matlab的floyd算法
matlab数学实验
![matlab数学实验](https://img.taocdn.com/s3/m/1a4f5168be1e650e52ea9970.png)
《管理数学实验》实验报告班级姓名实验1:MATLAB的数值运算【实验目的】(1)掌握MATLAB变量的使用(2)掌握MATLAB数组的创建,(3)掌握MA TLAB数组和矩阵的运算。
(4)熟悉MATLAB多项式的运用【实验原理】矩阵运算和数组运算在MA TLAB中属于两种不同类型的运算,数组的运算是从数组元素出发,针对每个元素进行运算,矩阵的运算是从矩阵的整体出发,依照线性代数的运算规则进行。
【实验步骤】(1)使用冒号生成法和定数线性采样法生成一维数组。
(2)使用MA TLAB提供的库函数reshape,将一维数组转换为二维和三维数组。
(3)使用逐个元素输入法生成给定变量,并对变量进行指定的算术运算、关系运算、逻辑运算。
(4)使用MA TLAB绘制指定函数的曲线图,将所有输入的指令保存为M文件。
【实验内容】(1)在[0,2*pi]上产生50个等距采样数据的一维数组,用两种不同的指令实现。
0:(2*pi-0)/(50-1):2*pi 或linspace(0,2*pi,50)(2)将一维数组A=1:18,转换为2×9数组和2×3×3数组。
reshape(A,2,9)ans =Columns 1 through 71 3 5 7 9 11 132 4 6 8 10 12 14Columns 8 through 915 1716 18reshape(A,2,3,3)ans(:,:,1) =1 3 52 4 6ans(:,:,2) =7 9 118 10 12 ans(:,:,3) =13 15 17 14 16 18(3)A=[0 2 3 4 ;1 3 5 0],B=[1 0 5 3;1 5 0 5],计算数组A 、B 乘积,计算A&B,A|B,~A,A= =B,A>B 。
A.*Bans=0 0 15 121 15 0 0 A&Bans =0 0 1 11 1 0 0 A|Bans =1 1 1 11 1 1 1~Aans =1 0 0 00 0 0 1A==Bans =0 0 0 01 0 0 0A>=Bans =0 1 0 11 0 1 0(4)绘制y= 0.53t e -t*t*sin(t),t=[0,pi]并标注峰值和峰值时间,添加标题y= 0.53t e -t*t*sint ,将所有输入的指令保存为M 文件。
实验三:使用matlab求解最小费用最大流算问题
![实验三:使用matlab求解最小费用最大流算问题](https://img.taocdn.com/s3/m/28409d9ba417866fb94a8e59.png)
北京联合大学实验报告项目名称: 运筹学专题实验报告学院: 自动化专业:物流工程班级: 1201B 学号:2012100358081 姓名:管水城成绩:2015 年 5 月 6 日实验三:使用matlab求解最小费用最大流算问题一、实验目的:(1)使学生在程序设计方面得到进一步的训练;,学习Matlab语言进行程序设计求解最大流最小费用问题。
二、实验用仪器设备、器材或软件环境计算机,Matlab R2006a三、算法步骤、计算框图、计算程序等1.最小费用最大流问题的概念。
在网络D(V,A)中,对应每条弧(vi,vj)IA,规定其容量限制为cij(cij\0),单位流量通过弧(vi,vj)的费用为dij(dij\0),求从发点到收点的最大流f,使得流量的总费用d(f)为最小,即mind(f)=E(vi,vj)IA2。
求解原理。
若f是流值为W的所有可行流中费用最小者,而P是关于f的所有可扩充链中费用最小的可扩充链,沿P以E调整f得到可行流fc,则fc是流值为(W+E)的可行流中的最小费用流.根据这个结论,如果已知f是流值为W的最小费用流,则关键是要求出关于f 的最小费用的可扩充链。
为此,需要在原网络D的基础上构造一个新的赋权有向图E(f),使其顶点与D的顶点相同,且将D中每条弧(vi,vj)均变成两个方向相反的弧(vi,vj)和(vj,vi)1新图E(f)中各弧的权值与f中弧的权值有密切关系,图E(f)中各弧的权值定义为:新图E(f)中不考虑原网络D中各个弧的容量cij。
为了使E(f)能比较清楚,一般将长度为]的弧从图E(f)中略去.由可扩充链费用的概念及图E(f)中权的定义可知,在网络D中寻求关于可行流f的最小费用可扩充链,等价于在图E(f)中寻求从发点到收点的最短路.因图E(f)中有负权,所以求E(f)中的最短路需用Floyd算法。
1.最小费用流算法的框图描述。
图一2.计算最小费用最大流MATLAB源代码,文件名为mp_mc.mfunction[Mm,mc,Mmr]=mp_mc(a,c)A=a; %各路径最大承载流量矩阵C=c; %各路径花费矩阵Mm=0; %初始可行流设为零mc=0; %最小花费变量mcr=0;mrd=0;n=0;while mrd~=inf %一直叠代到以花费为权值找不到最短路径for i=1:(size(mcr’,1)—1)if a(mcr(i),mcr(i+1))==infta=A(mcr(i+1),mcr(i))—a(mcr(i+1),mcr(i)); elseta=a(mcr(i),mcr(i+1));endn=min(ta,n);%将最短路径上的最小允许流量提取出来endfor i=1:(size(mcr’,1)-1)if a(mcr(i),mcr(i+1))==infa(mcr(i+1),mcr(i))=a(mcr(i+1),mcr(i))+n;elsea(mcr(i),mcr(i+1))=a(mcr(i),mcr(i+1))—n;endendMm=Mm+n;%将每次叠代后增加的流量累加,叠代完成时就得到最大流量 for i=1:size(a,1)for j=1:size(a’,1)if i~=j&a(i,j)~=infif a(i,j)==A(i,j) %零流弧c(j,i)=inf;c(i,j)=C(i,j);elseif a(i,j)==0 %饱合弧c(i,j)=inf;c(j,i)=C(j,i);elseif a(i,j)~=0 %非饱合弧c(j,i)=C(j,i);c(i,j)=C(i,j);endendendend[mcr,mrd]=floyd_mr(c) %进行叠代,得到以花费为权值的最短路径矩阵(mcr)和数值(mrd)n=inf;end%下面是计算最小花费的数值for i=1:size(A,1)for j=1:siz e(A’,1)if A(i,j)==infA(i,j)=0;endif a(i,j)==infa(i,j)=0;endendendMmr=A—a; %将剩余空闲的流量减掉就得到了路径上的实际流量,行列交点处的非零数值就是两点间路径的实际流量for i=1:size(Mmr,1)for j=1:size(Mmr’,1)if Mmr(i,j)~=0mc=mc+Mmr(i,j)*C(i,j);%最小花费为累加各条路径实际流量与其单位流量花费的乘积endendend利用福得算法计算最短路径MATLAB源代码,文件名为floyd_mr。
matlab、lingo程序代码1-最短距离
![matlab、lingo程序代码1-最短距离](https://img.taocdn.com/s3/m/4accebd876eeaeaad1f33039.png)
例9 某公司在六个城市c1, c2, …c6 中有分公司,从ici到cj的直接航程票价记在下述矩阵的(I,j)位置上。
(∞表示无直接航路),请帮助该公司设计一张城市c1到其它城市间的票价最便宜的路线图。
clc,cleara=zeros(6);a(1,2)=50;a(1,4)=40;a(1,5)=25;a(1,6)=10;a(2,3)=15;a(2,4)=20;a(2,6)=25;a(3,4)=10;a(3,5)=20;a(4,5)=10;a(4,6)=25;a(5,6)=55;a=a+a';a(find(a==0))=inf;pb(1:length(a))=0;pb(1)=1;index1=1;index2=ones(1,length(a));d(1:length(a))=inf;d(1)=0;temp=1;while sum(pb)<length(a)tb=find(pb==0);d(tb)=min(d(tb),d(temp)+a(temp,tb));tmpb=find(d(tb)==min(d(tb)));temp=tb(tmpb(1));pb(temp)=1;index1=[index1,temp];temp2=find(d(index1)==d(temp)-a(temp,index1));index2(temp)=index1(temp2(1));endd, index1, index2编写LINGO 程序如下:model:sets:cities/A,B1,B2,C1,C2,C3,D/;roads(cities,cities)/A B1,A B2,B1 C1,B1 C2,B1 C3,B2 C1, B2 C2,B2 C3,C1 D,C2 D,C3 D/:w,x;endsetsdata:w=2 4 3 3 1 2 3 1 1 3 4;enddatan=@size(cities); !城市的个数;min=@sum(roads:w*x);@for(cities(i)|i #ne#1 #and# i #ne#n:@sum(roads(i,j):x(i,j))=@sum(roads(j,i):x(j,i)));@sum(roads(i,j)|i #eq#1:x(i,j))=1;@sum(roads(i,j)|j #eq#n:x(i,j))=1;endmodel:sets:cities/1..11/;roads(cities,cities):w,x;endsetsdata:w=0;enddatacalc:w(1,2)=2;w(1,3)=8;w(1,4)=1;w(2,3)=6;w(2,5)=1;w(3,4)=7;w(3,5)=5;w(3,6)=1;w(3,7)=2;w(4,7)=9;w(5,6)=3;w(5,8)=2;w(5,9)=9;w(6,7)=4;w(6,9)=6;w(7,9)=3;w(7,10)=1;w(8,9)=7;w(8,11)=9;w(9,10)=1;w(9,11)=2;w(10,11)=4;@for(roads(i,j):w(i,j)=w(i,j)+w(j,i));@for(roads(i,j):w(i,j)=@if(w(i,j) #eq# 0, 1000,w(i,j))); endcalcn=@size(cities); !城市的个数;min=@sum(roads:w*x);@for(cities(i)|i #ne#1 #and# i #ne#n:@sum(cities(j):x(i,j))=@sum(cities(j):x(j,i)));@sum(cities(j):x(1,j))=1;@sum(cities(j):x(j,1))=0; !不能回到顶点1;@sum(cities(j):x(j,n))=1;@for(roads:@bin(x));end例12 用Floyd算法求解例9。
matlab图论程序算法大全
![matlab图论程序算法大全](https://img.taocdn.com/s3/m/5db74d130242a8956aece480.png)
