飞机主要的飞行性能和飞行科目

合集下载

飞行性能和要求图文

飞行性能和要求图文

飞行性能和要求飞行性能是指飞机在飞行中表现出的各种性能指标。

这些性能指标包括飞行速度、飞行高度、爬升速度、下降速度等等。

作为一名飞行员或航空工程师,对于飞行性能的了解和掌握至关重要。

因此,在设计和操作飞机时,需要考虑到飞行性能以及相应的要求。

飞行速度飞行速度是指飞机在空中飞行时的速度。

飞机的最大飞行速度受到多种因素的限制,包括设计制约、气动效应、动力系统等。

除了最大速度之外,还有最小速度、巡航速度、着陆速度等不同的速度要求,这些要求需要遵循以确保飞机的飞行安全。

飞行高度飞行高度是指飞机在空中飞行时的高度。

与飞行速度一样,飞行高度也受到多种因素的限制,包括气压高度、飞机结构限制、人员舒适度等等。

在规定的飞行高度内保持飞行安全是飞行员和航空工程师的重要任务之一。

爬升和下降速度爬升和下降速度分别指飞机向上爬升和向下下降的速度。

这些速度指标对飞机的安全性和舒适度都有重要影响。

在起飞和着陆时,飞机需要保持特定的爬升和下降速度,以确保航班的顺利进行。

此外,这些速度指标还需要保持在一定的范围内,以确保航班的舒适度和乘客的安全。

转弯半径和坡度转弯半径和坡度分别指飞机在空中转弯时的半径和倾斜度。

这些指标同样对飞机的安全性和舒适度都有着重要的影响。

在进行大转弯时,飞机需要保持大的转弯半径以确保安全;而在进行小转弯时,飞机需要保持小的转弯半径以确保舒适度和乘客的安全。

能源消耗和经济性能源消耗和经济性是指飞机在空中飞行时所消耗的燃油数量和相关的经济成本。

这些指标对航空公司和航班运营商来说尤为重要,因为它们可以直接影响航班运营的成本和盈利能力。

在设计飞机时,需要考虑到能源消耗和经济性,以确保航空公司和航班运营商能获得最大的经济效益。

在设计和操作飞机时,飞行性能和相应的要求都是非常重要的。

飞行性能包括飞行速度、飞行高度、爬升速度、下降速度等等;而要求则涉及到制约因素、安全标准、舒适度等等。

对于飞行员和航空工程师来说,了解这些指标和要求是非常必要的,因为它们能够确保航班的顺利进行和乘客的安全。

飞行性能

飞行性能
Tr = 1 1 ρV 2 SCD0 + AG 2 / ( ρV 2 S ) = D0 + Di 2 2
式中, 零升阻力, 升致阻力, 式中,D0 —零升阻力,Di —升致阻力, 零升阻力 升致阻力 低速飞行时, 基本不随M数改变, 成正比, 低速飞行时,A基本不随M数改变,D0与速度V2成正比, Di 与速度V2成反比,如图2-2b中虚线。图中,实线为总阻力。 成反比,如图2 2b中虚线 图中,实线为总阻力。 中虚线。 最小, 称为有利速度 有利速度, 当D0=Di时,Tr最小,此时速度Vf称为有利速度,升阻比为Kmax。 2a, 点 升阻极曲线斜率最大) (图2-2a,a’点,升阻极曲线斜率最大) 当升力系数最大时(临界攻角, 2a最高点 最高点) 当升力系数最大时(临界攻角,图2-2a最高点) ,平飞速度最 2b, 小(图2-2b,b点)
2.速度特性 2.速度特性 指高度H 发动机转速n不变时,推力T 指高度H、发动机转速n不变时,推力T随V(M)变化关 系 速度增加时,先略有下降,再随M数增加而增加, 速度增加时,先略有下降,再随M数增加而增加, M>1后 数增加而下降(防止涡轮过热损坏, M>1后,随M数增加而下降(防止涡轮过热损坏,降 低油量的限制措施)。 低油量的限制措施)。 3.高度特性(虚线) 3.高度特性(虚线) 高度特性 推力随高度变化特性。 推力随高度变化特性。 图中H增大,空气密度下降, 图中H增大,空气密度下降, 发动机推力下降。 发动机推力下降。
Tr = D = 1 ρV 2 SCD 2
G=L=
1 ρV 2 SCL 2
两式相除, Tr / G = 1/ K , K = CL / CD , K—升阻比 两式相除, 升阻比越高,平飞需用推力越小。 Q G = Tr K 升阻比越高,平飞需用推力越小。

