人体运动时能量的供应

合集下载

人进行长时间活动主要的供能系统

人进行长时间活动主要的供能系统

人进行长时间活动主要的供能系统引言人体进行长时间活动时需要能量来维持身体机能的正常运转。

能量的供给主要依赖于人体内供能系统的运作。

本文将介绍人进行长时间活动时主要的供能系统,包括有氧能量系统和无氧能量系统。

有氧能量系统有氧能量系统是指通过有氧代谢来产生能量的过程。

它主要通过氧气的参与来分解食物中的葡萄糖分子,并将其转化为可以供给肌肉和其他组织使用的能量。

有氧能量系统主要在低强度、长时间的活动中使用,如慢跑、长时间骑行等。

脂肪氧化在有氧运动中,脂肪是主要的能量来源。

脂肪被氧气分解为脂肪酸和甘油,进入线粒体,通过氧化过程产生三磷酸腺苷(ATP)和水。

这种氧化过程比较缓慢,但能够持续提供能量,适合长时间的有氧运动。

糖原氧化糖原是一种储存在肝脏和肌肉中的多糖,是有氧运动中的另一种重要能量来源。

糖原分解为葡萄糖分子,然后通过氧化过程释放能量。

糖原氧化速度比脂肪氧化快,但储存量有限,适合高强度、中等时间长度的活动。

无氧能量系统无氧能量系统是指在没有氧气参与的情况下产生能量的过程。

它主要应用于高强度、短时间的活动,如重量举重、短跑等。

无氧能量系统主要依赖于肌肉内的磷酸肌酸(CP)和乳酸产生能量。

磷酸肌酸能代谢磷酸肌酸是储存在肌肉内的一种化合物,能够在无氧条件下迅速分解成肌酸和磷酸,释放能量,用于供给高强度、短时间的运动。

这种能代谢过程非常快速,但能量的供应时间受到磷酸肌酸储存量的限制。

乳酸产生当人体在无氧条件下进行高强度运动时,三磷酸腺苷(ATP)的供应速度无法满足肌肉的能量需求,此时由糖原氧化产生的葡萄糖分子被分解成乳酸,并释放出能量。

乳酸的产生可以迅速提供能量,但会导致肌肉产生酸性环境,引起疲劳。

有氧与无氧能量系统的关系在实际运动中,有氧能量系统和无氧能量系统往往是同时参与的,而且互相补充。

低强度、长时间的活动主要依赖于有氧能量系统,通过脂肪氧化来产生能量。

高强度、短时间的活动主要依赖于无氧能量系统,通过磷酸肌酸能代谢和乳酸产生来产生能量。

人体内的三大供能系统

人体内的三大供能系统

人体内的三大供能系统在人体内有三大供能系统,它们是:ATP-磷酸肌酸供能系统、无氧呼吸供能系统和有氧呼吸供能系统。

(1) A TP 在肌肉中的含量低,当肌肉进行剧烈运动时,供能时间仅能维持约1~3秒。

(2) 之后的能量供应就要依靠ATP 的再生。

这时,细胞内的高能化合物磷酸肌酸的高能磷酸键水解将能量转移至ADP ,生成ATP 。

磷酸肌酸在体内的含量也很少,只能维持几秒的能量供应。

人在剧烈运动时,首先是ATP-磷酸肌酸供能系统供能,通过这个系统供能大约维持6~8秒左右的时间。

(3) 这两项之后的供能,主要依靠葡萄糖和糖元的无氧酵解所释放的能量合成ATP 。

无氧酵解约能维持2~3分钟时间。

(4) 由于无氧呼吸产生的乳酸易导致肌肉疲劳,所以长时间的耐力运动需要靠有氧呼吸释放的能量来合成ATP 。

综上所述,短时间大强度的运动,如100米短跑,主要依靠A TP-磷酸肌酸供能;长时间低强度的运动,主要靠有氧呼吸提供能量;介于二者之间的较短时间的中强度运动,如400米跑,则主要由无氧呼吸提供能量。

人在剧烈运动呼吸底物主要是糖。

但在长时间剧烈运动时,如马拉松式的长跑运动,人体内贮存的糖是不够用的,在消耗完贮存的糖类物质后,就动用体内贮存脂肪和脂肪酸。

一、运动时供能系统的动用特点(一)人体骨骼肌细胞的能量储备(二)供能系统的输出功率运动时代谢供能的输出功率取决于能源物质合成ATP 的最大速率。

(三)供能系统的相互关系1.运动中基本不存在一种能量物质单独供能的情况,肌肉可以利用所有能量物质,只是时间、顺序和相对比率随运动状况而异,不是同步利用。

2.最大功率输出的顺序,由大到小依次为:磷酸原系统>糖酵解系统>糖有氧氧化>脂肪酸有氧氧化,且分别以近50%的速率依次递减。

3.当以最大输出功率运动时,各系统能维持的运动时间是:磷酸原系统供极量强度运动6—8秒;糖酵解系统供最大强度运动30—90秒,可维持2分钟以内;3分钟主要依赖有氧代谢途径。

人体内的三大供能系统

人体内的三大供能系统

人体内的三大供能系统 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】人体内的三大供能系统在人体内有三大供能系统,它们是:ATP-磷酸肌酸供能系统、无氧呼吸供能系统和有氧呼吸供能系统。

