬。
如果题目说一个动点从 - 5开始,以每秒1个单位的速度向左移动,那这个信息就是解题的关键开头。
用代数式表示动点在不同时刻的位置。
比如说那个从0开始,以每秒2个单位速度向右移动的动点P,经过t秒后,它的位置就可以表示为2t。
这就像给小蚂蚁的位置做个标记,让我们能随时知道它在哪里。
专题六:数轴动点问题
数轴动点问题数轴动点对应数的表示:左移减,右移加数轴上两点之间的距离表示:AB=|a﹣b|数轴动点问题万能三步走:1、表示数2、表示线段长3、列方程1、同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解5和﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)如果|x﹣2|=5,则x=.(2)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|有最小值,请写出当x在什么范围时有最小值;并求出最小值是多少?(3)请写出当x满足什么范围时.使得|x+3|﹣|x﹣1|=42、在数轴上,点A,B分别表示数a,b,则线段AB的长表示为|a﹣b|,例如:在数轴上,点A表示5.点B表示2,则线段AB的长表示为|5﹣2|=3:回答下列问题:(1)数轴上表示1和﹣3的两点之间的距离是:(2)若AB=8,|b|=3|a|,求a,b的值.(3)若数轴上的任意一点P表示的数是x,且|x﹣a|+|x﹣b|的最小值为4,若a=3,求b 的值.数轴动点问题1、同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解5和﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)如果|x﹣2|=5,则x=.(2)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|有最小值,请写出当x在什么范围时有最小值;并求出最小值是多少?(3)请写出当x满足什么范围时.使得|x+3|﹣|x﹣1|=4解:(1)∵|x﹣2|=5,∴x﹣2=±5,解得,x=﹣3或x=7,故答案为:﹣3或7;(2)|x﹣3|+|x﹣6|有最小值,最小值是3,当x>6时,x﹣3+x﹣6=2x﹣9>3,当3≤x≤6时,x﹣3+6﹣x=3,当x<3时,3﹣x+6﹣x=9﹣2x>3,故|x﹣3|+|x﹣6|有最小值,最小值是3;(3)∵|x+3|﹣|x﹣1|=4,∴当x≥1时,x+3﹣x+1=4,得4=4;当﹣3<x<1时,x+3﹣1+x=4,解得:x=1,当x=1时,|x+3|﹣|x﹣1|=4成立;则﹣3<x<1使得|x+3|﹣|x﹣1|=4成立;当x≤﹣3时,﹣x﹣3﹣1+x=4,不成立,由上可得,当x≥1时,使得|x+3|﹣|x﹣1|=4成立.2、在数轴上,点A,B分别表示数a,b,则线段AB的长表示为|a﹣b|,例如:在数轴上,点A表示5.点B表示2,则线段AB的长表示为|5﹣2|=3:回答下列问题:(1)数轴上表示1和﹣3的两点之间的距离是:(2)若AB=8,|b|=3|a|,求a,b的值.(3)若数轴上的任意一点P表示的数是x,且|x﹣a|+|x﹣b|的最小值为4,若a=3,求b 的值.解:(1)1和﹣3两点之间的距离为|1﹣(﹣3)|=4;故答案为:4;(2)∵|b|=3|a|∴b=±3a∵AB=8∴|a﹣b|=8当b=3a时,|a﹣b|=|﹣2a|=8∴a=4,b=12或a=﹣4,b=﹣12当b=﹣3a时,|a﹣b|=|4a|=8∴a=2,b=﹣6或a=﹣2,b=6综上所述:a=4,b=12或a=﹣4,b=﹣12或a=2,b=﹣6或a=﹣2,b=6.(3)由线段上的点到线段两端点的距离的和最小,①当点b在a的右侧时,得P在3点与b点的线段上,|x﹣3|+|x﹣b|的值最小为4,|x﹣3|+|x﹣b|最小=x﹣3+b﹣x=4,解得:b=7;②当点b在a的左侧时,得P在3点与b点的线段上,|x﹣3|+|x﹣b|的值最小为4,|x﹣3|+|x﹣b|最小=3﹣x+x﹣b=4,解得:b=﹣1,综上所述:b=7或﹣1.。
数轴上的动点问题
数轴上的动点问题❖ 数轴上的动点问题,是很重要的一部分,但往往使学生感到很棘手.实际上,如果将动点问题“代数化”,“三招”就可轻松解决常见的问题.第一招:平移公式(平移规律)若数轴上点A 表示的数是a ,则当点A 向左平移t 个单位长度时表示的数为a t -;当点A 向右平移t 个单位长度时表示的数为a t +.简记为:左减右加.第二招:距离公式若数轴上,A B 两点表示的数分别是,a b ,则,A B 两点的距离AB a b =-.如果已知,A B 两点的位置关系,比如点A 在点B 的左边,则AB b a =-.第三招:中点公式若数轴上,A B 两点表示的数分别是,a b ,则线段AB 的中点表示的数是2a b + ❖ 常见题型:一、突破基础关—平移与距离数轴上点的平移和两点间的距离是数轴所有难点问题的突破口.点的平移是今后进一步研究动点问题的基础,两点间的距离则可以让学生感知数轴与线段之间的关系. 例1 请利用数轴回答下列问题:①如果点A 表示数3-,将点A 向右移动7个单位长度,那么终点B 表示的数是 ,A 、B 两点间的距离是 ;②如果点A 表示数3,将A 点先向左移动4个单位长度,那么终点B 表示的数是 ,A 、B 两点间的距离是 ;③如果点A 表示数3,将A 点先向左移动4个单位长度,再向右移动5个单位长度,那么终点B 表示的数是 ,A 、B 两点间的距离是 ;④一般地,如果A 点表示的数为a ,将A 点向右移动m 个单位长度,再向左移动n 个单位长度,请你猜想终点B 表示的数是 ,A 、B 两点间的距离是 .二、突破应用关—平移、距离、对称、旋转(滚动)1.平移平移是所有动点问题的灵魂所在,也是数轴问题研究的基石,所以我们在突破数轴难点时,有必要进行深层次的探究.例2如果将A点先向左移动4个单位长度,再向右移动5个单位长度,那么终点B表示的数是2,则起点A表示的数为 ,A、B两点间的距离是 .