湿法脱硫工艺应用基本原理详细说明
湿法脱硫的工作原理是
湿法脱硫的工作原理是
湿法脱硫是一种常用的烟气脱硫技术,其工作原理是通过将烟气与含有氧化剂的吸收剂接触,使烟气中的二氧化硫(SO2)被吸收剂吸收并转化为硫酸盐。
这种技术主要适用于燃煤电厂、工业锅炉等燃烧过程中产生大量二氧化硫的场合。
具体来说,湿法脱硫的工作原理包括以下几个步骤:
1. 烟气接触:烟气从燃烧设备中排出后,进入脱硫塔或吸收器。
在脱硫塔中,烟气与喷射进来的吸收剂进行接触,形成气液两相的接触界面。
2. 吸收剂循环:吸收剂通常是一种碱性溶液,如石灰石浆液(石灰石和水的混合物)。
吸收剂通过喷淋或喷射的方式,与烟气进行充分接触。
在接触过程中,二氧化硫会被吸收剂吸收。
3. 反应转化:二氧化硫与吸收剂中的氧化剂(如氧气或空气)发生反应,生成硫酸盐。
这个反应通常是一个氧化还原反应,将二氧化硫氧化为硫酸。
4. 产物处理:生成的硫酸盐会与吸收剂中的其他成分一起形成溶液。
这个溶液需要进行处理,以便回收或处理其中的有害物质,同时将吸收剂重新循环使用。
总的来说,湿法脱硫通过将烟气与吸收剂接触和反应,将二氧化硫转化为硫酸盐,从而实现脱硫的目的。
这种技术在减少燃煤电厂和工业锅炉等燃烧过程中产生的
二氧化硫排放方面具有重要的应用价值。
5湿法脱硫基本原理
石灰石/石膏湿法脱硫基本原理
1.石灰石/石膏湿法脱硫工艺过程简介
含硫燃料燃烧所产生的烟气中的二氧化硫是对环境及人类有害的物质,因此在烟气排放之前必须采取措施使其中二氧化硫含量降低至允许排放浓度以下。在现有的脱硫方法中,石灰石/石膏湿法脱硫工艺则通过烟气大面积地与含石灰石的吸收液接触,使烟气中的二氧化硫溶解于水并与吸收剂及氧气反应生成石膏,从而降低二氧化硫的浓度。该工艺过程布置简单,主要如下:
在相对过饱和度较低时,晶种生长速率可忽略,因为浓度比率还不足以使这些主要位于界面区的分子进入新形成的晶束中(亚稳平衡),而是在现有晶体结构中牢固地结合,在这种情况下,现有晶体进一步增长而生成石膏。
晶体的增长多少受到机械应力的限制。晶束可能通过在溶液中的流动从现有晶体中分离出来(二次析晶)。通常搅拌悬浮液可以增加这种磨擦损失,其结果是使晶粒大小的分布向颗粒较小的方向转移。
(1)混合和加入新鲜的吸收液;
(2)吸收烟气中的二氧化硫并反应生成亚硫酸钙;
(3)氧化亚硫酸钙生成石膏;
(4)从吸收液中分离石膏。
其中典型工艺流程图见图1—1。
新鲜的吸收剂是由石灰石(CaCO3)加适量的水溶解制备而成,根据pH值和SO2负荷配定的吸收剂直接加入吸收塔。
该工艺过程中的核心工艺单元装置为吸收塔,在吸收塔的喷淋区,含石灰石的吸收液自上而下喷洒,而含有二氧化硫的烟气则逆流而上,气液接触过程中,发生如下反应:
图2-1:pH值对HSO3-氧化率的影响
形成硫酸盐之后,吸收二氧化硫(SO2)的反应进入最终阶段,即生成固态盐类结晶并从溶液中析出。石灰石/石膏湿法脱硫工艺中采用石灰石溶液作吸收剂,则生成硫酸钙,硫酸钙从溶液中析出成为石膏CaSO4·2H2O。
Ca2++ SO42-+2H2O CaSO4·2H2O↓(2-4)
湿法脱硫工艺流程和原理
湿法脱硫工艺流程和原理
嘿,朋友!今天咱就来讲讲湿法脱硫工艺流程和原理,这可老有意思啦!
想象一下,那些含有硫的废气就像一群调皮捣蛋的“小恶魔”,到处惹事。
而湿法脱硫呢,就如同一位超级英雄,专门来对付这些“小恶魔”。
先来说说流程吧。
废气这小家伙呀,被送进吸收塔这个“大城堡”里。
在那里面,有神奇的脱硫剂,就像给“小恶魔”喂了特别的“药”,让硫乖乖地被分离出来。
然后呢,经过一系列的处理,干净的气体就跑出来啦,就好像“小恶魔”被驯服后变乖啦!比如我们生活中的工厂烟囱,排放的废气不处理可不行,这不就轮到湿法脱硫大显身手嘛!
再讲讲原理哦。
脱硫剂和硫之间会发生奇妙的化学反应,就像一场精彩的“战斗”。
脱硫剂把硫紧紧抓住,让它无法再作恶。
这就好像两个小伙伴在拔河,脱硫剂用尽力量把硫拉过来,让它不能再乱跑。
哎呀,这原理可真是够神奇的!
