八年级上学期期中考试数学试卷含答案(共5套)

合集下载

辽宁省大连市金州区2024-2025学年八年级上学期11月期中考试数学试题(含答案)

辽宁省大连市金州区2024-2025学年八年级上学期11月期中考试数学试题(含答案)

金普新区2024-2025学年度第一学期期中质量检测试卷八年级数学2024.11(本试卷共23道题 满分120分考试时间共120分钟)注意:所有试题必须在答题卡上作答,在本试卷上作答无效。

第一部分 选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列长度的三条线段能组成三角形的是( )A .1,3,2B .2,5,8C .3,4,5D .5,5,102.下列计算正确的是( )A .B .C .D .3.在平面直角坐标系中,与点关于y 轴对称的点的坐标为( )A .B .C .D .4.中国体育代表团在2024年巴黎奥运会取得优异成绩,下列图标中,是轴对称图形的是()A .B .C .D .5.下列各图形中,分别是四位同学所画的中BC 边上的高AE ,其中正确的是()A .B .C .D .6.榫卯结构是我国古代建筑,家具及其他木制器械的主要结构方式.如图,将两块全等的木楔()水平钉入长为16 cm 的长方形木条中(点B ,C ,F ,E 在同一条直线上).若,则木楔BC 的长为( )(第6题)248a a a⋅=()428bb =2246a a a⋅=235a b ab +=()1,7A -A '()1,7()1,7-()1,7--()1,7-ABC △ABC DEF △△≌4cm CF =A .4 cmB .6 cmC .8 cmD .12 cm7.如图,AD ,CE 都是的中线,连接ED ,的面积足,则的面积是()(第7题)A .B .C .D .8.如图,三座商场分别坐落在A ,B ,C 所在位置,现要规划一个地铁站,使得该地铁站到三座商场的距离相等,该地铁站应建在()(第8题)A .三条高所在直线的交点B .三条中线的交点C .三个内角的角平分线的交点D .三条边的垂直平分线的交点9.如图,直线l 是一条河,P ,Q 是两个村庄,欲在l 上的某处修建一个水泵站,向P ,Q 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()A .B .C .D .10.如图,在中,,,,沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,则的周长为()(第10题)A .6B .7C .8D .9第二部分 非选择题(共90分)ABC △ABC △220cm CDE △22.5cm25cm27.5cm210cmABC △ABC △ABC △ABC △ABC △10AB =7BC =6AC =AED △二、填空题(本题共5小题,每小题3分,共15分)11.如图是环己烷的结构简式(正六边形),其内角和为______°.(第11题)12.若,,则______.13.已知等腰三角形的一个底角是70°,则它的顶角的度数是______°.14.如图,中,,若沿图中虚线截去∠F ,则______°.(第14题)15.如图,四边形ABCD 中,,,,,以点B 为圆心,适当长为半径作弧,分别与AB ,BC 相交于点点E ,F ,再分别以点E ,F为圆心,大于的长为半径作弧,两弧在的内部相交于点G ,作射线BG ,与AD 相交于点H ,则HD 的长为______(用含a 的代数式表示).(第15题)三、解答题(本题共8小题,共75分.解答应写出文字说明、演算步骤或推理过程)16.(10分).计算:(1);(2).17.(8分)如图,点M ,N 在线段BD 上,,,.