飞行科技知识点总结

飞行科技知识点总结

飞行科技知识点总结飞行科技是指在大气层内进行的飞行活动以及与之相关的技术和学科。

随着人类对航空航天领域的不断探索和发展,飞行科技已经成为了现代科技发展的重要组成部分。

本文将对飞行科技的相关知识点进行总结,包括飞机结构与原理、飞行动力、航空航天材料、飞行控制系统、航空航天工程等多个方面。

一、飞机结构与原理1. 飞机结构飞机的结构包括机身、机翼、尾翼、发动机等部分。

机身是承受载荷的主要构件,机翼则是产生升力的部分,尾翼负责平衡飞机的稳定性,而发动机则提供飞机的动力。

2. 升力原理飞机在飞行时,将机翼产生的升力转化为向上的推力,从而支撑飞机的重量。

升力的产生主要依靠气流与机翼表面的压力差引起的升力。

3. 阻力原理飞机在飞行时会受到气流的阻碍,产生阻力。

飞机在设计时需要降低阻力,以提高飞行效率。

二、飞行动力1. 发动机发动机是飞机的动力来源,主要分为喷气发动机和螺旋桨发动机两种。

其中,喷气发动机通过喷射高速气流产生推力,而螺旋桨发动机则通过旋转螺旋桨产生推力。

2. 推力与动力飞机飞行的推力需要克服阻力,并提供足够的动力来实现升降和速度变化。

推力与动力的大小与发动机的设计和性能有关。

三、航空航天材料1. 轻质材料飞机的结构材料需要具有轻质、高强度和耐腐蚀的特点。

目前常用的航空航天材料包括铝合金、钛合金、复合材料等。

2. 密封材料飞机在空中飞行时需要具备一定的密封性能,以防止压力损失和气流泄漏。

因此,一些高性能的密封材料得到了广泛的应用。

四、飞行控制系统1. 飞行仪表飞行仪表包括指示空速、高度计、姿态指示仪等,能够为飞行员提供必要的飞行数据,保障飞行安全。

2. 自动飞行系统自动飞行系统能够实现飞机的自动导航、自动驾驶等功能,为飞行员减轻负担,提高飞行效率。

3. 航空电子设备航空电子设备包括雷达、通信设备、导航系统等,能够提供飞行的信息和指导,提高飞行的安全性。

五、航空航天工程1. 飞行器设计飞行器设计需要考虑气动力学、结构力学等多个方面的知识,以满足飞行器在各种工况下的性能需求。

飞机的飞行性能

飞机的飞行性能
飞机的静升限
一架飞机能飞多高的一个指标。在一定飞行高度上,只要平飞速度小于该高度上的最大平飞速度,则飞机一定具有未被利用的剩余推力ΔF,可用来供飞机作等速爬升用。一方面,当飞机重量一定时,飞行高度增加,飞机迎角以及升力系数必须增加,因而飞机的阻力迅速增大;另一方面,发动机的推力随飞行高度的增加却迅速减小,故使飞机的剩余推力ΔF下降得很快。换句话讲,飞机的垂直 上升速度随高度的增加迅速减小。对于垂直上升速度等于零的最大平飞飞行高度,称为飞机的理论静升限(高度)。常用的“实用静升限”,即为对应于垂直上升速度为5m/s时的最大平飞飞行高度。
飞机的飞行性能
飞机的飞行性能包括:最小(大)平飞速度 、巡航速度、航程 、静升限等
最小平飞速度
取决于飞机的最大升力系数的大小,它对响。
最大平飞速度
是一架飞机能飞多快的指标。具体讲的是指在水平直线飞行条件下,在一定的飞行距离内(一般应不小于3km),发动机推力为最大状态(如果有加力燃烧室,则在开加力的状态)下,飞机所能达到的最大平衡飞行速度。由于发动机推力大小还与飞行高度有关,所以最大平飞速度应取不同高度中的最大值。
巡航速度
是发动机每公里消耗油量最小情况下的飞行速度。
航程
在载油量一定情况下,以巡航速度所能飞越多距离称为航程(严格讲,还应加上起飞爬升段以及从巡航高度下滑到着陆电的水平距离等 )。巡航速度显然要大于最小平飞速度,小于最大平飞速度。航程是一架飞机能飞多远的指标。轰炸机和运输机的航程是设计中的最主要性能要求。提高航程的主要办法是减小发动机的燃烧消耗率。在总重一定的情况在,减小结构重量,增加飞机载油量可以增大航程。此外,安装可以扔掉的副油箱,也可以增加飞机的航程。

飞行力学综合作业飞机飞行性能计算

飞行力学综合作业飞机飞行性能计算

飞行力学综合作业飞机飞行性能计算飞行力学是研究飞行器在空气中运动和受力的科学,是飞行器设计和飞行性能评估的重要基础。

本文将对飞机的飞行性能进行计算和分析。

飞行性能主要包括飞机的升力、阻力、推力和重力等因素。

下面我们以一种常见的民用客机为例,对其飞行性能进行计算。

首先,我们需要计算飞机的升力。

升力是飞机在飞行过程中由于机翼产生的上升力,可以通过公式计算:L=1/2*ρ*V^2*S*CL其中L为升力,ρ为空气密度,V为飞机的速度,S为机翼的参考面积,CL为升力系数。

