正数和负数、数轴、相反数、绝对值专项练习题
数轴、相反数、绝对值专题练习(含答案)
数轴、相反数、绝对值专题训练1. 若上升5m 记作+5m ,则-8m 表示___________;如果-10元表示支出10元,那么+50元表示_____________;如果零上5℃记作5℃,那么零下2℃记作__________;太平洋中的马里亚纳海沟深达11 034m 11 034m(即低于海平面11 034m ),则比海平面高50m 的地方,它的高度记作海拔___________,比海平面低30m 的地方,它的高度记作海拔___________.2. 把下列各数填入它所在的集合里:-2,7,32-,0,2 013,0.618,3.14,-1.732,-5,+3①正数集合:{ …}②负数集合:{ …}③整数集合:{ …}④非正数集合:{ …}⑤非负整数集合:{ …}⑥有理数集合:{ …}3. a ,b 为有理数,在数轴上的位置如图所示,则下列关于a ,b ,0三者之间的大小关系,正确的是( )b 0aA .0<a <bB .a <0<bC .b <0<aD .a <b <04. 00.5121,小.5. 在数轴上大于-4.12的负整数有______________________.6. 到原点的距离等于3的数是____________.7. 数轴上表示-2和-101的两个点分别为A ,B ,则A ,B 两点间的距离是______________.8. 已知数轴上点A 与原点的距离为2,则点A 对应的有理数是____________ 点B 与点A 之间的距离为3,则点B 对应的有理数是________________.9. 在数轴上,点M 表示的数是-2,将它先向右移4.5个单位,再向左移5个单位到达点N ,则点N 表示的数是_________.10. 文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西 边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( )A .玩具店B .文具店C .文具店西边40米D .玩具店东边-60米11. 如图是正方体的表面展开图,请你在其余三个空格内填入适当的数,使折成正方体后相对的面上的两个数互为相反数.0.5-3-1第11题图 第12题图 12. 上图是一个正方体盒子的展开图,请把-10,8,10,-3,-8,3这六个数字分别填入六个小正方形,使得折成正方体后相对的面上的数字互为相反数.13. 下列各组数中,互为相反数的是( )A .0.4与-0.41B .3.8与-2.9C .)8(--与8-D .)3(+-与(3)+-14. 下列化简不正确的是( )A.( 4.9) 4.9--=+ B .9.4)9.4(-=+- C .9.4)]9.4([+=-+- D .[( 4.9)] 4.9+-+=+15. 下列各数中,属于正数的是( )A .)2(-+B .-3的相反数C .)(a --D .-3的相反数的相反数16. a ,b 是有理数,它们在数轴上的对应点的位置如图所示,把a ,-a ,b ,-b 按照从小到大的顺序排列正确的是( )aA .-b <-a <a <bB .b >-a >a >-bC .-b <a <-a <bD .-b <b <-a <a17. 有理数的绝对值一定是( )A .正数B .整数C .正数或零D .非正数18. 下列各数中:-2,31+,3-,0,2-+,-(-2),2--,是正数的有_______________________________.19. 填空:5.3-=______; 21+=_______; 5--=_______;3+=_______; _______=1; _______=-2.20. 若x <0,则|-x |=_______;若m <n ,则|m -n |=________.21. 若|x |=-x ,则x 的取值范围是( )A .x =-1B .x =0C .x ≥0D .x ≤022. 若|a |=3,则a =______;若|3|=a ,则a =______;若|a |=2,a <0,则a =______.23. 若|a |=|b |,b =7,则a =______;若|a |=|b |,b =7,a ≠b , 则a =______.24. 填空:(1)311--=_______;(2)2.42.4--=____-____=_____;(3)53++-=___+____=____;(4)22--+=|_____-____|=_____;(5)3 6.2-⨯=____×____=_____;(6)21433-÷-=____÷____=____×____=_____. 25、化简下列各数的符号: (1)-(-173); (2)-(+233); (3)+(+3); (4)-[-(+9)]26、若|x|=4,则x=_______________;若|a-b|=1,则a-b=_________________;27、若-m>0,|m|=7,求m.28、若|a+b|+|b+z|=0,求a,b的值。
第二章《有理数及其运算》专项练习共7个专题(含答案)
第二章《有理数及其运算》专项练习专题一:正数和负数1、下列各数中,大于-21小于21的负数是( ) A.-32B.-31C.31D.02、负数是指( )A.把某个数的前边加上“-”号B.不大于0的数C.除去正数的其他数D.小于0的数 3、关于零的叙述错误的是( )A.零大于所有的负数B.零小于所有的正数C.零是整数D.零既是正数,也是负数 4、非负数是( )A.正数B.零C.正数和零D.自然数5、文具店、书店和玩具店依次座落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( )A.文具店B.玩具店C.文具店西40米处D.玩具店西60米处 6、大于-5.1的所有负整数为_____.7、珠穆朗玛峰高出海平面8848米,表示为+8848米.吐鲁番盆地低于海平面155米,表示为____. 8、请写出3个大于-1的负分数_____.9、某旅游景点一天门票收入5000元,记作+5000元,则同一天支出水、电、维修等各种费用600元,应记作_____.10、某同学语、数、外三科的成绩,高出平均分部分记作正数,低出部分记作负数,如表所示请回答,该生成绩最好和最差的科目分别是什么?专题二:数轴与相反数1、下面正确的是( )A.数轴是一条规定了原点,正方向和长度单位的射线B.离原点近的点所对应的有理数较小C.数轴可以表示任意有理数D.原点在数轴的正中间 2、关于相反数的叙述错误的是( )A.两数之和为0,则这两个数为相反数B.如果两数所对应的点到原点的距离相等,这两个数互为相反数C.符号相反的两个数,一定互为相反数D.零的相反数为零3、若数轴上A 、B 两点所对应的有理数分别为a 、b ,且B 在A 的右边,则a -b 一定( )A.大于零B.小于零C.等于零D.无法确定 4、在数轴上A 点表示-31,B 点表示21,则离原点较近的点是_____. 5、两个负数较大的数所对应的点离原点较_____.6、在数轴上距离原点为2的点所对应的数为_____,它们互为_____.7、数轴上A 、B 、C 三点所对应的实数为-32,-43,54,则此三点距原点由近及远的顺序为_____. 8、数轴上-1所对应的点为A ,将A 点右移4个单位再向左平移6个单位,则此时A 点距原点的距离为_____. 9、在等式3215⨯-⨯=的两个方格内分别填入一个数,使这两个数是互为相反数且等式成立。
人教版七年级数学上册《有理数分类、数轴、相反数及绝对值》专题训练-附带答案
人教版七年级数学上册《有理数分类、数轴、相反数及绝对值》专题训练-附带答案满分:100分时间:90分钟一、选择题(每小题3分共36分)1.(2022春•沙依巴克区校级期中)下列各数中是负数的为()A.﹣1B.0C.0.2D.【答案】A【解答】解:﹣1是负数;0既不是正数也不是负数;0.2是正数;是正数.故选:A.2.(2022春•明水县期末)一种食品包装袋上标着:净含量200g(±3g)表示这种食品的标准质量是200g这种食品净含量最少()g为合格.A.200B.198C.197D.196【答案】C【解答】解:∵200﹣3=197(g)∴这种食品净含量最少197g为合格故选:C.3.(2022•牡丹区三模)中国人很早开始使用负数中国古代数学著作《九章算术》的“方程”一章在世界数学史上首次正式引入负数用正、负数来表示具有相反意义的量.一次数学测试以80分为基准简记90分记作+10分那么70分应记作()A.+10分B.0分C.﹣10分D.﹣20分【答案】C【解答】解:以80分为基准简记90分记作+10分那么70分应记作:70﹣80=﹣10分故选:C.4.(2022春•朝阳区期中)某机器零件的实物图如图所示在数轴上表示该零件长度(L)合格尺寸正确的是()A.B.C.D.【答案】C【解答】解:已知图可知L的取值范围是9.8≤L≤10.2A选项表示的是L≤9.8 不正确;B选项表示的是L≥10.2 不正确;C选项表示的是9.8≤L≤10.2 正确;D选项表示的是L≥10.2或L≤9.8 不正确;故选:C.5.(2022春•杨浦区校级期中)下列说法正确的是()A.有理数都可以化成有限小数B.若a+b=0 则a与b互为相反数C.在数轴上表示数的点离原点越远这个数越大D.两个数中较大的那个数的绝对值较大【答案】B【解答】解:A、有理数是有限小数和无限循环小数所以此选项错误;B、a+b=0 两个数的和为零则这两个数互为相反数此选项正确;C、在数轴上右边的数离原点越远这个数越大左边的数离原点越远这个数越小此选项错误;D、特殊值法2>﹣3 但|2|<|﹣3| 此选项错误.故选:B.6.(2021秋•荷塘区期末)有理数a在数轴上的位置如图所示则|a﹣5|=()A.a﹣5B.5﹣a C.a+5D.﹣a﹣5【答案】B【解答】解:∵a<5∴|a﹣5|=﹣(a﹣5)=5﹣a.故选:B.7.(2022•玉屏县二模)数轴上表示数m和m+2的点到原点的距离相等则m为()A.﹣2B.2C.1D.﹣1【答案】D【解答】解:由题意得:|m|=|m+2|∴m=m+2或m=﹣(m+2)∴m=﹣1.故选:D.8.(2021秋•渑池县期末)若|a﹣1|与|b﹣2|互为相反数则a+b的值为()A.3B.﹣3C.0D.3或﹣3【答案】A【解答】解:∵|a﹣1|与|b﹣2|互为相反数∴|a﹣1|+|b﹣2|=0又∵|a﹣1|≥0 |b﹣2|≥0∴a﹣1=0 b﹣2=0解得a=1 b=2a+b=1+2=3.故选:A.9.(2021秋•房县期末)已知:有理数a b满足ab≠0 则的值为()A.±2B.±1C.±2或0D.±1或0【答案】C【解答】解:∵ab≠0∴a>0 b<0 此时原式=1﹣1=0;a>0 b>0 此时原式=1+1=2;a<0 b<0 此时原式=﹣1﹣1=﹣2;a<0 b>0 此时原式=﹣1+1=0故选:C.10.(2021秋•镇平县校级期末)若|a|=8 |b|=5 且a>0 b<0 a﹣b的值是()A.3B.﹣3C.13D.﹣13【答案】C【解答】解:∵|a|=8 |b|=5 且a>0 b<0∴a=8 b=﹣5∴a﹣b=13故选:C.11.有理数a b在数轴上的对应点的位置如图所示.把﹣a b0按照从小到大的顺序排列正确的是()A.0<﹣a<b B.﹣a<0<b C.b<0<﹣a D.b<﹣a<0【答案】A【解答】解:由数轴可知a<0<b|a|<|b|∴0<﹣a<b故选:A.12.(2021秋•勃利县期末)有理数a b在数轴上的对应点如图所示则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①②B.①④C.②③D.③④【答案】B【解答】解:∵从数轴可知:b<0<a|b|>|a|∴①正确;②错误∵a>0 b<0∴ab<0 ∴③错误;∵b<0<a|b|>|a|∴a﹣b>0 a+b<0∴a﹣b>a+b∴④正确;即正确的有①④故选:B.二、填空题(每小题2分共10分)13.(2022春•南岗区校级期中)如果向东走6米记作+6米那么向西走5米记作米.【答案】-5【解答】解:向东走6米记作+6米则向西走5米记作﹣5米故答案为:﹣5.14.(2022春•崇明区校级期中)小明在小卖部买了一袋洗衣粉发现包装袋上标有这样一段字样:“净重800±5克”请说明这段字样的含义.【答案】一袋洗衣粉的重量在795克与805克之间.【解答】解:“净重800±5克”意思是标准为800克最多为800+5=805克最少为800﹣5=795克.故答案为一袋洗衣粉的重量在795克与805克之间.15.(2022春•嘉定区校级期中)数轴上的A点与表示﹣2的点距离3个单位长度则A点表示的数为.【答案】﹣5或1【解答】解:设A点表示的数为x则|x﹣(﹣2)|=3∴x+2=±3∴x=﹣5或x=1.故答案为:﹣5或1.16.(2021秋•许昌期末)如果a的相反数是2 那么(a+1)2022的值为.【答案】1【解答】解:∵a的相反数是2∴a=﹣2∴(a+1)2022=(﹣2+1)2022=1.故答案为:1.17.(2022•宽城县一模)如图在数轴原点O的右侧一质点P从距原点10个单位的点A处向原点方向跳动第一次跳动到OA的中点A1处则点A1表示的数为;第二次从A1点跳动到OA1的中点A2处第三次从A2点跳动到OA2的中点A3处如此跳动下去则第四次跳动后该质点到原点O的距离为.【答案】5;.【解答】解:根据题意A1是OA的中点而OA=10所以A1表示的数是10×=5;A2表示的数是10××=10×;A3表示的数是10×;A4表示的数是10×=10×=;故答案为:5;.三.解答题(共54分)18.(8分)(2021秋•荣成市期中)把下列各数填在相应的集合中:15 ﹣0.81 ﹣3 ﹣3.1 ﹣4 171 0 3.14 π﹣1..