求证:.2ma =4na =m na+=DEF △35F ∠=︒12∠+∠=AD BC ∥AD AB >AD a =8AB =12EF ABC ∠()232462a a a a +⋅-()()()3243x y x y x x y x ++-+÷BM DN =AN CM =AN CM ∥ABN CDM △△≌(第17题)18.(8分)如图,已知中,,,.(1)画出与关于x 轴对称的图形,并写出各顶点坐标;(2)的面积为______.(第18题)19.(8分)如图,在中,AD 平分∠BAC ,于D ,于C ,且,.(1)求证:;(2)求证:.(第19题)20.(8分)如图,在中,CD 平分,E 为线段CD 上一点,过E 作交BA 的延长线于点F ,若,,求的度数.ABC △()1,3A ()3,1B ()5.4C ABC △111A B C △111A B C △ABC △ABC △AD BC ⊥EC BC ⊥AB BE =CD CE =AB AC =Rt Rt ABD BEC △△≌ABC △ACB ∠EF CD ⊥115BAC ∠=︒35B ∠=︒F ∠(第20题)21.(8分)如图,已知中,,于D ,的平分线分别交AD ,AB 于P 、Q .(1)试说明是等腰三角形;(2)若点Q 恰好在线段BC 的垂直平分线上,试说明线段AC 与线段BC 之间的数量关系.(第21题)22.(12分)阅读下列材料,解决相应问题:已知两个两位数,将它们各自的十位数字和个位数字交换位置后,得到两个与原两个两位数均不同的新数,若这两个两位数的乘积与交换位置后两个新两位数的乘积相等,则称这样的两个两位数为“倒同数对”.例如:,所以23和96与32和69都是“倒同数对”.(1)请判断43和68是否是“倒同数对”,并说明理由;(2)为探究“倒同数对”的本质,可设“倒同数对”中一个数的十位数字为m ,个位数字为n ,且;另一个数的十位数字为p ,个位数字为q ,且,请探究m ,n ,p ,q 的数量关系,并说明理由;(3)若有一个两位数,十位数字为x ,个位数字为,另一个两位数,十位数字为,个位数字为,且这两个数为“倒同数对”,则x 的值为______.23.(13分)【问题初探】(1)综合与实践数学活动课上,李老师给出了一个问题:如图1,若,,CD 平分,求证:.(第20题图1)①如图2,小明同学从结论的角度出发给出如下解题思路:在BC 上截取,连接DE ,将线段BC ,AC ,AD 之间的数量关系转化为BE 与AD的数量关系;Rt ABC △90BAC ∠=︒AD BC ⊥ACB ∠APQ △239632692208⨯=⨯=m n ≠p q ≠1x +3x +1x +60A ∠=︒90ACB ∠=︒ACB ∠BC AC AD =+CE CA =(第20题图2)②如图3,小强同学从CD 平分这个条件出发给出另一种解题思路:延长CA 至点E ,使,连接DE ,将线段BC ,AC ,AD 之间的数量关系转化为AE 与AD 的数最关系;请你选择一名同学的解题思路,写出证明过程:(第20题图3)【类比分析】(2)李老师发现两名同学都运用了转化思想,将证明三条线段的关系转化为证明两条线段的关系;为了帮助学生更好地感悟转化思想,李老师将问题进行变式,请你解答:如图4,在四边形ABCD 中,E 是BC 的中点,若AE 平分,,请你探究AB 、AD 、CD 的数量关系并证明;(第20题图4)【学以致用】(3)如图5,在中,,和的平分线交于点P ,M ,N 为AB ,AC 上的点,且P 为MN 中点,若,,,求BC 的值.(第20题图5)ACB ∠CE CB =BAD ∠90AED ∠=︒ABC △60A ∠=︒ABC ∠ABC ∠5BM =45CN =4MN =金普新区2024-2025学年度第一学期期中质量检测八年级数学参考答案及评分标准(说明:试题解法不唯一,其他方法备课组统一意见,酌情给分。