-.例3若AB为数轴上一线段,其中点A表示3,点B表示1①将线段沿着数轴左右平移,若平移后点A对应的数为5,则点B所对应的数是 ;-,则点A对应的数是 , AB的中点C对应的数②若平移后点B对应的数是4是 ;-,则A对应的数是 ,B对应的数③若平移后AB的中点C对应的数是1是 .2.距离距离是今后解决坐标系中数形结合问题的关键所在.在坐标系中,大多数问题归根结底是研究线段与线段之间的数量关系,也就是两点之间的距离.因此在初学数轴时,把水平距离问题理解透彻,对今后坐标系里几何问题的学习大有帮助.例4 数轴上有A、B两点,且A、B两点间的距离是3.①若A为原点,则点B表示的数是 ;②若点A表示的数是1,则点B表示的数是 ;③若点A表示的数是a,则点B表示的数是 ;例5数轴上有三点A、B、C,且A、B两点间的距离是3,B、C两点的距离是2,-,则点C表示的数是 .若A点表示的数为1-,C为例6 数轴上有三个点A、B、C,其中A点表示的数为1,B点表示的数为5数轴上的动点,若C到A的距离是C到B的距离的2倍,求此时C所表示的数是 .3.对称数轴上对称问题的关键是线段的中点.最简单的对称是相反数,它们关于原点对称,由此可把此类问题推广至一般,即关于数轴上任意点的对称.例7数轴上A、B两点表示的数为相反数,且AB的距离为5,点A在点B的右边,则A表示的数是 ,B表示的数是 .例8 将数轴沿着某一点A对折,使得1与6重合.①则A表示的数是 ;-重合的数是 ;②与10重合的数是 ;与3③若MN重合,且MN相距2015个单位长度(M在N的右边),则M表示的数是,N表示的数是 ;例9 数轴上有三个点A、B、C,其中A点表示的数为1,B点表示的数为一3,C为数轴上的动点,当A、B、C三个点中有一个点是另两个点的中点时,求此时C所表示的数.4.旋转(滚动)多边形的旋转问题或圆的滚动问题也是中考热点,实际在这类问题中也可以结合数轴来解答.例10 正方形ABCD在数轴上的位置如图5,点A、D对应的数分别为0和1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B对应的数为1,则连续翻转2015次后,图5①数轴上数2015对应的点是 ;②连续翻转2015次后,数轴上数2014对应的点是 .例11 (1)如图6,数轴上有一半径为1的圆,起始点A与原点重合.若将圆沿着数轴-重合的,顺时针无滑动地滚动一周,点A所对应的数是 ;若起点A开始时是与2则圆在数轴上无滑动地滚动2周后点A表示的数是 .图6A B C D,(2)如图6所示,圆的周长为4个单位长度,在圆的4等分点处标上字母,,,-所对应的点重合,再让圆沿着数轴按逆先让圆周上字母A所对应的点与数轴上的数2-将与圆周上的字母重合.时针方向作无滑动滚动,那么数轴上的数2015三 、突破动点大题—试卷中经常出现的动点应用题解决此类问题的关键是确定动点表示的数,以及动点的运动方向.以下分为三类问题进行解析:1.方向不变例1 如图1,数轴上点B 表示的数是30,,P Q 两点分别从,O B 两点同时出发,分别以3单位/秒和2单位/秒的速度向右运动,运动时间为t 秒, M 为线段BP 上一点,且13PM PB =,N 为QM 的中点. (1)若12PB BQ =,求t 的值; (2)当t 的值变化时, NQ 的值是否发生变化?为什么?练习1:已知数轴上两点,A B 对应的数为-1 ,3,点P 为数轴上一动点,其对应的数为x .(1)数轴上是否存在点P ,使5PA PB +=?若存在,请求出x 的值;若不存在,请说明理由.(2)当点P 以每分钟1个单位长度的速度从O 点向右运动时,点A 以每分钟5个单位长度的速度向左运动,点B 以每分钟20个单位长度的速度向右运动.在运动的过程中,,M N 分别是,AP OB 的中点,AB OP MN-的值是否改变,为什么?,B点对应的数为练习2:如图,已知A、B分别为数轴上两点,A点对应的数为20100.(1)AB中点M对应的数;(2)现有一只电子蚂蚁甲从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁乙恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,求C点对应的数;(3)若当电子蚂蚁甲从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁乙恰好从A点出发,以4个单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,求D点对应的数.练习3:已知数轴上两点A、B对应的数分别为—1,3,点P为数轴上一动点,其对应的数为x。
数轴动点问题公式
数轴动点问题公式
所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想数形结合思想转化思想
动点问题公式为:已知a点在数轴x1,b点在数轴的x2,a从a点出发,速度为v1,b从b点出发,速度为v2,则相遇时间t=|x1-x2|/(v1-v2)(v1与v2速度方向同向)。
比如:a点在数轴1的边线向右以1个单位每秒的速度向右运动,b点数轴10的边线以每秒2个单位每秒的速度向左运动,碰面时间t=|1-10|/(1-(-2))=3s。
解决动点问题的根本在于受力分析清楚。
力就是发生改变物体运动的原因,因此,必须化解各种运动参量。
只需要知道物体的受力,和动点的初始条件。
就可以列出牛顿运动方程来解决。
其中力对时间的分数(累积)就是动量的变化。
对加速度的分数(累积)就是动点能量的变化。
七年级上册数轴动点问题
七年级上册数轴动点问题一、数轴动点问题基础知识1. 数轴的三要素原点、正方向和单位长度。
在数轴上,右边的数总比左边的数大。
2. 动点在数轴上的表示设动点表示的数为公式,如果动点从某一固定点公式出发,以速度公式向右运动,经过公式秒后,动点表示的数为公式;如果向左运动,则为公式。
二、典型例题及解析例1:已知数轴上点公式表示的数为公式,点公式表示的数为公式,点公式在数轴上,且公式,求点公式表示的数。