你想想看,要是没有湿法脱硫,那我们的环境得变成啥样呀?到处都是硫的污染,那可太糟糕啦!所以说,湿法脱硫真的是太重要啦!我们应该感谢它为我们的环境做出的巨大贡献。
我觉得呀,湿法脱硫工艺流程就像是一场精彩的魔术表演,把有害的东西变得无害。
而原理呢,则是这场魔术背后的秘密魔法,让一切都变得那么神奇又有效。
它就是我们保护环境的有力武器,让我们的生活更加美好和健康!。
石灰石湿法脱硫原理四个步骤
石灰石湿法脱硫原理四个步骤
石灰石湿法脱硫是一种常用的烟气脱硫技术,主要用于燃煤电厂等工业领域中
排放含硫气体的治理。
其原理是利用石灰石(CaCO3)和水(H2O)反应生成石灰
水(Ca(OH)2),再将石灰水喷入烟气中,与烟气中的二氧化硫(SO2)发生化学
反应形成硫酸钙(CaSO3),达到脱除二氧化硫的目的。
下面将详细介绍石灰石湿
法脱硫的四个步骤。
第一步:石灰石磨碎
首先,将石灰石破碎成适当的颗粒大小,通常要求粒度均匀,以提高与烟气中
二氧化硫的接触面积,增加反应效率。
第二步:石灰石制浆
将破碎后的石灰石与水混合制成石灰水浆料,使其达到适当的浓度和粘度,以
便后续的喷射和混合过程中均匀分布。
第三步:石灰水喷射
将制成的石灰水浆料通过喷射器喷入烟气脱硫设备中,形成细小的石灰水颗粒,并与烟气中的二氧化硫接触反应,生成硫酸钙。
第四步:脱硫产物处理
经过湿法脱硫过程后,生成的硫酸钙沉淀将被收集,并进行进一步处理,通常
通过过滤、压滤、脱水等方法将硫酸钙固化成产品或废弃物,以便后续的处理和处置。
综上所述,石灰石湿法脱硫的原理主要包括将石灰石破碎、制浆,再喷射进入
烟气中进行反应生成硫酸钙,最终将脱硫产物处理的四个步骤。
这种方法可以有效地将燃煤电厂等工业烟气中的二氧化硫去除,减少大气污染物排放,保护环境和人类健康。
石灰石石膏湿法脱硫的工艺
石灰石石膏湿法脱硫的工艺【石灰石石膏湿法脱硫的工艺】导语:石灰石石膏湿法脱硫是一种常见的烟气脱硫技术,通过将石灰石与石膏反应,可以高效地去除燃煤发电厂和工业锅炉烟气中的二氧化硫。
本文将深入探讨石灰石石膏湿法脱硫的工艺原理、优势以及相关问题。
一、工艺原理1. 石灰石石膏湿法脱硫原理:石灰石与石膏发生反应生成硬石膏,将烟气中的二氧化硫转化为硫酸钙,并形成可回收利用的石膏产物。
主要反应方程式如下所示:CaCO3 + SO2 + 2H2O → CaSO4·2H2O + CO22. 脱硫反应的特点:该反应是一个快速的液相反应,在一定反应温度、气体流速和石膏浆液浓度下进行。
反应速率受碱性、反应温度、质量浓度等因素的影响。
二、工艺步骤1. 石灰石石膏湿法脱硫的基本步骤:(1)石灰石破碎、磨细:将原料石灰石经过破碎和磨细处理,提高其活性和反应速率。
(2)制备石膏浆液:将石灰石与水混合,形成石灰石浆液。
为了提高脱硫效果,还可加入一定量的添加剂。
(3)脱硫反应:将石灰石浆液喷入脱硫塔,通过与烟气的接触和反应,使二氧化硫转化为硫酸钙。
(4)石膏产物处理:将脱硫过程中生成的硬石膏经过脱水、干燥等处理后,得到成品石膏。
2. 工艺改进:为了提高脱硫效率和经济性,石灰石石膏湿法脱硫工艺进行了多方面的改进。
例如引入喷雾器、增加反应塔数目、采用高效填料等,以增加烟气与石灰石浆液的接触面积,加强反应效果。
三、工艺优势1. 脱硫效率高:石灰石石膏湿法脱硫工艺能够高效地将烟气中的二氧化硫转化为重质石膏产物,脱硫效率可达到90%以上。
2. 石膏产物可回收利用:脱硫过程中生成的硬石膏可以用于建材、石膏板等行业,实现资源的循环利用。
3. 工艺成熟可靠:石灰石石膏湿法脱硫工艺经过多年的实践应用,技术成熟可靠,广泛应用于燃煤发电厂和工业锅炉等领域。
四、问题与挑战1. 石膏处理与排放:脱硫过程中生成的硬石膏需要进行后续的脱水、干燥等处理,同时还需要解决石膏产物的长期存储和排放问题。
湿法脱硫技术
湿法脱硫技术湿法脱硫技术是一种环保的烟气脱硫方法,它广泛应用于工业和电力行业,用于减少大气中的二氧化硫排放,降低空气污染。
本文将从湿法脱硫技术的原理、工艺和应用等方面进行详细介绍。
一、湿法脱硫技术的原理湿法脱硫技术是利用溶液中的碱性物质与二氧化硫发生化学反应,将二氧化硫转化为可溶于水中的硫酸盐。
主要的反应方程式为:SO2 + Ca(OH)2 → CaSO3 + H2O湿法脱硫技术有两种主要方式,分别是石灰石石膏法和海水脱硫法。
石灰石石膏法是将石灰石干燥研磨成粉末后与烟气中的二氧化硫反应,产生石膏,而海水脱硫法则是通过将海水喷洒到烟气中,利用海水中的碱性物质进行反应。
二、湿法脱硫技术的工艺湿法脱硫技术主要包括烟气净化系统和废水处理系统两部分。
烟气净化系统主要由除尘器、喷射塔和循环泵等设备组成。