人教版数学八年级上学期《期中检测试卷》含答案解析

人教版数学八年级上学期《期中检测试卷》含答案解析
人 教 版 数 学 八年级上学期
期中测 试 卷
学校________班级________姓名________成绩________
考试时间120分钟 满分120分
一、选择题:
1.下列图形中,属于轴对称图形的是( )
A. B.
C. D.
2.下列运算正确的是()
A. B. C. D.
3.在平面直角坐标系中,点 关于 轴对称 点 的坐标为()
故选:C.
【点睛】本题考查了等边三角形的性质,三角形全等的判定和性质,掌握三角形全等的判定和性质是解题的关键.
12.如图所示,在平面直角坐标系中 , , 是直角三角形,且 , , 到 轴距离为 ,把 绕点 顺时针旋转 ,得到 ;把 绕点 顺时针旋转 ,得到 .以此类推,则旋转第2017次后,得到的直角三角形的直角顶点 的坐标为()
【答案】C
【解析】
【分析】
根据轴对称图形 概念求解.
【详解】根据轴对称图形的概念求解,A不是轴对称图形,故本选项错误;B不是轴对称图形,故本选项错误;C是轴对称图形,故本选项正确;D不是轴对称图形,故本选项错误,故本题C为正确答案.
【点睛】本题考查了轴对称图形的概念,掌握一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这个图形叫做轴对称图形,这条直线叫做对称轴是解决本题的关键.
A. B. C. D.
10.如图,等腰 的底边 长为4,腰长为6, 垂直平分 ,点 为直线 上一动点,则 的最小值为()
A.10B.6C.4D.2
11.如图, 和 均为等边三角形,点 , , 在同一条直线上,连接 ,若 ,则 的度数是()
A. B. C. D.
12.如图所示,在平面直角坐标系中 , , 是直角三角形,且 , , 到 轴距离为 ,把 绕点 顺时针旋转 ,得到 ;把 绕点 顺时针旋转 ,得到 .以此类推,则旋转第2017次后,得到 直角三角形的直角顶点 的坐标为()

江西省南昌市2023-2024学年八年级上学期期中数学试题(含答案)

江西省南昌市2023-2024学年八年级上学期期中数学试题(含答案)