解析:设点公式表示的数为公式。
根据两点间距离公式,公式,公式。
因为公式,所以公式。
当公式时,方程无解。
当公式时,即公式。
移项可得公式。
公式,解得公式。
所以点公式表示的数为公式。
例2:数轴上点公式对应的数为公式,点公式对应的数为公式,点公式以公式个单位/秒的速度从点公式向右运动,同时点公式以公式个单位/秒的速度从点公式向左运动,设运动时间为公式秒。
(1)当公式时,求公式的长度。
(2)求当公式为何值时,公式。
解析:(1)当公式时:点公式从公式出发,速度为公式个单位/秒,向右运动公式秒后,点公式表示的数为公式。
点公式从公式出发,速度为公式个单位/秒,向左运动公式秒后,点公式表示的数为公式。
根据两点间距离公式,公式。
(2)公式,则公式。
经过公式秒后,点公式表示的数为公式,点公式表示的数为公式。
公式。
当公式时,即公式。
当公式时,公式,解得公式。
当公式时,公式,解得公式。
例3:数轴上有公式、公式两点,公式点对应的数为公式,公式点对应的数为公式,点公式从公式点出发,以每秒公式个单位长度的速度沿数轴向右运动,点公式从公式点出发,以每秒公式个单位长度的速度沿数轴向左运动,设点公式、公式同时出发,运动时间为公式秒。
(1)求当公式时,点公式、公式在数轴上对应的数分别是多少?(2)经过多少秒后,点公式、公式之间的距离为公式个单位长度?解析:(1)当公式时:点公式从公式出发,速度为公式个单位/秒,向右运动公式秒后,点公式对应的数为公式。
数轴动点问题6题型
数轴动点问题6题型数轴动点问题是高中数学中常见的一类问题,主要涉及到点在数轴上运动的情况。
在解决这类问题时,可以利用数轴上的点的坐标与距离的关系,来求解点的位置、速度等信息。
本文将介绍数轴动点问题的6个典型题型,并通过解题步骤和例题来帮助读者更好地理解和掌握这类问题的解题方法。
题型一:根据速度求坐标如果一个点在数轴上以一定的速度运动,我们可以通过根据速度求坐标的方法来求解点的位置。
这个问题通常会给出点的初始位置和速度,要求我们求解点在某个给定的时间后的位置。
解决这类问题时,我们可以使用速度乘以时间的公式,即坐标 = 初始位置 + 速度 * 时间。
举例来说,假设一个点在数轴上初始位置为3,速度为2,我们需要求解它在10秒后的位置。
根据公式,我们可以得到坐标 = 3 + 2 * 10 = 23。
因此,在经过10秒后,点的位置为23。
题型二:根据坐标求速度与题型一相反,如果我们已知一个点在数轴上的初始位置和结束位置,并且需要求解点的速度,我们可以使用根据坐标求速度的方法。
解决这类问题时,我们可以使用坐标之差除以时间的公式,即速度 = (结束位置 - 初始位置) / 时间。
举例来说,假设一个点在数轴上初始位置为5,结束位置为25,并且经过10秒后到达结束位置。
我们可以使用公式速度 = (25 - 5) / 10 = 2来求解点的速度。
因此,这个点的速度为2。
题型三:两点相遇问题在数轴上,如果有两个点A和B,它们同时从不同的位置出发,以不同的速度运动,我们常常会遇到两点相遇的问题。
解决这类问题时,我们可以使用等速度的思想,通过设置一个相对速度来求解两点相遇的时间和位置。
举例来说,假设点A从位置1出发,速度为3,点B从位置9出发,速度为1,我们需要知道它们第一次相遇的时间和位置。
我们可以设置点A和点B的相对速度为3 - 1 = 2,根据题目描述,相对速度不变。
因此,这个问题可以转化为一个点以相对速度2运动的问题,我们可以使用速度乘以时间的公式,即坐标 = 初始位置 + 速度 * 时间,来求解它们的相遇时间和位置。
数轴上含速度的动点问题
数轴上含速度的动点问题一、基本概念1. 动点- 想象数轴就像一条长长的马路,动点呢,就像是马路上一辆跑来跑去的小汽车。
这个点不是固定在一个位置的,它会按照一定的速度移动。
- 比如说,有个点A在数轴上,它以每秒2个单位长度的速度向右移动。
这就好比汽车以每小时60千米的速度沿着马路向前开一样。
2. 起始位置- 动点开始的地方很重要哦。
就像汽车出发的时候是从停车场出发的,动点也有它的起始点。
比如点B在数轴上的位置是 - 3,这就是它的起始位置。
3. 方向- 动点在数轴上移动是有方向的,要么向左,要么向右。
向左就像汽车倒车一样,在数轴上表示数值越来越小;向右就像汽车正常向前开,数值越来越大。
如果一个动点以速度v向左移动,那它的位置变化就是不断地减去vt(t是时间);如果向右移动,就是不断地加上vt。
二、常见问题类型及解法1. 相遇问题- 就好比两辆车在马路上开,最后碰到一起了。
假设有两个动点A和B,A从数轴上的1这个位置出发,速度是每秒3个单位长度向右移动;B从5这个位置出发,速度是每秒2个单位长度向左移动。
- 那我们怎么知道它们什么时候相遇呢?我们可以设经过t秒相遇。
A移动后的位置是1 + 3t,B移动后的位置是5 - 2t。
当它们相遇的时候,这两个位置是相等的,也就是1+3t = 5 - 2t。
- 然后我们就像解普通方程一样,把t求出来。
首先把含有t的项移到一边,得到3t+2t = 5 - 1,也就是5t = 4,解得t = 0.8秒。
2. 追及问题- 这就像一辆车去追另一辆车。
比如说有动点C在数轴上2的位置,速度是每秒1个单位长度向右移动;动点D在5的位置,速度是每秒3个单位长度向右移动。
- 我们想知道D什么时候能追上C。
设经过t秒D追上C。
C移动后的位置是2+t,D移动后的位置是5 + 3t。
当D追上C的时候,它们的位置相同,也就是2+t = 5+3t。
- 移项得到3t - t=2 - 5,2t=-3,解得t=-1.5秒。
数轴动点问题公式
数轴动点问题公式数轴上的动点问题是数学中常见的一个问题类型。
在这类问题中,通常给出一个点在数轴上随时间变化的位置,然后要求求解该点的位置函数或速度函数等相关函数。
下面将分别介绍数轴动点问题的一般公式及求解方法。
一、数轴动点问题的一般公式假设点P在数轴上以时间t为自变量随时间变化,点P在数轴上的位置用变量x表示,即x=x(t)。