烟气通过除尘器进行初步的净化,去除其中的颗粒物和粉尘。
之后,烟气进入喷射塔,喷洒石灰石水浆或海水,与二氧化硫发生反应,形成硫酸盐溶液。
最后,循环泵将硫酸盐溶液回收,净化后再次喷洒到烟气中,循环利用。
废水处理系统用于处理湿法脱硫过程中产生的废水。
废水中含有大量的硫酸盐和其他污染物,需要进行化学处理和沉淀处理,以降低污染物的浓度,使其达到排放标准。
三、湿法脱硫技术的应用湿法脱硫技术被广泛应用于工业和电力行业的烟气净化中,主要用于减少二氧化硫的排放量,保护环境。
以下是湿法脱硫技术在不同领域的应用举例:1. 电力行业:湿法脱硫技术被广泛应用于火电厂和燃煤发电厂中,用于减少烟气中的二氧化硫排放,降低大气污染。
2. 钢铁行业:湿法脱硫技术可以应用于钢铁生产中的高炉和转炉烟气脱硫,减少二氧化硫的排放,减轻对大气环境的污染。
3. 化工行业:湿法脱硫技术可以用于化工厂废气的治理,降低二氧化硫的排放,保护周边的环境质量。
4. 石油行业:湿法脱硫技术可以应用于炼油厂中,减少烟气中的硫化氢等有害气体的排放,改善工作环境。
总之,湿法脱硫技术是一种重要的烟气脱硫方法,具有广泛的应用前景。
湿法脱硫工艺及原理
湿法脱硫工艺及原理一、焦炉煤气中硫化氢含量4-8克/立方米氰化氢含量0。
5-2克/立方米、有机硫0。
2-0。
5克/立方米、碳基硫、硫氢化碳、COS、二硫化碳等。
1、他们都是有害杂质,即腐蚀设备,又污染环境,更危害人体健康,必须脱除。
2、脱硫程度。
根据煤气用户需要而定。
1)冶炼优质钢材。
脱硫化氢到1-2克/立方米2)城市民用煤气H2S<20MG/立方米HCN<5MG/立方米(3)化工合成H2S<1-2MG/立方米HCN<0.5MG/立方米COS<0.05MG/立方米3、金能是按做市民用煤气脱硫。
满足燃气发电需要。
二、湿法脱硫八仙过海1、金能选择湿法与干法脱硫两种两步达到发电用气要求。
2、湿法塔后含硫化氢量H2S<180-380MG/立方米干法塔后H2S<20MG/立方米三、湿法脱硫原理是用碱或氨吸收,用脱硫剂氧化再生,就是用空气中氧把碱或氨吸收的硫化氢夺走,变成硫磺,用泡沫把浮出逸流分离。
让碱或氨再生还原,返回脱硫塔再去吸收H2S。
往返循环不止。
四、湿法脱硫工艺。
水泵配碱槽电捕后粗煤气脱硫填料塔湿硫后粗煤气去硫铵贫液再生槽富液硫磺蒸硫预热硫泡沫五、湿法氧化法脱硫溶液原料纯碱:脱硫催化剂、软水1、纯碱—碳酸钠二级标准。
纯度:≥98%,杂质≤2%2、脱硫催化剂:采用以PDS为基碳的经济简易。
脱硫剂外观是灰色粉未,易溶于碱。
在碱溶液中含量最高4。
8克/升。
本身无腐蚀,无毒害。
3、水、易用软水(软水硬度≤0。
04六、脱硫溶液循环量:1、800-1000立方/小时。
再生空气量。
2、配液量:400立方米(1)用软水400立方米(2)用纯碱PH=8。
2-8。
63、补充溶液(1)一般每脱KG H2S,补入888催化剂0。
5-1G/KG。
滴灌为好。
(2)纯碱:0。
05T/万立方米4、影响脱硫因素。
(1)煤气中的焦油雾滴小于10MG/M3为宜。
与碱形成疏水性膜,碱液颜色变暗,使碱液吸收效果变差,会使溶液中的催化剂活性降低,硫就显褐色。
湿法脱硫技术研究与工程应用
湿法脱硫技术研究与工程应用湿法脱硫技术,是指在燃煤电厂、钢铁厂等重工业生产中,将烟气中的二氧化硫通过化学反应转化为硫酸盐等物质,从而达到减少二氧化硫排放的目的。
该技术已经广泛应用于全球各地,成为了防治气态污染的有效手段。
本文将以湿法脱硫技术的研究与应用为主线,分析当前该技术的发展情况,以及在实际的工程应用中所遇到的问题和解决方法。
一、湿法脱硫技术的原理湿法脱硫技术主要是采用石灰、石膏等碱性物质与二氧化硫进行反应,生成硫酸钙等物质,并通过循环注入烟气中达到去除二氧化硫的目的。
具体来说,湿法脱硫技术通常分为石灰-石膏、石灰-氧化钙、海水循环冷却等几种类型。
其中,石灰-石膏法为最常用的一种,其工作流程主要包括淀粉法、氧化法、晶体化法等步骤。
二、湿法脱硫技术的发展历程湿法脱硫技术的起源可以追溯到20世纪60年代初期,当时美国、德国、日本等发达国家开始进行该技术的研究和实际应用。
在此之后,湿法脱硫技术逐渐被传播到全球各地,成为防治工业排放的重要手段之一。
21世纪以来,随着环保技术的不断发展和完善,湿法脱硫技术也在不断创新和优化,例如采用新型反应器、改进循环系统、减少能耗等方面的改进,其脱硫效率也不断提高。
三、湿法脱硫技术的工程应用在我国,湿法脱硫技术已经广泛应用于电力、钢铁、石油化工等领域,已经成为控制空气污染的主要方式。
例如,某地的一家钢厂采用湿法脱硫技术,使排放的二氧化硫浓度从500mg/m3降至45mg/m3;某电厂采用湿法脱硫技术后,将二氧化硫排放量从原来的4500g/h下降至2500g/h。