正数集合{…};负分数集合{…};非负整数集合{…};有理数集合{…}.【解答】解:正数集合{15 0.81 171 3.14 π…};负分数集合{﹣﹣3.1 ﹣1.…};非负整数集合{15 171 0…};有理数集合{15 ﹣0.81 ﹣3 ﹣3.1 ﹣4 171 0 3.14 ﹣1.…}.故答案为:15 0.81 171 3.14 π;﹣﹣3.1 ﹣1.;15 171 0;15 ﹣0.81 ﹣3 ﹣3.1 ﹣4 171 0 3.14 ﹣1..19.(8分)(昌平区校级期中)画出数轴并把这四个数﹣2 4 0 在数轴上表示出来.【解答】解:在数轴上表示出来如下:20.(8分)(2021秋•太康县期末)已知|x|=3 |y|=7.(1)若x<y求x+y的值;(2)若xy<0 求x﹣y的值.【解答】解:由题意知:x=±3 y=±7(1)∵x<y∴x=±3 y=7∴x+y=10或4(2)∵xy<0∴x=3 y=﹣7或x=﹣3 y=7∴x﹣y=±1021.(10分)(2021秋•安居区期末)小虫从某点O出发在一直线上来回爬行假定向右爬行路程记为正向左爬行的路程记为负爬过的路程依次为(单位:厘米):+5 ﹣3 +10 ﹣8 ﹣6 +12 ﹣10.问:(1)小虫是否回到原点O?(2)小虫离开出发点O最远是多少厘米?(3)在爬行过程中如果每爬行1厘米奖励一粒芝麻则小虫共可得到多少粒芝麻?【解答】解:(1)(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=27+(﹣27)=0所以小虫最后能回到出发点O;(2)根据记录小虫离开出发点O的距离分别为5cm、2cm、12cm、4cm、2cm、10cm、0cm所以小虫离开出发点的O最远为12cm;(3)根据记录小虫共爬行的距离为:5+3+10+8+6+12+10=54(cm)所以小虫共可得到54粒芝麻.22.(10分)(2021秋•常宁市期末)超市购进8筐白菜以每筐25kg为准超过的千克数记作正数不足的千克数记作负数称后的记录如下:1.5 ﹣3 2 ﹣0.5 1 ﹣2 ﹣2 ﹣2.5.(1)这8筐白菜总计超过或不足多少千克?(2)这8筐白菜一共多少千克?(3)超市计划这8筐白菜按每千克3元销售为促销超市决定打九折销售求这8筐白菜现价比原价便宜了多少钱?【解答】解:(1)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克)答:以每筐25千克为标准这8筐白菜总计不足5.5千克;(2)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克)25×8﹣5.5=194.5(千克)答:这8筐白菜一共194.5千克;(3)194.5×3=583.5(元)583.5×(1﹣0.9)=58.35(元).答:这8筐白菜现价比原价便宜了58.35元.23.(10分)(2021秋•高新区校级期末)新华文具用品店最近购进了一批钢笔进价为每支6元为了合理定价在销售前五天试行机动价格卖出时每支以10元为标准超过10元的部分记为正不足10元的部分记为负.文具店记录了这五天该钢笔的售价情况和售出情况如表所示:第1天第2天第3天第4天第5天每支价格相对标准价格(元)+3+2+1﹣1﹣2售出支数(支)712153234(1)这五天中赚钱最多的是第天这天赚钱元.(2)新华文具用品店这五天出售这种钢笔一共赚了多少钱?【解答】解:(1)第1天到第5天的每支钢笔的相对标准价格(元)分别为+3 +2 +1﹣1 ﹣2则每支钢笔的实际价格(元)分别为13 12 11 9 8第1天的利润为:(13﹣6)×7=49(元);第2天的利润为:(12﹣6)×12=72(元);第3天的利润为:(11﹣6)×15=75(元);第4天的利润为:(9﹣6)×32=96(元);第5天的利润为:(8﹣6)×34=68(元);49<68<72<75<96故这五天中赚钱最多的是第4天这天赚钱96元.(2)49+72+75+96+68=360(元)故新华文具用品店这五天出售这种钢笔一共赚了360元钱.。
数轴练习题(含答案)
数轴练习题(含答案)篇一:《数轴、相反数、绝对值》专题练习(含答案)《数轴、相反数、绝对值》专题练习一、选择题(每小题3分,共30分)1.-5的绝对值为( )A.-5B.5C.-1 5 D.1 52.-的相反数是( )A.-8B.1818 C.0.8D.83.在下面所画的数轴中,你认为正确的数轴是()4.下列说法正确的是( )A.正数与负数互为相反数B.符号不同的两个数互为相反数C.数轴上原点两旁的两个点所表示的数互为相反数D.任何一个有理数都有它的相反数5.数轴上的点A,B位置如图所示,则线段AB的长度为()A.-3B.5C.6D.76.若a=7,b=5,则a-b的值为( )A.2C.2或12 B.12 D.2或12或-12或-27.实数a,b在数轴上的位置如图所示,以下说法正确的是()8.下列式子不正确的是( )A.?4?4B.11? 22C.0?0 D.?1.5??1.59.如果有理数a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,d是倒数等于它本身的数,那么式子a-b+c2-d的值是( )A.-2B.-1C.0D.110.如果abcd<0,a+b=0,cd>0,那么这四个数中的负因数至少有( )A.4个B.3个C.2个D.1个二、填空题(每小题3分,共24分)11.数轴上最靠近-2且比-2大的负整数是______.12.-111的相反数是______;-2是______的相反数;_______与互为倒数.21013.数轴上表示-2的点离原点的距离是______个单位长度;表示+2的点离原点的距离是______个单位长度;数轴上与原点的距离是2个单位长度的点有______个,它们表示的数分别是______.14.绝对值小于π的非负整数是_______.15.数轴上,若A,B表示互为相反数的两个点,并且这两点的距离为8,则这两点所表示的数分别是______和_______.16.写出一个x的值,使x?1=x-1成立,你写出的x的值是______.17.若x,y是两个负数,且x<y,那么x_______y.18.如图,数轴上的A,B,C三点所表示的数分别是a,b,c,其中AB=BC,若a>b>c,则该数轴的原点O的位置应该在______.三、解答题(共46分)19.(5分)分别写出下列各数的绝对值:-120.(5分)(1)如图,根据数轴上各点的位置,写出它们所表示的数:31,-(+6.3),+(-32),12,3.52(2)用数轴上的点表示下列各数,并用“<”号把下列各数连接起来.-311,?4,2.5,0,1,-(-7),-5,-1.2221.(6分)七(4)班在一次联欢活动中,把全班分成5个队参加活动,游戏结束后,5个队的得分如下:A队:-50分;B队:150分;C队:-300分;D队:0分;E队:100分.(1)将5个队按由低分到高分的顺序排序;(2)把每个队的得分标在数轴上,并标上代表该队的字母;(3)从数轴上看A队与B队相差多少分?C队与E队呢?22.(6分)如图是一个长方体纸盒的展开图,请把-5,3,5,-1,-3,1分别填入六个长方形中,使得按虚线折成长方体后,相对面上的两数互为相反数.23.(8分)在数轴上,表示数x的点与表示数1的点的距离等于1,其几何意义可表示为:x?=1,这样的数x可以是0或2.(1)等式x?2=2的几何意义可仿上解释为:在数轴上____________________________,其中x的值可以是______________.(2)等式x?3=2的几何意义可仿上解释为:在数轴上____________________________,其中x的值可以是______________.(3)在数轴上,表示数x的点与表示数5的点的距离等于6,其中x 的值可以是_______,其几何意义可以表示为_______.24.(8分)(1)5的相反数是-5,-5的相反数是5,那么-x的相反数是_______,m+的相反数是_______.(2)数轴上到点2和点6距离相等的点表示的数是4,有这样的关系4=1n21(2+6),那么2到点100和到点999距离相等的点表示的数是_______;到点m和点-n距离相等的点表示的数是_______.(3)数轴上点4和点9之间的距离为5个单位,有这样的关系5=9-4,那么点10和点-3之间的距离是_______;点m和点n之间的距离是_______.25.(6分)设a?b?c?0,abc?0,求b?cc?aa?b的值。
七年级数学上册《数轴、相反数、绝对值》专题练习(含答案)
七年级数学上册《数轴、相反数、绝对值》专题练习(时间:90分钟满分:100分)一、选择题(每小题3分,共30分)1.-5的绝对值为( )A.-5 B.5 C.-15D.152.-18的相反数是( )A.-8 B.18C.0.8 D.83.在下面所画的数轴中,你认为正确的数轴是( )4.下列说法正确的是( )A.正数与负数互为相反数B.符号不同的两个数互为相反数C.数轴上原点两旁的两个点所表示的数互为相反数D.任何一个有理数都有它的相反数5.数轴上的点A,B位置如图所示,则线段AB的长度为( )A.-3 B.5 C.6 D.7 6.若a=7,b=5,则a-b的值为( )A.2 B.12C.2或12 D.2或12或-12或-2 7.实数a,b在数轴上的位置如图所示,以下说法正确的是()A . a +b =0B . b <aC . a b >0D . |b |<|a |8.下列式子不正确的是 ( )A .44-=B .1122=C .00=D . 1.5 1.5-=-9.如果有理数a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,d 是倒数等于它本身的数,那么式子a -b +c 2-d 的值是 ( )A .-2B .-1C .0D .110.如果abcd<0,a +b =0,cd>0,那么这四个数中的负因数至少有 ( )A .4个B .3个C .2个D .1个二、填空题(每小题3分,共24分)11.数轴上最靠近-2且比-2大的负整数是______.12.-112的相反数是______;-2是______的相反数;_______与110互为倒数. 13.数轴上表示-2的点离原点的距离是______个单位长度;表示+2的点离原点的距离是______个单位长度;数轴上与原点的距离是2个单位长度的点有______个,它们表示的数分别是______.14.绝对值小于π的非负整数是_______.15.数轴上,若A ,B 表示互为相反数的两个点,并且这两点的距离为8,则这两点所表示的数分别是______和_______.16.写出一个x 的值,使1x -=x -1成立,你写出的x 的值是______.17.若x ,y 是两个负数,且x<y ,那么x _______y .18.如图,数轴上的A ,B ,C 三点所表示的数分别是a ,b ,c ,其中AB =BC ,若a >b >c ,则该数轴的原点O 的位置应该在______.三、解答题(共46分)19.(5分)分别写出下列各数的绝对值:-135,-(+6.3),+(-32),12,312.20.(5分)(1)如图,根据数轴上各点的位置,写出它们所表示的数:(2)用数轴上的点表示下列各数,并用“<”号把下列各数连接起来.-132,4 ,2.5,0,1,-(-7),-5,-112.21.(6分)七(4)班在一次联欢活动中,把全班分成5个队参加活动,游戏结束后,5个队的得分如下:A队:-50分;B队:150分;C队:-300分;D队:0分;E队:100分.(1)将5个队按由低分到高分的顺序排序;(2)把每个队的得分标在数轴上,并标上代表该队的字母;(3)从数轴上看A队与B队相差多少分?C队与E队呢?22.(6分)如图是一个长方体纸盒的展开图,请把-5,3,5,-1,-3,1分别填入六个长方形中,使得按虚线折成长方体后,相对面上的两数互为相反数.23.(8分)在数轴上,表示数x的点与表示数1的点的距离等于1,其几何意义可表示为:x-=1,这样的数x可以是0或2.1x-=2的几何意义可仿上解释为:在数轴上____________________________,(1)等式2其中x 的值可以是______________.(2)等式3x +=2的几何意义可仿上解释为:在数轴上____________________________,其中x 的值可以是______________.(3)在数轴上,表示数x 的点与表示数5的点的距离等于6,其中x 的值可以是_______,其几何意义可以表示为_______.24.(8分)(1)5的相反数是-5,-5的相反数是5,那么-x 的相反数是_______,m +12n 的相反数是_______.(2)数轴上到点2和点6距离相等的点表示的数是4,有这样的关系4=12(2+6),那么到点100和到点999距离相等的点表示的数是_______;到点m 和点-n 距离相等的点表示的数是_______.(3)数轴上点4和点9之间的距离为5个单位,有这样的关系5=9-4,那么点10和点-3之间的距离是_______;点m 和点n 之间的距离是_______.25.(6分)设0a b c ++=,0abc >,求b c c a a b a b c+++++的值。
初中数学有理数数轴、相反数、绝对值基础题(含答案)
七年级数学上册数轴、相反数、绝对值基础题北
师版
一、单项选择题(共10道,每道10分)
1.若是60m表示“向北走60m”,那么“向南走40m”能够表示为()
答案:B
试题难度:三颗星知识点:正数和负数的意义
2.在:0、一、-二、这四个数中,是负整数的是()
答案:C
试题难度:三颗星知识点:有理数及其分类
3.以下图为数轴的是()