(1)ATP在肌肉中的含量低,当肌肉进行剧烈运动时,供能时间仅能维持约1~3秒。

(2)之后的能量供应就要依靠ATP的再生。

这时,细胞内的高能化合物磷酸肌酸的高能磷酸键水解将能量转移至ADP,生成ATP。

磷酸肌酸在体内的含量也很少,只能维持几秒的能量供应。

人在剧烈运动时,首先是ATP-磷酸肌酸供能系统供能,通过这个系统供能大约维持6~8秒左右的时间。

(3)这两项之后的供能,主要依靠葡萄糖和糖元的无氧酵解所释放的能量合成ATP。

无氧酵解约能维持2~3分钟时间。

(4)由于无氧呼吸产生的乳酸易导致肌肉疲劳,所以长时间的耐力运动需要靠有氧呼吸释放的能量来合成ATP。

综上所述,短时间大强度的运动,如100米短跑,主要依靠ATP-磷酸肌酸供能;长时间低强度的运动,主要靠有氧呼吸提供能量;介于二者之间的较短时间的中强度运动,如400米跑,则主要由无氧呼吸提供能量。

运动项目总需氧量(升)实际摄入氧量(升)血液乳酸增加量马拉松跑600589略有增加400米跑162显着增加人在剧烈运动呼吸底物主要是糖。

但在长时间剧烈运动时,如马拉松式的长跑运动,人体内贮存的糖是不够用的,在消耗完贮存的糖类物质后,就动用体内贮存脂肪和脂肪酸。

一、运动时供能系统的动用特点(一)人体骨骼肌细胞的能量储备(二)供能系统的输出功率运动时代谢供能的输出功率取决于能源物质合成ATP的最大速率。

(三)供能系统的相互关系1.运动中基本不存在一种能量物质单独供能的情况,肌肉可以利用所有能量物质,只是时间、顺序和相对比率随运动状况而异,不是同步利用。

2.最大功率输出的顺序,由大到小依次为:磷酸原系统>糖酵解系统>糖有氧氧化>脂肪酸有氧氧化,且分别以近50%的速率依次递减。

人体供能方式

人体供能方式

人体内的三大供能系统在人体内有三大供能系统,它们是:ATP-磷酸肌酸供能系统、无氧呼吸供能系统和有氧呼吸供能系统。

(1)A TP在肌肉中的含量低,当肌肉进行剧烈运动时,供能时间仅能维持约1~3秒。

(2)之后的能量供应就要依靠ATP的再生。

这时,细胞内的高能化合物磷酸肌酸的高能磷酸键水解将能量转移至ADP,生成ATP。

磷酸肌酸在体内的含量也很少,只能维持几秒的能量供应。

人在剧烈运动时,首先是ATP-磷酸肌酸供能系统供能,通过这个系统供能大约维持6~8秒左右的时间。

(3)这两项之后的供能,主要依靠葡萄糖和糖元的无氧酵解所释放的能量合成ATP。

无氧酵解约能维持2~3分钟时间。

(4)由于无氧呼吸产生的乳酸易导致肌肉疲劳,所以长时间的耐力运动需要靠有氧呼吸释放的能量来合成ATP。

综上所述,短时间大强度的运动,如100米短跑,主要依靠A TP-磷酸肌酸供能;长时间低强度的运动,主要靠有氧呼吸提供能量;介于二者之间的较短时间的中强度运动,如400米跑,则主要由无氧呼吸提供能量。

运动项目总需氧量(升)实际摄入氧量(升)血液乳酸增加量马拉松跑600 589 略有增加400米跑16 2 显著增加100米跑8 0 未见增加人在剧烈运动呼吸底物主要是糖。

但在长时间剧烈运动时,如马拉松式的长跑运动,人体内贮存的糖是不够用的,在消耗完贮存的糖类物质后,就动用体内贮存脂肪和脂肪酸。

一、运动时供能系统的动用特点(一)人体骨骼肌细胞的能量储备A TP(二)供能系统的输出功率运动时代谢供能的输出功率取决于能源物质合成ATP的最大速率。

(三)供能系统的相互关系1.运动中基本不存在一种能量物质单独供能的情况,肌肉可以利用所有能量物质,只是时间、顺序和相对比率随运动状况而异,不是同步利用。

2.最大功率输出的顺序,由大到小依次为:磷酸原系统>糖酵解系统>糖有氧氧化>脂肪酸有氧氧化,且分别以近50%的速率依次递减。

(运动一开始脂肪就开始燃烧)3.当以最大输出功率运动时,各系统能维持的运动时间是:磷酸原系统供极量强度运动6—8秒;糖酵解系统供最大强度运动30—90秒,可维持2分钟以内;3分钟主要依赖有氧代谢途径。

人体运动时的能量供应与消耗

人体运动时的能量供应与消耗

• ATP在肌肉内的储存量极为有限,仅 足以维持三数秒的尽最大努力活动 (maximal efforts)之用;ATP在人体 内是不断地被分解及重新合成,而重 新合成ATP也是需要能量。人体内就 有三大供能系统,可以供应能量作为 重新合成ATP之用;当中两个是无氧 系统,另外一个则是有氧系统。
1-磷酸原系统
3-有氧氧化供能系统
• 有氧氧化系统是指糖、脂肪和蛋白质在 细胞内彻底氧化成水和二氧化碳的过程中, 再合成ATP的能量系统。 从理论上分析,体 内贮存的有氧氧化燃料,特别是脂肪是不会 耗尽的,故该系统供能的最大容量可认为无 限大。其特点是ATP生成总量很大,但速率 很慢,需要氧的参与,不产生乳酸类的副产品。 据计算,该系统的最大供能速率或输出功率 为15 J· kg-1· s-1,该系统是进行长时间耐力 活动的物质基础。
2-乳酸供能系统
乳酸供能系统是指糖原或葡萄 糖在细胞浆内无氧分解生成乳酸过 程中,再合成ATP的能量系统。其 最大供能速率或输出功率为29.3 J· kg-1· s-1,供能持续时间为33s左 右。由于最终产物是乳酸,故称乳 酸能系统。产能过程类似酿酒发酵, 故也称为:糖酵解供能系统或无氧 酵解供能系统。