点P在时间t0时刻的位置为x0,则在t时刻的位置可以表示为x=x(t)=f(t)+x0,其中f(t)是关于t的函数,表示点P的位移。
二、数轴动点问题的求解方法1.求解位置函数:当给出点P在不同时刻的位置时,可以通过对位置函数的求解来求得该点在任意时刻的位置。
(1)如果已知点P在时间t1时刻的位置为x1,时间t2时刻的位置为x2,可以通过构建方程的方法求解位置函数。
设点P在时间t时刻的位置为x,则有x=f(t)+x1,x=f(t2)+x2、将这两个方程联立,消去f(t),得到x=(x2-x1)/(t2-t1)*(t-t1)+x1、这样就得到了点P在时间t时刻的位置函数x=f(t)。
(2)如果已知点P在时间t1时刻的位置为x1,速度为v1,点P在时间t2时刻的位置为x2,速度为v2,还可以通过使用速度函数的方法求解位置函数。
设点P在时间t时刻的速度为v,则有v = g(t),其中g(t)是点P的速度函数。
由于速度可以理解为位移对时间的导数,即v = dx / dt。
由此,可以得到dx = g(t) * dt,对上式两边同时积分,即得到x = ∫g(t) * dt + C,其中C是常数。
由于点P在时间t1时刻的位置为x1,可以得到∫ g(t) * dt + C = x1,再由点P在时间t2时刻的位置为x2,得到∫ g(t) * dt + C = x2、通过这两个方程可以解出C,从而得到函数x = f(t)。
2.求解速度函数:当给出点P在不同时刻的位置时,可以通过求解速度函数来确定点P在任意时刻的速度。
(完整版)数轴上动点问题(电子蚂蚁)
一、与数轴上的动点问题有关的基本见解数轴上的动点问题离不开数轴上两点之间的距离。
主要波及以下几个概念:1 .数轴上两点间的距离,即为这两点所对应的坐标差的绝对值d=|a-b|也即用右侧的数减去左侧的数的差。
即数轴上两点间的距离= 右侧点表示的数—左侧点表示的数。
两点中点公式:线段AB 中点坐标 = ( a+b) ÷22.点在数轴上运动时,因为数轴向右的方向为正方向,所以向右运动的速度看作正速度,而向作运动的速度看作负速度。
这样在起点的基础上加上点的运动行程就能够直接获得运动后点的坐标。
即一个点表示的数为a ,向左运动b 个单位后表示的数为 a— b ;向右运动 b 个单位后所表示的数为 a+b 。
3 .数轴是数形联合的产物,解析数轴上点的运动要联合图形进行解析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。
二、数轴上的动点问题基本解题思路和方法:1、表示出题目中动点运动后的坐标(一般用含有时间t 的式子表示)。
2、依据两点间的距离公式表示出题目中有关线段长度(一般用含有时间 t 的式子表示)。
3、依据题目问题中线段的等量关系(一般是和、差关系)列绝对值方程。
4、解绝对值方程并依据实指责题验算结果。
(解绝对值方程平常用 0 点分类谈论方法)已知: b 是最小的正整数,且a、 b 知足( c-5 )2+|a+b|=0 ,请回答以下问题(1)请直接写出 a、b、c 的值. a=________,b=________,c=________(2) a、 b、 c 所对应的点分别为 A、B、C,点 P 为易动点,其对应的数为 x,点 P 在 0 到 2 之间运动时(即 0≤x≤2 时),请化简式子: |x+1|-|x-1|+2|x+5|(3)(3)在( 1)( 2)的条件下,点 A、B、C 开始在数轴上运动,若点 A 以每秒 1 个单位长度的速度向左运动,同时,点 B 和点 C 分别以每秒 2 个单位长度和 p 个单位长度的速度向右运动,假定t 秒钟事后,若点 B 与点 C 之间的距离表示为 BC,点 A 与点 B 之间的距离表示为AB.请问: BC-AB的值能否跟着时间 t 的变化而改变?若变化,请说明原因;若不变,恳求其值.二、典例解析例1.已知数轴上有 A、B、C三点,分别代表— 24,— 10,10,两只电子蚂蚁甲、乙分别从 A、 C 两点同时相向而行,甲的速度为 4 个单位 / 秒。
数轴上的动点问题
数轴上的动点问题在数学的世界里,数轴是一个非常基础且重要的概念。
而其中的动点问题,则是许多同学在学习过程中感到头疼的一部分。
今天,咱们就来好好聊聊数轴上的动点问题,争取把它弄个明白。
首先,咱们得清楚数轴是啥。
简单来说,数轴就是一条带有方向、原点和单位长度的直线。
它就像是一个跑道,上面的点都有自己对应的位置。
那么动点问题又是怎么回事呢?动点,顾名思义,就是在数轴上移动的点。
这个点不像那些固定的数字一样老老实实待在原地,而是会按照一定的规律或者条件到处“跑”。
比如说,有一个点 A 在数轴上从某个位置开始,以每秒 2 个单位长度的速度向右移动。
这就是一个典型的动点问题描述。
那咱们怎么去解决这类问题呢?第一步,咱们要仔细读题,把题目中的关键信息都找出来。
比如动点的初始位置、移动的速度、方向,还有可能存在的时间限制等等。
就拿刚才那个例子来说,点 A 初始位置如果是在-3 这个点上,向右移动的速度是每秒 2 个单位长度,移动了 5 秒钟。
那咱们就能算出 5 秒钟后点 A 跑到哪儿去了。
因为向右移动是增加,速度是每秒 2 个单位长度,移动了 5 秒,所以一共移动了 2×5 = 10 个单位长度。
再加上初始位置-3,那么 5 秒钟后点 A 的位置就是-3 + 10 = 7 。
但是,动点问题可没这么简单,有时候会有多个动点同时在数轴上移动。
比如说,点 B 从 2 的位置开始,以每秒 1 个单位长度的速度向左移动,同时点 A 从-5 的位置开始,以每秒 3 个单位长度的速度向右移动。
经过多少秒,点 A 和点 B 会相遇?这时候,咱们就得设经过 t 秒它们相遇。
相遇的时候,点 A 和点 B所在的位置是一样的。
点 A 移动的路程就是 3t ,点 B 移动的路程就是 t (因为向左移动是减少)。
那么就可以列出方程:-5 + 3t = 2 t 。
解这个方程:3t + t = 2 + 5 ,4t = 7 ,t = 7/4 。
数轴动点问题6题型