图论算法matlab实现求最小费用最大流算法的 MATLAB 程序代码如下:n=5;C=[0 15 16 0 00 0 0 13 140 11 0 17 00 0 0 0 80 0 0 0 0]; %弧容量b=[0 4 1 0 00 0 0 6 10 2 0 3 00 0 0 0 20 0 0 0 0]; %弧上单位流量的费用wf=0;wf0=Inf; %wf 表示最大流量, wf0 表示预定的流量值for(i=1:n)for(j=1:n)f(i,j)=0;end;end %取初始可行流f 为零流while(1)for(i=1:n)for(j=1:n)if(j~=i)a(i,j)=Inf;end;end;end%构造有向赋权图for(i=1:n)for(j=1:n)if(C(i,j)>0&f(i,j)==0)a(i,j)=b(i,j); elseif(C(i,j)>0&f(i,j)==C(i,j))a(j,i)=-b(i,j);elseif(C(i,j)>0)a(i,j)=b(i,j);a(j,i)=-b(i,j);end;end;end for(i=2:n)p(i)=Inf;s(i)=i;end %用Ford 算法求最短路, 赋初值for(k=1:n)pd=1; %求有向赋权图中vs 到vt 的最短路for(i=2:n)for(j=1:n)if(p(i)>p(j)+a(j,i))p(i)=p(j)+a(j,i);s( i)=j;pd=0;end;end;endif(pd)break;end;end %求最短路的Ford 算法结束if(p(n)==Inf)break;end %不存在vs 到vt 的最短路, 算法终止. 注意在求最小费用最大流时构造有向赋权图中不会含负权回路, 所以不会出现k=ndvt=Inf;t=n; %进入调整过程, dvt 表示调整量while(1) %计算调整量if(a(s(t),t)>0)dvtt=C(s(t),t)-f(s(t),t); %前向弧调整量elseif(a(s(t),t)<0)dvtt=f(t,s(t));end %后向弧调整量if(dvt>dvtt)dvt=dvtt;endif(s(t)==1)break;end %当t 的标号为vs 时, 终止计算调整量t=s(t);end %继续调整前一段弧上的流fpd=0;if(wf+dvt>=wf0)dvt=wf0-wf;pd=1;end%如果最大流量大于或等于预定的流量值t=n;while(1) %调整过程if(a(s(t),t)>0)f(s(t),t)=f(s(t),t)+dvt; %前向弧调整elseif(a(s(t),t)<0)f(t,s(t))=f(t,s(t))-dvt;end %后向弧调整if(s(t)==1)break;end %当t 的标号为vs 时, 终止调整过程t=s(t);endif(pd)break;end%如果最大流量达到预定的流量值wf=0; for(j=1:n)wf=wf+f(1,j);end;end %计算最大流量zwf=0;for(i=1:n)for(j=1:n)zwf=zwf+b(i,j)*f(i,j);end;end%计算最小费用f %显示最小费用最大流图 6-22wf %显示最小费用最大流量zwf %显示最小费用, 程序结束__Kruskal 避圈法:Kruskal 避圈法的MATLAB 程序代码如下:n=8;A=[0 2 8 1 0 0 0 02 0 6 0 1 0 0 08 6 0 7 5 1 2 01 0 7 0 0 0 9 00 1 5 0 0 3 0 80 0 1 0 3 0 4 60 0 2 9 0 4 0 30 0 0 0 8 6 3 0];k=1; %记录A中不同正数的个数for(i=1:n-1)for(j=i+1:n) %此循环是查找A中所有不同的正数if(A(i,j)>0)x(k)=A(i,j); %数组x 记录A中不同的正数kk=1; %临时变量for(s=1:k-1)if(x(k)==x(s))kk=0;break;end;end %排除相同的正数k=k+kk;end;end;endk=k-1 %显示A中所有不同正数的个数for(i=1:k-1)for(j=i+1:k) %将x 中不同的正数从小到大排序if(x(j)<x(i))xx=x(j);x(j)=x(i);x(i)=xx;end;end;endT(n,n)=0; %将矩阵T 中所有的元素赋值为0q=0; %记录加入到树T 中的边数for(s=1:k)if(q==n)break;end %获得最小生成树T, 算法终止for(i=1:n-1)for(j=i+1:n)if(A(i,j)==x(s))T(i,j)=x(s);T(j,i)=x(s); %加入边到树T 中TT=T; %临时记录Twhile(1)pd=1; %砍掉TT 中所有的树枝for(y=1:n)kk=0;for(z=1:n)if(TT(y,z)>0)kk=kk+1;zz=z;end;end %寻找TT 中的树枝if(kk==1)TT(y,zz)=0;TT(zz,y)=0;pd=0;end;end %砍掉TT 中的树枝if(pd)break;end;end %已砍掉了TT 中所有的树枝pd=0; %判断TT 中是否有圈for(y=1:n-1)for(z=y+1:n)if(TT(y,z)>0)pd=1;break;end;end;end if(pd)T(i,j)=0;T(j,i)=0; %假如TT 中有圈else q=q+1;end;end;end;end;endT %显示近似最小生成树T, 程序结束用Warshall-Floyd 算法求任意两点间的最短路.n=8;A=[0 2 8 1 Inf Inf Inf Inf2 0 6 Inf 1 Inf Inf Inf8 6 0 7 5 1 2 Inf1 Inf 7 0 Inf Inf 9 Inf Inf 1 5 Inf 0 3 Inf 8 Inf Inf 1 Inf 3 0 4 6Inf Inf 2 9 Inf 4 0 3Inf Inf Inf Inf 8 6 3 0]; % MATLAB 中, Inf 表示∞D=A; %赋初值for(i=1:n)for(j=1:n)R(i,j)=j;end;end %赋路径初值for(k=1:n)for(i=1:n)for(j=1:n)if(D(i,k)+D(k,j)<D(i,j))D(i,j )=D(i,k)+D(k,j); %更新dijR(i,j)=k;end;end;end %更新rijk %显示迭代步数D %显示每步迭代后的路长R %显示每步迭代后的路径pd=0;for i=1:n %含有负权时if(D(i,i)<0)pd=1;break;end;end %存在一条含有顶点vi 的负回路if(pd)break;end %存在一条负回路, 终止程序end %程序结束利用 Ford--Fulkerson 标号法求最大流算法的MATLAB 程序代码如下:n=8;C=[0 5 4 3 0 0 0 00 0 0 0 5 3 0 00 0 0 0 0 3 2 00 0 0 0 0 0 2 00 0 0 0 0 0 0 40 0 0 0 0 0 0 30 0 0 0 0 0 0 50 0 0 0 0 0 0 0]; %弧容量for(i=1:n)for(j=1:n)f(i,j)=0;end;end %取初始可行流f 为零流for(i=1:n)No(i)=0;d(i)=0;end %No,d 记录标号图 6-19while(1)No(1)=n+1;d(1)=Inf; %给发点vs 标号while(1)pd=1; %标号过程for(i=1:n)if(No(i)) %选择一个已标号的点vifor(j=1:n)if(No(j)==0&f(i,j)<C(i,j)) %对于未给标号的点vj, 当vivj 为非饱和弧时No(j)=i;d(j)=C(i,j)-f(i,j);pd=0;if(d(j)>d(i))d(j)=d(i);endelseif(No(j)==0&f(j,i)>0) %对于未给标号的点vj, 当vjvi 为非零流弧时No(j)=-i;d(j)=f(j,i);pd=0;if(d(j)>d(i))d(j)=d(i);end;end;end;end;endif(No(n)|pd)break;end;end%若收点vt 得到标号或者无法标号, 终止标号过程if(pd)break;end %vt 未得到标号, f 已是最大流, 算法终止dvt=d(n);t=n; %进入调整过程, dvt 表示调整量while(1)if(No(t)>0)f(No(t),t)=f(No(t),t)+dvt; %前向弧调整elseif(No(t)<0)f(No(t),t)=f(No(t),t)-dvt;end %后向弧调整if(No(t)==1)for(i=1:n)No(i)=0;d(i)=0; end;break;end %当t 的标号为vs 时, 终止调整过程t=No(t);end;end; %继续调整前一段弧上的流fwf=0;for(j=1:n)wf=wf+f(1,j);end %计算最大流量f %显示最大流wf %显示最大流量No %显示标号, 由此可得最小割, 程序结束图论程序大全程序一:关联矩阵和邻接矩阵互换算法function W=incandadf(F,f)if f==0m=sum(sum(F))/2;n=size(F,1);W=zeros(n,m);k=1;for i=1:nfor j=i:nif F(i,j)~=0W(i,k)=1;W(j,k)=1;k=k+1;endendendelseif f==1m=size(F,2);n=size(F,1);W=zeros(n,n);for i=1:ma=find(F(:,i)~=0);W(a(1),a(2))=1;W(a(2),a(1))=1;endelsefprint('Please imput the right value of f');endW;程序二:可达矩阵算法function P=dgraf(A) n=size(A,1);P=A;for i=2:nP=P+A^i;endP(P~=0)=1;P;程序三:有向图关联矩阵和邻接矩阵互换算法function W=mattransf(F,f)if f==0m=sum(sum(F));n=size(F,1);W=zeros(n,m);k=1;for i=1:nfor j=i:nif F(i,j)~=0W(i,k)=1;W(j,k)=-1;k=k+1;endendendelseif f==1m=size(F,2);n=size(F,1);W=zeros(n,n);for i=1:ma=find(F(:,i)~=0);if F(a(1),i)==1W(a(1),a(2))=1;elseW(a(2),a(1))=1;endendelsefprint('Please imput the right value of f');endW;第二讲:最短路问题程序一:Dijkstra算法(计算两点间的最短路)function [l,z]=Dijkstra(W)n = size (W,1); for i = 1 :nl(i)=W(1,i);z(i)=0;endi=1;while i<=nfor j =1 :nif l(i)>l(j)+W(j,i)l(i)=l(j)+W(j,i);z(i)=j-1;if j<ii=j-1;endendendi=i+1;end程序二:floyd算法(计算任意两点间的最短距离)function [d,r]=floyd(a)n=size(a,1);d=a;for i=1:nfor j=1:nr(i,j)=j;endendr;for k=1:nfor i=1:nfor j=1:nif d(i,k)+d(k,j)<d(i,j)d(i,j)=d(i,k)+d(k,j);r(i,j)=r(i,k);endendendend程序三:n2short.m 计算指定两点间的最短距离function [P u]=n2short(W,k1,k2)n=length(W);U=W;m=1;while m<=nfor i=1:nfor j=1:nif U(i,j)>U(i,m)+U(m,j)U(i,j)=U(i,m)+U(m,j);endendendm=m+1;endu=U(k1,k2);P1=zeros(1,n);k=1;P1(k)=k2;V=ones(1,n)*inf;kk=k2;while kk~=k1for i=1:nV(1,i)=U(k1,kk)-W(i,kk);if V(1,i)==U(k1,i)P1(k+1)=i;kk=i;k=k+1;endendendk=1;wrow=find(P1~=0);for j=length(wrow):-1:1P(k)=P1(wrow(j));k=k+1;endP;程序四、n1short.m(计算某点到其它所有点的最短距离)function[Pm D]=n1short(W,k)n=size(W,1);D=zeros(1,n);for i=1:n[P d]=n2short(W,k,i);Pm{i}=P;D(i)=d;end程序五:pass2short.m(计算经过某两点的最短距离)function [P d]=pass2short(W,k1,k2,t1,t2)[p1 