接下来,我们需要计算飞机的阻力。

阻力是飞机在飞行过程中由于空气阻力产生的力,可以通过公式计算:D=1/2*ρ*V^2*S*CD其中D为阻力,CD为阻力系数。

在计算阻力时,我们还需要考虑飞机的气动效率。

气动效率可以通过升阻比来计算:L/D=CL/CD其中L/D为升阻比。

推力是驱动飞机前进的力,可以通过飞机的引擎推力来提供。

推力的大小可以通过推力系数和空气密度等参数计算得到。

最后,我们需要计算飞机的重力。

重力是飞机受到的重力作用,可以通过飞机的质量和重力加速度来计算。

通过以上的计算,我们可以得到飞机在不同飞行状态下的各项性能数据。

这些数据对于设计优化飞机结构、提高飞行性能、保证飞行安全等都具有重要意义。

除了飞机的飞行性能计算外,还需要对飞机的稳定性和操纵性进行综合评价。

稳定性主要包括静态稳定性和动态稳定性,静态稳定性可通过计算飞机的静定稳定导数来评估,动态稳定性则需要进行飞行仿真和试飞实验进行评估。

操纵性主要包括操纵操纵性和操纵时的飞行品质,可以通过计算飞机的操纵性导数和进行操纵器的飞行试验来评估。

综上所述,飞行力学综合作业主要包括飞机的飞行性能计算、稳定性和操纵性评估等内容。

通过这些计算和评估,可以为飞机设计和飞行安全提供科学依据。

有关飞行力学的深入研究,还可以涉及飞机的气动力学、飞行控制等领域,这将是一项有挑战性且具有广泛应用价值的工作。

飞机飞行动力学

飞机飞行动力学

飞机飞行动力学飞机飞行动力学飞机是一种飞行器,它的机身由机翼、机身、发动机、尾翼等部分组成。

飞机飞行动力学是研究飞机的飞行原理和飞行的力学性能的科学。

它主要包括飞行车的基本运动、气动力学、稳定性、控制性、安全性和飞行性能等方面的内容。

一、飞机飞行的基本运动飞机的飞行可以分为三种基本运动:滚转、俯仰和偏航。

滚转是飞机绕着纵轴旋转,俯仰是飞机绕着横轴旋转,偏航是飞机绕着垂轴旋转。

这三种基本运动是飞机飞行的基础。

二、飞机气动力学飞机在飞行中会受到各种各样的气动力学作用,如风阻、升力、阻力、推力、重力等。

飞机运动状态完全受气动力学效应的影响,需要在飞行中保持稳定的气动性能来保证飞机的安全和效率。

1.升力和阻力当飞机在空气中飞行时,它可以获得升力和阻力。

升力来自于机翼的气动力学效应,当机翼在空气中移动时,会产生一个向上的力,这个力就是升力。

而阻力是机翼对空气的阻力,飞机在空气中飞行时,必须克服阻力才能前进。

升力和阻力的大小与速度、空气密度、机翼面积等因素有关,它们是影响飞机飞行的重要因素。

2.推力和重力另外,飞机还有推力和重力。

推力是发动机产生的向前的力,是飞机前进的动力来源。

重力是地球对飞机产生的吸引力,是飞机受力的来源。

飞机的飞行速度和高度都受重力的影响,飞机必须通过控制升力和推力的大小来维持飞行高度和速度,保持平衡状态。

三、飞机稳定性和控制性稳定性是指飞机在飞行中能够保持平衡的能力。

控制性是指飞机在飞行中能够按照飞行员的指令进行动作。

1.纵向稳定性和控制性纵向稳定性和控制性主要涉及飞机的俯仰运动。

它是指飞机能够在纵向方向上保持平衡的能力,并且能够按飞行员的指令执行俯仰角变化。

俯仰角是飞机机身和地平线之间的夹角。

飞机在起飞、加速和爬升等阶段,需要调整俯仰角来维持稳定的飞行状态,并且在降落和着陆时也需要用到俯仰角控制飞机的姿态。

2.横向稳定性和控制性横向稳定性和控制性主要涉及飞机的滚转和偏航运动。

它是指飞机能够在横向方向上保持平衡的能力,并且能够按照飞行员的指令执行滚转和偏航角变化。

2-4飞行性能和要求

2-4飞行性能和要求

典型客舱布局
B777-200
B777-300
B777
三、安全性
任何时候飞行的安全是航空公司运营的基本条件,各国的飞机在制造 时都要经过主管当局的适航认定,应该说安全基本上是有保证的。但在各 类飞机的比较中安全性主要体现在主要部件的可靠性上,特别是发动机, 液压系统等的可靠性上,其次体现在电子设施的先进性上,近二十年来机 载的电子系统发生了革命性的变化,其进展的主要方向是改善了飞行安全, 减轻了驾驶员的负担,减少了人为因素失误的可能,先进的电子设施使安 全性能提高。
整个飞行过程中,操作最复杂的是起 飞和降落阶段,据统计航空事故的68% 出现在这两个阶段,因而飞机在设计上 和驾驶员的训练上这两个阶段都是重点, 以确保飞行安全。 危险11分钟:飞机滑出跑道升空后的3 分钟和飞机着陆前的8分钟是最容易发 生事故的时段,
二、飞机的飞行性能
飞机起降
飞机性能可以定义为飞机完成一个特定飞行任务的 能力的尺度,同时,也可以认为是飞机安全飞行的尺度。 飞机性能包括飞机的设计性能和飞机的运行性能。飞机 的性能狭义的来讲是指飞机在飞行中各个阶段——起飞、 巡航、下降、着陆时的运动性能,如速度、加速度、操 纵性、稳定性,也包括在整个航行段的航程、燃油效率、 续航时间等,广义的性能对民航飞机来说则包括飞机的 可靠性、安全性、经济性、维修性、舒适性能等,对民 航飞机评价的各方面都应该包括在广义性能之内。
一、基本飞行性能
(二)升限和飞行高度
升限是飞机在最大重量条件下能够上升的最大 高度。 飞行高度主要受发动机性能影响,飞行 高度主要有两个指标,一个是巡航高度,一个是单 发停车高度。
一、基本飞行性能
(三)航程 航程是飞机加满油(燃油和滑油)起飞后 空中不加油、不着陆所能飞行的最大距离。 现代客机划分为近程、中程和远程。 衡量飞机飞行距离的大小当然比较重要, 在时间上衡量飞机在空中能飞多久,则是 “续航时间”,(又称久航力)。它是指飞机 加满油,空中不加油、不着陆连续飞行的总 时间。