A. B.
C. D.
答案:C
试题难度:三颗星知识点:数轴的概念
4.如图,在数轴上点A表示的数是()
C.±2
答案:A
试题难度:三颗星知识点:用数轴表示数
,b为有理数,在数轴上的位置如下图,那么以下关于a,b,0三者之间的大小关系,表示
正确的选项是()
<a<b <0<b
<0<a <b<0
答案:B
试题难度:三颗星知识点:用数轴比较大小
6.到原点的距离等于3的数是()
或-3
答案:C
试题难度:三颗星知识点:用数轴表示任意点到原点距离
7.数轴上表示-2和-101的两个点别离为A、B,那么A、B两点间的距离等于()
答案:C
试题难度:三颗星知识点:用数轴表示任意两点之间距离
的相反数是()
A. B.
答案:D
试题难度:三颗星知识点:相反数
9.假设|x|=-x,那么x的取值范围是()
=-1 =0
≥0 ≤0
答案:D
试题难度:三颗星知识点:绝对值及其法那么
的结果是()
A. B.
C. D.
答案:A
试题难度:三颗星知识点:绝对值。
数轴练习题(含答案)
数轴练习题(含答案)篇一:《数轴、相反数、绝对值》专题练习(含答案)《数轴、相反数、绝对值》专题练习一、选择题(每小题3分,共30分)1.-5的绝对值为 ( )A.-5B.5C.-1 5 D.1 52.-的相反数是 ( )A.-8B. 1818 C.0.8D.83.在下面所画的数轴中,你认为正确的数轴是 () 4.下列说法正确的是 ( )A.正数与负数互为相反数B.符号不同的两个数互为相反数C.数轴上原点两旁的两个点所表示的数互为相反数D.任何一个有理数都有它的相反数5.数轴上的点A,B位置如图所示,则线段AB的长度为 () A.-3B.5C.6D.76.若a=7,b=5,则a-b的值为 ( )A.2C.2或12 B.12 D.2或12或-12或-27.实数a,b在数轴上的位置如图所示,以下说法正确的是()8.下列式子不正确的是 ( )A.?4?4B.11? 22C.0?0 D.?1.5??1.59.如果有理数a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,d是倒数等于它本身的数,那么式子a-b +c2-d的值是 ( )A.-2B.-1C.0D.110.如果abcd<0,a+b=0,cd>0,那么这四个数中的负因数至少有 ( )A.4个B.3个C.2个D.1个二、填空题(每小题3分,共24分)11.数轴上最靠近-2且比-2大的负整数是______.12.-111的相反数是______;-2是______的相反数;_______与互为倒数. 21013.数轴上表示-2的点离原点的距离是______个单位长度;表示+2的点离原点的距离是______个单位长度;数轴上与原点的距离是2个单位长度的点有______个,它们表示的数分别是______.14.绝对值小于π的非负整数是_______.15.数轴上,若A,B表示互为相反数的两个点,并且这两点的距离为8,则这两点所表示的数分别是______和_______.16.写出一个x的值,使x?1=x-1成立,你写出的x的值是______.17.若x,y是两个负数,且x<y,那么x_______y.18.如图,数轴上的A,B,C三点所表示的数分别是a,b,c,其中AB=BC,若a>b>c,则该数轴的原点O的位置应该在______.三、解答题(共46分)19.(5分)分别写出下列各数的绝对值:-0.(5分)(1)如图,根据数轴上各点的位置,写出它们所表示的数:31,-(+6.3),+(-32),12,3. 52(2)用数轴上的点表示下列各数,并用“<”号把下列各数连接起来.-311,?4,2.5,0,1,-(-7),-5,-1. 22 21.(6分)七(4)班在一次联欢活动中,把全班分成5个队参加活动,游戏结束后,5个队的得分如下:A队:-50分;B队:150分;C队:-300分;D队:0分;E队:100分.(1)将5个队按由低分到高分的顺序排序;(2)把每个队的得分标在数轴上,并标上代表该队的字母;(3)从数轴上看A队与B队相差多少分?C队与E队呢?22.(6分)如图是一个长方体纸盒的展开图,请把-5,3,5,-1,-3,1分别填入六个长方形中,使得按虚线折成长方体后,相对面上的两数互为相反数.23.(8分)在数轴上,表示数x的点与表示数1的点的距离等于1,其几何意义可表示为: x?=1,这样的数x可以是0或2.(1)等式x?2=2的几何意义可仿上解释为:在数轴上____________________________,其中x的值可以是______________.(2)等式x?3=2的几何意义可仿上解释为:在数轴上____________________________,其中x的值可以是______________.(3)在数轴上,表示数x的点与表示数5的点的距离等于6,其中x的值可以是_______,其几何意义可以表示为_______. 24.(8分)(1)5的相反数是-5,-5的相反数是5,那么-x的相反数是_______,m+的相反数是_______.(2)数轴上到点2和点6距离相等的点表示的数是4,有这样的关系4=1n21(2+6),那么2到点100和到点999距离相等的点表示的数是_______;到点m和点-n距离相等的点表示的数是_______.(3)数轴上点4和点9之间的距离为5个单位,有这样的关系5=9-4,那么点10和点-3之间的距离是_______;点m和点n之间的距离是_______. 25.(6分)设a?b?c?0,abc?0,求b?cc?aa?b的值。
绝对值化简正数与负数数轴练习题(附答案)
绝对值化简正数与负数数轴练习题一、单选题1.在12-,12-,20-, ,()5--中,负数的个数有( ) A 、2个 B 、3个 C.4个 D.5个2.下列不是具有相反意义的量的是( )A.前进5米和后退5米B.收入30元和支出10元C.向东走10米和向北走10米D.超过5克和不足2克3.在数轴上把3-的对应点移动5个单位后,所得的对应点表示的数是( )A.2或8-B.8-C.2D.不能确定4.2020-的相反数是( )A.2020B.-2020C.12020D.12020-5.|-的值为( )B.C. D.26.下列各数中,小于4-的是( )A.3-B.5-C.0D.17.计算74-+的结果是( )A .3B .-3C .11D .-118.已知1a =,b 是2的相反数,则a b +的值为( )A.3-B.1-C.1-或3-D. 1或3-9.已知a ,b 是不为0的有理数,且a a =-,b b =,a b >,那么用数轴上的点来表示a ,b 时,正确的是( )A.B.C.D.10.若表示运算()x z y w +-+,则 的结果是( )A.5B.7C.9D.11二、解答题11.把下列各数填入相应的横线上.1423,,20%,1,0.1,,523-- 正整数集合: ;正分数集合: ;负分数集合: ;负整数集合: ;分数集合: 。
12.在数轴上表示下列各有理数,并用“<”号把它们按从小到大的顺序排列起来.3-,112,4.5,1-13.某登山队5名队员以二号高地为基地,开始向海拔距二号高地500米的顶峰冲击,设他们向上走为正,行程记录如下(单位:米):+150,-32,-43,+200,-30,+75,-20,+50.1.他们最终有没有登上顶峰?如果没有,那么他们离顶峰还差多少米?2.登山时,5名队员在全程中都使用了氧气,且每人每米要消耗氧气0.04升,他们共消耗了氧气多少升?三、填空题14.若气温为零上10C ︒记作10C +︒,则3C -︒表示气温为 .15.数轴上到原点的距离为5的点表示的数是____________。
相反数和绝对值专项练习题
相反数与绝对值专项练习一、选择题:(1)a的相反数是( ) (A)-a (B)1a(C)-1a(D)a-1(2)一个数的相反数小于原数,这个数是( ) (A)正数 (B)负数 (C)零 (D)正分数(3)一个数在数轴上所对应的点向右移到5个单位长度后,得到它的相反数的对应点,则这个数是( )(A)-2 (B)2 (C)2.5 (D)-2.5(4)一个数在数轴上的对应点与它的相反数在数轴上的对应点的距离为0.5单位长,则这个数是( )(A)0.5或-0.5 (B)0.25或-0.25 (C)0.5或-0.25 (D)-0.5或0.25二、填空题(1)一个数的倒数是它本身,这个数是________;一个数的相反数是它本身,这个数是__________;(2)-5的相反数是______,-3的倒数的相反数是____________ 。
(3)103的相反数是________,1132⎛⎫-⎪⎝⎭的相反数是_______,(a-2)的相反数是______;三、判断题: (1)符号相反的数叫相反数;() (2)数轴上原点两旁的数是相反数;()(3)-(-3)的相反数是3;() (4)-a一定是负数;()(5)若两个数之和为0,则这两个数互为相反数;()(6)若两个数互为相数,则这两个数一定是一个正数一个负数。
()1.下列各数:2,0.5,23,-2,1.5,-12,-32,互为相反数的有哪几对?2.化简下列各数的符号:(1)-(-173); (2)-(+233); (3)+(+3); (4)-[-(+9)] 。
3.数轴上A点表示+7,B、C两点所表示的数是相反数,且C点与A点的距离为 2,求B点和C点各对应什么数?4.若a>0>b,且数轴上表示a的点A与原点距离大于表示b的点B 与原点的距离,试把a,-a,b,-b这四个数从小到大排列起来。
5.一个正数的相反数小于它的倒数的相反数,在数轴上,这个数对应的点在什么位置?6.如果a,b表示有理数,在什么条件下,a+b和a-b互为相反数?a+b与a-b的积为2?练习二(A级)一、选择题:1.已知a≠b,a=-5,|a|=|b|,则b等于( )(A)+5 (B)-5 (C)0 (D)+5或-5 2.一个数在数轴上对应的点到原点的距离为m,则这个数的绝对值为( ) (A)-m (B)m (C)±m (D)2m 3.绝地值相等的两个数在数轴上对应的两点距离为8,则这两个数为( )(A)+8或- 8 (B)+4或-4 (C)-4或+8 (D)-8或+44.下面说法: <1>互为相反数的两数的绝对值相等;<2>一个数的绝对值等于本身,这个数不是负数;<3>若|m|>m,则m<0;<4>若|a|>|b|,则a>b,正确的有( ) A<1><2><3> B<1><2<4> C<1><3><4> D<2><3><4> 5.一个数等于它的相反数的绝对值,则这个数是( ) A)正数和零 B)负数或零 C)一切正数 D)所有负数6.已知|a|>a,|b|>b,且|a|>|b|,则( ) A)a>b (B)a<b (C)不能确定 D.a=b7.正确的是()A103->|π|>|-3.3| B103->|-3.3|>|π|C|π|>103->|-3.3| D103->|π|>|-3.3|8.若|a|>-a,则( ) (A)a>0 (B)a<0 (C)a<-1 (D)1<a二、填空题:(1)在数轴上表示一个数的点,它离开原点的距离就是这个数的____________;(2)绝对值为同一个正数的有理数有________个; (3)一个数比它的绝对值小10,这个数是_____;(4)一个数的相反数的绝对值与这个数的绝对值的相反数的关系是______________;(5)一个数的绝对值与这个数的倒数互为相反数,则这个数是________________;(6)若a<0,b<0,且|a|>|b|,则a 与b 的大小关系是______________;(7)绝对值不大一3的整数是____________________,其和为_____________;(8)在有理数中,绝对值最小的数是_____;在负整数中,绝对值最 小的数是_____;(9)设|x|<3,且x>1x ,若x 为整数,则x=__________; (10)若|x|=-x ,且x=1x,则x=__________。