d1]=n2short(W,k1,t1);[p2 d2]=n2short(W,t1,t2);[p3 d3]=n2short(W,t2,k2);dt1=d1+d2+d3;[p4 d4]=n2short(W,k1,t2);[p5 d5]=n2short(W,t2,t1);[p6 d6]=n2short(W,t1,k2);dt2=d4+d5+d6;if dt1<dt2d=dt1;P=[p1 p2(2:length(p2)) p3(2:length(p3))];elsed=dt1;p=[p4 p5(2:length(p5)) p6(2:length(p6))];endP;d;第三讲:最小生成树程序一:最小生成树的Kruskal算法function [T c]=krusf(d,flag)if nargin==1n=size(d,2);m=sum(sum(d~=0))/2;b=zeros(3,m);k=1;for i=1:nfor j=(i+1):nif d(i,j)~=0b(1,k)=i;b(2,k)=j;b(3,k)=d(i,j);k=k+1;endendendelseb=d;endn=max(max(b(1:2,:)));m=size(b,2);[B,i]=sortrows(b',3);B=B';c=0;T=[];k=1;t=1:n;for i=1:mif t(B(1,i))~=t(B(2,i))T(1:2,k)=B(1:2,i);c=c+B(3,i);k=k+1;tmin=min(t(B(1,i)),t(B(2,i)));tmax=max(t(B(1,i)),t(B(2,i)));for j=1:nif t(j)==tmaxt(j)=tmin;endendendif k==nbreak;endendT;c;程序二:最小生成树的Prim算法function [T c]=Primf(a)l=length(a);a(a==0)=inf;k=1:l;listV(k)=0;listV(1)=1;e=1;while (e<l)min=inf;for i=1:lif listV(i)==1for j=1:lif listV(j)==0 & min>a(i,j)min=a(i,j);b=a(i,j);s=i;d=j;endendendendlistV(d)=1;distance(e)=b;source(e)=s;destination(e)=d;e=e+1;endT=[source;destination]; for g=1:e-1c(g)=a(T(1,g),T(2,g));endc;另外两种程序最小生成树程序1(prim 算法构造最小生成树)a=[inf 50 60 inf inf inf inf;50 inf inf 65 40 inf inf;60 inf inf 52 inf inf 45;...inf 65 52 inf 50 30 42;inf 40 inf 50 inf 70 inf;inf inf inf 30 70 inf inf;...inf inf 45 42 inf inf inf];result=[];p=1;tb=2:length(a);while length(result)~=length(a)-1temp=a(p,tb);temp=temp(:);d=min(temp);[jb,kb]=find(a(p,tb)==d);j=p(jb(1));k=tb(kb(1));result=[result,[j;k;d]];p=[p,k];tb(find(tb==k))=[];endresult最小生成树程序2(Kruskal 算法构造最小生成树)clc;clear;a(1,2)=50; a(1,3)=60; a(2,4)=65; a(2,5)=40;a(3,4)=52;a(3,7)=45; a(4,5)=50; a(4,6)=30;a(4,7)=42; a(5,6)=70;[i,j,b]=find(a);data=[i';j';b'];index=data(1:2,:);loop=max(size(a))-1;result=[];while length(result)<looptemp=min(data(3,:));flag=find(data(3,:)==temp);flag=flag(1);v1=data(1,flag);v2=data(2,flag);if index(1,flag)~=index(2,flag)result=[result,data(:,flag)];endindex(find(index==v2))=v1;data(:,flag)=[];index(:,flag)=[];endresult第四讲:Euler图和Hamilton图程序一:Fleury算法(在一个Euler图中找出Euler环游)注:包括三个文件;fleuf1.m, edf.m, flecvexf.mfunction [T c]=fleuf1(d)%注:必须保证是Euler环游,否则输出T=0,c=0 n=length(d);b=d;b(b==inf)=0;b(b~=0)=1;m=0;a=sum(b);eds=sum(a)/2;ed=zeros(2,eds);vexs=zeros(1,eds+1);matr=b;for i=1:nif mod(a(i),2)==1m=m+1;endendif m~=0fprintf('there is not exit Euler path.\n')T=0;c=0;endif m==0vet=1;flag=0;t1=find(matr(vet,:)==1);for ii=1:length(t1)ed(:,1)=[vet,t1(ii)];vexs(1,1)=vet;vexs(1,2)=t1(ii);matr(vexs(1,2),vexs(1,1))=0;flagg=1;tem=1;while flagg[flagg ed]=edf(matr,eds,vexs,ed,tem); tem=tem+1;if ed(1,eds)~=0 & ed(2,eds)~=0T=ed;T(2,eds)=1;c=0;for g=1:edsc=c+d(T(1,g),T(2,g));endflagg=0;break;endendendendfunction[flag ed]=edf(matr,eds,vexs,ed,tem)flag=1;for i=2:eds[dvex f]=flecvexf(matr,i,vexs,eds,ed,tem);if f==1flag=0;break;endif dvex~=0ed(:,i)=[vexs(1,i) dvex];vexs(1,i+1)=dvex;matr(vexs(1,i+1),vexs(1,i))=0;elsebreak;endendfunction [dvex f]=flecvexf(matr,i,vexs,eds,ed,temp) f=0;edd=find(matr(vexs(1,i),:)==1);dvex=0;dvex1=[];ded=[];if length(edd)==1dvex=edd;elsedd=1;dd1=0;kkk=0;for kk=1:length(edd)m1=find(vexs==edd(kk));if sum(m1)==0dvex1(dd)=edd(kk);dd=dd+1;dd1=1;elsekkk=kkk+1;endendif kkk==length(edd)tem=vexs(1,i)*ones(1,kkk);edd1=[tem;edd];for l1=1:kkklt=0;ddd=1;for l2=1:edsif edd1(1:2,l1)==ed(1:2,l2)lt=lt+1;endendif lt==0ded(ddd)=edd(l1); ddd=ddd+1;endendendif temp<=length(dvex1)dvex=dvex1(temp);elseif temp>length(dvex1) & temp<=length(ded)dvex=ded(temp);elsef=1;endend程序二:Hamilton改良圈算法(找出比较好的Hamilton路)function [C d1]= hamiltonglf(v)%d表示权值矩阵%C表示算法最终找到的Hamilton圈。
Floyd算法
![Floyd算法](https://img.taocdn.com/s3/m/cc9bb91814791711cc791792.png)
Floyd算法求助编辑百科名片弗洛伊德算法Floyd算法又称为弗洛伊德算法,插点法,是一种用于寻找给定的加权图中顶点间最短路径的算法。
改算法名称以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名。
目录核心思路算法过程时间复杂度优缺点分析改进和优化算法实现pascal语言java算法展开核心思路算法过程时间复杂度优缺点分析改进和优化算法实现pascal语言java算法展开编辑本段核心思路通过一个图的权值矩阵求出它的每两点间的最短路径矩阵。
从图的带权邻接矩阵A=[a(i,j)] n×n开始,递归地进行n次更新,即由矩阵D(0)=A,按一个公式,构造出矩阵D(1);又用同样地公式由D(1)构造出D(2);……;最后又用同样的公式由D(n-1)构造出矩阵D(n)。
矩阵D(n)的i行j列元素便是i号顶点到j号顶点的最短路径长度,称D(n)为图的距离矩阵,同时还可引入一个后继节点矩阵path来记录两点间的最短路径。
采用的是(松弛技术),对在i和j之间的所有其他点进行一次松弛。
所以时间复杂度为O(n^3);其状态转移方程如下:map[i,j]:=min{map[i,k]+map[k,j],map[i,j]}map[i,j]表示i到j的最短距离K是穷举i,j的断点map[n,n]初值应该为0,或者按照题目意思来做。
当然,如果这条路没有通的话,还必须特殊处理,比如没有map[i,k]这条路编辑本段算法过程1,从任意一条单边路径开始。
所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。
2,对于每一对顶点u 和v,看看是否存在一个顶点w 使得从u 到w 再到v 比己知的路径更短。
如果是更新它。
编辑本段时间复杂度O(n^3)编辑本段优缺点分析Floyd算法适用于APSP(All Pairs Shortest Paths),是一种动态规划算法,稠密图效果最佳,边权可正可负。
Floyd算法
![Floyd算法](https://img.taocdn.com/s3/m/6b2a2dd5360cba1aa811da59.png)
定义Floyd算法又称为弗洛伊德算法,插点法,是一种用于寻找给定的加权图中顶点间最短路径的算法。
[编辑本段]核心思路通过一个图的权值矩阵求出它的每两点间的最短路径矩阵。
从图的带权邻接矩阵A=[a(i,j)] n×n开始,递归地进行n次更新,即由矩阵D(0) =A,按一个公式,构造出矩阵D(1);又用同样地公式由D(1)构造出D(2);……;最后又用同样的公式由D(n-1)构造出矩阵D(n)。
矩阵D(n)的i行j列元素便是i号顶点到j号顶点的最短路径长度,称D(n)为图的距离矩阵,同时还可引入一个后继节点矩阵path来记录两点间的最短路径。
采用的是松弛技术,对在i和j之间的所有其他点进行一次松弛。
所以时间复杂度为O(n^3);其状态转移方程如下:map[i,j]:=min{map[i,k]+map[k,j],map[i,j]}map[i,j]表示i到j的最短距离K是穷举i,j的断点map[n,n]初值应该为0,或者按照题目意思来做。
当然,如果这条路没有通的话,还必须特殊处理,比如没有map[i,k]这条路[编辑本段]算法过程把图用邻接矩阵G表示出来,如果从Vi到Vj有路可达,则G[i,j]=d,d表示该路的长度;否则G[i,j]=空值。
定义一个矩阵D用来记录所插入点的信息,D[i,j]表示从Vi到Vj需要经过的点,初始化D[i,j]=j。
把各个顶点插入图中,比较插点后的距离与原来的距离,G[i,j] = min( G[i,j], G [i,k]+G[k,j] ),如果G[i,j]的值变小,则D[i,j]=k。
在G中包含有两点之间最短道路的信息,而在D中则包含了最短通路径的信息。