对于时间极短而强度非常大的项目而 言,ATP-CP系统是主要的供能系统。 • 对于要持续时间8秒钟以上才完成的项 目,乳酸系统会逐渐取代ATP-CP系统而 成为主要的供能系统。不过,在乳酸浓度 不断提高的情况下(无氧糖酵解活动的结 果),活动亦只得停止下来或改以较低的 强度继续进行。
• 三、时间长、强度小项目 • 任何可以维持10分钟或以上的运动项 目,都可以被归纳于这个类别之中。有氧系 统是这类活动的主要供能系统,碳水化合物 和脂肪都是主要的供能系统。20分钟以内 的运动项目主要以碳水化合物作为燃料,当 运动持续下去(如30分钟或以上),碳水 化合物(糖元)的储备明显下降时,脂肪便 会逐渐取而代之成为有氧系统的主要燃料。

人体三大供能系统

人体三大供能系统

人体三大供能系统人体内的三大供能系统在人体内有三大供能系统,它们是:atp-磷酸肌酸供能系统、无氧呼吸供能系统和有氧呼吸供能系统。

(1)atp在肌肉中的含量低,当肌肉进行剧烈运动时,储能时间仅能够保持约1~3秒。

(2)之后的能量供应就要靠atp的再生。

这时,细胞内的高能化合物磷酸肌酸的高能磷酸键水解将能量转移至adp,生成atp。

磷酸肌酸在体内的含量也很少,只能维持几秒的能量供应。

人在剧烈运动时,首先是atp-磷酸肌酸储能系统储能,通过这个系统储能大约保持6~8秒钟的时间。

(3)这两项之后的供能,主要靠葡萄糖和糖元的无氧酵解所释放出来的能量制备atp。

无氧酵解约能维持2~3分钟时间。

(4)由于无氧呼吸产生的乳酸易导致肌肉疲劳,所以长时间的耐力运动需要靠有氧呼吸释摆的能量去制备atp。

综上所述,短时间大强度的运动,如100米短跑,主要依靠atp-磷酸肌酸供能;长时间低强度的运动,主要靠有氧呼吸提供能量;介于二者之间的较短时间的中强度运动,如400米跑,则主要由无氧呼吸提供能量。

运动项目马拉松走400米走100米走总需氧量(升)600168实际摄取氧量(升)58920血液乳酸增加量有所减少明显减少未见减少人在剧烈运动呼吸底物主要是糖。

但在长时间剧烈运动时,如马拉松式的长跑运动,人体内贮存的糖是不够用的,在消耗完贮存的糖类物质后,就动用体内贮存脂肪和脂肪酸。

一、运动时储能系统的动用特点(一)人体骨骼肌细胞的能量储备(二)储能系统的输出功率运动时代谢供能的输出功率取决于能源物质合成atp的最大速率。

(三)供能系统的相互关系1.运动中基本不存有一种能量物质单独储能的情况,肌肉可以利用所有能量物质,只是时间、顺序和相对比率随运动状况而异,不是同步利用。

2.最小功率输入的顺序,由小至大依次为:磷酸原系统>糖酵解系统>糖有氧水解>脂肪酸有氧水解,且分别以近50%的速率依次递增。

3.当以最大输出功率运动时,各系统能维持的运动时间是:磷酸原系统供极量强度运动6―8秒;糖酵解系统供最大强度运动30―90秒,可维持2分钟以内;3分钟主要依赖有氧代谢途径。