这些数据表明,湿法脱硫技术在改善空气质量、减少环境污染方面发挥了重要作用。
但是,湿法脱硫技术在应用过程中仍然面临一些问题。
首先,该技术对药剂的需求量较大,而药剂的储存、输送、供应会增加投资成本;其次,脱硫设备的运行维护也需要一定的费用,包括设备的维修、更换、清洗等费用;再次,硫酸盐类物质可能会影响水环境和土壤环境,对生态系统造成潜在的危害。
湿法脱硫原理
湿法烟气脱硫原理1 湿法烟气脱硫的基本原理(1)物理吸收的基本原理气体吸收可分为物理吸收和化学吸收两种。
如果吸收过程不发生显著的化学反应,单纯是被吸收气体溶解于液体的过程,称为物理吸收,如用水吸收SO2。
物理吸收的特点是,随着温度的升高,被吸气体的吸收量减少。
物理吸收的程度,取决于气--液平衡,只要气相中被吸收的分压大于液相呈平衡时该气体分压时,吸收过程就会进行。
由于物理吸收过程的推动力很小,吸收速率较低,因而在工程设计上要求被净化气体的气相分压大于气液平衡时该气体的分压。
物理吸收速率较低,在现代烟气中很少单独采用物理吸收法。
(2)化学吸收法的基本原理若被吸收的气体组分与吸收液的组分发生化学反应,则称为化学吸收,例如应用碱液吸收SO2。
应用固体吸收剂与被吸收组分发生化学反应,而将其从烟气中分离出来的过程,也属于化学吸收,例如炉内喷钙(CaO)烟气脱硫也是化学吸收。
在化学吸收过程中,被吸收气体与液体相组分发生化学反应,有效的降低了溶液表面上被吸收气体的分压。
增加了吸收过程的推动力,即提高了吸收效率又降低了被吸收气体的气相分压。
因此,化学吸收速率比物理吸收速率大得多。
物理吸收和化学吸收,都受气相扩散速度(或气膜阻力)和液相扩散速度(或液膜阻力)的影响,工程上常用加强气液两相的扰动来消除气膜与液膜的阻力。
在烟气脱硫中,瞬间内要连续不断地净化大量含低浓度SO2的烟气,如单独应用物理吸收,因其净化效率很低,难以达到SO2的排放标准。
因此,烟气脱硫技术中大量采用化学吸收法。
用化学吸收法进行烟气脱硫,技术上比较成熟,操作经验比较丰富,实用性强,已成为应用最多、最普遍的烟气脱硫技术。
(3)化学吸收的过程化学吸收是由物理吸收过程和化学反应两个过程组成的。
在物理吸收过程中,被吸收的气体在液相中进行溶解,当气液达到相平衡时,被吸收气体的平衡浓度,是物理吸收过程的极限。
被吸收气体中的活性组分进行化学反应,当化学反应达到平衡时,被吸收气体的消耗量,是化学吸收过程的极限。
解析湿法脱硫技术的原理
错误!错误
!
解析湿法脱硫技术的原理
从烟气中脱除二氧化硫的过程是化工及有关行业中通用的单元操作过程,这种单元操作的内容包括:流体输送、热量的传递和质量传递。
其中质量传递过程主要采用气体吸收、吸附和催化操作。
湿法烟气脱硫除尘的基本原理是气体吸收操作。
气体吸收:
包括物理吸收和化学吸收,前者是气体溶解与溶液的过程,后者是与吸收液的成分发生化学反应的过程。
它们都受到气相扩散速度(或气膜阻力)和液相扩散速度(或液膜阻力)的影响。
工程上常用加强气液两相的扰动来气膜和液膜的阻力,在烟气脱硫中,瞬间内要连续不断地净化大量含低浓度SO2的烟气,如单独谋取应用物理吸收,其净化效率很低,难以达到的排放标准,因此烟气脱硫技术中大量采用的是化学吸收。
气体扩散:
对于吸收操作来说,混合气体中的气态污染物(SO2)首先要从气相主体扩散到气液界面,然后才能由界面扩散到液相主体中。
要想提高脱硫液对烟气中SO2的吸收,必须保持液体界面浓度最小化。
实现脱硫液界面浓度最小化有两个途径可以做到:
a.不断更新气体与液体接触界面达到液相物,即不断使含硫浓度低的脱硫液与含硫烟气接触。
实现SO2气体在脱硫液中的扩散。
b.增大脱硫液的比表面积,使单位体积内的脱硫液实现比表面积的最大化,忽略SO2在脱硫界面以内(主体中)的扩散和吸收。
石灰石-石膏湿法脱硫工艺的基本原理
石灰石-石膏湿法脱硫工艺的基本原理一、石灰石-石膏湿法脱硫工艺的基本原理石灰石——石膏湿法烟气脱硫工艺的原理是采用石灰石粉制成浆液作为脱硫吸收剂,与经降温后进入吸收塔的烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙,以及加入的氧化空气进行化学反应,最后生成二水石膏。
脱硫后的净烟气依次经过除雾器除去水滴、再经过烟气换热器加热升温后,经烟囱排入大气。
由于在吸收塔内吸收剂经浆液再循环泵反复循环与烟气接触,吸收剂利用率很高,钙硫比较低(一般不超过1.1),脱硫效率不低于95%,适用于任何煤种的烟气脱硫。