比如,要寻找从V5到V1的路径。
根据D,假如D(5,1)=3则说明从V5到V1经过V3,路径为{V5,V3,V1},如果D(5,3)=3,说明V5与V3直接相连,如果D(3,1) =1,说明V3与V1直接相连。
[编辑本段]时间复杂度O(n^3)[编辑本段]优缺点分析Floyd算法适用于APSP(All Pairs Shortest Paths),是一种动态规划算法,稠密图效果最佳,边权可正可负。
网络计划流程图运用MATLAB确定关键线路的方法
![网络计划流程图运用MATLAB确定关键线路的方法](https://img.taocdn.com/s3/m/24c3822110661ed9ac51f300.png)
运用Floyd 算法及MATLAB 编程确定网络计划图关键线路的方法古雨鑫(西南科技大学四川绵阳 621000)摘要:关键线路的确定对工程有着重要的意义,同时也是目前常用的一种工程项目进度控制的计划方法,本文通过运用Floyd 算法,以及MATLAB 编程对矩阵的处理能力,本文给出了两种确定关键线路的方法,可以简单方便的确定网络图中的关键线路。
关键词:MATLAB ,网络流程图,Floyd 算法,关键线路 1 基本理论1.1基本概念工程中一项工作从开始到完成需要的时间和资源,在网络图中一般用箭线表示,箭尾表示工作的开始,而箭头表示工作的结束,工作的代号(或名称)一般写在箭线的上方,工作的所需要消耗的时间(资源)一般写在箭线的下方,除此以外,还有不消耗资源和时间的虚工作(一般用虚线表示,只与工作有逻辑关系),紧接着前一项的工作称为紧前工作,紧接着后一项的工作称为紧后工作。
节点指紧前工作和紧后工作的交点,并附有数码(工程中箭头的数码必须大于箭尾的数码)。
关键线路指的是工程中从起始节点到最后节点的所要经过的最长线路。
1.2 确定关键线路的意义现代工程的特点是规模巨大,对时间,资源,资源都有严格的要求,而关键线路更是直接决定工程的总工期,对工程的控制起到了重要的作用,找出关键线路在工程中有着重要的实际意义,对工程的控制有着决定的影响。
2 确定工程项目的MATLAB 算法方法2.1采用Floyd 算法对关键线路的确定Floyd 算法的基本思想是递推产生一个矩阵序列1k ,,,,n A A A ,其中矩阵k A 的第i 行第j 列元素k (,)A i j 表示是从顶点i V 到顶点j V 的路径上所经过的顶点序号不大于k 的最短路径计算时用的迭代公式111(,)min((,),(,),(,)),K k k k A i j A i j A i k A k j ---=K 是迭代次数,,,1,2,,i k j n = 。
用matlab求解优化问题
![用matlab求解优化问题](https://img.taocdn.com/s3/m/b7b9194b76c66137ee06198b.png)
§8.1.1 线性规划问题的MATLAB 求解方法与一般线性规划理论一样,在MATLAB 中有线性规划的标准型。
在调用MATLAB 线性规划函数linprog 时,要遵循MATLAB 中对标准性的要求。
线性规划问题的MATLAB 标准形为:⎪⎪⎩⎪⎪⎨⎧≤≤=≤=ub x lb b x A b Ax t s x c f eq eq T .. min 在上述模型中,有一个需要极小化的目标函数f ,以及需要满足的约束条件假设x 为n 维设计变量,且线性规划问题具有不等式约束1m 个,等式约束2m 个,那么:x 、、lb c 、 和ub 均为n 维列向量,b 为1m 维列向量,eq b 为m 2维列向量,A 为n m ⨯1维矩阵,eq A 为n m ⨯2维矩阵需要注意的是:MATLAB 标准型是对目标函数求极小,如果遇到是对目标函数求极大的问题,在使用MATLAB 求解时,需要在函数前面加一个负号转化为对目标函数求极小的问题;MATLAB 标准型中的不等式约束形式为""≤,如果在线性规划问题中出现""≥形式的不等式约束,则我们需要在两边乘以(-1)使其转化为MATLAB 中的""≤形式。
如果在线性规划问题中出现了“<”或者“>”的约束形式,则我们需要通过添加松弛变量使得不等式约束变为等式约束之后,我们只需要将所有的约束(包括不等式约束和等式约束)转化为矩阵形式的即可。
例如,对于如下线性规划模型:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥=+=+-≥-+-≤+-+-=0,,7 32 8228 122 ..24 max 3212131321321321x x x x x x x x x x x x x t s x x x f 要转化为MATLAB 标准形,则要经过:(1)原问题是对目标函数求极大,故添加负号使目标变为:32124 m in x x x f -+-=;(2)原问题中存在“≥”的约束条件,故添加负号使其变为:8228321≤+-x x x用MATLAB 表达则为c=[-4; 2; -1]; %将目标函数转化为求极小A=[2 -1 1; 8 -2 2]; b=[12; -8]; %不等式约束系数矩阵Aeq=[-2 0 1; 1 1 0];beq=[3; 7]; %等式约束系数矩阵lb=[0; 0; 0];ub=[Inf; Inf; Inf] %对设计变量的边界约束MATLAB 优化工具箱中求解线性规划问题的命令为linprog ,其函数调用方法有多种形式如下所示:x = linprog(c,A,b)x = linprog(c,A,b,Aeq,beq)x = linprog(c,A,b,Aeq,beq,lb,ub)x = linprog(c,A,b,Aeq,beq,lb,ub,x0)x = linprog(c,A,b,Aeq,beq,lb,ub,x0,options)x = linprog(problem)[x,fval] = linprog(...)[x,fval,exitflag] = linprog(...)[x,fval,exitflag,output] = linprog(...)[x,fval,exitflag,output,lambda] = linprog(...)输入参数MATLAB工具箱中的linprog函数在求解线性规划问题时,提供的参数为:模型参数、初始解参数和算法控制参数。
基于MATLAB的最短路径算法分析
![基于MATLAB的最短路径算法分析](https://img.taocdn.com/s3/m/781956d8fbb069dc5022aaea998fcc22bcd143c8.png)
基于MATLAB的最短路径算法分析周志进(贵阳学院贵州贵阳550005)摘要:随着社会快速发展,人们生活水平提高,很多需求都在向着最优化、最快捷、最高效的方向延伸,而最短路径算法则是图论研究中的典型问题。
该文简要概述MATLAB软件,分析基于MATLAB的4种用于解决最短路径问题的算法,并研究基于MATLAB的最短路径算法的实际应用状况,以期对最短路径算法的应用提供一定借鉴意义。
关键词:MATLAB最优路径Dijkstra算法Floyd算法Bellman-Ford算法SPFA算法中图分类号:TP301.6文献标识码:A文章编号:1672-3791(2022)08(a)-0217-03最短路径算法就是用于计算一个节点到其他节点的最短路径问题,一般是指确定起点的最短路径问题,求起始节点到某一终点的最短路径问题,也常用于已知起点和终点,求解两节点之间的最短路径。
1MATLAB程序概述MATLAB是由美国MathWorks公司出品的数学软件,MATLAB意为矩阵工程,将用于一维、二维与三维数值积分的函数进行了统一,并经过基本数学和内插函数的辅助,提供数值分析、矩阵计算等诸多功能,为应用数学、工程设计和数值计算提供全方位的解决方案,很大程度上摆脱了传统程序设计语言的编辑模式。
其高效的数值及符号计算功能,可以帮助用户快速处理繁杂的数学运算问题,具备的图形处理功能可以实现计算结果和编程的可视化。
MATLAB本身是一个高级的矩阵语言,包括诸多算法、控制语句、函数等面向基本对象或问题的应用程序[1]。
比如:在最短路径计算中可以利用矩阵运算和线性方程组的求解或是数据的统计分析来优化相关问题。
2基于MATLAB的4种最短路径算法2.1Dijkstra算法Dijkstra(迪杰斯特拉)算法是最经典的单源最短路径算法,也就是用于计算一个节点到其他所有节点最短路径的算法。
Dijkstra算法采用贪心算法策略,每次遍历与起点距离最近且未访问过的节点,直至扩展到终点。
matlab floyd算法
![matlab floyd算法](https://img.taocdn.com/s3/m/9d8719073868011ca300a6c30c2259010202f3ba.png)
matlab floyd算法
一、算法思想
Floyd算法是一种用于解决最短路径问题的算法,它可以找出任意两点之间的最短路径。
它由西班牙数学家Robert Floyd在1960年提出,是一种动态规划的应用,其可以求出任意两点之间的最短路径问题,由此可以证明,Floyd算法具备时间复杂度为O(n^3)的性质。
二、算法步骤
1、初始化:根据邻接矩阵表示图,初始化Floyd算法的距离矩阵。
2、迭代:使用Floyd算法的迭代式更新距离矩阵。
3、最短路径:最后获得的距离矩阵就是最短路径矩阵,可以求出任意两点之间的最短距离。
三、MATLAB实现
1、首先我们需要输入一个无向图的邻接矩阵,形如:
A=[0 1 inf 1;
1 0 1 inf;
inf 1 0 2;
1 inf
2 0];
2、利用matlab实现floyd算法,代码如下:
function dist = Floyd(A)
%A是图的邻接矩阵
n=size(A,1);
dist=A;
for i=1:n
for j=1:n
for k=1:n
if dist(j,k)>dist(j,i)+dist(i,k)
dist(j,k)=dist(j,i)+dist(i,k);
end
end
end
end
end
3、运行如下:
dist = Floyd(A)
dist =
0 1 3 1
1 0 1 2
3 1 0 2
1 2 2 0
即得到任意两点之间的最短路径,起点到终点最短路径长度为dist(i,j)。
matlab floyd算法
![matlab floyd算法](https://img.taocdn.com/s3/m/8e2e6e2bfbd6195f312b3169a45177232e60e45e.png)
matlab floyd算法
Floyd算法是一种用于求解最短路径的算法,它可以在有向图或者无向图中找到任意两个顶点之间的最短路径。
Floyd算法的核心思想是动态规划,它通过不断更新每个顶点之间的距离来求解最短路径。
Floyd算法的基本思路是,对于图中的任意两个顶点i和j,如果存在一条从i到j的路径,那么这条路径的长度就是i到j的最短路径。
如果不存在这样的路径,那么i到j的最短路径就是无穷大。
Floyd 算法通过不断更新每个顶点之间的距离来求解最短路径。
Floyd算法的实现过程比较简单,它可以用一个二维数组来表示图中每个顶点之间的距离。
初始时,这个数组的值就是图中每个边的权值。
然后,对于每个顶点k,我们都尝试更新从i到j的最短路径。
如果从i到k再到j的路径比当前的最短路径更短,那么我们就更新这个最短路径。
Floyd算法的时间复杂度为O(n^3),其中n是图中顶点的个数。
虽然这个时间复杂度比较高,但是Floyd算法的实现比较简单,而且它可以处理带有负权边的图。
因此,在实际应用中,Floyd算法还是比较常用的。
Floyd算法是一种用于求解最短路径的算法,它通过不断更新每个顶点之间的距离来求解最短路径。
虽然它的时间复杂度比较高,但
是它的实现比较简单,而且它可以处理带有负权边的图。
因此,在实际应用中,Floyd算法还是比较常用的。
(图论)matlab模板程序
![(图论)matlab模板程序](https://img.taocdn.com/s3/m/16f1157f30b765ce0508763231126edb6f1a76b7.png)