数轴动点问题6题型数轴动点问题是指在数轴上有一系列的点,然后通过一系列的规则或运算,使得这些点按一定的顺序进行移动。
在这些题型中,我们需要掌握一些基本的数学知识,如坐标表示、数轴上的运算等。
下面,我将为大家介绍六个不同类型的数轴动点问题。
一、给定一个数轴上的点A,求它关于原点的对称点B的坐标。
解法:对于给定的点A,我们可以通过计算其与原点的距离来求得它的对称点B。
对称点B的坐标可以表示为-x,其中x是点A的坐标。
例如,给定点A(3),那么对称点B的坐标为-3。
二、给定一个数轴上的点A,求它关于点B的对称点C的坐标。
解法:对于给定的点A,我们可以通过计算它与点B的距离,再将这个距离取负数,从而求得它的对称点C的坐标。
例如,给定点A(2)和点B(4),那么点C的坐标可以表示为2 * (4 - 2) = -2。
三、给定一个数轴上的点A和点B,求它们的中点C的坐标。
解法:对于给定的两个点A和B,我们可以通过它们的坐标求得它们的中点C的坐标。
中点C的坐标可以表示为(x1 + x2) / 2,其中x1和x2分别是点A和点B的坐标。
例如,给定点A(3)和点B(7),那么中点C的坐标可以表示为(3 +7) / 2 = 5。
四、给定一个数轴上的点A和点B,求它们之间的距离。
解法:对于给定的两个点A和B,我们可以通过它们的坐标求得它们之间的距离。
距离可以用绝对值来表示,在数轴上两个点的距离为|x1 - x2|,其中x1和x2分别是点A和点B的坐标。
例如,给定点A(3)和点B(7),那么它们之间的距离为|3 - 7| = 4。
五、给定一个数轴上的点A和一个正整数n,求点A向右移动n个单位后的坐标。
解法:对于给定的点A和一个正整数n,要求点A向右移动n个单位后的坐标,只需要将点A的坐标增加n。
例如,给定点A(5)和n=3,那么点A向右移动3个单位后的坐标为5 + 3 = 8。
六、给定一个数轴上的点A和一个正整数n,求点A向左移动n个单位后的坐标。
专题——数轴上的动点问题
专题——数轴上的动点问题数轴上的动点问题处理数轴上动点问题的策略:1.两点间距离的计算:两点间距离等于它们对应的坐标差的绝对值,即右边点的坐标减去左边点的坐标。
2.数的表示:在数轴上,向右运动的速度看作正速度,向左运动的速度看作负速度。
点在起点的基础上加上运动路程就可以得到运动后的坐标。
例如,一个点表示的数为a,向左运动b个单位后表示的数为a-b,向右运动b个单位后表示的数为a+b。
3.分类讨论:数轴是数形结合的产物,分析点的运动要结合图形进行分析,注意多种情况的分类讨论。
4.绝对值策略:若点的左右位置关系不明确或有多种情况,可用两点距离的绝对值表示它们之间的距离,从而避免复杂分类讨论。
5.中点公式:若数轴上点A,B表示的数分别为a,b,M为线段AB中点,则M点表示的数为(a+b)/2.类型一:数轴上两点距离的应用例1:已知数轴上A,B两点表示的数分别为-2和5,点P为数轴上一点1)若点P到A,B两点的距离相等,求P点表示的数。
2)若PA=2PB,求P点表示的数。
3)若点P到点A和点B的距离之和为13,求点P所表示的数。
练1:已知数轴上A、B两点对应数分别为-2和4,P为数轴上一动点,对应数为x。
(1)若P为线段AB的三等分点,则x的值为-1;(2)若线段PA=3PB,则P点表示的数为2;(3)若点P到A点、B点距离之和为10,则P点表示的数为1.类型二:绝对值的处理策略例2:已知数轴上A,B两点表示的数分别为-8和20,点P,Q分别从A,B两点同时出发,P点运动速度为每秒3个单位,Q点运动速度为每秒1个单位,设运动时间为t秒1)点P向右运动,Q点向左运动,当t为何值时,P,Q两点之间距离为8?2)若P点和Q点都向右运动,多少秒后,P,Q两点之间距离为8?3)在(2)的条件下,另一动点M同时从O点出发,以每秒2个单位的速度向右运动,多少秒后,点M到点P和点Q的距离相等?练2、已知数轴上有A、B两点,其中点A对应的数为-8,点B对应的数为4.动点P从点A出发,以每秒2个单位长度的速度向右运动,同时动点Q从点B出发,以每秒1个单位长度的速度向左运动。
数轴中的动点问题洋葱数学
数轴中的动点问题洋葱数学
摘要:
1.数轴上的动点问题的概念
2.动点问题的应用
3.动点问题的解题方法
4.动点问题的挑战与展望
正文:
一、数轴上的动点问题的概念
数轴上的动点问题指的是在数轴上,有一个或多个动点,其位置随时间变化而变化。
我们需要研究这些动点的位置关系、运动规律以及相关性质。
在数学领域中,动点问题是一个重要的研究方向,其应用广泛,涉及到多个数学分支。
二、动点问题的应用
动点问题在实际生活中有很多应用,例如在物理学中,粒子在数轴上的运动可以看作是一个动点问题;在计算机科学中,算法中的动态规划也涉及到动点问题;此外,动点问题还与最优化理论、微积分等数学分支密切相关。
三、动点问题的解题方法
解决动点问题有多种方法,如几何法、代数法、逻辑法等。
几何法主要是利用几何图形的性质来解决问题,例如通过作图找到动点的位置关系;代数法则是通过建立数学模型,利用代数方法求解;逻辑法则是利用逻辑推理来解决问题。
在实际解题过程中,我们需要灵活运用各种方法。
四、动点问题的挑战与展望
尽管动点问题在数学领域中取得了很多成果,但仍然存在许多挑战和未解决的问题。
例如,如何更好地描述动点的运动规律,如何求解更复杂的动点问题等。
在今后的研究中,我们需要不断探索新的方法和技巧,以解决这些挑战。
总之,数轴上的动点问题既是一个有趣的数学问题,也是一个具有广泛应用价值的研究方向。
从物理学到计算机科学,从最优化理论到微积分,动点问题都发挥着重要作用。
《数轴动点问题》课件
目 录
• 数轴动点的定义与特性 • 数轴动点的运动规律 • 数轴动点的应用实例 • 数轴动点的解题策略与技巧 • 数轴动点的综合练习题 • 数轴动点问题的反思与总结
01
数轴动点的定义与特性
数轴动点的定义
01
数轴动点是指在数轴上可以移动 的点,这些点通常与某些数学问 题相关联,如追及问题、相遇问 题等。
相遇问题
总结词
相遇问题是数轴动点问题的另一种常见类型,主要研究两个动点在数轴上从两端相向而行直至相遇的 问题。