石灰石——石膏湿法烟气脱硫工艺的化学原理:烟气中的SO2溶解于水中生成亚硫酸并离解成氢离子和HSO 离子;烟气中的氧(由氧化风机送入的空气)溶解在水中,将 HSO 氧化成SO ; ? 吸收剂中的碳酸钙在一定条件下于水中生成Ca2+;在吸收塔内,溶解的二氧化硫、碳酸钙及氧发生化学反应生成石膏(CaSO4?2H2O)。
由于吸收剂循环量大和氧化空气的送入,吸收塔下部浆池中的HSO或亚硫酸盐几乎全部被氧化为硫酸根或硫酸盐,最后在CaSO4达到一定过饱和度后结晶形成石膏—CaSO4?2H2O,石膏可根据需要进行综合利用或抛弃处理。
二、工艺流程及系统湿法脱硫工艺系统整套装置一般布置在锅炉引风机之后,主要的设备是吸收塔、烟气换热器、升压风机和浆液循环泵我公司采用高效脱除SO2的川崎湿法石灰石,石膏工艺。
该套烟气脱硫系统(FGD)处理烟气量为定洲发电厂,1和,2机组(2×600MW)100,的烟气量,定洲电厂的FGD系统由以下子系统组成:(1)吸收塔系统(2)烟气系统(包括烟气再热系统和增压风机)(3)石膏脱水系统(包括真空皮带脱水系统和石膏储仓系统)(4)石灰石制备系统(包括石灰石接收和储存系统、石灰石磨制系统、石灰石供浆系统) (5)公用系统(6)排放系统(7)废水处理系统1、吸收塔系统吸收塔采用川崎公司先进的逆流喷雾塔,烟气由侧面进气口进入吸收塔,并在上升区与雾状浆液逆流接触,处理后的烟气在吸收塔顶部翻转向下,从与吸收塔烟气入口同一水平位置的烟气出口排至烟气再热系统。
湿法脱硫技术介绍20160819
未喷淋时塔内加一层托盘前后速度场图
•吸收塔模型的截面
•< 1/2 平均流速 •平均流速 •>平均流速
喷淋时塔内加一层托盘前后速度场图
33
2.3、高性能吸收塔的除尘性能
除尘效率:
传统电除尘器排放粉尘的粒径分布
喷淋层粒级除尘效率
1、自身除尘作用; 2、凝并粉尘,增加了喷淋层对粉尘的去除。
34
2.4、高效喷淋层及除雾器
。
1.4运行参数对脱硫系统运行的影响
(4)循环浆液固体物浓度 循环浆液固体物浓度通常有浆液密度来表示,从提供适当的晶种和防止结垢的角 度,含固量不小于5%就可,但维持较高的浆液浓度有利于提高脱硫率和石膏纯度,但 过高的含量对泵、搅拌器、管道有较大的磨损,一般取8-20%,我公司设计值一般取 15%。浆液浓度是重要的工艺参数,通过控制浆液的排出量,来使吸收塔内的含固量 稳定在计设值。 浆池中固体物的停留时间在12小时以上,保证石膏的结晶长大,有利于石膏脱水; 浆池的循环停留时间在4-8min,有利于在一个循环周期中,在吸收塔中完成氧化、 中和和沉淀析出反应,有利于石灰石的溶解和利用率。
第一部分 工艺流程与原理
1.1、湿法脱硫在电厂烟气流程中的位置
SCR脱硝 SNCR脱硝 低NOx燃烧技术
高效脱 汞
高效除尘技术 电除尘器
湿法脱硫
1.2、石灰石-石膏脱硫工艺流程图
锅炉原烟 气
烟囱
ESP
Gas/Gas heater
水箱
吸收塔
石膏旋流站 水 脱水机
引风机
氧化空气 石灰石
工艺水箱
石灰石仓
除雾器外型:
平板式:允许流速低
屋脊式:允许流速高;
液滴二次夹带少;
湿法脱硫工艺
湿法脱硫工艺一、工艺概述湿法脱硫是目前应用最广泛的烟气脱硫技术之一,它采用水溶液与烟气接触,利用化学反应将SO2转化为易于处理的固体或液体物质,达到减少大气污染物排放的目的。
本文将详细介绍湿法脱硫工艺。
二、工艺流程1. 烟气进入除尘器进行预处理,去除粉尘和颗粒物。
2. 预处理后的烟气进入吸收塔,在塔中喷洒脱硫剂(通常为石灰浆或碱性酸液),与SO2发生化学反应。
3. 反应后的产物与水形成悬浮液,通过底部排出口流出吸收塔。
4. 悬浮液经过沉淀池或旋流器进行分离,得到固体或液体产物。
5. 分离后的产物进行后续处理(如过滤、干燥等),得到最终产品。
三、设备介绍1. 吸收塔:通常采用圆形或方形结构,内部设置喷淋系统和填料层,用于将脱硫剂喷洒到烟气中进行反应。
2. 沉淀池:通常采用圆形或方形结构,内部设置搅拌器和底部排出口,用于分离产物。
3. 旋流器:通常为圆柱形结构,内部设置旋流装置,用于分离产物。
4. 过滤设备:通常采用板框式或旋转式过滤机,用于对产物进行过滤。
5. 干燥设备:通常采用烘箱或干燥机,用于将湿润的产物进行干燥处理。
四、脱硫剂选择1. 石灰浆:具有良好的脱硫效果和低成本,但需要大量的水来稀释。
2. 碱性酸液:如NaOH、Ca(OH)2等,具有较高的脱硫效果和较低的成本,在一定范围内可自动调节pH值。
3. 活性炭:主要用于去除有机污染物和重金属等。
五、工艺参数控制1. 脱硫剂浓度:影响反应速率和脱硫效果。
通常控制在10%~20%之间。
2. 烟气流量:影响反应时间和产物质量。
通常控制在15000~30000m3/h之间。
3. 烟气温度:影响反应速率和产物质量。
通常控制在50℃~70℃之间。