七年级数学--绝对值化简专题训练
绝对值化简专题训练去绝对值的法则:1、正数的绝对值等于它本身aa=()0〉a2、负数的绝对值等于它的相反数a=()0〈aa-3、零的绝对值等于零。
0a()0==a1.如图,数轴上的三点A、B、C分别表示有理数a、b、c,则(1)b﹣a 0,a﹣c 0,b+c 0(用“>”“<”或“=”填空).(2)化简:|b﹣a|﹣|a﹣c|+|b+c|2.如图,数轴上的a、b、c分别表示有理数a、b、c.(1)化去下列各式的绝对值:①|c|= ;②|a|= ;③|a﹣b|= .(2)化简:|b﹣a|+|a﹣b﹣c|﹣|a﹣c|.3.数a,b,c在数轴上的位置如图所示:化简:|b﹣a|﹣|c﹣b|+|a+b|.4.已知:有理数a、b、c在数轴上如图所示.化简:|a|+3|c﹣a|+|b+c|.5.已知a、b、c这三个有理数在数轴上的位置如图所示,化简:|b﹣c|﹣|a﹣b|+|a+c|.6.有理数在数轴上的位置如图所示,化简:|c﹣a|+|b﹣c|﹣|a﹣b|+|a+b|.7.有理数a,b,c在数轴上如图所示,试化简|2c﹣b|+|a+b|﹣|2a﹣c|.8.已知有理数a、b、c在数轴上的位置如图所示,化简:|a﹣b|﹣|a+c|﹣|c﹣a|+|a+b+c|+|b﹣c|9.已知a,b,c在数轴上的位置如图所示,所对应的点分别为A,B,C.(1)填空:A、B之间的距离为,B、C之间的距离为,A、C之间的距离为;(2)化简:|a+b|﹣|c﹣b|+|b﹣a|;(3)a、b、c在数轴上的位置如图所示,且c2=4,﹣b的倒数是它本身,a的绝对值的相反数是﹣2,求﹣a+2b﹣c﹣2(a﹣4c﹣b)的值.。
绝对值专项练习60题(有答案)
绝对值专项练习60题(有答案)1.下列说法中正确的是()A.有理数的绝对值是正数B.正数负数统称有理数C.整数分数统称有理数D.a的绝对值等于a2.在数轴上距﹣2有3个单位长度的点所表示的数是()A .﹣5 B.1 C.﹣1 D.﹣5或13.计算:|﹣4|=()A .0 B.﹣4 C.D.44.若x的相反数是3,|y|=5,则x+y的值为()A .﹣8 B.2 C.8或﹣2 D.﹣8或25.如果|a|=﹣a,那么a的取值围是()A .a>0 B.a<0 C.a≤0 D.a≥06.如图,数轴上的点A所表示的是实数a,则点A到原点的距离是()A .a B.﹣a C.±a D.﹣|a|7.如果a是负数,那么﹣a、2a、a+|a|、这四个数中,负数的个数()A .1个B.2个C.3个D.4个8.在﹣(﹣2),﹣|﹣7|,﹣|+3|,,中,负数有()A .1个B.2个C.3个D.4个9.如图,数轴的单位长度为1,如果点A、C表示的数的绝对值相等,则点B表示的数是()A .1 B.0 C.﹣1 D.﹣210.任何一个有理数的绝对值在数轴上的位置是()A .原点两旁B.整个数轴C.原点右边D.原点及其右边11.a,b在数轴位置如图所示,则|a|与|b|关系是()A .|a|>|b| B.|a|≥|b| C.|a|<|b| D.|a|≤|b|12.已知|x|=3,则在数轴上表示x的点与原点的距离是()A .3 B.±3C.﹣3 D.0﹣313.若|a|=﹣a,则数a在数轴上的点应是在()A.原点的右侧B.原点的左侧C.原点或原点的右侧D.原点或原点的左侧14.下列判断错误的是()A.任何数的绝对值一定是正数B.一个负数的绝对值一定是正数C.一个正数的绝对值一定是正数D.任何数的绝对值都不是负数15.a为有理数,下列判断正确的是()A .﹣a一定是负数B.|a|一定是正数C.|a|一定不是负数D.﹣|a|一定是负数16.若ab<0,且a>b,则a,|a﹣b|,b的大小关系为()A .a>|a﹣b|>bB.a>b>|a﹣b|C.|a﹣b|>a>bD.|a﹣b|>b>a17.若|a|=8,|b|=5,a+b>0,那么a﹣b的值是()A .3或13 B.13或﹣13 C.3或﹣3 D.﹣3或1318.下列说确的是()A.﹣|a|一定是负数B.只有两个数相等时,它们的绝对值才相等C.若|a|=|b|,则a与b互为相反数D.若一个数小于它的绝对值,则这个数为负数19.一个数的绝对值一定是()A .正数B.负数C.非负数D.非正数20.若ab>0,则++的值为()A .3 B.﹣1 C.±1或±3D.3或﹣121.已知:a>0,b<0,|a|<|b|<1,那么以下判断正确的是()A .1﹣b>﹣b>1+a>aB.1+a>a>1﹣b>﹣bC.1+a>1﹣b>a>﹣bD.1﹣b>1+a>﹣b>a22.若|﹣x|=﹣x,则x是()A .正数B.负数C.非正数D.非负数23.若|a|>﹣a,则a的取值围是()A .a>0 B.a≥0 C.a<0 D.自然数24.若|m﹣1|=5,则m的值为()A .6 B.﹣4 C.6或﹣4 D.﹣6或425.下列关系一定成立的是()A .若|a|=|b|,则a=bB.若|a|=b,则a=b C.若|a|=﹣b,则a=bD.若a=﹣b,则|a|=|b|26.已知a、b互为相反数,且|a﹣b|=6,则|b﹣1|的值为()A .2 B.2或3 C.4 D.2或427.a<0时,化简结果为()A .B.0 C.﹣1 D.﹣2a28.在有理数中,绝对值等于它本身的数有()....29.已知|a|=﹣a、|b|=b、|a|>|b|>0,则下列正确的图形是()A .B.C.D.30.若|a|+|b|=|a+b|,则a、b间的关系应满足()A.b同号B.b同号或其中至少一个为零C.b异号D.b异号或其中至少一个为零31.已知|m|=4,|n|=3,且mn<0,则m+n的值等于()A .7或﹣7 B.1或﹣1 C.7或1 D.﹣7或﹣132.已知a、b、c大小如图所示,则的值为()A .1 B.﹣1 C.±1D.33.下列各式的结论成立的是()A.若|m|=|n|,则m>n B.若m≥n,则|m|≥|n| C.若m<n<0,则|m|>|n| D.若|m|>|n|,则m>n 34.绝对值小于4的整数有()A .3个B.5个C.6个D.7个35.绝对值大于1而小于3.5的整数有()个.A .7 B.6 C.5 D.436.若x的绝对值小于1,则化简|x﹣1|+|x+1|得()A .0 B.2 C.2x D.﹣2x37.3.14﹣π的差的绝对值为()A .0 B.3.14﹣πC.π﹣3.14 D.0.1438.下列说确的是()A.有理数的绝对值一定是正数B.有理数的相反数一定是负数C.互为相反数的两个数的绝对值相等D.如果两个数的绝对值相等,那么这两个数相等39.下面说法错误的是()A.﹣(﹣5)的相反数是(﹣5)B.3和﹣3的绝对值相等C.数轴上右边的点比左边的点表示的数小D.若|a|>0,则a一定不为零40.已知|a|>a,|b|>b,且|a|>|b|,则()A .a>b B.a<b C.不能确定D.a=b41.已知|x|≤1,|y|≤1,那么|y+1|+|2y﹣x﹣4|的最小值是_________ .42.从1000到9999中,四位数码各不相同,且千位数与个位数之差的绝对值为2的四位数有_________ 个.43.最大的负整数是_________ ,绝对值最小的有理数是_________ .44.最大的负整数,绝对值最小的数,最小的正整数的和是0 _________ .45.若x+y=0,则|x|=|y|.(_________ )46.绝对值等于10的数是_________ .47.若|﹣a|=5,则a= _________ .48.设A=|x﹣b|+|x﹣20|+|x﹣b﹣20|,其中0<b<20,b≤x≤20,则A的最小值是_________ .49.﹣3.5的绝对值是_________ ;绝对值是5的数是_________ ;绝对值是﹣5的数是_________ .50.绝对值小于10的所有正整数的和为_________ .51.化简:|x﹣2|+|x+3|,并求其最小值.52.若a,b为有理数,且|a|=2,|b|=3,求a+b的值.53.若|x|=3,|y|=6,且xy<0,求2x+3y的值.54.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值.55.有理数a、b在数轴上的位置如图所示,化简|a﹣b|+|a+b|.56.已知a=12,b=﹣3,c=﹣(|b|﹣3),求|a|+2|b|+|c|的值.57.已知a、b、c在数轴上的位置如图所示,化简|a|+|c﹣b|+|a﹣c|+|b﹣a|58.小刚在学习绝对值的时候发现:|3﹣1|可表示数轴上3和1这两点间的距离;而|3+1|即|3﹣(﹣1)|则表示3和﹣1这两点间的距离.根据上面的发现,小刚将|x﹣2|看成x与2这两点在数轴上的距离;那么|x+3|可看成x 与_________ 在数轴上的距离.小刚继续研究发现:x取不同的值时,|x﹣2|+|x+3|=5有最值,请你借助数轴解决下列问题(1)当|x﹣2|+|x+3|=5时,x可取整数_________ (写出一个符合条件的整数即可);(2)若A=|x+1|+|x﹣5|,那么A的最小值是_________ ;(3)若B=|x+2|+|x|+|x﹣1|,那么B的最小值是_________ ,此时x为_________ ;(4)写出|x+5|+|x+3|+|x+1|+|x﹣2|的最小值.59.若ab<0,试化简++.60.同学们都知道,|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对的两点之间的距离.试探索:(1)求|5﹣(﹣2)|= _________ .