详细描述
相遇问题需要利用数轴上的距离和速度关系,计算出两个物体相遇所需的时间或距离。这类问题通常 涉及到相对速度的概念,即两个物体相对运动的速度等于各自速度之和或之差。
最大距离与最小距离问题
02
数轴动点问题通常涉及到速度、 时间、距离等概念,是数学中常 见的题型之一。
数轴动点的特性
数轴动点具有连续性
由于动点在数轴上可以连续移动,因 此其位置和状态会随着时间的变化而 变化。
数轴动点具有不确定性
由于动点的位置和状态是随机的,因 此其运动轨迹和结果也是不确定的, 需要根据具体问题进行分析和计算。
匀速运动规律
总结词
描述动点在数轴上以恒定速度进行的直线运动。
详细描述
在数轴上,如果一个动点以恒定的速度沿直线移动,那么它所经过的每一个单位 长度所用的时间都是相等的。匀速运动可以用公式表示为:距离 = 速度 × 时间 。
变速运动规律
总结词
描述动点在数轴上以非恒定速度进行的直线或曲线运动。
详细描述
04
数轴动点的解题策略与技巧
建立数轴模型
总结词
明确问题背景
详细描述
初中数学数轴动点问题经典
初中数学数轴动点问题经典
初中数学中的数轴动点问题是一个常见的问题类型,主要考察学生对于数轴、坐标系以及速度、时间等概念的理解和应用。
以下是一些经典的数轴动点问题:
1. 相遇问题:两个动点在数轴上分别从A、B两点同时向对方移动,求何时何地相遇。
示例:点A从原点出发,以每秒3个单位的速度向左移动,点B从
表示数2的点出发,以每秒1个单位的速度向右移动,求A、B两点相遇的点。
2. 追及问题:一个动点追赶另一个动点,求何时追上。
示例:点A从表示数-1的点出发,以每秒2个单位的速度向右移动,点B从表示数5的点出发,以每秒1个单位的速度向左移动,求A追上B
的时间和位置。
3. 速度与加速度问题:一个动点在数轴上移动,其速度随时间变化,求某时刻的位置或某段时间内的位移。
示例:点A从表示数-3的点出发,初始速度为每秒2个单位,并在接下来的2秒内,速度每秒增加1个单位,求2秒末A的位置。
4. 周期性移动问题:一个动点在数轴上按照某种周期性规律(如正弦、余弦函数)移动,求某时刻的位置或某段时间内的位移。
示例:点A从表示数0的点出发,按照正弦函数的规律上下移动,求5秒内A经过的路径长度。
5. 角度与距离问题:一个动点在数轴上以某个角度和速度移动,求某时刻的位置或某段时间内的位移。
示例:点A从表示数1的点出发,以每秒30°的速度顺时针旋转,求3秒后A移动的距离。
解决这类问题的关键是理解并应用数轴上的距离、速度和时间的关系,以及速度、加速度等物理概念在数学上的表达。
同时,还需要有一定的几何直觉和代数运算能力。
数轴动点问题经典例题
数轴动点问题经典例题摘要:1.数轴动点问题概述2.经典例题解析2.1 相遇问题2.2 距离相等问题2.3 中点问题3.解题方法总结正文:数轴动点问题是一种常见的中小学数学问题,主要涉及到点在数轴上的运动和相关的距离、速度等概念。
通过解决这类问题,可以培养学生的数感和逻辑思维能力。
经典例题解析:1.相遇问题题目:如图,在数轴上,点a表示-10,点b表示11,点c表示18。
动点p从点a出发,沿数轴正方向以每秒2个单位的速度匀速运动;同时,动点q从点c出发,沿数轴负方向以每秒1个单位的速度匀速运动。
设运动时间为t 秒。
(1)当t为何值时,p、q两点相遇?相遇点m所对应的数是多少?解:由题意可知,p、q两点相遇时,它们运动的距离之和等于线段ac的长度。
设相遇时t秒,则有2t + t = 18 - (-10),解得t = 6。
此时,p点对应的数为-10 + 2 × 6 = 12,q点对应的数为18 - 1 × 6 = 12。
所以,相遇点m 的坐标为12。
2.距离相等问题题目:在点q出发后到达点b之前,求t为何值时,点p到点o的距离与点q到点b的距离相等?解:设t秒后,点p的坐标为2t - 10,点q的坐标为18 - t。
要使点p到点o的距离与点q到点b的距离相等,即|2t - 10 - 0| = |18 - t - 11|,解得t = 7。
此时,点p的坐标为14,点q的坐标为1。
3.中点问题题目:在点p向右运动的过程中,n是ap的中点,求2cn - pc的值。
解:设n点对应的数为x,则有x = (2t - 10 + 0) / 2 = t - 5。
由于n是ap的中点,所以cn = |x - 0| = |t - 5|。
又因为pc = |2t - 10 - 18| = |t - 9|,所以2cn - pc = 2|t - 5| - |t - 9|。
当t = 7时,2cn - pc = 2 × 2 - 2 = 2。
七年级上册数学数轴动点问题
七年级上册数学数轴动点问题一、数轴动点问题题目。
1. 已知数轴上点A表示的数为 -2,点B表示的数为6,点P从点A出发,以每秒1个单位长度的速度沿数轴向右匀速运动;同时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动。
设运动时间为t秒。
- 当t = 2时,求PQ的长度。
- 当PQ = (1)/(2)AB时,求t的值。
- 在点P、Q运动的过程中,是否存在某一时刻t,使得点P是线段BQ的中点?若存在,求出t的值;若不存在,请说明理由。
解析:- 当t = 2时,点P表示的数为-2 + 1×2=0,点Q表示的数为6-2×2 = 2,则PQ=|0 - 2|= 2。
- AB=|-2 - 6| = 8,PQ=|(-2+t)-(6 - 2t)|=|3t - 8|,当PQ=(1)/(2)AB = 4时,即|3t-8| = 4,则3t-8 = 4或3t - 8=-4,解得t = 4或t=(4)/(3)。
- 若点P是线段BQ的中点,则BP = PQ,点P表示的数为-2+t,点Q表示的数为6-2t,BP=|(-2 + t)-6|=| t-8|,PQ=|(-2+t)-(6 - 2t)|=|3t - 8|,所以| t - 8|=|3t - 8|,即t-8=3t - 8(无解)或t - 8=-(3t - 8),解得t=(8)/(2)=4。