4. 废水排放:湿法脱硫产生的废水含有一定浓度的SO2和脱硫剂,需要进行处理或回收利用。
六、工艺优缺点1. 优点:脱硫效果好,可达到90%以上;适用范围广,可处理多种燃料的烟气;操作简单,设备维护成本低。
2. 缺点:需要大量的水来稀释脱硫剂,造成水资源浪费;废水排放需要进行处理或回收利用;在高含盐、高灰分等条件下容易出现堵塞和结垢等问题。
简述湿法烟气脱硫的原理
简述湿法烟气脱硫的原理
湿法烟气脱硫(Wet Flue Gas Desulfurization,简称WFGD)是一种常用的烟气脱硫技术,用于去除燃煤发电厂等工业过程中产生的烟气中的二氧化硫(SO2)。
该技术的基本原理如下:
1. 烟气与吸收剂接触:烟气在经过预处理后,进入脱硫装置。
在脱硫装置内,烟气通过喷嘴或喷淋装置被喷洒到吸收剂上。
常用的吸收剂是石灰和石膏浆,它们与烟气中的二氧化硫发生反应。
2. 反应产物形成:在吸收剂和二氧化硫之间发生一系列化学反应,形成硫酸盐。
主要的反应是二氧化硫与吸收剂中的氢氧化钙或氢氧化钠反应,生成硫酸钙或硫酸钠。
这些反应通常是在装置中的吸收塔内进行的。
3. 脱硫产物处理:反应形成的硫酸盐溶于水,并与吸收剂中的其他成分混合。
该混合物被称为脱硫石膏。
脱硫石膏通过集气器或沉淀槽从脱硫装置中分离出来,并经过一系列处理过程,如脱水、干燥和过滤,用于获取固体脱硫产物。
4. 设备循环和废液处理:吸收剂中的硫酸盐经过反应后变成了硫酸钙或硫酸钠,但它们也会随着吸收剂一起进入脱硫装置中。
为了维持脱硫效率,装置内的硫酸钙或硫酸钠溶液需要定期清洗或替换。
废液经过处理后,常被称为废水,需要进行进一步处理、排放或再利用。
总体来说,湿法烟气脱硫技术利用吸收剂与烟气中的二氧化硫之间的化学反应,将二氧化硫转化为易于处理的固体产物。
这种技术已广泛应用于工业领域,减少了对环境的污染,降低了二氧化硫对人类健康和大气的影响。
湿法脱硫工艺
湿法脱硫工艺
在工业生产过程中,二氧化硫是一种常见的污染物,主要来源于燃烧煤炭等含硫燃料时释放的烟气中。
高浓度的二氧化硫会对人类健康和环境造成严重危害,因此脱硫技术应运而生。
湿法脱硫工艺是一种常用的脱硫方法,其原理和过程值得深入了解。
湿法脱硫工艺利用氧化剂将烟气中的二氧化硫转化为硫酸盐或硫酸,进而达到减少二氧化硫排放的效果。
在湿法脱硫系统中,石灰石常被用作脱硫剂。
石灰石和氧化剂喷入烟气中形成石膏,石灰石被还原,氧化剂被还原,生成二氧化硫,再次参与循环反应。
通过这种连续的化学反应过程,烟气中的二氧化硫被有效去除。
湿法脱硫工艺有其独特的优点。
首先,其去除效率高,可以将烟气中的二氧化硫去除率达到90%以上,有效减少了二氧化硫对环境的危害。
其次,该工艺适用性广泛,不受烟气中二氧化硫浓度的影响,适用于各类含硫燃料。
此外,湿法脱硫工艺可以同时去除烟气中的颗粒物,起到了除尘的作用,保护了大气环境的清洁。
然而,湿法脱硫工艺也存在一些不足之处。
首先,该工艺需要大量用水,处理后的废水含有大量的石膏、氯化钠等物质,需要经过处理排放或者资源化利用,增加了处理成本。
其次,由于氧化剂难以完全还原,可能导致辅助消耗的问题,增加了工艺的复杂性和能耗。
另外,湿法脱硫系统体积较大,占地面积较多,对工业企业的场地要求较高。
随着环保意识的提升和法规的加强,湿法脱硫工艺在工业生产中得到了广泛应用。
为了提高脱硫效率,降低能耗,工程技术人员正在不断探索湿法脱硫工艺的优化和改进。
未来,随着技术的发展和创新,相信湿法脱硫工艺将更加成熟和高效,为保护环境和人类健康作出更大的贡献。
湿法脱硫的工作原理
湿法脱硫的工作原理
湿法脱硫是一种常用的烟气脱硫方法,它通过在烟气中喷洒液体吸收剂,使SO2与液体吸收剂发生反应,从而达到去除烟
气中SO2的目的。
工作原理如下:
1. 喷洒液体吸收剂:湿法脱硫中通常使用的液体吸收剂是石灰石浆或石灰乳。
液体吸收剂通过喷嘴喷洒到烟气中,形成微小的液滴。
2. 吸收反应:烟气中的SO2与喷洒的液体吸收剂中的氢氧化
物(如Ca(OH)2)发生吸收反应,生成硫酸钙(CaSO3)和水(H2O)。
3. 反应产物处理:所形成的硫酸钙与液体吸收剂混合后,会被氧化为不溶性的石膏(CaSO4·2H2O)。
石膏可以通过沉淀、
过滤、离心等方法进行分离和回收。
4. 净化后的烟气:经过湿法脱硫处理后,剩余的烟气中的
SO2浓度大大降低。
这样处理后的烟气可经过烟囱排放,达到环境排放标准。
湿法脱硫的工作原理是利用液体吸收剂与SO2发生化学反应,将其转化为不溶性的物质,从而实现脱硫效果。
这种方法具有操作简单、脱硫效率高、适用于大范围的SO2浓度等优点,
因此在煤电站、冶金、化工等行业得到广泛应用。
石灰石湿法脱硫原理