第一讲:图论模型程序一:可达矩阵算法%根据邻接矩阵A〔有向图〕求可达矩阵P〔有向图〕function P=dgraf<A>n=size<A,1>;P=A;for i=2:nP=P+A^i;endP<P~=0>=1; %将不为0的元素变为1P;程序二:无向图关联矩阵和邻接矩阵互换算法F表示所给出的图的相应矩阵W表示程序运行结束后的结果f=0表示把邻接矩阵转换为关联矩阵f=1表示把关联矩阵转换为邻接矩阵%无向图的关联矩阵和邻接矩阵的相互转换function W=incandadf<F,f>if f==0 %邻接矩阵转换为关联矩阵m=sum<sum<F>>/2; %计算图的边数n=size<F,1>;W=zeros<n,m>;k=1;for i=1:nfor j=i:nif F<i,j>~=0W<i,k>=1; %给边的始点赋值为1W<j,k>=1; %给边的终点赋值为1k=k+1;endendendelseif f==1 %关联矩阵转换为邻接矩阵m=size<F,2>;n=size<F,1>;W=zeros<n,n>;for i=1:ma=find<F<:,i>~=0>;W<a<1>,a<2>>=1; %存在边,则邻接矩阵的对应值为1 W<a<2>,a<1>>=1;endelsefprint<'Please imput the right value of f'>;W;程序三:有向图关联矩阵和邻接矩阵互换算法%有向图的关联矩阵和邻接矩阵的转换function W=mattransf<F,f>if f==0 %邻接矩阵转换为关联矩阵m=sum<sum<F>>;n=size<F,1>;W=zeros<n,m>;k=1;for i=1:nfor j=i:nif F<i,j>~=0 %由i发出的边,有向边的始点W<i,k>=1; %关联矩阵始点值为1W<j,k>=-1; %关联矩阵终点值为-1k=k+1;endendendelseif f==1 %关联矩阵转换为邻接矩阵m=size<F,2>;n=size<F,1>;W=zeros<n,n>;for i=1:ma=find<F<:,i>~=0>; %有向边的两个顶点if F<a<1>,i>==1W<a<1>,a<2>>=1; %有向边由a<1>指向a<2>elseW<a<2>,a<1>>=1; %有向边由a<2>指向a<1>endendelsefprint<'Please imput the right value of f'>;endW;第二讲:最短路问题程序0:最短距离矩阵W表示图的权值矩阵D表示图的最短距离矩阵%连通图中各项顶点间最短距离的计算function D=shortdf<W>%对于W<i,j>,若两顶点间存在弧,则为弧的权值,否则为inf;当i=j时W<i,j>=0 n=length<W>;m=1;while m<=nfor i=1:nfor j=1:nif D<i,j>>D<i,m>+D<m,j>D<i,j>+D<i,m>+D<m,j>; %距离进行更新 endendendm=m+1;endD;程序一:Dijkstra算法〔计算两点间的最短路〕function [l,z]=Dijkstra<W>n = size <W,1>;for i = 1 :nl<i>=W<1,i>;z<i>=0;endi=1;while i<=nfor j =1 :nif l<i>>l<j>+W<j,i>l<i>=l<j>+W<j,i>;z<i>=j-1;if j<ii=j-1;endendendi=i+1;end程序二:floyd算法〔计算任意两点间的最短距离〕function [d,r]=floyd<a>n=size<a,1>;d=a;for i=1:nfor j=1:nr<i,j>=j;endendr;for k=1:nfor i=1:nfor j=1:nif d<i,k>+d<k,j><d<i,j>d<i,j>=d<i,k>+d<k,j>; r<i,j>=r<i,k>;endendendend程序三:n2short.m 计算指定两点间的最短距离function [P u]=n2short<W,k1,k2>n=length<W>;U=W;m=1;while m<=nfor i=1:nfor j=1:nif U<i,j>>U<i,m>+U<m,j>U<i,j>=U<i,m>+U<m,j>;endendendm=m+1;endu=U<k1,k2>;P1=zeros<1,n>;k=1;P1<k>=k2;V=ones<1,n>*inf;kk=k2;while kk~=k1for i=1:nV<1,i>=U<k1,kk>-W<i,kk>;if V<1,i>==U<k1,i>P1<k+1>=i;kk=i;k=k+1;endendendk=1;wrow=find<P1~=0>;for j=length<wrow>:-1:1P<k>=P1<wrow<j>>;k=k+1;endP;程序四、n1short.m<计算某点到其它所有点的最短距离> function[Pm D]=n1short<W,k>n=size<W,1>;D=zeros<1,n>;for i=1:n[P d]=n2short<W,k,i>;Pm{i}=P;D<i>=d;end程序五:pass2short.m<计算经过某两点的最短距离> function [P d]=pass2short<W,k1,k2,t1,t2>[p1 d1]=n2short<W,k1,t1>;[p2 d2]=n2short<W,t1,t2>;[p3 d3]=n2short<W,t2,k2>;dt1=d1+d2+d3;[p4 d4]=n2short<W,k1,t2>;[p5 d5]=n2short<W,t2,t1>;[p6 d6]=n2short<W,t1,k2>;dt2=d4+d5+d6;if dt1<dt2d=dt1;P=[p1 p2<2:length<p2>> p3<2:length<p3>>]; elsed=dt1;p=[p4 p5<2:length<p5>> p6<2:length<p6>>]; endP;d;第三讲:最小生成树程序一:最小生成树的Kruskal算法function [T c]=krusf<d,flag>if nargin==1n=size<d,2>;m=sum<sum<d~=0>>/2;b=zeros<3,m>;k=1;for i=1:nfor j=<i+1>:nif d<i,j>~=0b<1,k>=i;b<2,k>=j;b<3,k>=d<i,j>;k=k+1;endendendelseb=d;endn=max<max<b<1:2,:>>>;m=size<b,2>;[B,i]=sortrows<b',3>;B=B';c=0;T=[];k=1;t=1:n;for i=1:mif t<B<1,i>>~=t<B<2,i>>T<1:2,k>=B<1:2,i>;c=c+B<3,i>;k=k+1;tmin=min<t<B<1,i>>,t<B<2,i>>>; tmax=max<t<B<1,i>>,t<B<2,i>>>; for j=1:nif t<j>==tmaxt<j>=tmin;endendendif k==nbreak;endendT;c;程序二:最小生成树的Prim算法function [T c]=Primf<a>l=length<a>;a<a==0>=inf;k=1:l;listV<k>=0;listV<1>=1;e=1;while <e<l>min=inf;for i=1:lif listV<i>==1for j=1:lif listV<j>==0 & min>a<i,j>min=a<i,j>;b=a<i,j>;s=i;d=j;endendendendlistV<d>=1;distance<e>=b;source<e>=s;destination<e>=d;e=e+1;endT=[source;destination];for g=1:e-1c<g>=a<T<1,g>,T<2,g>>;endc;第四讲:Euler图和Hamilton图程序一:Fleury算法〔在一个Euler图中找出Euler环游〕注:包括三个文件;fleuf1.m, edf.m, flecvexf.mfunction [T c]=fleuf1<d>%注:必须保证是Euler环游,否则输出T=0,c=0n=length<d>;b=d;b<b==inf>=0;b<b~=0>=1;m=0;a=sum<b>;eds=sum<a>/2;ed=zeros<2,eds>;vexs=zeros<1,eds+1>;matr=b;for i=1:nif mod<a<i>,2>==1m=m+1;endendif m~=0fprintf<'there is not exit Euler path.\n'>T=0;c=0;endif m==0vet=1;flag=0;t1=find<matr<vet,:>==1>;for ii=1:length<t1>ed<:,1>=[vet,t1<ii>];vexs<1,1>=vet;vexs<1,2>=t1<ii>;matr<vexs<1,2>,vexs<1,1>>=0;flagg=1;tem=1;while flagg[flagg ed]=edf<matr,eds,vexs,ed,tem>;tem=tem+1;if ed<1,eds>~=0 & ed<2,eds>~=0T=ed;T<2,eds>=1;c=0;for g=1:edsc=c+d<T<1,g>,T<2,g>>;endflagg=0;break;endendendendfunction[flag ed]=edf<matr,eds,vexs,ed,tem>flag=1;for i=2:eds[dvex f]=flecvexf<matr,i,vexs,eds,ed,tem>;if f==1flag=0;break;endif dvex~=0ed<:,i>=[vexs<1,i> dvex];vexs<1,i+1>=dvex;matr<vexs<1,i+1>,vexs<1,i>>=0;elsebreak;endendfunction [dvex f]=flecvexf<matr,i,vexs,eds,ed,temp> f=0;edd=find<matr<vexs<1,i>,:>==1>;dvex=0;dvex1=[];ded=[];if length<edd>==1dvex=edd;elsedd=1;dd1=0;kkk=0;for kk=1:length<edd>m1=find<vexs==edd<kk>>;if sum<m1>==0dvex1<dd>=edd<kk>;dd=dd+1;dd1=1;elsekkk=kkk+1;endendif kkk==length<edd>tem=vexs<1,i>*ones<1,kkk>;edd1=[tem;edd];for l1=1:kkklt=0;ddd=1;for l2=1:edsif edd1<1:2,l1>==ed<1:2,l2>lt=lt+1;endendif lt==0ded<ddd>=edd<l1>;ddd=ddd+1;endendendif temp<=length<dvex1>dvex=dvex1<temp>;elseif temp>length<dvex1> & temp<=length<ded>dvex=ded<temp>;elsef=1;endend程序二:Hamilton改良圈算法〔找出比较好的Hamilton路〕function [C d1]= hamiltonglf<v>%d表示权值矩阵%C表示算法最终找到的Hamilton圈.%v =[ 51 67;37 84;41 94;2 99;18 54;4 50;24 42;25 38;13 40;7 64;22 60;25 62;18 40;41 26];n=size<v,1>;subplot<1,2,1>hold on;plot <v<:,1>,v<:,2>,'*'>; %描点for i=1:nstr1='V';str2=num2str<i>;dot=[str1,str2];text<v<i,1>-1,v<i,2>-2,dot>; %给点命名endplot <v<:,1>,v<:,2>>;%连线plot<[v<n,1>,v<1,1>],[v<n,2>,v<1,2>]>;for i =1:nfor j=1:nd<i,j>=sqrt<<v<i,1>-v<j,1>>^2+<v<i,2>-v<j,2>>^2>;endendd2=0;for i=1:nif i<nd2=d2+d<i,i+1>;elsed2=d2+d<n,1>;endendtext<10,30,num2str<d2>>;n=size<d,2>;C=[linspace<1,n,n> 1];for nnn=1:20C1=C;if n>3for m=4:n+1for i=1:<m-3>for j=<i+2>:<m-1>if<d<C<i>,C<j>>+d<C<i+1>,C<j+1>><d<C<i>,C<i+1>>+d<C<j>,C<j+1>>>C1<1:i>=C<1:i>;for k=<i+1>:jC1<k>=C<j+i+1-k>;endC1<<j+1>:m>=C<<j+1>:m>;endendendendelseif n<=3if n<=2fprint<'It does not exist Hamilton circle.'