南昌市2023—2024学年第一学期期中形成性测试八年级(初二)数学试卷说明:本卷共有六个大题,23个小题,全卷满分120分,考试时间120分钟。

一、选择题(本大题6小题,每小题3分,共18分,每小题只有一个正确选项)1.2023年暑假期间,国家高度重视预防溺水安全工作,要求各级各类学校积极落实防溺水安全教育,以下与防溺水相关的标志中是轴对称图形的是( )A .B .C .D .2.如图,是线段的垂直平分线,为直线上的一点,已知线段,则线段的长度为( )A .6B .5C .4D .33.下列计算正确的是( )A .B .C .D .4.我国的纸伞工艺十分巧妙,如图,伞圈能沿着伞柄滑动,伞不论张开还是缩拢,伞柄始终平分同一平面内所成的角,为了证明这个结论,我们的依据是( )A .B .C .D .5.如图,在Rt 中,是角平分线,,则的面积为()CD AB P CD 5PA =PB 3332b b b ⋅=()()2222x x x +-=-22(2)4a a -=222()a b a b +=+D AP BAC ∠SAS SSS AAS ASAABC △90,C AF ∠=︒35,2AB CF ==AFB △A .5 B. C . D .6.如图,在Rt 中,,以的一边为边画等腰三角形,使得它的第三个顶点在的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .5B .6C .7D .8二、填空题(本大题共6小题,每小题3分,共18分)7.在平面直角坐标系中,点关于轴对称点的坐标为______________.8.分解因式:______________.9.如图所示,已知是上的一点,,请再添加一个条件:______________,使得.10.已知:,则______________.11.如图,等腰三角形的底边长为4,面积是14,腰的垂直平分线分别交于点,若点为底边的中点.点为线段上一动点,则的周长的最小值为______________.11.已知中,如果过顶点的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为的关于点的二分割线.如图1,Rt 中,显然直线是的关于点的二分割线.在图2的中,,若直线是的关于点154152132ABC △90C ∠=︒ABC △ABC △()2,5y 22ax ay -=P AD ABP ACP ∠=∠ABP ACP △≌△2,3m na a ==2m n a +=ABC BC AB EF ,AB AC E F 、D BC M EF BDM △ABC △B ABC △B ABC △BD ABC △B ABC △110ABC ∠=︒BD ABC △B的二分割线,则的度数是______________.三、(本大题共5小题,每小题6分,共30分)13.(1)计算:(2)如图,点在一条直线上,,.求证:.14.先化简,再求值:,其中.15.如图所示,的顶点分别为.(1)画出关于直线(平行于轴且该直线上的点的横坐标均为2)对称的图形,则的坐标分别为(______________),(______________),(______________);(2)求的面积.16.如果,那么我们规定,例如:因为,所以.(1)【理解】根据上述规定,填空:______________,______________;(2)【应用】若,试求之间的等量关系.17.如图是由小正方形组成的网格,每个小正方形的顶点叫做格点.的三个顶点都是格点,仅CDB ∠()()424242y y y y +÷--,,,B E C F ,B DEF BE CF ∠=∠=A D ∠=∠AB DE =()()()2232a b ab b b a b a b --÷-+-1,12a b ==-ABC △()()()2,3,4,1,1,2A B C ---ABC △2x =y 111A B C △111,,A B C 1A 1B 1C 111A B C △nx y =(),x y n =239=()3,92=()2,8=()2,4=()()()4,12,4,5,4,60a b c ===,,a b c 66⨯ABC △用无刻度的直尺在给定的网格中完成作图.(1)在图1中,作边上的中线;(2)在图2中,作边上的高.四、(本大题3小题,每小题8分,共24分)18.为了测量一幢高楼的高,在旗杆与楼之间选定一点.测得旗杆顶的视线与地面的夹角,测楼顶的视线与地面的夹角,量得点到楼底距离与旗杆高度相等,等于8米,量得旗杆与楼之间距离为米,求楼高是多少米?19.如图,甲长方形的两边长分别为,面积为;乙长方形的两边长分别为.面积为(其中为正整数).(1)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积与图中的甲长方形面积的差(即)是一个常数,求出这个常数;(2)试比较与的大小.20.如图:已知等边中,是的中点,是延长线上的一点,且,垂足为.AC BH AC BD AB CD P C PC 17DPC ∠=︒A PA 73APB ∠=︒P PB 33DB =AB 1,7m m ++1S 2,4m m ++2S m S 1S 1S S -1S 2S ABC △D AC E BC ,CE CD DM BC =⊥M(1)试问和有何数量关系?并证明之;(2)求证:是的中点.