石灰石湿法脱硫原理石灰石湿法脱硫是一种常用的烟气脱硫方法,其原理是利用石灰石和水在脱硫设备中制成的石灰乳与烟气中的二氧化硫发生化学反应,将二氧化硫转化为硫酸钙或硫酸镁,从而达到脱硫的目的。
下面将详细介绍石灰石湿法脱硫的原理及其工作过程。
首先,石灰石湿法脱硫的原理是基于化学反应的。
在脱硫设备中,石灰石和水混合制成石灰乳,然后将石灰乳喷入烟气中,石灰乳中的氢氧化钙会与烟气中的二氧化硫发生反应,生成硫酸钙。
化学方程式如下所示:Ca(OH)2 + SO2 → CaSO3 + H2O。
CaSO3 + 1/2O2 + H2O → CaSO4·2H2O。
通过这两个反应,二氧化硫被转化为硫酸钙,最终生成硫酸钙或硫酸镁,达到脱硫的效果。
其次,石灰石湿法脱硫的工作过程是连续进行的。
烟气通过脱硫设备时,与喷入的石灰乳充分接触,使得石灰乳中的氢氧化钙与二氧化硫发生反应,生成硫酸钙或硫酸镁。
同时,石灰乳中的水分也会蒸发,使得生成的硫酸钙或硫酸镁形成颗粒状物质,最终被收集并排出脱硫设备。
此外,石灰石湿法脱硫还需要注意控制脱硫过程中的相关参数。
例如,石灰乳的喷射量、喷射位置、烟气温度、湿度等参数都会影响脱硫效果。
因此,需要对脱硫设备进行精确的调控,以确保脱硫效果达到标准要求。
总的来说,石灰石湿法脱硫的原理是利用石灰乳中的氢氧化钙与烟气中的二氧化硫发生化学反应,将二氧化硫转化为硫酸钙或硫酸镁,达到脱硫的目的。
在实际工作中,需要注意控制脱硫过程中的相关参数,以确保脱硫效果达到要求。
这种脱硫方法在工业生产中得到广泛应用,对减少大气污染有着重要的意义。
湿法脱硫原理
湿法脱硫原理湿法脱硫是一种常用的烟气脱硫方法,通过将烟气和吸收液进行接触和反应,将烟气中的二氧化硫等硫化物吸收到吸收液中,从而达到脱硫的目的。
湿法脱硫原理主要包括气液接触、气体传质和液体传质等过程。
首先,气液接触是湿法脱硫的关键过程之一。
烟气和吸收液在脱硫塔内进行接触,形成气液两相流动。
在这个过程中,烟气中的二氧化硫等硫化物会被吸收液吸收,从而达到脱硫的效果。
气液接触的效果受到吸收液喷淋方式、塔板布置、气液分布等因素的影响。
其次,气体传质是湿法脱硫的重要过程之一。
在气液接触的过程中,烟气中的二氧化硫等硫化物会通过气体传质的方式向吸收液中传递。
气体传质的速率受到烟气中硫化物浓度、温度、湿度等因素的影响,同时也受到吸收液性质、流速等因素的影响。
最后,液体传质也是湿法脱硫的重要过程之一。
吸收液中的吸收剂与烟气中的硫化物进行反应,形成硫酸盐等产物。
在这个过程中,液体传质的速率受到吸收剂浓度、温度、PH值等因素的影响,同时也受到烟气中硫化物浓度、温度等因素的影响。
综上所述,湿法脱硫的原理主要包括气液接触、气体传质和液体传质等过程。
通过这些过程,烟气中的二氧化硫等硫化物会被吸收液吸收,从而达到脱硫的效果。
在实际应用中,需要根据烟气中硫化物浓度、温度、湿度等因素,选择合适的吸收液和操作条件,以达到最佳的脱硫效果。
总的来说,湿法脱硫原理是一种基于气液接触、气体传质和液体传质等过程的脱硫方法,通过这些过程,可以有效地将烟气中的硫化物吸收到吸收液中,达到脱硫的目的。
在工业生产中,湿法脱硫是一种常用的烟气脱硫方法,具有脱硫效率高、适用范围广等优点,受到了广泛的应用和重视。
湿法脱硫原理
湿法脱硫原理
湿法脱硫是一种常用的烟气脱硫方法,广泛应用于燃煤锅炉、电厂、钢铁厂等工业领域。
它通过在烟气中喷射石灰石浆液或石膏浆液,将烟气中的二氧化硫转化为硫酸钙或硫酸钙,从而达到减少大气污染物排放的目的。
湿法脱硫的原理可以简单地概括为气液反应和气固反应两个过程。
在气液反应中,石灰石浆液或石膏浆液喷入烟道中,与烟气中的二氧化硫发生化学反应,生成硫酸钙或硫酸钙。
而在气固反应中,生成的硫酸钙或硫酸钙与烟气中的氧气和水蒸气反应,最终生成硫酸或硫酸钙。
在实际应用中,湿法脱硫通常采用石灰石浆液或石膏浆液作为脱硫剂。
石灰石浆液主要是由石灰石和水混合而成,而石膏浆液则是由石膏和水混合而成。
这两种浆液在喷入烟道后,能够与烟气中的二氧化硫充分接触,从而有效地将二氧化硫转化为硫酸钙或硫酸钙。
湿法脱硫的原理虽然简单,但其在实际应用中需要考虑许多因素。
首先,脱硫剂的选择和配比需要根据烟气中二氧化硫的浓度和其他成分来确定。
其次,喷射浆液的方式和位置也需要进行合理的设计,以确保与烟气充分接触。
最后,对生成的硫酸钙或硫酸钙的处理和回收也是一个重要的环节。
总的来说,湿法脱硫是一种成熟、有效的烟气脱硫方法,其原理简单清晰,应用广泛。
随着环保要求的不断提高,湿法脱硫技术也在不断发展和完善,为减少大气污染做出了重要贡献。