>; elsefprint<'Any cirlce is the right answer.'>;endendC=C1;d1=0;for i=1:nd1=d1+d<C<i>,C<i+1>>;endd1;endsubplot<1,2,2>;hold on;plot <v<:,1>,v<:,2>,'*'>; %描点for i=1:nstr1='V';str2=num2str<i>;dot=[str1,str2];text<v<i,1>-1,v<i,2>-2,dot>; %给点命名endv2=[v;v<1,1>,v<1,2>];plot<v<C<:>,1>,v<C<:>,2>,'r'>;text<10,30,num2str<d1>>;第五讲:匹配问题与算法程序一:较大基础匹配算法function J=matgraf<W>n=size<W,1>;J=zeros<n,n>;while sum<sum<W>>~=0a=find<W~=0>;t1=mod<a<1>,n>;if t1==0t1=n;endif a<1>/n>floor<a<1>/n>t2=floor<a<1>/n>+1;elset2=floor<a<1>/n>;endJ<t1,t2>=1,J<t2,t1>=1;W<t1,:>=0;W<t2,:>=0;W<:,t1>=0;W<:,t2>=0;endJ;程序二:匈牙利算法〔完美匹配算法,包括三个文件fc01,fc02,fc03〕function [e,s]=fc01<a,flag>if nargin==1flag=0;endb=a;if flag==0cmax=max<max<b>'>;b=cmax-b;endm=size<b>;for i =1:m<1>b<i,:>=b<i,:>-min<b<i,:>>;endfor j=1:m<2>b<:,j>=b<:,j>-min<b<:,j>>;endd=<b==0>;[e,total]=fc02<d>;while total~=m<1>b=fc03<b,e>;d=<b==0>;[e,total]=fc02<d>;endinx=sub2ind<size<a>,e<:,1>,e<:,2>>;e=[e,a<inx>];s=sum<a<inx>>;function [e,total]=fc02<d>total=0;m=size<d>;e=zeros<m<1>,2>;t=sum<sum<d>'>;nump=sum<d'>;while t~=0[s,inp]=sort<nump>;inq=find<s>;ep=inp<inq<1>>;inp=find<d<ep,:>>;numq=sum<d<:,inp>>;[s,inq]=sort<numq>;eq=inp<inq<1>>;total=total+1;e<total,:>=[ep,eq];inp=find<d<:,eq>>;nump<inp>=nump<inp>-1;nump<ep>=0;t=t-sum<d<ep,:>>-sum<d<:,eq>>+1;d<ep,:>=0*d<ep,:>;d<:,eq>=0*d<:,eq>;endfunction b=fc03<b,e>m=size<b>;t=1;p=ones<m<1>,1>;q=zeros<m<1>,1>;inp=find<e<:,1>~=0>;p<e<inp,1>>=0;while t~=0tp=sum<p+q>;inp=find<p==1>;n=size<inp>;for i=1:n<1>inq=find<b<inp<i>,:>==0>;q<inq>=1;endinp=find<q==1>;n=size<inp>;for i=1:n<1>if all<e<:,2>-inp<i>>==0inq=find<<e<:,2>-inp<i>>==0>;p<e<inq>>=1;endendtq=sum<p+q>;t=tq-tp;endinp=find<p==1>;inq=find<q==0>;cmin=min<min<b<inp,inq>>'>;inq=find<q==1>;b<inp,:>=b<inp,:>-cmin;b<:,inq>=b<:,inq>+cmin;第六讲:最大流最小费用问题程序一:2F算法<Ford-Fulkerson算法>,求最大流%C=[0 5 4 3 0 0 0 0;0 0 0 0 5 3 0 0;0 0 0 0 0 3 2 0;0 0 0 0 0 0 2 0; %0 0 0 0 0 0 0 4;0 0 0 0 0 0 0 3;0 0 0 0 0 0 0 5;0 0 0 0 0 0 0 0 ] function [f wf]=fulkersonf<C,f1>%C表示容量%f1表示当前流量,默认为0%f表示最大流±íʾ×î´óÁ÷%wf表示最大流的流量n=length<C>;if nargin==1;f=zeros<n,n>;elsef=f1;endNo=zeros<1,n>;d=zeros<1,n>;while <1>No<1>=n+1;d<1>=Inf;while <1>pd=1;for <i=1:n>if <No<i>>for <j=1:n>if <No<j>==0 & f<i,j><C<i,j>>No<j>=i;d<j>=C<i,j>-f<i,j>;pd=0;if <d<j>>d<i>>d<j>=d<i>;endelseif <No<j>==0 & f<j,i>>0>No<j>=-i;d<j>=f<j,i>;pd=0;if <d<j>>d<i>>d<j>=d<i>;endendendendendif <No<n>|pd>break;endendif <pd>break;enddvt=d<n>;t=n;while <1>if<No<t>>0>f<No<t>,t>=f<No<t>,t>+dvt;elseif <No<t><0>f<No<t>,t>=f<No<t>,t>-dvt;endif <No<t>==1>for <i=1:n>No<i>=0;d<i>=0;endbreakendt=No<t>;endendwf=0;for <j=1:n>wf=wf+f<1,j>;endf;wf;程序二:Busacker-Gowan算法<求最大流最小费用>%C=[0 15 16 0 0;0 0 0 13 14;0 11 0 17 0;0 0 0 0 8;0 0 0 0 0] %b=[0 4 1 0 0;0 0 0 6 1;0 2 0 3 0;0 0 0 0 2;0 0 0 0 0]%function [f wf zwf]=BGf<C,b>%C表示弧容量矩阵%b表示弧上单位流量的费用%f表示最大流最小费用矩阵%wf最大流量%zwf表示最小费用n=size<C,2>;wf=0;wf0=inf;f=zeros<n,n>;while <1>a=ones<n,n>*inf;for <i=1:n>a<i,i>=0;endfor <i=1:n>for <j=1:n>if<C<i,j>>0 & f<i,j>==0>a<i,j>=b<i,j>;elseif <C<i,j>>0 & f<i,j>==C<i,j>>a<j,i>=-b<i,j>;elseif <C<i,j>>0>a<i,j>=b<i,j>;a<j,i>=-b<i,j>;endendendfor <i=2:n>p<i>=inf;s<i>=i;endfor <k=1:n>pd=1;for <i=2:n>for <j=1:n>if <p<i>>p<j>+a<j,i>>p<i>=p<j>+a<j,i>;s<i>=j;pd=0; endendendif <pd>break;endendif <p<n>==inf>break;enddvt=inf;t=n;while <1>if <a<s<t>,t>>0>dvtt=C<s<t>,t>-f<s<t>,t>;elseif <a<s<t>,t><0>dvtt=f<t,s<t>>;endif <dvt>dvtt>dvt=dvtt;endif <s<t>==1>break;endt=s<t>;endpd=0;if <wf+dvt>=wf0>dvt=wf0-wf;pd=1;endt=n;while <1>if <a<s<t>,t>>0>f<s<t>,t>=f<s<t>,t>+dvt; elseif <a<s<t>,t><0>f<<t>,s<t>>=f<t,s<t>>-dvt; endif <s<t>==1>break;endt=s<t>;endif <pd>break;endwf=0;for <j=1:n>wf=wf+f<1,j>;endendzwf=0;for <i=1:n>for <j=1:n>zwf=zwf+b<i,j>*f<i,j>;endendf;。
matlab数学建模30个案例分析
![matlab数学建模30个案例分析](https://img.taocdn.com/s3/m/e9f3fd49c850ad02de804153.png)
案例4:基于微分方程的最优捕鱼策略
为了保护人类赖以生存的自然环境,可再生资源(如渔业、林业资源)的开发必须适度,一种合理、简化的策略是,在实现可持续收获的前提下,追求最大产量或最佳效益。考虑对某种鱼的最优捕鱼策略:假设这种鱼分4个年龄组:称1龄鱼,…,4龄组,各年龄组每条鱼的平均重量分别为5.07,11.55,17.86,22.99(克)各年龄组鱼的自然死亡率均为0.8(1/年)这种鱼为季节性集中产卵繁殖,平均每条4龄鱼的产卵量为1.109× 个,3龄鱼的产卵量为这个数的一半,2龄鱼和1龄鱼不产卵 产卵和孵化期为每年的最后4个月,卵孵化并成活为1龄鱼,成活率(1龄鱼条数与产卵总量n之比)为1.22 × /1.22× +n)
案例12:基于主成分分析的长江水质的评价和预测模型
运用主成分分析法对长江流域主要城市水质检测报告进行分析,选取主成分,并把主成分得分按方差贡献率加权求和,得出每个地区的污染综合评价指数,进而可以计算每个月长江流域的污染综合评价指数。
第三部分 优化问题
案例13:基于线性规划求解飞行管理模型
第二部分 评价问题
案例7:基于层次分析法的高考志愿选择策略
一年一度的高考结束后,许多考生面临估分后填写志愿的决策过程。这个决策关系重大,请你建立一个数学模型,帮考生考虑到各种决策因素使之能轻松应对这一重大决策。成都丙、重庆丁四所大学。
现有某市直属单位因工作需要,拟向社会公开招聘8名公务员。该单位拟将录用的8名公务员安排到所属的7个部门,并且要求每个部门至少安排一名公务员。这7个部门按工作性质可分为四类:(1)行政管理、 (2)技术管理、(3)行政执法、(4)公共事业。
招聘领导小组在确定录用名单的过程中,本着公平、公开的原则,同时考虑录用人员的合理分配和使用,有利于发挥个人的特长和能力。招聘领导小组将7个用人单位的基本情况(包括福利待遇、工作条件、劳动强度、晋升机会和学习深造机会等)和四类工作对聘用公务员的具体条件的希望达到的要求都向所有应聘人员公布。每一位参加面试人员都可以申报两个自己的工作类别志愿。
MATLAB编程:最短路问题
![MATLAB编程:最短路问题](https://img.taocdn.com/s3/m/fa3b206858fafab069dc022e.png)
z 则 令 l(v ) = l(u ) W (u , v ) , (v ) = u
( 3) 设 v 是 使 l(v ) 取 最 小 值 的 S
定 义 3 ( 1 ) 设 P (u ,v)是 赋 权 图 G 中 从 u 到 v 的 路 径 , 则 称 w(P)
e E ( P )
w (e) 为 路 径
P 的权.