(2)设x是数轴上一点对应的数,则|x+1|表示_________ 与_________ 之差的绝对值(3)若x为整数,且|x+5|+|x﹣2|=7,则所有满足条件的x为_________ .参考答案:1.A、有理数0的绝对值是0,故A错误;B、正数、0、负数统称有理数,故B错误;C、整数分数统称有理数,故C正确;D、a<0时,a的绝对值等于﹣a,故D错误.故选C.2.依题意得:|﹣2﹣x|=3,即﹣2﹣x=3或﹣2﹣x=﹣3,解得:x=﹣5或x=1.故选D.3.根据一个负数的绝对值是它的相反数,可知|﹣4|=4.故选D.4.x的相反数是3,则x=﹣3,|y|=5,y=±5,∴x+y=﹣3+5=2,或x+y=﹣3﹣5=﹣8.则x+y的值为﹣8或2.故选D5因为一个负数的绝对值是它的相反数;0的绝对值是0或相反数,所以如果|a|=﹣a,那么a的取值围是a≤0.故选C.6.依题意得:A到原点的距离为|a|,∵a<0,∴|a|=﹣a,∴A到原点的距离为﹣a.故选B.7.当a是负数时,根据题意得,﹣a>0,是正数,2a<0,是负数,a+|a|=0,既不是正数也不是负数,=﹣1,是负数;所以,2a、是负数,所以负数2个.故选B.8.∵﹣(﹣2)=2,是正数;﹣|﹣7|=﹣7,是负数;﹣|+3|=﹣3是负数;=,是正数;=﹣是负数;∴在以上数中,负数的个数是3.故选C.9.如图,AC的中点即数轴的原点O.根据数轴可以得到点B表示的数是﹣1.故选C.10. ∵任何非0数的绝对值都大于0,∴任何非0数的绝对值所表示的数总在原点的右侧,∵0的绝对值是0,∴0的绝对值表示的数在原点.故选D.11.∵a<﹣1,0<b<1,∴|a|>|b|.故选A12.∵|x|=3,又∵轴上x的点到原点的距离是|x|,∴数轴上x的点与原点的距离是3;故选A.13.∵|a|=﹣a,∴a≤0,即可得数a在数轴上的点应是在原点或原点的左侧.故选D.14.根据绝对值性质可知,一个负数的绝对值一定是正数;一个正数的绝对值一定是正数;任何数的绝对值都不是负数.B,C,D都正确.A中,0的绝对值是0,错误.故选A.15.A、错误,a=0时不成立;B、错误,a=0时不成立;C、正确,符合绝对值的非负性;D、错误,a=0时不成立.故选C16.∵ab<0,且a>b,∴a>0,b<0∴a﹣b>a>0∴|a﹣b|>a>b故选C.17.∵|a|=8,|b|=5,∴a=±8,b=±5,又∵a+b>0,∴a=8,b=±5.∴a﹣b=3或13.故选A.18.A、﹣|a|不一定是负数,当a为0时,结果还是0,故错误;B、互为相反数的两个数的绝对值也相等,故错误;C、a等于b时,|a|=|b|,故错误;D、若一个数小于它的绝对值,则这个数为负数,符合绝对值的性质,故正确.故选D.19.一个数的绝对值一定是非负数.故选C.20.因为ab>0,所以a,b同号.①若a,b同正,则++=1+1+1=3;②若a,b同负,则++=﹣1﹣1+1=﹣1.故选D.21.∵a>0,∴|a|=a;∵b<0,∴|b|=﹣b;又∵|a|<|b|<1,∴a<﹣b<1;∴1﹣b>1+a;而1+a>1,∴1﹣b>1+a>﹣b>a.故选D.22.∵|﹣x|=﹣x;∴x≤0.即x是非正数.故选C.23.若|a|>﹣a,则a的取值围是a>0.故选A.24.∵|m﹣1|=5,∴m﹣1=±5,∴m=6或﹣4.故选C.25.选项A、B、C中,a与b的关系还有可能互为相反数.故选D.26.∵a、b互为相反数,∴a+b=0,∵|a﹣b|=6,∴b=±3,|b﹣1|=2或4.故选D.27.∵a<0,∴==0.故选B28.在有理数中,绝对值等于它本身的数为所有非负有理数,而非负有理数有无穷多个.故选D.29.∵|a|=﹣a、|b|=b,∴a<0,b>0,即a在原点的左侧,b在原点的右侧,∴可排除A、B,∵|a|>|b|,∴a到原点的距离大于b到原点的距离,∴可排除C,故选D.30.设a与b异号且都不为0,则|a+b|=||a|﹣|b||,当|a|>|b|时为|a|﹣|b|,当|a|≤|b|时为|b|﹣|a|.不满足条件|a|+|b|=|a+b|,当a与b同号时,可知|a|+|b|=|a+b|成立;当a与b至少一个为0时,|a|+|b|=|a+b|也成立.故选B.31. ∵|m|=4,|n|=3,∴m=±4,n=±3,又∵mn<0,∴当m=4时,n=﹣3,m+n=1,当m=﹣4时,n=3,m+n=﹣1,故选B.32.根据图示,知a<0<b<c,∴=++=﹣1+1+1=1.故选A.33.A、若m=﹣3,n=3,|m|=|n|,m<n,故结论不成立;B、若m=3,n=﹣4,m≥n,则|m|<|n|,故结论不成立;C、若m<n<0,则|m|>|n|,故结论成立;D、若m=﹣4,n=3,|m|>|n|,则m<n,故结论不成立.故选:C34.绝对值小于4的整数有:±3,±2,±1,0,共7个数.故选D35.绝对值大于1而小于3.5的整数有:2,3,﹣2,﹣3共4个.故选D.36.∵x的绝对值小于1,数轴表示如图:从而知道x+1>0,x﹣1<0;可知|x+1|+|x﹣1|=x+1+1﹣x=2.故选B.37.∵π>3.14,∴3.14﹣π<0,∴|3.14﹣π|=﹣(3.14﹣π)=π﹣3.14.故选:C38.A∵0的绝对值是0,故本选项错误.B∵负数的相反数是正数,故本选项错误.C∵互为相反数的两个数的绝对值相等,故本选项正确.D∵如果两个数的绝对值相等,那么这两个数相等或互为相反数,故本选项错误.故选C.39.A、﹣(﹣5)=5,5的相反数是﹣5,故本选项说确;B、3和﹣3的绝对值都为3,故本选项说确;C、数轴上右边的数总大于左边的数,故本选项说法错误;D、绝对值大于0的数可能是正数也可能是负数,故本选项说确.故选C.40.∵|a|>a,|b|>b,∴a、b均为负数,又∵|a|>|b|,∴a<b.故选B41.∵|x|≤1,|y|≤1,∴﹣1≤x≤1,﹣1≤y≤1,故可得出:y+1≥0;2y﹣x﹣4<0,∴|y+1|+|2y﹣x﹣4|=y+1+(4+x﹣2y)=5+x﹣y,当x取﹣1,y取1时取得最小值,所以|y+1|+|2y﹣x﹣4|min=5﹣1﹣1=3.故答案为:342.∵千位数与个位数之差的绝对值为2,可得“数对”,分别是:(0,2),(1,3),(2,4),(3,5),(4,6),(5,7),(6,8),(7,9),∵(0,2)只能是千位2,个位0,∴一共15种选择,∴从1000到9999中,四位数码各不相同,且千位数与个位数之差的绝对值为2的四位数有15×8×7=840个.43.最大的负整数是﹣1 ,绝对值最小的有理数是0 .44.最大的负整数是﹣1,绝对值最小的数0,最小的正整数是1∵﹣1+0+1=0,∴最大的负整数,绝对值最小的数,最小的正整数的和是0正确.故答案为:√45.∵x+y=0,∴x、y互为相反数.∴|x|=|y|.故答案为(√)46.绝对值等于10的数是±10.47.若|﹣a|=5,则a= ±5.48.由题意得:从b≤x≤20得知,x﹣b≥0 x﹣20≤0 x﹣b﹣20≤0,A=|x﹣b|+|x﹣20|+|x﹣b﹣20|=(x﹣b)+(20﹣x)+(20+b﹣x)=40﹣x,49.﹣3.5的绝对值是 3.5 ;绝对值是5的数是±5;绝对值是﹣5的数是不存在.50.绝对值小于10的正整数有:1、2、3、4、5、6、7、8、9,和为:1+2+3+4+5+6+7+8+9=45.故本题的答案是:45.51.①当x≤﹣3时,原式=2﹣x﹣x﹣3=﹣2x﹣1;②当﹣3<x<2时,原式=2﹣x+x+3=5;③当x≥2时,原式=x﹣2+x+3=2x+1;∴最小值为552.∵a,b为有理数,|a|=2,|b|=3,∴a=±2,b=±3,当a=+2,b=+3时,a+b=2+3=5;当a=﹣2,b=﹣3时,a+b=﹣2﹣3=﹣5;当a=+2,b=﹣3时,a+b=2﹣3=﹣1;当a=﹣2,b=+3时,a+b=﹣2+3=1.故答案为:±5、±1.53.∵|x|=3,|y|=6,∴x=±3,y=±6,∵xy<0,∴x=3,y=﹣6,或x=﹣3,y=6,①x=3,y=﹣6时,原式=2×3+3×(﹣6)=6﹣18=﹣12;②x=﹣3,y=6,原式=2×(﹣3)+3×6=﹣6+18=1254.∵2005=2×1003﹣1,∴共有1003个数,∴x=502×2﹣1=1003时,两边的数关于|x﹣1003|对称,此时的和最小,此时|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|=(x﹣1)+(x﹣3)…+(1001﹣x)+(1003﹣x)+(1005﹣x)+…+(2005﹣x)=2(2+4+6+ (1002)=2×=503004.故答案为:503004.55.∵在数轴上原点右边的数大于0,左边的数小于0,右边的数总大于左边的数可知,b<a<0,∴|a﹣b|=a﹣b,|a+b|=﹣a﹣b,∴原式=a﹣b﹣a﹣b=﹣2b56. ∵a=12,b=﹣3,∴c=﹣(|b|﹣3)=﹣(3﹣3)=0,∴|a|+2|b|+|c|=12+2×3+0=18.57.由数轴,得b>c>0,a<0,∴c﹣b<0,a﹣c<0,b﹣a>0,∴|a|+|c﹣b|+|a﹣c|+|b﹣a|=﹣a﹣(c﹣b)﹣(a﹣c)+b﹣a=﹣a﹣c+b﹣a+c+b﹣a =2b﹣3a.58.∵|x+3|=|x﹣(﹣3)|,∴|x+3|可看成x与﹣3的点在数轴上的距离;(1)x=0时,|x﹣2|+|x+3|=|﹣2|+|3|=2+3=5;(2)|x+1|+|x﹣5|表示x到点﹣1与到点5的距离之和,当﹣1≤x≤5时,A有最小值,即表示数5的点到表示数﹣1的点的距离,所以A的最小值为6;(3)|x+2|+|x|+|x﹣1|表示x到数﹣2、0、1三点的距离之和,所以当x=0时,它们的距离之和最小,即B的最小值为3,此时x=0;(4)|x+5|+|x+3|+|x+1|+|x﹣2|表示x到数﹣5、﹣3、﹣1、2四点的距离之和,所以当﹣3≤x≤﹣1时,它们的距离之和有最小值9,即|x+5|+|x+3|+|x+1|+|x﹣2|的最小值为9.59.∵ab<0,∴a和b中有一个正数,一个负数,不妨设a>0,b<0,原式=1﹣1﹣1=﹣160.(1)|5﹣(﹣2)|=|5+2|=7;(2)|x+1|表示x与﹣1之差的绝对值;(3)∵|x+5|表示x与﹣5两数在数轴上所对的两点之间的距离,|x﹣2|表示x与2两数在数轴上所对的两点之间的距离,而﹣5与2两数在数轴上所对的两点之间的距离为2﹣(﹣5)=7,|x+5|+|x﹣2|=7,∴﹣5≤x≤2.故答案为7;x,﹣1;﹣5≤x≤2.。
正数负数相反数数轴复习题