2.7民航飞机的性能

2.7民航飞机的性能
安全是航空公司运营的基本条件
1、主要部件的安全和可靠性 2、电子设施的先进性
3、监控与告警能力
八、舒适性
1、旅客座位及座间距 2、机内噪声水平:不超过80分贝 3、环境温度 4、压力控制 5、机上厨房 6、厕所 7、娱乐设施 8、通讯设施
A点:最大业载点 B点:最大业载航
程点
C点:最大燃油航 程点 D点:0业载航程 点 Boeing747-400航程业载曲线
五、飞行速度和高度
1、飞行速度
最大平飞速度:平飞时的最大速度
经济巡航速度:最大平飞速度的90%---95%
2、飞行高度
巡航高度
单发停车高度:飞机单发时可以维持的最高高度.
着陆阶段: 从飞机以50英尺高度飞越跑道头开始 到接地并在跑道上安全停止的过程。
各飞行阶段飞行事故比例
二、飞行剖面
飞行剖面是飞机完成一次飞行任务各个阶段的飞
行轨迹(航迹)在垂直剖面上的投影图形,是飞机在不同 时间(或距离)上的高度所表示出来的图形。它是飞 行计划的依据和基础。
1、标准飞行剖面 2、备用飞行剖面
第八节
民航飞机的性能
民航飞机的要求是多方面的,包括飞 行性能、经济性、可靠性、舒适性。 民航飞机的首要要求是安全地满足完成 规定飞行任务的飞行性能,在此基础上要求 经济性、可靠性、舒适性。
一、飞机飞行过程
滑行阶段 从飞机撤轮挡开始滑动至到达跑道
端准备起飞
起飞阶段 从在跑道端松刹车开始,到飞机离
(3)最大无燃油重量(MZFW) 飞机无燃油时的最大重量。 (4)使用空机重量(OEW) 飞机上除了燃油重量和业载以 外的全部重量,包括空勤人员及 坐椅资料等全部服务所需的物品 的重量。 (5)燃油重量(FW) 飞机所加的燃油的重量。

飞机飞行的基本原理

飞机飞行的基本原理

大气层
对流层的特点 (1)气温随高度升高而降低:在对流层内,平均每升高
100m气温下降0.65℃,所以由叫变温层。该层的气温主 要靠地面辐射太阳的热能而加热,所以离地面越近,空 气就越热,气温随高度的增加而逐渐降低。爬过高山的 人都知道山上比山下冷,就是这个道理。 (2)有云、雨、雾、雪等天气现象:地球上的水受太阳照 射而蒸发,使大气中聚集大量的各种形态的水蒸气,随 着尘埃被带到空中,几乎全部水蒸气都集中在这一层大 气内,因而在不同的气温及条件下,就会形成云、雨、 雾、雪、雹等天气现象。
度为15 ºC、一个大气压的海平面上),每一立方 毫米的空间里含有2.7×1016个分子。当飞行器在这 种空气介质中运动时,由于飞行器的外形尺寸远远 大于气体分子的自由行程,故在研究飞行器和大气 之间的相对运动时,气体分子之间的距离完全可以 忽略不计,即把气体看成是连续的介质。这就是在 空气动力学中常说的连续性假说。
大气层
对流层的特点
(3)空气上下对流激烈:由于地面有山川、湖 泊、沙漠、森林、草原、海棠等不同的地形和 地貌,因此,造成垂直方向和水平方向的风, 即空气发生大量的对流。例如森林吸热少散热 慢,而沙漠吸热多散热快,因而沙漠上面的空 气被加热得快,温度较高,向上浮升,四周的 冷空气填入所离开的空间,因而造成上升气流 和水平方向的风。
平流层在25km高度以下,因受地面温度的影响较小,气温 基本保持不变,平均温度为-56.5ºC,所以又叫同温层。高 度超过25km,气温随高度增加而上升,这是因为该层存在 着臭氧,会吸取太阳辐射热的缘故。
飞行器的飞行的理想环境是对流层和平流层。
大气层
3、中间层 中间层在平流层之上,离地球表面
50~85km。在这一层内,气温先是随高

4飞机的基本飞行性能

4飞机的基本飞行性能
上升运动方程,将总空气动力与升力进行分解。 分析:同速度上升时,
P X G sin 上 Y G cos 上
上升推力大于平飞推力; 上升升力小于平飞升力。
EXIT
35
●上升所需速度
1 2 G cos 上 Y C y V上 S 2 2G V上 cos 上 V平飞 cos 上 Cy S
在平飞中,要保持速度不变,发动机可用推力应 与飞机阻力相等。 为克服飞机阻力所需推力叫平飞需用推力。
P平飞 X G Y P平飞 X G G Y K
9
飞机重量越重,平飞所需推力越大; 升阻比越大,平飞所需推力越小。
EXIT
10
平飞需用推力曲线
P
在一定飞行高度上,把 平飞需用推力随速度的 关系用曲线表示,称为 平飞需用推力曲线。 随着平飞速度的增大, 平飞需用推力先减小后 增大。
EXIT
17
④ 平飞推力曲线图
P
把同一高度上平 飞需用推力曲线和相 应的满油门状态下的 可用推力曲线绘制在 同一张图上,称为平 飞推力曲线图。
200 160 120 80 40 Vmin VMP 80 120
P可用
B
16°
△PMAX D
8° 6° VMD 160
A

C

200
240
Vmax
260
油门大 迎角小 速度大
0
V1 V2
VMP
VI
V1 V2
EXIT
28
●平飞两速度范围的进一步理解:
第二范围相对于第一范围来讲,只是油门反效 而杆不反效。即在所有的平飞速度范围都是顶杆低 头加速,带杆抬头减速。 第二范围内的反操纵只是在第二范围内保持稳 定飞行才体会明显。起飞着陆时的速度一般均在第 二速度范围,但反操纵并不会危及飞行安全,因为 油门不动。 在第二范围内飞机飞行是速度不稳定的,即一 旦受扰速度增加,飞机有加速的趋势,受扰速度减 小,飞机有减速的趋势。