希望通过不断的研究和改进,湿法脱硫技术能够更好地适应不同工况和环境,为环境保护事业做出更大的贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湿法脱硫工艺应用基本原理详细说明
空气中的二氧化硫主要来自煤、石油、天然气等燃料的燃烧,所以在燃烧的过程中控制二氧化硫的排放是非常重要的。
目前,在我国可以采用三种方法脱硫:煤气脱硫、煤燃烧过程中进行脱硫处理、烟气脱硫。
湿法烟气脱硫技术主要是利用吸收剂或吸附剂去除烟气中的二轲化硫,并使其转化为稳定的硫化物或硫。
最早的烟气脱硫技术在本世纪初就已经出现。
近几十年来,国外工业烟气脱硫装置的应用发展很快,我国近年来也开展了烟气脱硫技术的研究,并取得了一定的成果。
脱硫设备的广泛应用,不仅可以有效的控制二氧化硫的排放量,还可以为我国建设和谐社会做出贡献。
本文主要针对湿法脱硫工艺原理进行说明介绍。
1、物理吸收的基本原理
气体吸收可分为物理吸收和化学吸收两种。
如果吸收过程不发生显著的化学反应,单纯是被吸收气体溶解于液体的过程,称为物理吸收,如用水吸收S02。
物理吸收的特点是,随着温度的升高,被吸气体的吸收量减少。
物理吸收的程度,取决于气-液平衡,只要气相中被吸收的分压大于液相呈平衡时该气体分压时,吸收过程就会进行。
由于物理吸收过程的推动力很小,吸收速率较低,因而在工程设计上要求被净化气体的气相分压大于气液平衡时该气体的分压。
物理吸收速率较低,在现代烟气中很少单独采用物理吸收法。
2、化学吸收法的基本原理
若被吸收的气体组分与吸收液的组分发生化学反应,则称为化学吸收,例如应用碱液吸收S02。
应用固体吸收剂与被吸收组分发生化学反应,而将其从烟气中分离出来的过程,也属于化学吸收,例如炉内喷钙(Cao)烟气脱硫也是化学吸收。
在化学吸收过程中,被吸收气体与液体相组分发生化学反应,有效的降低了溶液表面上被吸收气体的分压。
增加了吸收过程的推动力,即提高了吸收效率又降低了被吸收气体的气相分压。
因此,化学吸收速率比物理吸收速率大得多。
物理吸收和化学吸收,都受气相扩散速度(或气膜阻力)和液相扩散速度(或液膜阻力)的影响,工程上常用加强气液两相的扰动来消除气膜与液膜的阻力。
在烟气脱硫中,瞬间内要连续不断地净化大量含低浓度S02的烟气,如单独应用物理吸收,因其净化效率很低,难以达到S02的排放标准。
因此,烟气脱硫技术中大量采用化学吸收法。
用化学吸收法进行烟气脱硫,技术上比较成熟,操作经验比较丰富,实用性强,已成为应用最多、最普遍的烟气脱硫技术。
3、化学吸收的过程
湿法烟气脱硫的化学吸收是由物理吸收过程和化学反应两个过程组成的。
在物理吸收过程中,被吸收的气体在液相中进行溶解,当气液达到相平衡时,被吸收气体的平衡浓度,是物理吸收过程的极限。
被吸收气体中的活性组分进行化学反应,当化学反应达到平衡时,被吸收气体的消耗量,是化学吸收过程的极限。
化学吸收过程中,被吸收气体的气液平衡关系,即应服从相平衡关系,又应服从化学平衡关系。
4、化学吸收过程的速率及过程阻力
化学吸收过程的速率,是山物理吸收的气液传质速度和化学反应速度决定的.化学吸收过程的阻力,也是由物
理吸收气液传质的阻力和化学反应阻力决定的。
在物理吸收的气液传质过程中,被吸收气体气液两相的吸收速率,主要取决于气相中被吸收组分的分压,和吸收达到平衡时液相中被吸收组分的平衡分压之差。
此外,也和传质系数有关,被吸收气体气液两相间的传质阻力,通常取决于通过气膜和液膜分子扩散的阻力。
烟气脱硫通常是在连续及瞬间内进行,发生的化学反应是极快反应、快反应和中等速度的反应,如NaoH、Na2C03、和Ca(OH)2等碱液吸收S02。
为此,被吸收气体气液相间的传质阻力,远较该气体在液相中与碱液进行反应的阻力大得多。
对于极快不可逆反应,吸收过程的阻力,其过程为传质控制,化学反应的阻力可忽略不计。
例如,应用碱液或氨水吸收S02时,化学吸收过程为气膜控制,过程的阻力为气膜传质阻力。
液相中发生的化学反应,是快反应和中等速度的反应时,化学吸收过程的阻力应同时考虑传质阻力和化学反应阻力。
5、碱液浓度对传质速度的影响
研究得出,应用碱液吸收酸性气体时,碱液浓度的高低对化学吸收的传质速度有很大的影响。
当碱液的浓度较低时,化学传质的速度较低;当提高碱液浓度时,传质速度也随之增大;当碱液浓度提高到某一值时,传质速度达到最大值,此时碱液的浓度称为临界浓度;当碱液浓度高于临界浓度时传质速度并不增大。
为此,湿法脱硫工艺的化学吸收过程中,当用碱液吸收烟气中的S02时,适当提高碱液的浓度,可以提高对S02的吸收效率。
但是,碱液的浓度不得高于临界浓度。
超过临界浓度之后,进一步提高碱液的浓度,脱硫效率并不能提高。
可以得出,在烟气脱硫中,吸收S02的碱液浓度,并非愈高愈好。
碱液的最佳浓度为临界浓度,此时脱硫效率最高。