正数负数·数轴·相反数习题一.选择题(共16小题).m3.(2004•无为县)某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg﹣2;3;﹣;0;﹣(a2+1)A.1B.2C.3D.46.下列各数:﹣,﹣(﹣4)2,|﹣5|,﹣(﹣3)中,正数有()个A.0B.1C.2D.37.在+5,﹣4,﹣π,,22,﹣(﹣),(﹣6)3,﹣|﹣8|,﹣(﹣2)5,﹣(﹣5),﹣42,这几个数中,负①a﹣b>0;②a+b>0;③>;④b﹣a>0.①b﹣a>0 ②a﹣b>0 ③ab>0 ④a+b>0 ⑤|a|﹣|b|>0 ⑥b2﹣a2<0.A.3个B.4个C.5个D.6个点的位置()A.点A B.点B C.点C D.点D13.数轴上表示整数的点称为整点,某数轴的单位长度为1厘米,若在这条数轴上随意画出一条长为2012厘米的14.如图,在数轴上有六个点,且AB=BC=CD=DE=EF,则这条数轴的原点在()A.在点A,B之间B.在点B,C之间C.在点C,D之间D.在点D,E之间D.C.﹣17.如图,A、B是数轴上不同的两点,它们所对应的数分别是﹣4,2x,且点A、B到原点的距离相等,则x的值是_________.18.一个点从数轴的原点开始,向右移动5个单位长度,再向左移动8个单位长度,到达的终点表示的数是_________.19.一个机器人从数轴上的原点出发,沿数轴的正半轴方向,以每前进4步后退3步的程序运动,设该机器人每秒前进或后退1步,并且每步的距离为一个单位长度,x n表示第n秒机器人在数轴上的位置所对应的数(如x4=4,x5=3,x7=1),则x2007﹣x2011的结果为_________.20.(2007•长沙)如图,点A,B在数轴上对应的实数分别为m,n,则A,B间的距离是_________.(用含m,n的式子表示)三.解答题(共10小题)21.某检修小组乘一辆检测机车沿一条南北向铁路线检查铁道,约定向北走为正,某天从甲地出发到收工时,行驶记录为(长度:千米):+15,﹣3,+5,﹣2,+11,+4,﹣8,﹣7,+9.收工时,检修人员在甲地的哪一边?距甲地多远?22.剑川县电力公司某检修小组从县城出发,在214国道(南北方向)上检修线路,规定:向南行驶为正,向北行驶为负;某天行车里程(单位:千米)依先后次序记录如下:﹣4,+7,﹣9,+8,+6,﹣5,﹣2.(1)请问收工时检修小组离县城多远?在县城的什么方向?(2)若行车每千米耗油0.2升,请问这天行车共耗油多少升?23.阅读理解题;一点P从数轴上表示﹣2的点A开始移动,第一次先由点A向左移动1个单位,再向右移动2个单位;第二次先由点A向左移动2个单位,再向右移动4个单位;第三次先由点A向左移动3个单位,再向右移动6个单位….求:(1)写出第一次移动后点P在数轴上表示的数;(2)写出第二次移动后点P在数轴上表示的数;(3)写出第三次移动后点P在数轴上表示的数;(4)写出按上述规律第n次移动后点P在数轴上表示的数.24.数轴是一个非常重要的数学工具,通过它把数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.请利用数轴回答下列问题:(1)如果点A表示数﹣2,将点A向右移动5个单位长度到达点B,那么点B表示的数是_________,A、B 两点间的距离是_________;(2)如果点A表示数5,将点A先向左移动4个单位长度,再向右移动7个单位长度到达点B,那么点B表示的数是_________,A、B两点间的距离是_________;(3)一般的,如果点A表示的数为a,将点A先向左移动b个单位长度,再向右移动c个单位长度到达点B,那么点B表示的数是_________.25.某邮递员从邮局出发,先向西走2km到达A村,继续向西走3km到达B村,然后向东走9km到达C村,最后回到邮局.(1)以邮局为原点,向东方向为正方向,用1cm表示1km,画出数轴,并在数轴上表示出A、B、C三个村庄的位置;(2)求邮递员实际一共走了多少km.26.已知在纸面上有一数轴(如图),折叠纸面.(1)若1表示的点与﹣1表示的点重合,则﹣2表示的点与数_________表示的点重合;(2)若﹣1表示的点与3表示的点重合,回答以下问题:①5表示的点与数_________表示的点重合;②若数轴上A、B两点之间的距离为9(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少?﹣5_________4__________________3 __________________28.化简下列各数中的符号.(1);(2)﹣(+5);(3)﹣(﹣0.25);(4)﹣[﹣(+1)];(5)﹣(﹣a).29.(1)﹣(+5)和﹣(﹣5)分别表示什么意思?你能化简它们吗?(2)+(+5)和+(﹣5)分别表示什么意思?你能化简它们吗?(3)通过前两问的研究,你发现了什么规律?30.化简下列各数,并发现规律:(1)﹣(+3)=_________;+(﹣4)=_________;+(+2)=_________;﹣(﹣4)=_________.(2)﹣[﹣(﹣3)]=_________;﹣[+(﹣3.5)]=_________;+[﹣(﹣6)]=_________;﹣[﹣(+7)]=_________.(3)观察上述填空,你能发现什么规律?参考答案与试题解析一.选择题(共16小题).m3.(2004•无为县)某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg4.(2010•吉安二模)某项科学研究需要以30分钟为一个时间单位,并记研究那天上午10时为0,10时以前记为5.下列各数中负数的个数有()个﹣2;3;﹣;0;﹣(a2+1)不是负数.解:把各数化简即﹣2,3,﹣,0,﹣a2﹣1,即有﹣2,﹣,﹣a2﹣1共3个负数,故选C.点评:此题关键是理解正数和负数的概念.特别强调的是0既不是正数也不是负数.列各数:﹣,﹣(﹣4)2,|﹣5|,﹣(﹣3)中,正数有()个A.0B.1C.2D.3由题意根据正数和负数的定义进行求解.解:∵﹣<0,0=0,﹣(﹣4)2=﹣16<0,|﹣5|=5>0,﹣(﹣3)=3>0,∴负数有﹣,﹣(﹣4)2,共两个;故选C.此题主要考查正数和负数的性质,比较简单.7.在+5,﹣4,﹣π,,22,﹣(﹣),(﹣6)3,﹣|﹣8|,﹣(﹣2)5,﹣(﹣5),﹣42,这几个数中,负A.3.B.4C.5D.69.下列语句:①前面带有“+”的数一定是正数;②前面带有“﹣”的数一定是负数;③上升5米,再下降3米,实际上升①a﹣b>0;②a+b>0;③>;④b﹣a>0.对错.解:∵从数轴上可以看出a<b<0,(如a=﹣3,b=﹣1),∴a﹣b<0,a+b<0>,b﹣a>0,即①错误;②错误;③正确;④正确;正确的个数是2个,故选B.本题考查了数轴和有理数的大小比较,题目比较好,但是一道比较容易出错的题目,可采用特例(即举出①b﹣a>0 ②a﹣b>0 ③ab>0 ④a+b>0 ⑤|a|﹣|b|>0 ⑥b2﹣a2<0.12.如图,在单位长度为1的数轴上有A,B,C,D四点,分别表示整数a,b,c,d,且d﹣2a=10,请你找出原点的位置()14.如图,在数轴上有六个点,且AB=BC=CD=DE=EF,则这条数轴的原点在()根据图示,求得AF间的距离,然后由已知条件AB=BC=CD=DE=EF来确定条数轴的原点的大致位置.解:∵|11﹣(﹣5)|=16,AB=BC=CD=DE=EF,∴AB=BC=CD=DE=EF==3.2,∴这条数轴的原点在B与C之间.故选B.本题主要考查了数轴上对应点的几何意义.D.C.﹣17.如图,A、B是数轴上不同的两点,它们所对应的数分别是﹣4,2x,且点A、B到原点的距离相等,则x的值是2.18.一个点从数轴的原点开始,向右移动5个单位长度,再向左移动8个单位长度,到达的终点表示的数是﹣3.秒前进或后退1步,并且每步的距离为一个单位长度,x n表示第n秒机器人在数轴上的位置所对应的数(如x4=4,x5=3,x7=1),则x2007﹣x2011的结果为0.20.(2007•长沙)如图,点A,B在数轴上对应的实数分别为m,n,则A,B间的距离是n﹣m.(用含m,n的式子表示)三.解答题(共10小题)21.某检修小组乘一辆检测机车沿一条南北向铁路线检查铁道,约定向北走为正,某天从甲地出发到收工时,行驶记录为(长度:千米):+15,﹣3,+5,﹣2,+11,+4,﹣8,﹣7,+9.收工时,检修人员在甲地的哪一边?距甲地多远?22.剑川县电力公司某检修小组从县城出发,在214国道(南北方向)上检修线路,规定:向南行驶为正,向北行驶为负;某天行车里程(单位:千米)依先后次序记录如下:﹣4,+7,﹣9,+8,+6,﹣5,﹣2.(1)请问收工时检修小组离县城多远?在县城的什么方向?(2)若行车每千米耗油0.2升,请问这天行车共耗油多少升?23.阅读理解题;一点P从数轴上表示﹣2的点A开始移动,第一次先由点A向左移动1个单位,再向右移动2个单位;第二次先由点A向左移动2个单位,再向右移动4个单位;第三次先由点A向左移动3个单位,再向右移动6个单位….求:(1)写出第一次移动后点P在数轴上表示的数;(2)写出第二次移动后点P在数轴上表示的数;(3)写出第三次移动后点P在数轴上表示的数;(4)写出按上述规律第n次移动后点P在数轴上表示的数.24.数轴是一个非常重要的数学工具,通过它把数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.请利用数轴回答下列问题:(1)如果点A表示数﹣2,将点A向右移动5个单位长度到达点B,那么点B表示的数是3,A、B两点间的距离是5;(2)如果点A表示数5,将点A先向左移动4个单位长度,再向右移动7个单位长度到达点B,那么点B表示的数是8,A、B两点间的距离是3;(3)一般的,如果点A表示的数为a,将点A先向左移动b个单位长度,再向右移动c个单位长度到达点B,那么点B表示的数是a﹣b+c.25.某邮递员从邮局出发,先向西走2km到达A村,继续向西走3km到达B村,然后向东走9km到达C村,最后回到邮局.(1)以邮局为原点,向东方向为正方向,用1cm表示1km,画出数轴,并在数轴上表示出A、B、C三个村庄的位置;(2)求邮递员实际一共走了多少km.(2)根据题意列出算式|﹣2|+|﹣3|+|+9|+|9﹣5|,求出即可.解:(1)(2)邮递员实际一共走了|﹣2|+|﹣3|+|+9|+|9﹣5|=2+3+9+4=18(km),答:邮递员实际一共走了18km.本题考查了数轴和绝对值的应用,主要考查学生的理解能力和转化能力,即能把实际问题转化成数学问题.26.已知在纸面上有一数轴(如图),折叠纸面.(1)若1表示的点与﹣1表示的点重合,则﹣2表示的点与数2表示的点重合;(2)若﹣1表示的点与3表示的点重合,回答以下问题:①5表示的点与数﹣3表示的点重合;②若数轴上A、B两点之间的距离为9(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少?﹣5453﹣4﹣﹣5﹣4753﹣4﹣28.化简下列各数中的符号.(1);(2)﹣(+5);(3)﹣(﹣0.25);(4)﹣[﹣(+1)];(5)﹣(﹣a).根据多重符号的化简法则求解即可.解:(1)=;(2)﹣(+5)=﹣5;29.(1)﹣(+5)和﹣(﹣5)分别表示什么意思?你能化简它们吗?(2)+(+5)和+(﹣5)分别表示什么意思?你能化简它们吗?(3)通过前两问的研究,你发现了什么规律?30.化简下列各数,并发现规律:(1)﹣(+3)=﹣3;+(﹣4)=﹣4;+(+2)=2;﹣(﹣4)=4.(2)﹣[﹣(﹣3)]=﹣3;﹣[+(﹣3.5)]= 3.5;+[﹣(﹣6)]=6;﹣[﹣(+7)]=7.(3)观察上述填空,你能发现什么规律?。