运动中产生能量的营养要素

运动中产生能量的营养要素

运动中产生能量的营养要素
在运动中,产生能量所需的营养要素包括以下几种:
1. 碳水化合物:碳水化合物是主要的能量来源,特别是对于高强度和长时间的运动。

碳水化合物以血糖的形式存在,可以快速提供能量。

主要的碳水化合物来源包括谷类、米类、面包、蔬菜和水果等。

2. 脂肪:脂肪也是一种重要的能量来源,特别是在低强度和长时间的运动中。

脂肪储存在身体的脂肪细胞中,通过脂肪酸的分解来提供能量。

主要的脂肪来源包括油脂、坚果、种子和动物脂肪等。

3. 蛋白质:蛋白质主要用于维持肌肉组织的修复和生长,而在运动中也可以提供一定程度的能量。

蛋白质可以被分解为氨基酸,其中一些氨基酸可以通过转化为能量来满足运动的需求。

主要的蛋白质来源包括肉类、鱼类、蛋类、乳制品、豆类和坚果等。

4. 水和电解质:水是身体运行所必需的,运动时身体会通过汗液散发热量和维持体温。

同时,运动会导致电解质的流失,如钠、钾、钙和镁等,这些电解质对于维持肌肉功能和神经传导至关重要。

因此,及时补充水分和电解质是运动中保持能量供给的重要方面。

在运动前、期间和后,维持合理的饮食和水分摄入至关重要,以满足能量需求并促进身体的恢复和修复。

建议在进行运动前咨询专业的运动营养师或医生,以制定个性化的饮食计划。

1/ 1。

运动过程中三大供能系统的供能特点

运动过程中三大供能系统的供能特点

运动过程中三大供能系统的供能特点
人体在运动过程中需要能量来维持运动,而能量的供应主要依赖于三大供能系统:磷酸原系统、糖酵解系统和有氧氧化系统。

每个供能系统都有其独特的供能特点。

磷酸原系统也称为 ATP-CP 系统,是运动中最快速的供能系统。

它主要通过分解磷酸肌酸(CP)来提供能量,而 CP 又可以通过磷酸化作用快速合成 ATP。

磷酸原系统的供能速度非常快,但其储量有限,只能提供短暂的高强度运动所需的能量。

糖酵解系统是运动中次快速的供能系统,它通过糖原的无氧分解来产生能量。

糖酵解系统的供能速度较快,但产生的能量相对较少,且会产生乳酸。

因此,糖酵解系统主要在高强度运动的初期和磷酸原系统耗尽后提供能量。

有氧氧化系统是运动中最慢的供能系统,但它能够持续地提供大量的能量。

有氧氧化系统通过氧化葡萄糖或脂肪来产生能量,需要氧气的参与。

因此,有氧氧化系统主要在低强度和长时间的运动中提供能量。

总之,三大供能系统在运动中的供能特点各不相同。

磷酸原系统提供短暂而高强度的能量,糖酵解系统提供较快但有限的能量,而有氧氧化系统提供持久但较慢的能量。

了解这些特点对于合理安排运动训练和提高运动表现具有重要意义。

人体运动时的能量供应系统

人体运动时的能量供应系统

人体运动时的能量供应系统1.人体运动的能量来源有三种:磷酸原系统、糖酵解系统与有氧氧化系统。

根据运动的强度与时间的长短,每种系统起的作用不同。

人体能量来源最终体现在能量物质ATP(三磷酸腺苷)上。

即:ATP就是我们人体利用能量的直接形式,当人体需要能量时,ATP在酶的作用下,脱掉一个磷酸变成ADP并释放出能量。

这个能量提供了我们机体所有的生命活动的能源,包括:化学能、机械能、生物能等。

(1)磷酸原系统就是通过体内的高能物质磷酸肌酸在磷酸肌酸激酶的作用下将高能磷酸键转给ADP,这时ADP结合一磷酸变成ATP。

由于磷酸肌酸在体内的储存量很少,所以它只能提供肌体很短时间的运动能量;(2)糖酵解系统也就就是体内糖类(血液中的葡萄糖、肝脏中的肝糖原与骨骼肌中的肌糖原与糖异生途径)在肌体供氧不足的情况下产生的无氧氧化而产生能量。

同样,由于就是无氧酵解,产生的能量也不就是很多(一分子的葡萄糖经糖酵解产生3个ATP),但就是因为体内的糖原储备比磷酸肌酸要多得多,所以糖酵解可以提供比磷酸原系统更长时间的运动能量;(3)有氧氧化系统顾名思义就是在氧供应充足的条件下发生的,就是机体内最大的能量供应系统,它可以由体内的糖储备(一分子葡萄糖有氧氧化产生36/38个ATP)与脂肪分解(一分子的软脂酸氧化分解产生129ATP)来产生。

由于人体氧的供应与利用有其局限性(最大摄氧量),当机体在短时间进行大强度的运动时,氧供应不足,有氧氧化系统不能或只能部分参加机体的能量供应;相反地,在长时间与低强度的运动中,氧供应充足,有氧系统可以成为机体主要的能量供应系统。

(4)尽管机体的磷酸肌酸储备很少,但就是它可以马上调动起来,所以在大强度具爆发性的运动开始(7~8秒左右),主要就是磷酸原系统提供能量;同时,糖酵解系统也启动起来,它可以提供2分钟之内的大强度运动;如果机体继续维持大强度的运动,糖酵解能量供应也跟不上,机体就因为能量供应不上而运动能力下降了。