(2 )
在赋权图 G 中,从顶点 u 到顶点 v 的具有最小权的路
P (u , v ) , 称 为 u 到 v 的 最 短 路 .
u2
u 6
6
u5
图 G 的 边 为 边 集 的 图 G 的 子 图 , 称 为 G 的 由 V 1 导 出 的 子 图 , 记 为 G[V 1 ]. (3)设 E 1 E ,且 E 1 ,以 E 1 为 边 集 ,E 1 的 端 点 集 为 顶 点 集 的 图 G 的 子 图 , 称 为 G 的 由 E 1 导 出 的 子 图 ,记 为 G[E 1 ].
返回
邻接矩阵
对 无 向 图 G , 其 邻 接 矩 阵 A ( a ij ) , 其 中 :
a ij
1 0
若 v i 与 v j 相邻 若 v i 与 v j 不相邻
v1 A= 0 1 0 1 v2 1 0 1 1 0 1 0 1
注:假设图为简单图
返回
顶点的次数
定义 (1)在无向图中,与顶点 v 关联的边的 数目(环 算两次) 称 为 v 的 次 数 , 记 为 d (v). (2)在有向图中,从顶点 v 引出的边的数目称为 v 的出度, 记 为 d + ( v), 从 顶 点 v 引 入 的 边 的 数 目 称 为 的 入 度 , 记 为 d - (v), d ( v)= d + ( v)+ d - ( v) 称 为 v 的 次 数 .
(完整)复杂网络模型的matlab实现
![(完整)复杂网络模型的matlab实现](https://img.taocdn.com/s3/m/001c7f72814d2b160b4e767f5acfa1c7aa008233.png)
(完整)复杂网络模型的 matlab 实现(完整)复杂网络模型的matlab实现编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)复杂网络模型的matlab 实现)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)复杂网络模型的 matlab 实现的全部内容。
(完整)复杂网络模型的 matlab 实现度分布function [DeD,aver_DeD]=Degree_Distribution(A )%%求网络图中各节点的度及度的分布曲线%%求解算法:求解每个节点的度,再按发生频率即为概率,求 P(k)%A-———————网络图的邻接矩阵%DeD-—-——-——网络图各节点的度分布%aver_DeD——-———-网络图的平均度N=size(A,2);DeD=zeros(1,N);for i=1:N% DeD(i)=length(find ((A(i,:)==1)));DeD(i)=sum(A(i,:));endaver_DeD=mean(DeD);if sum(DeD)==0disp('该网络图只是由一些孤立点组成’);return;elsefigure;bar([1:N],DeD);xlabel(’节点编号n’);ylabel(’各节点的度数K');title('网络图中各节点的度的大小分布图');endfigure;M=max(DeD);for i=1:M+1;%网络图中节点的度数最大为 M,但要同时考虑到度为0 的节点的存在性N_DeD(i)=length(find(DeD==i-1) );%DeD=[2 2 2 2 2 2]endP_DeD=zeros(1,M+1);P_DeD(:)=N_DeD(:)。
floyd算法matlab代码
![floyd算法matlab代码](https://img.taocdn.com/s3/m/89ef6f58842458fb770bf78a6529647d27283403.png)
function [D,R]=floyd(a)% a=[3 2;4 6];采用floyd算法计算图a中每对顶点最短路% a=[0 4 11;6 0 2;3 inf 0];n=size(a,1);D=a % D是距离矩阵for i=1:nfor j=1:nR(i,j)=j;endendR % R是路由矩阵for k=1:nfor i=1:nfor j=1:nif D(i,k)+D(k,j)<D(i,j)D(i,j)=D(i,k)+D(k,j);R(i,j)=R(i,k);endendendkDRend••••••••••••••••••【唯美句子】走累的时候,我就到升国旗哪里的一角台阶坐下,双手抚膝,再闭眼,让心灵受到阳光的洗涤。
懒洋洋的幸福。
顶 3 收藏 2•【唯美句子】一个人踮着脚尖,在窄窄的跑道白线上走,走到很远的地方又走回来。
阳光很好,温暖,柔和。
漫天的安静。
顶7 收藏7•【唯美句子】清风飘然,秋水缓淌。
一丝云起,一片叶落,剔透生命的空灵。
轻轻用手触摸,就点碎了河面的脸。
落叶舞步婀娜不肯去,是眷恋,是装点?瞬间回眸,点亮了生命精彩。
顶11 收藏9•【唯美句子】几只从南方归来的燕子,轻盈的飞来飞去,“几处早莺争暖树,谁家新燕啄春泥,”其乐融融的山林气息,与世无争的世外桃源,让人心旷神怡。
顶0 收藏 2•【唯美句子】流年清浅,岁月轮转,或许是冬天太过漫长,当一夜春风吹开万里柳时,心情也似乎开朗了许多,在一个风轻云淡的早晨,踏着初春的阳光,漫步在碧柳垂青的小河边,看小河的流水因为解开了冰冻而欢快的流淌,清澈见底的的河水,可以数得清河底的鹅软石,偶尔掠过水面的水鸟,让小河荡起一层层的涟漪。
河岸换上绿色的新装,刚刚睡醒的各种各样的花花草草,悄悄的露出了嫩芽,这儿一丛,那儿一簇,好像是交头接耳的议论着些什么,又好象是在偷偷地说着悄悄话。
顶 3 收藏 4•【唯美句子】喜欢海子写的面朝大海春暖花开,不仅仅是因为我喜欢看海,还喜欢诗人笔下的意境,每当夜深人静时,放一曲纯音乐,品一盏茶,在脑海中搜寻诗中的恬淡闲适。
中国邮递员问题matlab
![中国邮递员问题matlab](https://img.taocdn.com/s3/m/79579f508e9951e79b89274f.png)
中国邮递员问题matlab%中国邮递员问题:%step1;%求出奇点之间的距离;%求各个点之间的最短距离;%floyd算法;clear all; clc; A=zeros(9); A(1,2)=3; A(1,4)=1; A(2,4)=7; A(2,5)=4;A(2,6)=9;A(2,3)=2; A(3,6)=2 A(4,7)=2; A(4,8)=3;A(4,5)=5; A(5,6)=8; A(6,9)=1;A(6,8)=6; A(7,8)=2; A(8,9)=2; c=A+A’; c(find(c==0))=inf; m=length(c); Path=zeros(m); for k=1:m for i=1:m for j=1:m if c(i,j)>c(i,k)+c(k,j)c(i,j)=c(i,k)+c(k,j); Path(i,j)=k;end end end end c, Path h1=c(2,4); h2=c(2,6); h3=c(2,5); h4=c(4,6); h5=c(4,5); h6=c(6,5); h=[h1,h2,h3,h4,h5,h6]%step2;%找出以奇点为顶点的完全图的最优匹配;%算法函数Hung_function [Matching,Cost] = Hung_Al(Matrix) Matching = zeros(size(Matrix)); % 找出每行和每列相邻的点数num_y = sum(~isinf(Matrix),1);num_x = sum(~isinf(Matrix),2); % 找出每行和每列的孤立点数x_con = find(num_x~=0);y_con = find(num_y~=0); %将矩阵压缩、重组P_size = max(length(x_con),length(y_con));P_cond = zeros(P_size); P_cond(1:length(x_con),1:length(y_con)) = Matrix(x_con,y_con);if isempty(P_cond)Cost = 0;return end % 确保存在完美匹配,计算矩阵边集Edge = P_cond; Edge(P_cond~=Inf) = 0; cnum = min_line_cover(Edge); Pmax = max(max(P_cond(P_cond~=Inf)));P_size = length(P_cond)+cnum; P_cond = ones(P_size)*Pmax;P_cond(1:length(x_con),1:length(y_con)) = Matrix(x_con,y_con); %主函数程序,此处将每个步骤用switch命令进行控制调用步骤函数exit_flag = 1; stepnum = 1; while exit_flag switch stepnum case 1 [P_cond,stepnum] = step1(P_cond);case 2 [r_cov,c_cov,M,stepnum] = step2(P_cond); case 3 [c_cov,stepnum] = step3(M,P_size);case 4 [M,r_cov,c_cov,Z_r,Z_c,stepnum] = step4(P_cond,r_cov,c_cov,M);case 5 [M,r_cov,c_cov,stepnum] = step5(M,Z_r,Z_c,r_cov,c_cov);case 6 [P_cond,stepnum] = step6(P_cond,r_cov,c_cov); case 7 exit_flag = 0;end end Matching(x_con,y_con) = M(1:length(x_con),1:length(y_con)); Cost = sum(sum(Matrix(Matching==1))); %下面是6个步骤函数step1~step6 %步骤1:找到包含0最多的行,从该行减去最小值function [P_cond,stepnum] = step1(P_cond) P_size = length(P_cond); for ii = 1:P_size rmin = min(P_cond(ii,:)); P_cond(ii,:) = P_cond(ii,:)-rmin; end stepnum = 2; %步骤2:在P-cond中找一个0,并找出一个以该数0为星型的覆盖function [r_cov,c_cov,M,stepnum] = step2(P_cond) %定义变量r-cov,c-cov分别表示行或列是否被覆盖P_size = length(P_cond); r_cov = zeros(P_size,1);c_cov = zeros(P_size,1);M = zeros(P_size); for ii = 1:P_size for jj = 1:P_size if P_cond(ii,jj) == 0 && r_cov(ii) == 0 && c_cov(jj) == 0M(ii,jj) = 1; r_cov(ii) = 1;c_cov(jj) = 1;end end end % 重初始化变量r_cov = zeros(P_size,1);c_cov = zeros(P_size,1);stepnum = 3; %步骤3:每列都用一个0构成的星型覆盖,如果每列都存在这样的覆盖,则M为最大匹配function [c_cov,stepnum] = step3(M,P_size) c_cov = sum(M,1); if sum(c_cov) == P_size stepnum = 7; else stepnum = 4; end %步骤4:找一个未被覆盖的0且从这出发点搜寻星型0覆盖。