七年级数学 数轴、相反数、绝对值单元测试题
一、单选题2.在跳远测验中,合格标准是4米,张非跳出了4.22米,记为+0.22米,李敏跳出了3.85米,记作( )A .+0.15B .﹣0.15C .+3.85D .﹣3.853.实数a 在数轴上的对应点的位置如图所示.若实数b 满足a b a -<<,则b 的值可以是( )A .2B .-1C .-2D .-34.在一次数学测验中,小明所在班级的平均分为86分,把高出平均分的部分记为正数,小明考了98分记作+12分,若小强成绩记作-4分,则他的考试分数为( )A .90分B .88分C .84分D .82分5.如图,将数轴上6-与6两点间的线段六等分,这五个等分点所对应数依次为12345,,,,a a a a a .则与1a 相等的数是( )A .2aB .3aC .4aD .5a6.已知有理数a ,b 在数轴上的位置如图所示,则下列关系正确的是( )A .0a b >>B .0b a >>C .0b a >>D .0a b >>7.实际测量一座山的高度时,有时需要在若干个观测点中测量两个相邻可视观测点的相对高度如A C -为90米表示观测点A 比观测点C 高90米),然后用这些相对高度计算出山的高度.下表是某次测量数据的部分记录,根据这次测量的数据,可得A B -是( )米.A .210B .130C .390D .-2108.A 、B 为数轴上的两点,若点A 表示的数是2,且线段AB =5,则点B 表示的数为( )A .7B .﹣3C .﹣7或3D .7或-39.如图所示,圆的周长为4个单位长度在圆周的4等分点处标上字母A ,B ,C ,D ,先将圆周上的字母A 对应的点与数轴上的原点重合,再将圆沿着数轴向右滚动,那么数轴上的1949所对应的点与圆周上字母( )所对应的点重合.A .AB .BC .CD .D二、填空题 11.172-的相反数是___________. 12.在直线上向右为正方向,负数都在0的_______边,也就是负数都比0_____,正数都比0_____.13.比-2.5大,比92小的所有整数有______ 14.在数4.3,3-5,|0|,227⎛⎫-- ⎪⎝⎭,-|-3|,-(+5)中,___________ 是正数 15.已知m 与n 互为相反数,且m 与n 之间的距离为6,且m <n .则m =_____,n=_______.16.小红的妈妈买了4筐白菜,以每筐25千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重后的记录分别为0.25+,1-,0.5+,0.75-,小红快速准确地算出了4筐白菜的总质量为__________千克.17.点A 、B 在数轴上对应的数分别为,a b ,满足()2250a b ++-=,点P 在数轴上对应的数为x ,当x =_________时,10PA PB +=.18.定义:[]x 表示不大于x 的最大整数,()x 表示不小于x 的最小整数,例如:[]2.32=,()2.33=,[]2.33-=-,()2.32-=-.则[]()1.7 1.7+-=___________.19.绝对值大于1而小于3.5的所有整数的和为_____.三、解答题21.把下列各数分别填入相应的集合:0,﹣7,5.6 ,﹣4.8,﹣814,227,15,19. 整数集合{ …};分数集合{ …};非负数集合{ …};负数集合{ …}.22.我们知道数形结合是解决数学问题的重要思想方法,例如|3-1|可表示为数轴上3和1这两点的距离,而31+即()|31|--则表示3和-1这两点的距离.式子1x -的几何意义是数轴上x 所对应的点与1所对应的点之间的距离,而()22x x +=--,所以2x +的几何意义就是数轴上x 所对应的点与-2所对应的点之间的距离.根据以上发现,试探索:(1)直接写出|8(2)|--=____________.(2)结合数轴,找出所有符合条件的整数x ,235x x -++=的所有整数的和.(3)由以上探索猜想,对于任何有理数x ,46x x ++-是否有最小值?如果有,请写出最小值并说明理由;如果没有,请说明理由.参考答案:1.B【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:若把向东走2km 记做“+2km”,那么向西走1km 应记做﹣1km .故选:B .【点睛】本题主要考查正数与负数,理解正数与负数的意义是解题的关键.2.B【分析】根据正负数的意义解答.【详解】解:∵4.22-4=0.22,∵以4米为标准,若张非跳出了4.22米,可记做+0.22米,∵3.85-4=-0.15,∵李敏跳出了3.85米,记作﹣0.15米,故选:B .【点睛】此题考查了正负数的意义,有理数减法的应用,正确理解正负数的意义是解题的关键.3.B【分析】先根据数轴的定义得出a 的取值范围,从而可得出b 的取值范围,由此即可得.【详解】解:由数轴的定义得:12a <<21a ∴-<-<-2a ∴<又a b a -<<b ∴到原点的距离一定小于2观察四个选项,只有选项B 符合故选:B .【点睛】本题考查了数轴的定义,熟记并灵活运用数轴的定义是解题关键.4.D【分析】根据高出平均分的部分记作正数,得到低于平均分的部分记作负数,即可得到结果.【详解】解:根据题意得:小明98分,应记为+12分;小强成绩记作-4分,则他的考试分数为82分.故选:D .【点睛】此题考查了正数与负数,弄清题意是解本题的关键.5.D【分析】求出数轴上6-与6两点间的线段六等分的每一等分的长度,接着求出1a 的值,再求出1a 的绝对值,得到对应的数是5a .【详解】∵()6662--÷=⎡⎤⎣⎦,∵1624a -+=-=, ∵144a =-=,∵56254a =-+⨯=, ∵15a a =.故选D .【点睛】本题主要考查了数轴和绝对值,熟练掌握数轴的定义和表示数的方法,绝对值的几何意义和计算方法,是解决此类问题的关键.6.B【分析】通过识图可得a <0<b ,|a |>|b |,从而作出判断.【详解】解:由题意可得:a <0<b ,|a |>|b |,A 、0a b >>,错误,此选项不符合题意;B 、0b a >>,正确,故此选项符合题意;C 、0b a >>,错误,故此选项不符合题意;D 、0a b >>,错误,故此选项不符合题意;故选:B .【点睛】本题考查了数轴上的点,理解数轴上点的特点,准确识图是解题关键.7.A【分析】数轴法:设点C 为原点,则A 表示数90,D 表示数-80,以此类推,将以上各观测点在数轴上表示,即可解题.【详解】解:设点C 为原点,则A 表示数90,D 表示数-80,以此类推将以上各观测点在数轴上表示如下:即E 表示数-140,F 表示数-90,G 表示数-160,B 表示数-12090(120)90120210A B ∴-=--=+=故选:A .【点睛】本题考查正负数在实际生活中的应用,是基础考点,利用数轴解题是关键.8.D【分析】根据题意,结合数轴确定出点B所表示的数即可.【详解】解:∵点A表示的数是2,且AB=5,当点B在A的左侧,点B表示的数为:2-5=-3,当点B在点A的右侧,点B表示的数为:2+5=7,∵点B表示的数为7或-3,故选:D.【点睛】此题考查了用数轴上的点表示数,熟练掌握数轴上点表示的意义是解本题的关键.9.D【分析】因为圆沿着数轴向右滚动,依次与数轴上数字顺序重合的是A、D、C、B,且A点只与4的倍数点重合,即数轴上表示4n的点都与A点重合,表示4n+1的数都与D点重合,依此按序类推.【详解】解:设数轴上的一个整数为x,由题意可知当x=4n时(n为整数),A点与x重合;当x=4n+1时(n为整数),D点与x重合;当x=4n+2时(n为整数),C点与x重合;当x=4n+3时(n为整数),B点与x重合;而1949=487×4+1,所以数轴上的1949所对应的点与圆周上字母D重合.故选D.【点睛】本题考查的是数轴上数字在圆环旋转过程中的对应规律,看清圆环的旋转方向是重点,关键要找到旋转过程中数字的对应方式.10.C【分析】∵根据两点间距离进行计算即可;∵利用路程除以速度即可;∵分两种情况,点P在点B的右侧,点P在点B的左侧,由题意求出AP的长,再利用路程除以速度即可;∵分两种情况,点P在点B的右侧,点P在点B的左侧,利用线段的中点性质进行计算即可.【详解】解:设点B对应的数是x,∵点A对应的数为8,且AB=12,∵8-x=12,∵x=-4,∵点B对应的数是-4,故∵正确;由题意得:12÷2=6(秒),∵点P到达点B时,t=6,故∵正确;分两种情况:当点P在点B的右侧时,∵AB=12,BP=2,∵AP=AB-BP=12-2=10,∵10÷2=5(秒),∵BP=2时,t=5,当点P在点B的左侧时,∵AB=12,BP=2,∵AP=AB+BP=12+2=14,∵14÷2=7(秒),∵BP=2时,t=7,综上所述,BP=2时,t=5或7,故∵错误;分两种情况:当点P在点B的右侧时,∵M,N分别为AP,BP的中点,∵MP=12AP,NP=12BP,∵MN=MP+NP=1 2AP+12BP=12AB=12×12=6,当点P在点B的左侧时,∵M,N分别为AP,BP的中点,∵MP=12AP,NP=12BP,∵MN=MP-NP=1 2AP-12BP=12AB=12×12=6,∵在点P的运动过程中,线段MN的长度不变,故∵正确;所以,上列结论中正确的有3个,故选:C.【点睛】本题考查了数轴,根据题目的已知条件并结合图形分析是解题的关键.11.1 7 2【分析】绝对值相等,符号相反的数互为相反数.【详解】解:172-的相反数是172.故答案是:172.【点睛】本题考查相反数的定义,解题的关键是根据相反数的定义求相反数.12.左;小;大【分析】在数轴上,首先确定原点0的位置和单位长度,且从左到右的顺序就是数从小到大的顺序,所有的负数都在0的左边,越往左数越小,正数都在0的右边,越往右数越大.