五、(本大题2小题,每小题9分,共18分)21.图1是一个长为、宽为的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的正方形的周长等于______________;(2)观察图2,请直接写出下列三个代数式之间的等量关系;(3)运用你所得到的公式,计算:若为实数,且,试求的值;(4)如图3,点是线段上的一点,以为边向两边作正方形,设,两正方形的面积和,求图中阴影部分面积.22.课本再现:如图,一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等,我们把这种图形的变换叫全等变换.生活体验:(1)数学作图工具中有一个三角尺是等腰直角三角形,它的两个锐角相等,都是______________.问题解决:(2)如图1,在等腰直角三角形中,为边上的一点(不与点重合),连接,把绕点顺时针旋转后,得到,点与点恰好重合,连接.DM DE M BE 2a 2b 22(),(),a b a b ab +-m n 、3,4mn m n =-=m n +C AB AC BC 、8AB =1226S S +=︒AOB 90,,AOB AO BO C ∠=︒=AB ,A B OC AOC △O 90︒BOD △A B CD①填空:______________;______________.②若,求的度数.结论猜想:(3)如图1,如果是直线上的一点(不与点重合),其他条件不变,请猜想与的数量关系,并直接写出猜想结论.六、(本大题共12分)23.【探究发现】(1)如图1,中,,点为的中点,分别为边上两点,若满足,则之间满足的数量关系是______________.【类比应用】(2)如图2,中,,点为的中点,分别为边上两点,若满足,试探究之间满足的数量关系,并说明理由.【拓展延伸】(3)在中,,点为的中点,分别为直线上两点,若满足,请直接写出的长.OC OD COD ∠=30AOC ∠=︒BDC ∠C AB ,A B AOC ∠BDC ∠ABC △,90AB AC BAC =∠=︒D BC E F 、AC AB 、90EDF ∠=︒AE AF AB 、、ABC △,120AB AC BAC =∠=︒D BC E F 、AC AB 、60EDF ∠=︒AE AF AB 、、ABC △5,120AB AC BAC ==∠=︒D BC E F 、AC AB 、1,60CE EDF =∠=︒AF南昌市2023—2024学年第一学期期中形成性测试八年级(初二)数学试卷参考答案一.选择题(共6小题)1.D2.B .3.C .4.B5.B6.C二.填空题(共6小题)7.(﹣2,5).8. . 9. ∠BAP=∠CAP 或∠APB=∠APC 或AP 平分∠BAC(答案不唯一) .10. 12 11. 9. 12. 140°或90°或40°三.解答题13.(1)计算:解:(1)y 4+(y 2)4÷y 4﹣(﹣y 2)2=y 4+y 8÷y 4﹣y 4=y 4+y 4﹣y 4=y 4;……………………3分(2)证明:∵BE=CF∴BE+EC=CF+EC即BC=EF……………………1分在△ABC 和△EDF 中,∴△ABC ≌△DEF (AAS ),∴AB=DE……………………3分14.解:原式…………………1分…………………3分…………………4分将代入上式得,原式…………………6分15.,,,则为所求作的三角形,…………………4分如图所示:()()y x y x a -+⎪⎩⎪⎨⎧=∠=∠∠=∠EF BC DEFB D A 22222()a ab b a b =----22222a ab b a b =---+2ab =-112a b ==-,12(1)2=-⨯⨯-1=()16,3A ()18,1B ()15,2C 111A B C △1111111111A B C DA C EB C FA B DEB F S S S S S =--- 矩形…………………6分16.解:(1)23=8,(2,8)=3,,(2,4)=2,故答案为:3;2;……………………2分(2)证明:∵(4,12)=a ,(4,5)=b ,(4,60)=c ,∴4a =12,4b =5,4c =60,∴4a ×4b =60,∴4a ×4b =4c ,∴a +b =c ;………………6分17.即中线BH 为所求 ………………3分即高BD 为所求 ………………6分18.,,,,………………2分在和中,,∴(ASA ), (5)分11132132211222=⨯-⨯⨯-⨯⨯-⨯⨯2=17CPD ∠=︒ 73APB ∠=︒90CDP ABP ∠=∠=︒73DCP APB ∴∠=∠=︒CPD ∆PAB ∆CDP ABP DC PBDCP APB ∠=∠⎧⎪=⎨⎪∠=∠⎩CPD PAB ≅,米,米,………………7分(米),答:楼高是25米.………………8分19.解:(1)图中的甲长方形周长为2(m +7+m +1)4=4m +16,∴该正方形边长为m +4,∴S ﹣S 1=(m +4)(m +4)﹣(m +1)(m +7)=(m 2+8m +16) -(m 2+8m +7)=9,∴该正方形面积S 与图中的甲长方形面积S 1的差是一个常数9;……………4分(2)S 1=(m +1)(m +7)=m 2+8m +7,S 2=(m +2)(m +4))=m 2+6m +8,S 1﹣S 2=(m 2+8m +7)﹣(m 2+6m +8)=2m ﹣1,∵m 为正整数,∴2m ﹣1>0,∴S 1>S 2.