节点重要度算法-MATLAB源代码
![节点重要度算法-MATLAB源代码](https://img.taocdn.com/s3/m/df42c411bed5b9f3f90f1c6c.png)
节点收缩算法:function Z=node(a,dy)%a为邻接矩阵a(a==inf)=0;a(~=0)=1;n=size(a,1);%矩阵维数Z=zeros(n,1);%节点重要度向量%由邻接矩阵a得到直接矩阵H%H表示c(i j)H=zeros(size(a));for i=1:nfor j=1:nif j==iH(i,j)=0;elseif a(I,j)==1H(i,j)=1;elseH(i,j)=inf;endendend%用Floyd法计算节点收缩前的最短就离矩阵D D=H;for k=1:nfor i=1:nfor j=1:nIf D(i,k)+D(k,j)<D(iI,j)D(i,j)=D(i,k)+D(k,j);endendendend%计算节点重要度D2=zeros(size(D));for i=1:n%得到与节点i邻接的节点向量II=zeros(1,0);T=0;for j=1:nif a(i,j)=1T=t+1;I=[i,j];endend%计算收缩后最短距离矩阵D2%D2为d’(pq) D为d(pq)for p=1:nfor q=1:nIf p~=1&q~=iIf D(p,i)+D(i,q)==D(p,q)D2(p,q)=D(p,q)-2;elseif D(p,i)+D(i,q)==D(p,q)+1D2(p,q)=D(p,q)-1;elseif D(p,i)+D(i,q)==D(p,q)+2D2(p,q)=D(p,q);endelseif p==i|q==iD2(p,q)=D(p,q)-1;elseD2(p,q)=0;endendendN3=n-t;%收缩后的节点数n3D3=D2;%计算收缩后的最短距离矩阵D3,D3为D D3(I,:)=[];%删除与节点i邻接的节点对应的行D3(:,I)=[];%删除与节点i邻接的节点对应的列%计算节点收缩后的节点重要度s=0;for p=1:n3for q=p:n3s=s+D3(p,q);endendl=s/(n3*(n3-1)/2);%为nZ(i)=1/(n3*l);end===================================节点介数=========================function B=betweenness_node(A,a)%%求网络节点介数,BY QiCheng%%思想:节点i、j间的距离等于节点i、k间距离与节点k、j间距离时,i、j间的最短路径经过k。
网络计划流程图运用MATLAB确定关键线路的方法
![网络计划流程图运用MATLAB确定关键线路的方法](https://img.taocdn.com/s3/m/093a3b55fd0a79563d1e72ed.png)
运用Floyd 算法及MATLAB 编程确定网络计划图关键线路的方法古雨鑫(西南科技大学 四川 绵阳 621000)摘要:关键线路的确定对工程有着重要的意义,同时也是目前常用的一种工程项目进度控制的计划方法,本文通过运用Floyd 算法,以及MATL AB 编程对矩阵的处理能力,本文给出了两种确定关键线路的方法,可以简单方便的确定网络图中的关键线路。
关键词:MATLA B,网络流程图,Fl oyd 算法,关键线路ﻩ1 基本理论1.1基本概念工程中一项工作从开始到完成需要的时间和资源,在网络图中一般用箭线表示,箭尾表示工作的开始,而箭头表示工作的结束,工作的代号(或名称)一般写在箭线的上方,工作的所需要消耗的时间(资源)一般写在箭线的下方,除此以外,还有不消耗资源和时间的虚工作(一般用虚线表示,只与工作有逻辑关系),紧接着前一项的工作称为紧前工作,紧接着后一项的工作称为紧后工作。
节点指紧前工作和紧后工作的交点,并附有数码(工程中箭头的数码必须大于箭尾的数码).关键线路指的是工程中从起始节点到最后节点的所要经过的最长线路。
1。
2 确定关键线路的意义现代工程的特点是规模巨大,对时间,资源,资源都有严格的要求,而关键线路更是直接决定工程的总工期,对工程的控制起到了重要的作用,找出关键线路在工程中有着重要的实际意义,对工程的控制有着决定的影响。
ﻩ2 确定工程项目的M ATLAB 算法方法2.1采用Floyd 算法对关键线路的确定Floy d算法的基本思想是递推产生一个矩阵序列1k ,,,,n A A A , 其中矩阵k A 的第i 行第j 列元素k (,)A i j 表示是从顶点i V 到顶点j V 的路径上所经过的顶点序号不大于k的最短路径长度。
计算时用的迭代公式111(,)min((,),(,),(,)),K k k k A i j A i j A i k A k j ---=K 是迭代次数,,,1,2,,i k j n =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
matlab的floyd算法
Floyd算法,是一种图论算法,用于在加权图中求解最短路径。
它是以发明者之一、
罗伯特·弗洛伊德的名字命名的。
这个算法同样被用于对于任意两点之间的最长路径(所
谓的最短路径问题)进行求解。
算法描述
给定一个带权的有向图G=(V,E),其权值函数为w,下面我们定义从顶点i到顶点j的路径经过的最大权值为dist(i,j)。
特别地,当i=j时,dist(i,j)=0。
为了方便描述算法,我们用D(k,i,j)表示从顶点i到顶点j且路径中的所有顶点都在集合{1,2,⋯,k}中的所有路径中,最大边权值的最小值。
则从顶点i到顶点j的最短路径的边权值就是 D(n,i,j),其中n是图中顶点的数量。
算法思想:建立中间顶点集合
算法是通过不断地扩充中间顶点集合S,来求解任意两点之间的最短路径。
具体来说,设S={1, 2, ⋯, k},其中k是整数。
Floyd算法的基本思想是,依次考察所有可能的中间
顶点x(即所有S中的顶点),对于每个中间顶点x,若从i到x再到j的路径比已知的路径更短,则更新dist(i,j)为更小的值D(k,i,j)。
最终,在S={1, 2, ⋯, n}的情况下,所得到的D(n,i,j)就是顶点i到顶点j之间的最短路径的长度。
Floyd算法的核心是一个三重循环,在每一轮循环中,枚举S中所有的中间顶点x,通过动态规划计算出从i到j的最短路径长度D(k,i,j)。
这一过程可表述为:
for k = 1 to n
for i = 1 to n
for j = 1 to n
if D(k,i)+D(j,k) < D(k,i,j)
D(k,i,j) = D(k,i)+D(j,k)
其中D(0,i,j)即为dist(i,j),若i和j不连通,则D(0,i,j)=+Inf。
算法实现
function D = Floyd(adjmat)
% adjmat为邻接矩阵
邻接矩阵adjmat的定义为:
- 若两个顶点之间有边相连,则对应位置为该边的边权值;
- 若两个顶点之间没有边相连,则对应位置为0。
Floyd算法的时间复杂度为O(n^3),空间复杂度为O(n^2),并且它能够处理带有负权边的图。
由于其实现简单,常被用于ACM/ICPC和OI等比赛中。
除了求解最短路径问题外,Floyd算法还有其他一些应用。
下面我们来探讨一下Floyd算法的相关内容。
1. 求解最长路径
Floyd算法同样适用于求解任意两点之间的最长路径问题。
具体来说,若原图中边的
权值为正,则可通过一些技巧将其转化为负权值,再使用Floyd算法求解最长路径。
将源
点到终点的距离定义为-w(i,j),则取相反数后就变成了Floyd算法的最短路径问题。
2. 一般加权图
对于一般的加权图(即边权可能存在负数),Dijkstra算法无法正确地求解最短路径问题。
而Floyd算法则可处理带有负权边的图,但是可能存在负环的情况。
负环是指在图
中至少存在一条环路,其所有边的权值之和为负数。
此时,Floyd算法将会陷入无限循环
的状态中,因此对于存在负环的图,Floyd算法并不适用。
3. 矩阵快速幂
在解决一些NP完全问题(如旅行商问题)时,常常需要使用到矩阵乘法。
而Floyd算法恰好可以通过矩阵乘法的思想来求解最短路径问题。
具体地,若将邻接矩阵的元素表示
为边权值,则矩阵的乘法运算可以表示为两条路径的组合。
若对于两条路径P1和P2,其
长度分别为3和4,则P1 P2的长度为P1经过的节点与P2经过的节点所包含的节点的个数,即7。
而Floyd算法的核心循环中,正是利用了这一思想,即通过中间顶点k对路径进行“组合”。
总结
Floyd算法在求解最短路径问题时具有简单易懂、实用高效的特点。
但是对于存在负
环的图,Floyd算法并不适用。
Floyd算法的时间复杂度为O(n^3),在处理规模较大的图
时可能存在速度较慢的问题。
在某些情况下,可能需要结合其他算法或优化手段来解决最
短路径问题。
除了Floyd算法,还有其他一些经典的最短路径算法,例如Dijkstra算法和Bellman-Ford算法。
下面我们来简单介绍一下这些算法的特点和应用场景。
1. Dijkstra算法
Dijkstra算法是解决单源最短路径问题的一种贪心算法。
它的基本思想是,在图中从源点出发,依次扩展周围未确定最短路径的顶点,并更新到每个顶点的最短路径和距离。
由于Dijkstra算法只考虑已确定的顶点到源点的最短距离,因此在不存在负权边的情况下,Dijkstra算法具有最优子结构和贪心选择性质,能够保证得到正确的最短路径。
2. Bellman-Ford算法
Bellman-Ford算法是一种解决单源最短路径问题的动态规划算法,它可以处理带有负权边的图。
该算法通过遍历所有的边,逐步更新每个顶点的最短距离,直到所有的最短路
径都被计算出来。
由于该算法需要对所有的边进行遍历,因此时间复杂度较高,但是它比Dijkstra算法更具有通用性,可以适用于更复杂的图结构。
3. 应用场景
在实际应用中,我们要根据具体情况选择合适的最短路径算法。
一般来说,在处理大
规模稠密图时,Floyd算法的速度较慢,不适用于实时计算。
此时,可以考虑使用
Dijkstra算法或Bellman-Ford算法。
如果已经确定了图的具体形态,在不存在负权边的
情况下,可以优先选择Dijkstra算法。
除了最短路径问题外,图论算法还具有其他重要的应用,例如最小生成树、最大流问
题等。
在实际应用中,可以根据不同的问题特点选择合适的算法,从而解决实际问题。