【详解】在数轴上,所有的负数都在0的左边,也就是负数都比0小,正数都在0的右边,正数都比0大,负数都比正数小.故答案为:左;小;大.【点睛】此题考查在数轴上表示正负数,理解所有的负数都在0的左边,正数都在0的右边是解题的关键.13.-2,-1,0,1,2,3,4【分析】根据整数的定义结合已知得出符合题意的答案.【详解】比﹣2.5大,比92小的所有整数有:﹣2,﹣1,0,1,2,3,4.故答案为:﹣2,﹣1,0,1,2,3,4.【点睛】本题考查了有理数大小比较的方法,正确把握整数的定义是解答本题的关键.14.4.3,227⎛⎫-- ⎪⎝⎭【分析】首先将各数化简,再根据正数的定义可得结果.【详解】解:在数4.3,3-5,|0|=0,222277⎛⎫--= ⎪⎝⎭,-|-3|=-3,-(+5)=-5中,4.3,227⎛⎫-- ⎪⎝⎭是正数. 故答案为:4.3,227⎛⎫-- ⎪⎝⎭. 【点睛】本题主要考查了有理数的定义,绝对值的意义,相反数的意义,熟练掌握有理数的分类是解答此题的关键. 15. -3 3【分析】先根据m ,n 互为相反数,可得:n=-m ,然后根据m <n ,且m 与n 在数轴上所对应的点之间的距离是6,可得:n -m=6,求出m 的值即可.【详解】∵m ,n 互为相反数,∵n=-m ,∵m <n ,且m 与n 在数轴上所对应的点之间的距离是6,∵n -m=6,∵-m -m=6,∵m=-3,n=3.故答案为:-3,3.【点睛】考查了数轴上两点间的距离,解题关键是由相反数的含义得到n=-m 和数轴上两点之间的距离. 16.99【详解】(0.25)++(1-)0.5++(0.75-)+25×4=-1+100=99.故答案为99.17.72-或132【分析】由绝对值和完全平方的非负性可得2050a b +=⎧⎨-=⎩,则可计算出A 、B 对应的数,然后分三种情况进行讨论求解即可. 【详解】解:()2250a b ++-=,20+≥a ,2(5)0b -≥ , 则可得:2050a b +=⎧⎨-=⎩, 解得:25a b =-⎧⎨=⎩, 5(2)7AB ∴=--= ,∵当P 在A 点左侧时,210PA PB PA AB +=+= ,32PA ∴= ,则可得:322x --=, 解得:72x =- ∵当P 在B 点右侧时,210PA PB PB AB +=+= ,32PB ∴= , 则可得:352x -=, 解得:132x = , ∵当P 在A 、B 中间时,则有710PA PB AB +==≠ ,∵P 点不存在. 综上所述:132x =或72x =-. 故答案为:72-或132. 【点睛】本题考查了绝对值和完全平方的非负性,数轴上两点间的距离:a ,b 是数轴上任意不同的两点,则这两点间的距离=右边的数-左边的数,掌握数轴上两点距离和分情况讨论是本题的关键.18.0【分析】根据题意,[1.7]中不大于1.7的最大整数为1,(-1.7)中不小于-1.7的最小整数为-1,则可解答【详解】解:依题意:[1.7]=1,(-1.7)=-1∵[]()1.7 1.711=0+-=-故答案为:0【点睛】此题主要考查有理数大小的比较,读懂题意,即可解答.19.0【详解】根据已知得出1<|x|<3.5,求出符合条件的整数包括±2,±3,即2+(﹣2)+3+(﹣3)=0.故答案为0.点睛:本题考查了对绝对值、相反数的意义的应用,主要考查学生的理解能力和计算能力.20.4【分析】根据x 的取值范围,分别判断x -1与x+3的正负,然后根据绝对值的性质求解即可.【详解】∵31x -<<,∵10x -<,30x +>,∵原式(1)(3)x x =--++13x x =-+++4=【点睛】此题主要考查了两点间距离公式的应用,解题的关键是根据绝对值的性质化简.21.0,﹣7,15;5.6,﹣4.8,﹣814,227,19;5.6,227,15,19;﹣7,﹣4.8,﹣814【分析】由题意直接根据有理数的分类,把相应的数填写到相应的集合中即可.【详解】解:整数集合{0,﹣7,15…};分数集合{5.6,﹣4.8,﹣814,227,19…}; 非负数集合{5.6,227,15,19…}; 负数集合{﹣7,﹣4.8,﹣814…}. 故答案为:0,﹣7,15;5.6,﹣4.8,﹣814,227,19;5.6,227,15,19;﹣7,﹣4.8,﹣814. 【点睛】本题考查有理数的分类.注意掌握有理数分为整数和分数;正整数、0、负整数统称整数;正分数、负分数统称分数.非负整数包括正整数和0.22.(1)10(2)-3,-2,-1,0,1,2,和为-3(3)有,10【分析】(1)根据有理数减法法则计算;(2)分析得到2x -表示x 与2的距离,3x +表示x 与-3的距离,由235x x -++=,确定32x -≤≤,进而解答; (3)设-4表示点A ,6表示点B ,x 表示点P ,则()6410AB =--=,分三种情况:当P 在点A 左侧时,当P 在点B 右侧时,当P 在A 、B 之间时,分别求出最小值解答.(1)|8(2)|--=10,故答案为10;(2)2x -表示x 与2的距离,3x +表示x 与-3的距离,∵235x x -++=,∵32x -≤≤,∵整数x =-3,-2,-1,0,1,2,和为-3-2-1+0+1+2=-3;(3)46x x ++-有最小值10,理由如下:设-4表示点A ,6表示点B ,x 表示点P ,则()6410AB =--=,当P 在点A 左侧时,()46221010x x PA PB PA PA AB PA AB PA ++-=+=++=+-+>,当P 在点B 右侧时,()46210210x x PA PB AB PB PB AB PB PB ++-=+=++=+=+>,当P 在A 、B 之间时,4610x x PA PB AB ++-=+==,∵46x x ++-的最小值为10.【点睛】此题考查了数轴上两点之间的距离,有理数绝对值计算,正确理解题中两点之间的距离计算是解题的关键.答案第9页,共9页。
初中数学综合滚动练习:数轴、相反数、绝对值及其综合
4.下列各对数中,相等的是( B )
A.-(- 3 )和-0.75 4
B.+(-0.2)和-(+1 ) 5
C.-(+ 1 )和-(-0.01) 100
D.-(-31 )和-(+16 )的本身小,则这个数是
(A) A.正数 B.负数 C.正数和零 D.负数和零 6.下列说法正确的是( C ) A.绝对值等于 3 的数是-3 B.绝对值小于 2 的数有±2,±1,0 C.若|a|=-a,则 a≤0 D.一个数的绝对值一定大于这个数的相反数
二、填空题(每小题 4 分,共 32 分)
9.计算:|-20|= 20 .
10.若 a+ 2 =0,则 a=
2 5
.
5
11.数轴上点 A 表示-1,点 B 表示 2,则 A、B 两
点间的距离是 3 .
12.将-3,-|+2|,-1 ,-1 按从小到大的顺序,
3
用“<”连接应当是 -3<-|+2|<-1<-13
2
2
-(-5).(8 分)
19.(8 分)如图,图中数轴的单位长度为 1.请回答下 列问题:
(1)如果点 A、B 表示的数是互为相反数,那么点 C、 D 表示的数是多少? 解:(1)点 C 表示的数是-1,点 D 表示的数是-6.(4 分)
(2)如果点 D、B 表示的数是互为相反数,那么点 C、 D 表示的数分别是多少? (2)点 C 表示的数是 0.5,点 D 表示的数是-4.5.(8 分)
快速对答案
1A 2D 3C 4B 5A 6C
7C
提示:点击 进入习题
8B
9 20
10
2 5
11 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正数和负数、数轴、相反数、绝对值专项练习题
满分100分,时间80分钟
一、精心选一选,慧眼识金!(每小题3分,共24分)
的相反数是()
2.下列说法正确的是()
A、正数、负数统称为有理数
B、分数、整数统称为有理数
C、正有理数、负有理数统称为有理数
D、以上都不对
3.下列都是无理数的是 ( )
A.0.07,2
3
B.
.
0.7
,π
,
22
7
4、任何一个有理数的平方()
A.一定是正数 B.一定不是负数 C.一定大于它本身 D.一定不大于它的绝对值
5. 有理数-22,(-2)2,|-23|,-按从小到大的顺序排列是( )
A.|-23|<-22<-<(-2)2 B.-22<-<(-2)2<|-23|
C.-<-22<(-2)2<|-23| D.-<-22<|-23|<(-2)2
6.有理数a、b在数轴上的对应的位置如图所示,则()
A.a + b<0 B.a + b>0 C.a-b = 0 D.a-b>0
A、6
B、-6 C
D、
7.下列说法正确的是()
A、一个数的绝对值等于它本身,则这个数是正数
B、一个数的绝对值等于它的相反数,则这个数是负数
C、一个数的绝对值不可能等于零
D、一个数的绝对值不可能是负数
8.(0)
a b
ab
a b
+≠的所有可能的值有()
A.1个
B.2个
C.3个
D.4个
二、耐心填一填,一锤定音!(每小题3分,共24分)
9.把下列各数填在相应的横线里:1,-4/5,8.9,-7,5/6,-3.2,+1008,-0.05,28,-9 正整数:
负整数:
正分数:
2
1
2
1
2
1
2
1
2
1
-11
a b
负分数:
10.有理数中,最小的正整数是 ,最大的负整数是
11.有理数中,是整数而不是正数的数是 ,是负数而不是分数的数是 ,
12.-(-2)的相反数是 .
13.某天上午的温度是5℃,中午又上升了3℃,下午由于冷空气南下,到夜间又下降了9℃,则这天夜间的温度是 ℃。
14.a 、b 在数轴上的位置如图,化简a = ,b a += ,1+a = 。
15.已知:│a+1│+ (b-1)2=0,则a 2007+b 2008= 。
16.1+x +1-x 的最小值是_________.
三、用心做一做,马到成功!(本大题共52分)
17、(16分)计算题(共4题,每小题4分)
(1))416121(+-
×12 (2))2
1()32(-+-
(3))31(524)325(535-++-+ (4)÷÷-41281(16-)×9
4
18、(9分)设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,求a-b+c 的值
19、(9分)已知有理数a ,b ,c 在数轴上的对应点如图所示,化简: a c c b b a ---+-
20.(9分)已知(a +1)2+(2b -3)2+1-c =0,求
c ab 3+b
c a -的值
· ·
21.(9分)已知23++-x x 的最小值为a ,23+--x x 的最大值为b,求a+b 的值。