运动的能量供应

运动的能量供应

运动的能量供应前言人体生命活动的运行需要消耗能量。

在人们参加剧烈体育运动时,肌肉长时间地收缩和舒张,脏器的活动增强,以及神经系统能量消耗增加,将使运动时总的能量消耗比静息时增加几倍到几十倍,甚至百倍以上。

从另一方面讲,长期科学训练将使人体运动时的能量供应与消耗得到改善,从而为提高人体运动能力奠定物质基础。

因此,了解与研究人体运动时的能量供应是体育教师.教练员以及运动员必备的知识。

一肌肉活动的能量及其能量的释放人体运动需要大量能量。

这些能量的来源是自食物中的六大营养素中的三大营养物质,即糖、脂肪和蛋白质。

(一)糖及其分子中能量的释放与转移糖是肌肉活动最主要的燃料。

人体糖的存在形式有两种:第一种是以葡萄糖的形式存在于血液中;第二种是存在于肝脏和肌肉中的糖原(肝糖原和肌糖原)。

人体运动所需的能量主要是由糖(或脂肪)的氧化分解过程释放出来的。

糖的氧化分解主要有两个途径:(1)在无氧条件下进行的糖酵解;(2)在有氧条件下进行的有氧氧化。

在一般条件下,糖主要以有氧氧化的途径分解供能。

表1:有氧氧化同无氧糖酵解的对比(二) 脂肪及其燃烧(氧化)脂肪是肌肉活动的另一主要原料。

机体内储备的脂肪量是势能的最大来源。

与其他营养物质比较,可作为能量的脂肪数几乎是无限的。

来自储藏脂肪的实际燃料贮存量大约相当于90000~110000千卡左右。

成年人体内贮存脂肪量的差别很大,且缺乏精确的正常值。

一般成年男子的贮存脂肪量约占体重的15~20%,女子稍高。

脂肪氧化时,.体内首先由脂肪酶催化水解为甘油和脂肪酸。

甘油随着血液循环至肝脏和其他组织进行再分解。

而释出的脂肪酸进一步氧化释放能量,共全身各组织摄取利用。

脂肪酸彻底氧化所释放的能量比糖多得多,且利用率也比糖高。

当脂肪酸大量分解时,会产生三种中间物质:乙酰乙酸、B- 羟丁酸和丙酮。

我们将这三种中间产物合称为酮体。

短时间剧烈运动后,血液中的酮体上升。

这是由于运动时的糖供能不足,脂肪酸利用量增加而又氧化不足的缘故。

运动中的能量代谢

运动中的能量代谢

运动中的能量代谢
运动时,人体的能量代谢主要依靠三种代谢途径:ATP-PC系统、乳酸系统和氧化系统。

1. ATP-PC系统:运动强度很高,时间很短时,肌肉依靠体内储存的肌酸磷酸和三磷酸腺苷(ATP)来提供能量,这种代谢途径被称为ATP-PC系统。

这个过程只能维持一段很短的时间,大约只能持续10秒钟左右。

2. 乳酸系统:当运动开始后,肌肉组织会利用氧气分解酸类并和糖去供能,当氧气缺乏时,肌肉将糖分解产生乳酸来为继续运动提供能量,这个过程被称为乳酸系统,它可以为低至中等强度的运动提供能量,但只能持续短期。

3. 氧化系统:当我们进行中至高强度的长时间运动时,肌肉会逐渐转向氧化系统来供能,这个过程需要带氧气在身体中的多个系统之间运输,最后完成氧化糖类的过程,产生能量(ATP)。

这种代谢途径可以维持更长时间,但需要氧气作为能源,需要保持适当的有氧运动强度。

总的来说,不同类型的运动所依赖的能量代谢途径是不同的,而人体的能量供应和代谢过程与运动的强度、时间和类型密切相关。

人体内的三大供能系统

人体内的三大供能系统

人体内的三大供能系统在人体内有三大供能系统,它们是:ATP-磷酸肌酸供能系统、无氧呼吸供能系统和有氧呼吸供能系统。

(1)(2)A TP在肌肉中的含量低,当肌肉进行剧烈运动时,供能时间仅能维持约1~3秒。

(3)(4)之后的能量供应就要依靠ATP的再生。

这时,细胞内的高能化合物磷酸肌酸的高能磷酸键水解将能量转移至ADP,生成ATP。

磷酸肌酸在体内的含量也很少,只能维持几秒的能量供应。

人在剧烈运动时,首先是ATP-磷酸肌酸供能系统供能,通过这个系统供能大约维持6~8秒左右的时间。

(5)(6)这两项之后的供能,主要依靠葡萄糖和糖元的无氧酵解所释放的能量合成A TP。

无氧酵解约能维持2~3分钟时间。

(7)(8)由于无氧呼吸产生的乳酸易导致肌肉疲劳,所以长时间的耐力运动需要靠有氧呼吸释放的能量来合成ATP。

综上所述,短时间大强度的运动,如100米短跑,主要依靠ATP-磷酸肌酸供能;长时间低强度的运动,主要靠有氧呼吸提供能量;介于二者之间的较短时间的中强度运动,如400米跑,则主要由无氧呼吸提供能量。

薇运动项目莃总需氧量(升)羃实际摄入氧量(升)莀血液乳酸增加量莆马拉松跑蒃600 莄589 肁略有增加人在剧烈运动呼吸底物主要是糖。

但在长时间剧烈运动时,如马拉松式的长跑运动,人体内贮存的糖是不够用的,在消耗完贮存的糖类物质后,就动用体内贮存脂肪和脂肪酸。

一、运动时供能系统的动用特点(一)人体骨骼肌细胞的能量储备(二)供能系统的输出功率运动时代谢供能的输出功率取决于能源物质合成ATP的最大速率。

(三)供能系统的相互关系1.运动中基本不存在一种能量物质单独供能的情况,肌肉可以利用所有能量物质,只是时间、顺序和相对比率随运动状况而异,不是同步利用。

2.最大功率输出的顺序,由大到小依次为:磷酸原系统>糖酵解系统>糖有氧氧化>脂肪酸有氧氧化,且分别以近50%的速率依次递减。

3.当以最大输出功率运动时,各系统能维持的运动时间是:磷酸原系统供极量强度运动6—8秒;糖酵解系统供最大强度运动30—90秒,可维持2分钟以内;3分钟主要依赖有氧代谢途径。

人体内三大供能系统

人体内三大供能系统

人体内三大供能系统在人体内有三大供能系统,它们是:1、A TP-磷酸肌酸供能系统。

2、无氧呼吸供能系统3、有氧呼吸供能系统。

(1) ATP在肌肉中的含量低,当肌肉进行剧烈运动时,供能时间仅能维持约1~3秒。

(2)之后的能量供应就要依靠ATP的再生。

这时,细胞内的高能化合物磷酸肌酸的高能磷酸键水解将能量转移至ADP,生成ATP。

磷酸肌酸在体内的含量也很少,只能维持几秒的能量供应。

人在剧烈运动时,首先是ATP-磷酸肌酸供能系统供能,通过这个系统供能大约维持6~8秒左右的时间。

(3)这两项之后的供能,主要依靠葡萄糖和糖元的无氧酵解所释放的能量合成ATP。

无氧酵解约能维持2~3分钟时间。

(4)由于无氧呼吸产生的乳酸易导致肌肉疲劳,所以长时间的耐力运动需要靠有氧呼吸释放的能量来合成ATP。

综上所述,短时间大强度的运动,如100米短跑,主要依靠ATP-磷酸肌酸供能;长时间低强度的运动,主要靠有氧呼吸提供能量;介于二者之间的较短时间的中强度运动,如400米跑,则主要由无氧呼吸提供能量。