飞机飞行性能的概念是

飞机飞行性能的概念是

飞机飞行性能的概念是飞机飞行性能是指飞机在不同飞行条件下所参照的性能指标,包括速度、爬升率、飞行距离和耐力等。

这些性能参数对于设计、操作和评估飞机的性能十分重要。

首先,飞机的速度是飞行性能中最基本也是最直观的概念之一。

飞机的速度通常以马赫数(Mach)表示,即飞机速度与音速的比值。

音速是空气中的声速,通常为每秒约340米。

根据飞机的设计和用途的不同,飞机的最高速度和巡航速度也有所不同。

最高速度指的是飞机在拥有最大动力时能够达到的最大速度,而巡航速度则是在通常航程条件下的经济速度。

其次,飞机的爬升率反映了飞机爬升高度与时间的关系。

爬升率越高,飞机越快地达到目标高度,这对于快速升空和避开地形障碍物都十分重要。

飞机的爬升率受到多个因素的影响,包括飞机的推力、机翼的升力和重量等。

飞机的飞行距离是指飞机在耗尽燃料前所能飞行的水平距离。

飞行距离与飞机的燃料效率、空气阻力以及有效的推力等因素有关。

飞机的设计和用途不同,其飞行距离也会有所差异。

例如,民航客机的设计注重长航程,而军用战斗机则更注重飞行机动性。

飞机的耐力是指飞机在一定燃料负载下能够保持在空中的时间。

耐力受到多个因素的影响,包括飞机的燃料容量、燃料效率、空气阻力等。

提高飞机的耐力对于一些特殊任务如侦察、巡逻和搜救等十分重要。

除了以上基本概念之外,飞机的飞行性能还包括其他一些指标和参数。

例如,机动性是指飞机进行动作、转弯和滚转等任务时的能力。

机动性对于军用战斗机、特技飞行和航空表演等领域尤为重要。

而着陆性能则涉及到飞机安全降落并停在指定地点的能力,这涉及到飞机的减速性能、滑行和刹车能力等。

综上所述,飞机飞行性能是指飞机在不同飞行条件下的性能指标,包括速度、爬升率、飞行距离、耐力、着陆性能和机动性等。

这些性能参数对于设计、操作和评估飞机的性能都非常重要,能够为各类飞机的研发、改进和飞行提供有力的参考和指导。

飞 行 性 能

飞 行 性 能
。 中断起飞距离是飞机从速度为零开始加速滑跑到一台 发动机停车,飞行员判断并采用相应的制动程序、使飞机 完全停下来所需的距离。飞机从速度为零开始做全发加速 滑跑,当增加到某一速度时,一台发动机停车,发动机停 车时飞机的滑跑速度记为VE,从速度为零加速到速度为VE 时称为全发加速段。从发动机停车到飞行员判断出发动机 停车,根据当时情况进行综合判断并完成相应的制动程序, 需要一定的时间,这个时间称为过渡段时间,用It表示,It 可经过试飞得出。
飞行性能
二、 爬升性能
从飞机起飞结束(此时飞机的高度为1500 英尺)到达规定的巡航速度和高度的过程称为航 线爬升。民用大型飞机的爬升是指在中低空保持 表速不变爬升,而在高空保持等M数不变爬升。 爬升过程中,若保持表速不变,由于空气密度减 小,真速将不断增大,即为了保持表速不变,必 须用一部分剩余推力增速,所以飞机的爬升梯度 和爬升率都要减小。
C:在10 000英尺高度平飞加速到上升速度。 D:按给定的表速和指示马赫数上升到上升顶点。 E:在初始巡航高度加速到巡航速度。 F:巡航。
飞行性能
三、 下降性能
与爬升性能类似,下降性能主要 由下降时间、下降的水平距离和下降 时所消耗的燃油量来表示。大型民航 运输机常用的下降方式有低速下降、 高速下降和最省燃油下降。
飞行性能
飞行姿态仪表
图2-19 高速下降和低速下降
飞行性能
四、 巡航性能
巡航性能是指 飞机从爬升顶点到 下降开始点之间的 平飞巡航性能。选 择好巡航高度和巡 航速度可以实现良 好的经济性。图221为某型号飞机的 典型巡航剖面图。
图2-21 某型号飞机的典型巡航剖面图
飞行性能
五、 着陆性能
飞机经历下降阶段后,开始进近与着陆。 着陆阶段虽然历时短,却是飞行中最危险、 最关键,也是最重要的阶段。现代大型民航 客机多是按仪表飞行规则飞行。各航空公司 对进近和着陆都制定了严格、全面的标准操 作程序和规章制度。

飞行原理5

飞行原理5

由上式可知,下滑角的大小与飞即升阻比 有关,升阻比越大,下滑角越小。因为升组比 大,表示产生同样升力时,阻力小,下滑时重 力分力G2小一些就可以与阻力取得平衡,可以 得到最小下滑角。
(三)、下滑率
飞机在单位时间内所降低的高度叫下滑率,用 Vy下表示,单位是(米/秒)。下滑率大,说明飞机下降 得快,下降到一定高度所需要时间短。在无升降气 流情况下,下滑率的大小等于下降速度的垂直分速, 即:
(一)、平飞航时
飞机平飞航时的长短决定于平飞可用燃油 量多少和小时耗油量大小。 飞机平飞可用燃油量是指从飞机装截的燃 油中,除去起飞、上升、下滑、着陆等所要消 耗的燃油量以及为应付特殊情况的备份油量 (一般不少于40%)之后,所剩下的燃油量, 平飞可用燃油量多,平飞航时就长。 飞机小时耗油量是指飞机每飞行一小时, 发动机所消耗的燃油量,小时耗油量越小,平 飞航时越长。
六、飞机的续航
飞机的续航性能包括航程和航时两个方 面. 航时是指飞机在空中所能待续的飞行时间; 航程是指飞机在空中所能持续飞行的距离。 飞机每次航行都包括上升、平飞、下降等 阶段,其中平飞阶段是航行的主要部分,故在 研究飞机的续航性能时,重点放在平飞阶段 上. 飞机在平飞阶段的航程和航时分别叫做平 飞航程和平飞航时。
从上图中可以找出: 1、飞机最大平飞速度Vmax; 2、飞机最小平飞速度Vmin; 3、飞机平飞有利速度V有利; 4、剩余推力∆P; 5、平飞速度 范围∆V。
(六)、影响飞机平飞的因素
1、飞行高度对平飞的影响:
2、空气温度对飞机平飞的影响:
3、重量对飞机平飞的影响:
二、飞机的爬升
飞机沿向上倾斜的轨迹作等速直线飞行 叫飞机的爬升。
(三)、飞机的起飞离地速度
飞机离地所需要的速度,称为飞机的离地 速度,用V离地表示。 离地速度小,则滑跑距离短,因为离地速 度小,飞机只需经过短距离的滑跑就能加速到 离地速度,因而滑跑距离短。 飞机离地时,升力应等于飞机重力,即:

中国飞行试验研究院 试飞科目

中国飞行试验研究院 试飞科目

中国飞行试验研究院试飞科目
中国飞行试验研究院的试飞科目包括但不限于以下几个方面:
1. 飞行品质评估:通过对飞机的各项操控能力、稳定性、机动性等进行评估,验证飞机在飞行过程中的基本性能指标,包括起飞性能、爬升性能、巡航性能、俯冲性能、滑降性能等。

2. 飞行安全性评估:对飞机在各种复杂环境下的飞行安全性进行评估,包括对极端气候条件下的飞行性能、对突发事件的应对能力、对紧急情况的处理等。

3. 系统集成测试:对飞机各个子系统的集成性能进行测试,包括机械系统、电气系统、通信系统、导航系统、控制系统等。

4. 客舱操作与安全性评估:对飞机客舱内的操作界面、座椅布局、安全设施等进行评估,确保航空公司和乘客的使用安全和舒适。

5. 航空电子设备测试:对飞机上的各种航空电子设备进行测试,包括雷达、通信设备、导航设备、飞行数据记录仪等。

6. 软硬件升级测试:对飞机软硬件升级后的性能进行测试,确保升级后的系统能够正常工作,并验证升级对飞机性能的影响。

7. 试飞数据收集与分析:对试飞过程中的各项数据进行采集和分析,包括飞机性能参数、飞行姿态、飞行轨迹等,为进一步改进飞机设计和性能提供依据。

以上仅为试飞科目的一些主要内容,实际试飞科目还可能根据具体飞机型号、试飞任务等有所调整。

飞行专业知识点总结

飞行专业知识点总结

飞行专业知识点总结导论飞行是一门复杂而又迷人的学科,涉及到空气动力学、航空制造、飞行动力学、导航和飞行电子学等众多领域。

飞行员需要掌握丰富的专业知识,包括飞行原理、飞机构造、飞行器性能、气象学、导航、驾驶技术等方面的内容。

本文将从飞行原理、飞机结构、飞行器性能、气象学、导航和驾驶技术等方面进行总结与分析。

一、飞行原理1. 空气动力学空气动力学是研究空气对飞行器的作用的学科,是飞行学科的基础。

通过空气动力学的研究,我们可以了解到飞机在不同状态下的飞行特性,包括升力、阻力、稳定性、操纵性等。

飞机的机翼形状、机身设计、控制面设置等都离不开空气动力学的原理。

2. 升力与阻力升力是飞机上升的力量,而阻力则是飞机前进时所受的阻碍力。

在飞机的设计与驾驶中,升力与阻力的平衡是十分重要的。

飞机具有不同的升力和阻力特性,在不同的飞行状态下,升力和阻力的变化会对飞机的性能产生影响。

3. 稳定性与操纵性飞机的稳定性是指飞机在特定状态下保持平衡的能力,包括纵向稳定性、横向稳定性和航向稳定性。

操纵性指的是飞机在飞行中受操纵面操控时的稳定性。

飞机的稳定性与操纵性是飞行员控制飞机的重要依据,也是飞机设计时需要考虑的重要因素。

二、飞机结构1. 飞机构造飞机的构造包括机翼、机身、机尾、起落架等部分。

飞机的不同构造对其飞行性能和安全性都有影响。

飞机构造的设计要考虑到载荷、重量、气动性能、结构强度等因素,以确保飞机的安全可靠。

2. 发动机飞机发动机是飞机的动力源,不同类型的发动机包括活塞发动机、涡轮螺旋桨发动机、涡喷发动机等。

飞机发动机的工作原理、性能和维护都是飞行员必须了解的内容,也和飞机的飞行性能有密切关系。

3. 飞机系统飞机包括了许多复杂的系统,如油系统、液压系统、电气系统、空调系统等。

这些系统的正常工作对飞机的安全飞行至关重要,飞行员需要了解不同系统的工作原理与故障处理方法。

三、飞行器性能1. 飞行器运动学飞行器的运动学是研究飞机在三维空间中的运动特性。

飞机性能分析的原始数据飞机的平飞性能

飞机性能分析的原始数据飞机的平飞性能
m为飞机的 d 2质x d量t2为飞机重心在x轴方向——航迹 的切线方向的加速度, d 2为y 飞dt2机重心在y轴方向—— 航迹法线方向的加速度。由于是等速运动切向加速
度 d 2 x ;dt2由于是直线运动,法向加速度 d 2 y dt2 。0飞
机等速直线运动的方程式为