2. 数轴上点A对应的数为 -1,点B对应的数为3,点C对应的数为5,点P在数轴上对应的数为x。
- 若点P到点A、点B的距离相等,求x的值。
- 若PA + PB = PC,求x的值。
- 设点P在点A左侧,点M从点P出发,以每秒1个单位长度的速度向点A运动;同时点N从点A出发,以每秒2个单位长度的速度向点B运动,设运动时间为t 秒。
当点M与点N之间的距离为1个单位长度时,求t的值。
解析:- 因为点P到点A、点B的距离相等,所以| x-(-1)|=| x - 3|,即x + 1=-(x - 3)或x+1=x - 3(无解),解得x = 1。
专题02 数轴上的三种动点问题
专题02 数轴上的三种动点问题引言在数学中,数轴是一个常见的工具,用于表示实数集合。
它是一条无限长的直线,上面的每个点都对应着一个实数。
在数轴上,我们可以研究各种动点问题,这些问题涉及到点在数轴上的移动和相对位置的变化。
本文将介绍三种常见的数轴上的动点问题,并提供解决问题的方法和示例。
问题一:点的坐标变化问题问题描述在数轴上,有两个动点A和B,初始坐标分别为a和b。
点A每秒钟向右移动x个单位,点B每秒钟向左移动y个单位。
问在t秒后,点A和点B的坐标分别是多少?解决方法这个问题可以通过简单的数学运算来解决。
首先,我们可以得到点A和点B在t秒后的位移分别为xt和-yt。
将初始坐标与位移相加,即可得到点A和点B在t秒后的坐标。
具体而言,点A在t秒后的坐标为:坐标A = a + xt点B在t秒后的坐标为:坐标B = b - yt示例假设点A的初始坐标为5,点B的初始坐标为10,点A每秒钟向右移动2个单位,点B每秒钟向左移动3个单位。
我们要求在2秒后,点A和点B的坐标。
根据上述解决方法,点A在2秒后的坐标为:坐标A = 5 + 2*2 = 9点B在2秒后的坐标为:坐标B = 10 - 3*2 = 4因此,点A在2秒后的坐标是9,点B在2秒后的坐标是4。
问题二:点的相对位置问题问题描述在数轴上,有两个动点A和B,初始坐标分别为a和b。
点A每秒钟向右移动x个单位,点B每秒钟向左移动y个单位。
问在t秒后,点A和点B相对位置发生了怎样的变化?解决方法要解决这个问题,我们可以通过分析点A和点B的运动情况来确定它们的相对位置是否发生了变化。
首先,我们需要确定点A和点B在t秒内是否相遇。
如果点A在t秒内移动的距离和点B在t秒内移动的距离之和大于等于它们的初始距离,那么它们相遇;反之,则它们没有相遇。
如果它们相遇了,我们可以继续分析它们的相对位置。
如果点A在相遇时位于点B的左侧,则相对位置发生了变化;反之,则相对位置没有发生变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1、如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,数轴上有一点C,且C点到A 点的距离是C点到B点距离的2倍,且a、b满足|a+4|+(b﹣11)2=0.(1)直接写出a与b的值:a=;b =.(2)求出点C表示的数;(3)点P从A点以每秒4个单位的速度向右运动,点Q同时从B点以每秒3个单位的速度向左运动,若AP+BQ=2PQ,求时间t.
例2、2.我们知道:如果A、B两点在数轴上对应的数分别为x1、x2,那么AB之间的距离可以表示为:|AB|=|x1﹣x2|;
若C为线段AB的中点,则点C在数轴上对应的数x可以表示为:x=.
如图,O点是数轴上的原点,M、N是数轴上的两个点,M点对应的数是为﹣4,N点对应的数是为6.
(1)若M、N两个点同时出发沿着数轴运动.点M向右运动,点N向左运动,3秒后它们之间的距离为1个单位长度,且N的速度是M的两倍,分别求M、N的速度;
(2)若M以每秒2个单位的速度向右运动,N以每秒4个单位的速度向左运动,求几秒后O为MN的中点?
例3、已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意一点,其对应的数为x.(1)MN的长为;
(2)如果点P对应的数为x,则|x+1|+|x﹣3|的最小值为;若点P到N点的距离为5,即|x﹣3|=5,求此时x的值;
(3)现有两只电子蚂蚁A和B,蚂蚁A以每分钟2个单位长度的速度从点N向左运动,蚂蚁B以每分钟1个单位长度的速度从点M向右运动,设t分钟后两只蚂蚁相距2个单位长度,求t的值.
例4、已知数轴上有A,B,C三点,它们分别表示数a,b,c,且|a+20|+|b+10|=0,又b,c互为相反数.(1)求a,b,c的值.
(2)若有两只电子蚂蚁甲、乙分别从A,C两点同时出发相向而行,甲的速度为6个单位/秒,乙的速度为4个单位/秒,当两只蚂蚁在数轴上点m处相遇时,求点M表示的数.
(3)若将(2)的条件改为同向而行,其余条件都不变,求点M表示的数.
1、如图,在数轴上点A表示数a、点B表示数b,a、b满足|a﹣40|+(b+8)2=0,点O是数轴原点.
(1)线段AB的长为.
(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则点C在数轴上表示的数为.
(3)现有动点P、Q都从B点出发,点P以每秒1个单位长度的速度向终点A移动;当点P移动到O点时,点Q 才从B点出发,并以每秒3个单位长度的速度向右移动,且当点P到达A点时,点Q就停止移动,设点P移动的时间为t秒,问:当t为多少时,P、Q两点相距4个单位长度?
2、如图在数轴上A点表示数a,B点表示数b,a、b满足|a+2|+|b﹣4|=0;
(1)点A表示的数为;点B表示的数为;
(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),
①当t=1时,甲小球到原点的距离=;乙小球到原点的距离=;
当t=3时,甲小球到原点的距离=;乙小球到原点的距离=;
②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接写出甲,乙两小球到原点
的距离相等时经历的时间.