4.由于运动后三磷酸腺苷(ATP)、磷酸肌酸(CP)的恢复及乳酸的清除,须依靠有氧代谢系统才能完成,因此有氧代谢供能是运动后机能恢复的基本代谢方式。

二、不同活动状态下供能系统的相互关系安静时,不同强度和持续时间的运动时,骨骼肌内无氧代谢和有氧代谢供能的一般特点表现如下。

(一)安静时:安静时,骨骼肌内能量消耗少,ATP保持高水平;氧的供应充足,肌细胞内以游离脂肪酸和葡萄糖的有氧代谢供能。

线粒体内氧化脂肪酸的能力比氧化丙酮酸强,即氧化脂肪酸的能力大于糖的有氧代谢。

在静息状态下,呼吸商为0.7,表明骨骼肌基本燃料是脂肪酸。

(二) 长时间低强度运动时:在长时间低强度运动时,骨骼肌内ATP的消耗逐渐增多,ADP水平逐渐增高,NAD+还原速度加快,但仍以有氧代谢供能为主。

血浆游离脂肪酸浓度明显上升,肌内脂肪酸氧化供能增强,这一现象在细胞内糖原量充足时就会发生。

剧烈运动时能量供应

剧烈运动时能量供应

人体运动时,能量消耗明显增加,增加的情况决定于运动强度和持续的时间.人体活动的直接能源来源于三磷酸腺苷(ATP)的分解,如神经传导兴奋时的离子转运、腺体的分泌活动、消化道的消化吸收、肾小管的重吸收、肌肉收缩等.而最终的能量来源于糖、脂肪和蛋白质的氧化分解,氧化分解释放的能量供ATP的重新合成.一、知识归纳人体内的供能系统分为三个:①高能磷酸化物系统(ATP-CP);ATP-CP供能系统单独供能的话,大概能维持7.5秒的时间,不需要氧气,也不产生乳酸,时间比较短的剧烈运动如举重、投掷等一般就是动用这个系统供能的;②乳酸系统(无氧酵解系统);乳酸系统是糖原或葡萄糖在细胞内无氧分解生成乳酸的过程中,再合成生成ATP的能量系统.如果单独供能的话,大概能持续33秒的时间.其最终产物是乳酸,所以称乳酸能系统.1 mol的葡萄糖或糖原无氧酵解产生乳酸,可净生成2-3molATP.其过程也是不需要氧的,生成的乳酸可导致疲劳.该系统是1 min以内要求高功率输出的运动的物质基础.如200 m跑、100 m游泳等.③有氧系统:有氧氧化系统是糖、脂肪、蛋白质在细胞内彻底氧化生成二氧化碳和水的过程中,再合成ATP的能量系统.其产物当然就是二氧化碳、水和ATP了.根据肌体的供氧情况,糖的氧化分解有两种方式:①当氧供应充足时,来自糖(或脂肪)的有氧氧化.②当氧供应不足时,即来自糖的酵解,生成乳酸.乳酸在最后供氧充足时,一部分继续氧化,释放的能量使其余部分再合成肝糖元.所以肌肉收缩的最终能量来自物质(糖、脂肪)的有氧氧化.运动时,人体以何种方式供能,取决于需氧量和摄氧量的相互关系,当摄氧量能满足需要时,肌体即以有氧代谢供能,当摄氧量不能满足需氧量时,其不足部分即依靠无氧氧化供能,这样将造成体内的氧亏负,称为氧债.运动时的需氧量取决于运动强度,强度越大,需氧量越大,无氧代谢供能的比例也越大.。

专题复习·人体运动时的能量供应与能量消耗

专题复习·人体运动时的能量供应与能量消耗

专题复习·人体运动时的能量供应与能量消耗人体运动时,能量消耗明显增加,增加的情况决定于运动强度和持续的时间。

人体活动的直接能源来源于三磷酸腺苷(A TP)的分解,如神经传导兴奋时的离子转运、腺体的分泌活动、消化道的消化吸收、肾小管的重吸收、肌肉收缩等。

而最终的能量来源于糖、脂肪和蛋白质的氧化分解,氧化分解释放的能量供ATP的重新合成。

一、知识归纳人体内的供能系统分为三个:①高能磷酸化物系统(A TP-CP);A TP-CP供能系统单独供能的话,大概能维持7.5秒的时间,不需要氧气,也不产生乳酸,时间比较短的剧烈运动如举重、投掷等一般就是动用这个系统供能的;②乳酸系统(无氧酵解系统);乳酸系统是糖原或葡萄糖在细胞内无氧分解生成乳酸的过程中,再合成生成ATP的能量系统。

如果单独供能的话,大概能持续33秒的时间。

其最终产物是乳酸,所以称乳酸能系统。

1 mol的葡萄糖或糖原无氧酵解产生乳酸,可净生成2-3molATP。

其过程也是不需要氧的,生成的乳酸可导致疲劳。

该系统是1 min以内要求高功率输出的运动的物质基础。

如200 m跑、100 m游泳等。

③有氧系统:有氧氧化系统是糖、脂肪、蛋白质在细胞内彻底氧化生成二氧化碳和水的过程中,再合成ATP的能量系统。

其产物当然就是二氧化碳、水和ATP了。

根据肌体的供氧情况,糖的氧化分解有两种方式::①当氧供应充足时,来自糖(或脂肪)的有氧氧化。

②当氧供应不足时,即来自糖的酵解,生成乳酸。

乳酸在最后供氧充足时,一部分继续氧化,释放的能量使其余部分再合成肝糖元。

所以肌肉收缩的最终能量来自物质(糖、脂肪)的有氧氧化。

运动时,人体以何种方式供能,取决于需氧量和摄氧量的相互关系,当摄氧量能满足需要时,肌体即以有氧代谢供能,当摄氧量不能满足需氧量时,其不足部分即依靠无氧氧化供能,这样将造成体内的氧亏负,称为氧债。