Fx 0
Fy
0
• 上式,实际上是一组静力平衡方程式,飞机的等速直线
的增加,由于空气密度减小而引起发动机流量减小,
发动机推力相应减小。

当涡轮喷气发动机安装在飞机上,因安装部位不
同,进气道形式及尾喷管不同,从而引起不同程度的推
力损失。这样,真正作用于飞机发动机的推力就将低于
发动机特性曲线给出的数值(用P来表示)。很明显,P可用与
P的关系应是 P可用 P,称为效率系数。通常飞行性能 分析与计算时,应根据具体情况确定出 随飞行状态的
飞机性能分析的原始数据 飞机的平飞性能
介绍飞机性能分析的 主要原始数据 飞机的平飞性能
飞机的平飞性能参数介绍
飞机的平飞性能 2/60
第三章 飞机的飞行性能
• 前面讨论了飞机在飞行中空气动力的产生和 变化规律,即空气动力学问题,从这一章开始, 我们要研究飞行重心的移动和绕重心的转动两类 问题。飞机的移动,是把飞机的质量集中到重心, 即把飞机当作质点,讨论在外力(空气动力、发动 机推力或拉力和重力)作用下重心的运动特性,也 就是研究力的平衡问题。通常用来解决飞机飞多 快、多远、多高、多久以及飞机的机动性能、起 落性能等问题。这就是本章所要讨论的飞机的飞 行性能。
式可写为
G

P平需 K
• 由此可见,平飞所需推力与飞机重量成正比,而与
飞机的升阻比成反比。即是说,飞机重量越重,平飞所

航空器的特性详解

航空器的特性详解

1.飞机的飞行性能:在对飞机进行介绍时,我们常常会听到或看到诸如“活动半径”、“爬升率”、“巡航速度”这样的名词,这些都是用来衡量飞机飞行性能的术语。

简单地说,飞行性能主要是看飞机能飞多快、能飞多高、能飞多远以及飞机做一些机动飞行(如筋斗、盘旋、战斗转弯等)和起飞着陆的能力。

速度性能最大平飞速度:是指飞机在一定的高度上作水平飞行时,发动机以最大推力工作所能达到的最大飞行速度,通常简称为最大速度。

这是衡量飞机性能的一个重要指标。

最小平飞速度:是指飞机在一定的飞行高度上维持飞机定常水平飞行的最小速度。

飞机的最小平飞速度越小,它的起飞、着陆和盘旋性能就越好。

巡航速度:是指发动机在每公里消耗燃油最少的情况下飞机的飞行速度。

这个速度一般为飞机最大平飞速度的70%~80%,巡航速度状态的飞行最经济而且飞机的航程最大。

这是衡量远程轰炸机和运输机性能的一个重要指标。

当飞机以最大平飞速度飞行时,此时发动机的油门开到最大,若飞行时间太长就会导致发动机的损坏,而且消耗的燃油太多,所以一般只是在战斗中使用,而飞机作长途飞行时都是使用巡航速度。

高度性能最大爬升率:是指飞机在单位时间内所能上升的最大高度。

爬升率的大小主要取决与发动机推力的大小。

当歼击机的最大爬升率较高时,就可以在战斗中迅速提升到有利的高度,对敌机实施攻击,因此最大爬升率是衡量歼击机性能的重要指标之一。

理论升限:是指飞机能进行平飞的最大飞行高度,此时爬升率为零。

由于达到这一高度所需的时间为无穷大,故称为理论升限。

实用升限:是指飞机在爬升率为5m/s时所对应的飞行高度。

升限对于轰炸机和侦察机来说有相当重要的意义,飞得越高就越安全。

飞行距离航程:是指飞机在不加油的情况下所能达到的最远水平飞行距离,发动机的耗油率是决定飞机航程的主要因素。

在一定的装载条件下,飞机的航程越大,经济性就越好(对民用飞机),作战性能就更优越(对军用飞机)。

活动半径:对军用飞机也叫作战半径,是指飞机由机场起飞,到达某一空中位置,并完成一定任务(如空战、投弹等)后返回原机场所能达到的最远单程距离。

飞行考试知识点总结图表

飞行考试知识点总结图表

飞行考试知识点总结图表
飞行是一项高风险的活动,而飞行员的能力和知识水平直接关系到飞行安全。

因此,飞行员必须通过一系列的考试来获取相关执照和资格证书。

飞行考试涵盖了许多知识点,包括飞行原理、机载设备、航空气象、飞行规则和操作程序等内容。

以下是飞行考试知识点的总结:
飞行原理
飞行原理是飞行考试中的重要知识点,涵盖了机翼、机身、发动机、飞行控制面等飞机的各项性能和特点。

其中,包括升力和气动特性、机动性能和稳定性、发动机原理和性能等内容。

机载设备
机载设备是飞行考试中的另一个重要知识点,涵盖了飞行仪表、导航设备、通信设备、自动驾驶仪等设备的原理、操作和使用方法。

飞行员必须掌握各种设备的功能和使用方法,以确保飞行安全。

航空气象
航空气象是飞行考试中的一个关键知识点,涵盖了天气现象、气象图解、气象雷达、气象预报等内容。

飞行员必须了解不同天气对飞行的影响,以及如何根据气象信息做出飞行决策。

飞行规则
飞行规则是飞行考试中的另一个重要知识点,涵盖了国际民航组织(ICAO)规定的各项飞行规则和程序。

其中,包括飞行计划、起降程序、空中交通管制、飞行限制、飞行管制区等内容。

飞行操作程序
飞行操作程序是飞行考试中的另一个重要知识点,涵盖了起飞、飞行、下降和着陆等各项操作程序。

飞行员必须掌握飞行中的各项操作程序,以确保飞行安全。

综上所述,飞行考试知识点包括飞行原理、机载设备、航空气象、飞行规则和飞行操作程序等内容。

飞行员必须全面掌握这些知识点,以保证飞行安全。

因此,飞行员在备考飞行考试时,应该重点关注这些知识点,充分准备。

c919飞机试飞科目地面试验适航条款

c919飞机试飞科目地面试验适航条款

c919飞机试飞科目地面试验适航条款
摘要:
1.背景介绍
2.c919 飞机试飞科目
3.地面试验
4.适航条款
正文:
C919 飞机是我国自主研发的大型客机,为了确保其安全性能和飞行品质,进行了严格的试飞科目和地面试验。