3、.已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0,请回答问题:
(1)请直接写出a、b、c的值:a=,b=,c=.
(2)在(1)的条件下,数a,b,c分别在数轴上对应的点A,B,C,有两只电子蚂蚁甲、乙分别从A,C两点同时出发相向而行,甲的速度为2个单位/秒,乙的速度为4个单位/秒,当两只电子蚂蚁在数轴上点M处相遇时,求点M表示的数;
(3)在(1)的条件下,点a,b,c分别对应点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动.同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?
若变化,请说明理由;若不变,请求其值.
4、已知数轴上两点A,B对应的数分别为a、b,且a、b满足|a+4|+(b﹣8)2=0.
(1)如图1,如果点P和点Q分别从点A,B同时出发,都沿数轴负方向运动,点P的运动速度为每秒2个单位,点Q的运动速度为每秒6个单位,设运动的时间为t(秒).①当BP=3AP时,t的值为;②当P、Q之间的距离为4时,求点Q对应的数.
(2)如图2,如果点P从点A出发沿数轴的正方向以每秒2个单位的速度运动,点M、N分别是线段AP、BP的中点,在运动过程中,线段MN的长度是否为定值.如果变化,请说明理由;如果不变,请直接写出线段MN的长度.
1.平移和翻折是初中数学中两种重要的图形变化,阅读并回答下列问题:
(一)平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.(1)把笔尖放在数轴的原点处,先向左移动2个单位长度,再向右移动3个单位长度,这时笔尖的位置表示的数是;
(2)一个机器人从数轴上表示﹣1的点出发,并在数轴上移动2次,每次移动3个单位后到达B点,则B点表示的数是;
(3)数轴上点A表示的数为m.则点A向左移动n个单位长度所表示的数为;
(二)翻折:将一个图形沿着某一条直线折叠的运动.
(4)若折叠纸条,表示﹣2的点与表示1的点重合,则表示﹣4的点与表示的点重合;
(5)若数轴上A、B两点之间的距离为8,点A在点B的左侧,A、B两点经折叠后重合,折痕与数轴相交于表示﹣2的点,则A点表示的数为;
(6)在数轴上,点P表示的数为4,点Q表示的数为x,将点P、Q两点折叠后重合,折痕与数轴交于M点;将点P与点M折叠后重合,新的折痕与数轴交于N点,若此时点P与点N的距离为3,数x的值为.
2.(1)数轴上对应点A表示数﹣5,A向右平移3个单位后的对应点表示的数是﹣5+3=﹣2,A点向左平移3个单位后的对应点表示的数是﹣5﹣3=﹣8.若数轴上对应点B表示数a,B向右平移5个单位后的对应点表示的数是,B点向左平移2个单位后的对应点表示的数是.(用字母a表示)
(2)假如在数轴上有二个点M,N,两点表示的数是﹣2,6,这二点同时出发,M以每秒2个单位向左平移,N以每秒4个单位向左平移,平移后,经过t秒后,M和N两点表示的数是和.(用字母t表示)(3)把(2)条件中,当t为何值时,N点追上M点.
3.如图①,在数轴上有一条线段AB,点A,B表示的数分别是﹣2和﹣11.
(1)若M是线段AB的中点,则点M在数轴上对应的数为;
(2)若C为线段AB上一点,如图②,以点C为折点,将此数轴向右对折;如图③,点B落在点A的右边点B′处,若AB′=B′C,求点在数轴上对应的数是多少?
4.已知A,B是数轴上两点,点A在原点左侧且距原点20个单位,点B在原点右侧且距原点100个单位.(1)点A表示的数是:;点B表示的数是:.
(2)A,B两点间的距离是个单位,线段AB中点表示的数是.
(3)现有一只电子蚂蚁P从点B出发以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发以4个单位/秒的速度向右运动.设两只电子蚂蚁在数轴上的点C处相遇,求点C表示的数.
5.数轴上点A表示数字6,点B表示数字﹣4
(1)画数轴,并在数轴上标出点A与点B;
(2)数轴上一动点C从点A出发,沿数轴的负方向以每秒2个单位长度的速度移动,经过4秒到达点E,数轴上另一动点D从点B出发,沿数轴的正方向以每秒1个单位长度的速度移动,经过8秒到达点F,求出点E与点F所表示的数,并在第(1)题的数轴上标出点E,点F;
(3)在第(2)题的条件下,在数轴上找出点H,使点H到点E距离与点H到点F距离之和为8,请在数轴上直接标出点H.(不需写出求解过程)
6.已知数轴上A,B,C三点对应的数分别为﹣1、3、5,点P为数轴上任意一点,其对应的数为x.点A与点P之间的距离表示为AP,点B与点P之间的距离表示为BP.
(1)若AP=BP,则x=;
(2)若AP+BP=8,求x的值;
(3)若点P从点C出发,以每秒3个单位的速度向右运动,点A以每秒1个单位的速度向左运动,点B以每秒2个单位的速度向右运动,三点同时出发.设运动时间为t秒,试判断:4BP﹣AP的值是否会随着t的变化而变化?
请说明理由.
7.如图,数轴上有三点A,B,C,点B,C对应的数分别为﹣800,200,AB:AC=2:3.(1)求点A对应的数;
(2)动点P,Q分别从点B和原点O同时出发向左运动,点P,Q的速度为10个单位长度/s和5个单位长度/s,点M到P,Q两点的距离相等,点Q在从点O运动到点A的过程中,QC﹣AM的值是否发生变化?若不变,求其值;若变化,说明理由.
8.如图,有两条线段,AB=2(单位长度),CD=1(单位长度)在数轴上,点A在数轴上表示的数是﹣12,点D在数轴上表示的数是15.
(1)点B在数轴上表示的数是,点C在数轴上表示的数是,线段BC的长=;
(2)若线段AB以1个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.当点B与C重合时,点B与点C在数轴上表示的数是多少?
(3)若线段AB以1个单位长度/秒的速度向左匀速运动,同时线段CD以2个单位长度/秒的速度也向左匀速运动.设运动时间为t秒,当0<t<24时,M为AC中点,N为BD中点,则线段MN的长为多少?
﹣14﹣(1﹣0.5)××[2﹣(﹣3)2] ﹣22﹣(﹣4)2×2+8÷(﹣2)3 ﹣22×|﹣3|+12÷(﹣)×。