运动时的需氧量取决于运动强度,强度越大,需氧量越大,无氧代谢供能的比例也越大。

人体内的三大供能体系

人体内的三大供能体系

人体内的三大供能系统在人体内有三大供能系统,它们是:ATP-磷酸肌酸供能系统、无氧呼吸供能系统和有氧呼吸供能系统。

(1)A TP在肌肉中的含量低,当肌肉进行剧烈运动时,供能时间仅能维持约1~3秒。

(2)之后的能量供应就要依靠ATP的再生。

这时,细胞内的高能化合物磷酸肌酸的高能磷酸键水解将能量转移至ADP,生成ATP。

磷酸肌酸在体内的含量也很少,只能维持几秒的能量供应。

人在剧烈运动时,首先是ATP-磷酸肌酸供能系统供能,通过这个系统供能大约维持6~8秒左右的时间。

(3)这两项之后的供能,主要依靠葡萄糖和糖元的无氧酵解所释放的能量合成ATP。

无氧酵解约能维持2~3分钟时间。

(4)由于无氧呼吸产生的乳酸易导致肌肉疲劳,所以长时间的耐力运动需要靠有氧呼吸释放的能量来合成ATP。

综上所述,短时间大强度的运动,如100米短跑,主要依靠A TP-磷酸肌酸供能;长时间低强度的运动,主要靠有氧呼吸提供能量;介于二者之间的较短时间的中强度运动,如400米跑,则主要由无氧呼吸提供能量。

运动项目总需氧量(升)实际摄入氧量(升)血液乳酸增加量马拉松跑600 589 略有增加400米跑16 2 显著增加100米跑8 0 未见增加人在剧烈运动呼吸底物主要是糖。

但在长时间剧烈运动时,如马拉松式的长跑运动,人体内贮存的糖是不够用的,在消耗完贮存的糖类物质后,就动用体内贮存脂肪和脂肪酸。

一、运动时供能系统的动用特点(一)人体骨骼肌细胞的能量储备(二)供能系统的输出功率运动时代谢供能的输出功率取决于能源物质合成ATP的最大速率。

(三)供能系统的相互关系1.运动中基本不存在一种能量物质单独供能的情况,肌肉可以利用所有能量物质,只是时间、顺序和相对比率随运动状况而异,不是同步利用。

2.最大功率输出的顺序,由大到小依次为:磷酸原系统>糖酵解系统>糖有氧氧化>脂肪酸有氧氧化,且分别以近50%的速率依次递减。

3.当以最大输出功率运动时,各系统能维持的运动时间是:磷酸原系统供极量强度运动6—8秒;糖酵解系统供最大强度运动30—90秒,可维持2分钟以内;3分钟主要依赖有氧代谢途径。

人体三大能量供应系统

人体三大能量供应系统

NAD NADH+H+
CH3 . CO.COOH
CH3 . CO. SCOA
(丙酮酸)
(乙酰辅酶A) CO2
紧接着乙酰辅酶A进行氧化,其先与草酰乙酸合成柠檬酸,柠檬酸分子上有三个羧酸基, 被氧化经过脱氢和脱羧基,又转变为草酰乙酸,其间二次脱羧、四次脱氢,生成2CO2。 由丙酮酸开始,则生成了3CO2和脱下5对氢,总的结果如下:
ATP CO2+H2O+尿素等
有氧供能
(一)糖的有氧代谢
• 骨骼肌糖原或由血液运输至肌肉的葡萄糖,其有氧供能的过程可分为三个阶段: • 1.糖分解为丙酮酸——无氧代谢阶段 • 2.丙酮酸脱氢脱羧氧化——糖代谢中CO2生成。 • 3.氢的氧化——释放能量和水生成
丙酮酸氧化脱氢脱羧 丙酮酸在有氧代谢时先脱羧(生成CO2)和脱氢,生成乙酰辅酶A,简式如下:
丙酮酸
5(2H)+3CO2
乙酰辅酶A的氧化——三羧酸循环
NAD NADH+H+
丙酮酸 CO2
乙酰辅酶A
NAD NADH+H+
草酰乙酸 苹果酸
FADH2 FAD
琥珀酸
2CO2
GTP
GDP
柠檬酸 NAD NADH+H+
a—酮戊二酸
NAD NADH+H+
脂肪 甘油
(二)脂肪的有氧代谢
甘油
+
脂肪酸
磷酸甘油
2(丙酮酸) LDH
2(乳酸)
2ADP
2ATP
2ATP
2ADP
肌糖原 2(3-磷酸甘油酸)
2(磷酸烯醇式丙酮酸)
乳酸能
二、人体运动时的有氧供应系统

人体内的三大供能系统

人体内的三大供能系统

ATP-磷聿人体内的三大供能系统賺在人体内有三大供能系统,它们是:ATP-磷酸肌酸供能系统、无氧呼吸供能系 统和有氧呼吸供能系统。

(1) (2)芀ATP 在肌肉中的含量低,当肌肉进 行剧烈运动时,供能时间仅能维持 约1〜3秒。

(3)(3) 螈之后的能量供应就要依靠 ATP 的 再生。

这时,细胞内的高能化合物 磷酸肌酸的高能磷酸键水解将能量 转移至ADP ,生成ATP 。

磷酸肌酸 在体内的含量也很少,只能维持几秒的能量供应。

人在剧烈运动时,首先是 酸肌酸供能系统供能,通过这个系统供能大约维持 6〜8秒左右的时间。

(5)(4) 芃这两项之后的供能,主要依靠 葡萄糖和糖元的无氧酵解 所释放的能量合成 ATP 。

无 氧酵解约能维持2〜3分钟时间。

(7)(5) 薂由于无氧呼吸产生的乳酸易导致肌肉疲劳,所以长时间的耐力运动需要靠有氧呼吸 释放的能量来合成 ATP 。

羂综上所述,短时间大强度的运动,如100米短跑,主要依靠 ATP-磷酸肌酸供能;长时间低强度的运动, 主要靠有氧呼吸提供能量;介于二者之间的较短时间的中强度运动,如 400米跑,则 主要由无氧呼吸提供能量。