本文将围绕c919 飞机试飞科目、地面试验以及适航条款进行介绍。

首先,C919 飞机试飞科目包括首飞、功能飞行、性能飞行、飞行试验等多个方面。

其中,首飞是指飞机首次离开地面,进行低空飞行;功能飞行则是对飞机的各个系统进行测试,确保其正常运行;性能飞行主要考核飞机的飞行性能,如飞行高度、速度等;飞行试验则是对飞机进行极端条件下的测试,如高温、低温、大风等。

其次,地面试验是飞机试飞的重要补充。

C919 飞机的地面试验主要包括结构强度试验、环境试验、疲劳试验、振动试验等。

结构强度试验是对飞机结构进行加载测试,以验证其在飞行中所承受的各种力量;环境试验则是对飞机在不同气候条件下的性能进行测试;疲劳试验和振动试验则是对飞机的耐久性和稳定性进行考核。

最后,适航条款是民航管理部门对飞机进行适航认证的重要依据。

C919
飞机在研发过程中,需要遵循我国民航局发布的适航条款,包括国际民航组织(ICAO)的标准和建议,以及各国民航管理部门的规定。

只有通过适航认证,C919 飞机才能正式投入商业运营。

综上所述,C919 飞机在试飞过程中,通过严格的试飞科目、地面试验以及遵循适航条款,确保了飞机的安全性能和飞行品质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

飞机主要的飞行性能和飞行科目
一、飞机的主要飞行性能
飞机的飞行性能是评价飞机优劣的主要指标。

主要的飞行性能包括下列几项:
(一)最大平飞速度(V最大)。


飞机的最大平飞速度是在发动机最大率(或最大推力)时一飞机所获得的平飞速度。

飞机的最大平飞速度是在发动机最大率(或最大推力)时一飞机所获得的平飞速度。

影响飞机最大平飞速度的主要因素是发动机的推力和飞机的阻力。

由于发动机推力、飞机阻力与高度有关,所以在说明最大平飞速度时,要明确是在什么高度上达到的。

通常飞机不用最大平飞速度长时间飞行,因为耗油太多,而且发动机容易损坏,缩短
使用寿命。

除作战或特殊需要外,一般以比较省油的巡航速度飞行。

对歼击歼来说,V最大更重要一些。

歼击机靠它来追上敌机,予以歼灭。

同时也靠它变被动为主动。

创造世界速度纪录的飞机,都是以最大平飞速度作为评定标准。

其速度单位是“公里/小时”。

(二)巡航速度(V巡) ‘
巡航速度是指发动机每公里消耗燃油最少情况下的飞行速度。

这时飞机的飞行最经济,航程也最远,发动机也不大“吃力”。

对于远程轰炸机和运输机,巡航速度也是一项重要的性能指标。

其单位也是“公里/小时”。

(三)爬升率(V、,)
飞机的爬升率是指单位时问内飞机所上升的高度,其单位是“米/分”或“米/秒”。

爬升率大,说明飞机爬升快,上升到预定高度所需的时间短。

爬升率是歼击机的一项重要性能。

爬升率与飞行高度有关。

随着飞行高度增加,空气密度减少,发动机推力降低,所以一般最大爬升率在海平面时,随着高度增加而减小。

(四)升限(H)
飞机上升所能达到的最大高度,叫做升限。

“升限”对战斗机是一项重要性能。

歼击机升限比敌机高,就可居高临下,取得主动权。

飞机的升限有两种:一种叫理论升限,它指爬升率等于零时的高度,没有什么实际意义;常用的是“实用升限”。

所谓“实用升限”就是飞机的爬升率等于每秒5米时的高度。

此外还有动力升限,它是靠动能向上冲而取得最大高度的。

一般创纪求的升限是指动力升限。

(五)航程及续航时间
航程是指飞机一次加油所能飞越的最大距离。

用巡航速度飞行可取得最大航程。

增加航程的主要办法是多带燃料、减小发动机的燃料消耗和增大升阻比K。

航程远,表示飞机的活动范围大。

对军用飞机来说,可以直接威胁敌人的战略后方,远程作战能力强;对民用客机和运输机来说,可以把客货运到更远的地方,而减少中途停留加油的次数。

续航时间是指飞机一次加油,在空中所能持续飞行的时间。

这一性能对侦察机、海上巡逻机和反潜机是很重要的;歼击机的续航时间长,也有利于对敌作战。

增加续航时间的措施同增加航程的措施相类似。

现代作战飞机大都挂有副油箱,就是为了多带燃料,以增大航程和航时。

某些飞机为了增大航程,并减小起飞时的载油量,以缩短滑跑距离或增加其它载重,可用空中加油的办法,在飞行途中由加油机补给燃料。

(六)作战半径
飞机从某一机场起飞,执行作战任务后再返回原机场,这距
离就是“作战半径”。

理论上“作战半径”应该是航程的一半。

但因飞机在最远点处要执行作战任务,消耗燃料,
缩短直线航程,故一般规定“作战半径"等于航程的25~40%。

二、飞机的主要飞行科目
飞行科目一般包括飞机的起飞、着陆,直线飞行(平飞、上升和下滑)和曲线飞行(或称机动飞行)。

(一)飞机的起飞和着陆
飞机的起飞和着陆是飞行最基本的科目。

飞机这时是在变速运动。

1.飞机的起飞
飞机的起飞过程,即飞机从静止不动、开始滑跑起,在地面越跑越怏,一直肌速到离开地面升入空中为止。

起飞过程飞机一直处于加速状态。

飞机从静止开始滑跑离开地面,并上升到25米高度的加速运动过程,叫做起飞。

现代喷气式飞机的起飞过程分成二个阶段: (1)地面加速滑跑阶段; (2)加速上升到安全高度阶段(图2—53)。

相关文档
最新文档