薇运动项目莃总需氧量(升)羃实际摄入氧量(升)莀血液乳酸增加量莆马拉松跑蒃600莄589肁略有增加荿400米跑薃16蒀2蕿显著增加ZTX羇人在剧烈运动呼吸底物主要是糖。

但在长时间剧烈运动时,如马拉松式的长跑运动,人体内贮存的糖是不够用的,在消耗完贮存的糖类物质后,就动用体内贮存脂肪和脂肪酸。

节蝿一、运动时供能系统的动用特点罿(一)人体骨骼肌细胞的能量储备肇(二)供能系统的输出功率蚃运动时代谢供能的输出功率取决于能源物质合成ATP的最大速率。

蒁(三)供能系统的相互关系螈1 .运动中基本不存在一种能量物质单独供能的情况,肌肉可以利用所有能量物质,只是时间、顺序和相对比率随运动状况而异,不是同步利用。

膆2 .最大功率输出的顺序,由大到小依次为:磷酸原系统>糖酵解系统>糖有氧氧化>脂肪酸有氧氧化,且分别以近50%的速率依次递减。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人体运动时能量的供给
1.运动时的直接能源
人体运动时的直接能源是来自体内一种特殊的高能磷酸化合物--三磷酸腺苷(ATP)。

肌肉活动时,肌肉中的ATP在酶的催化下,迅速分解为二磷酸腺苷(ADP)和磷酸,同时放出能量供肌肉收缩。

但是人体肌肉内ATP含量甚微,只能供极短时间消耗,所以肌肉要持续运动,就需即时补充ATP。

2.运动时三个供能系统
人体运动时,当ATP分解放能后需要即时补充,补充的途径有三条:即磷酸肌酸(CP)分解、糖的无氧酵解及糖与脂肪的有氧氧化。

生理学上称之为运动时的三个供能系统。

人体从事的各种不同的运动,其能理供给都分别属于这三个供能系统,而发展这三个供能系统的方法又各不相同。

(1)磷酸原系统(ATP-CP系统)磷酸肌酸(CP)是贮存有肌细胞内的另一种高能磷化物。

当ATP分解放能后,CP立即分解放能以补充ATP的再合成,因为这个过程十分迅速,不需要氧气也不会产生乳酸,所以,生理学上将它与ATP一道合称为非乳酸系统,又称磷酸原系统。

生理学研究证明,全身肌肉中ATP-CP系统供能水平仅能持续8s左右。

这个系统供能水平的强弱,主要和绝对速度相关,假如要提升50m、100m、200m 等短距离跑的绝对速度,就要发展磷酸原系统的供能水平。

发展这个系统的供能水平的训练方法最好是采用持续10s以内的全速跑,重复实行练习,中间间歇休息30s以上。

假如间歇时间短于30s,则因为磷酸原系统恢复缺乏,会产生乳酸积累。

(2)乳酸能供能系统
当人体肌肉快速运动时间持续较长后(超过8~10s),磷酸原系统供能水平已不能即时供ATP补充,于是动用肌糖元实行无氧酵解供能。

这个系统供能时不需要氧,但产生乳酸积累,故称为乳酸能系统。

机体产生的乳酸在氧供给充足时,一部分继续氧化释放能量,另一部分合成肝糖元。

乳酸是一种强酸,在体内积聚过多,会产生酸中毒,使机体工作水平下降,故乳酸能系统有供能水平,但持续时间也不长(约33s左右)。

乳酸能系统供能水平的优劣主要与速度耐力相关。

中距离跑主要需要速度耐力,100m、200m跑的后程及很多球类运动也都需要速度耐力。

要提升速度耐力,就要发展乳酸能系统的供能水平。

而最适宜的手段是全速(或接近全速)跑30~60s,间歇休息2~3m in。

这种手段能使血乳酸达到最高水平,能锻炼和提升对高血乳酸的耐受水平,提升乳酸能系统的供能水平。

(3)有氧供能系统
在氧供给充足的条件下,机体利用糖和脂肪氧化分解成二氧化碳和水,释放大量能理来合成ATP,这种有氧氧化供能过程称为有氧供能系统。

其中糖有氧氧化产生的能量为糖酵解的13倍,故其维持的工作时间较长。

虽然磷酸原系统和乳酸能系统在运动中提供了大量能量,但归根结蒂,ATP、CP的合成,糖酵解产物乳酸的消除,都是通过有氧氧化来实现的。

所以,肌肉活动能量最终来源还是糖和脂肪的有氧氧化,而糖和脂肪又来自食物。

人体的有氧供能水平和心肺功能相关,是耐力素质的基础,要提升这个供能水平,主要宜采用较长时间的中等或较低强度的匀速跑,或较长段落的中速间歇训练等。

人从事任何一种运动时,能量供给很少仅属于一种供能系统,绝大部分情况下是上述3个供能系统均参与供能,只不过不同的运动,3个供能系统所占的比例各不相同。

如100m跑,主要是磷酸原系统及乳酸能系统供能为主;长跑则主要由有氧供能系统供能;400m跑等练习以乳酸能系统供能为主;1500m跑则对3个供能系统均有较高要求。

因此,在锻炼中应根据自己的特点,主要发展哪一个系统的供能能力,恰当选择手段与方法。

相关文档
最新文档