……………………8分20.(1)DM 和DE 有何数量关系为:DE=2DM证明:∵三角形ABC 是等边△ABC ,∴∠ACB =∠ABC =60°,又∵CE =CD ,∴∠E =∠CDE ,又∵∠ACB =∠E +∠CDE ,∴∠E=∠ACB =30°;又∵∠DME=90°∴DE=2DM………………………4分(2)证明:连接BD ,∵等边△ABC 中,D 是AC 的中点,∴∠DBC=∠ABC =30°由(1)知∠E =30°∴∠DBC =∠E =30°∴DB =DE又∵DM ⊥BC∴M 是BE 的中点.………………………8分21.(1)阴影部分的正方形边长为a -b ,故周长为4(a -b )=4a -4b ;故答案:4a -4b ;………………………1分(2)大正方形面积可以看作四个矩形面积加阴影面积,故可表示为:4ab +(a -b )2,大正方形边长为a+b ,故面积也可表达为:(a +b )2,因此(a +b )2=(a -b )2+4ab ;故答案为:(a +b )2=(a -b )2+4ab ; (3)分为DP AB ∴=33DB = 8PB =33825AB ∴=-=AB(3)由(2)知:(m +n )2=(m -n )2+4mn ;………………………4分已知m -n =4,mn =-3;所以(m +n )2=42+4×(-3)=16-12=4;所以m +n =2或一2;………………………6分(4)设AC =a ,BC =b ;因为AB =8,S 1+S 2=26;所以a +b =8,a 2+b 2=26;因为(a +b )2=a 2+b 2+2ab ,所以64=26+2ab ,解得ab =19,由题意:∠ACF =90°,所以S 阴影=ab =,故答案为:.………………………9分22.解:(1)∵三角形的内角和为180°,等腰直角三角形的两个锐角相等,∴它的两个锐角都是;故答案为:.………………………1分(2)①根据旋转可得,∴,∴,∴是等腰直角三角形,故答案为:.………………………3分②∵等腰直角三角形中,,∴,∵,∴∵∴∵是等腰直角三角形,∴,∴………………………7分(3)当在上时,1219219245︒45ACO BDO ≌AOC BOD ∠=∠OC OD=90COD AOB ∠=∠=︒COD △90=︒,AOB 90,AOB AO BO ∠=︒=45A ∠=︒30AOC ∠=︒105ACO ∠=︒ACO BDO≌105BDO ∠=︒COD △45CDO ∠=︒60BDC BDO CDO ∠=∠-∠=︒C AB∵,∵∴∵是等腰直角三角形,∴,∴即;………………………8分当在的延长线上时,如图所示,∵,∵∴∵是等腰直角三角形,∴,∴即;当在的延长线上,如图所示,∵,∵∴∵是等腰直角三角形,∴,∴即;………………………9分综上所述,或.23.(1)()180135ACO A AOC AOC ∠=︒-∠+∠=︒-∠ACO BDO≌135BDO AOC AOC∠=∠=︒-∠COD △45CDO ∠=︒90BDC BDO CDO AOC∠=∠-∠=︒-∠90AOC BDC ∠+∠=︒C BA 45ACO AOC ∠=︒-∠ACO BDO≌45BDO AOC AOC∠=∠=︒-∠COD △45CDO ∠=︒454590BDC BDO CDO AOC AOC ∠=∠+∠=︒+︒-∠=︒-∠90AOC BDC ∠+∠=︒C AB 180135ACO BAC AOC AOC ∠=-∠-∠=︒-∠ACO BDO≌135BDO AOC AOC∠=∠=︒-∠COD △45CDO ∠=︒()4513590BDC CDO BDO AOC AOC ∠=∠-∠=︒-︒-∠=∠-︒90AOC BDC ∠-︒=∠90AOC BDC ∠+∠=︒90AOC BDC ∠-︒=∠如图1,∵AB =AC ,∠BAC =90°,∴∠B =∠C =45°,∵D 为BC 中点,∴AD ⊥BC ,∠BAD =∠CAD =45°,AD =BD =CD ,∴∠ADB =∠ADF +∠BDF =90°,∵∠EDF =∠ADE +∠ADF =90°,∴∠BDF =∠ADE ,∵BD =AD ,∠B =∠CAD =45°,∴△BDF ≌△ADE (ASA ),∴BF =AE ,∴AB =AF +BF =AF +AE ;故答案为:AB =AF +AE ;………………………2分(2)AE +AF=AB .理由是:………………………4分如图2,作AG=AD ,∵AB =AC ,∠BAC =120°,点D 为BC 的中点,∴∠BAD =∠CAD =60°,AD ⊥BC又∵AG=AD∴△AGD 为等边三角形∴DG =AG =AD∴∠GDA =∠BAD =60°,即∠GDF +∠FDA =60°,又∵∠FAD +∠ADE =∠FDE =60°,∴∠GDF =∠ADE ,在和中,12GDF ∆ADE ∆,∴(ASA )∴GF =AE ,∵AD ⊥BC ,∠BAD=60°∴∠B=90°-60°=30°又∵∠AGD=60°∴∠GDB=∠AGD-∠B=60°-30°=30°∴BG=GD又∵GD=AG∴AG=BG∴AG=AB =AF +FG =AE +AF ,∴AE +AF =AB ;………………………8分(3)当点E 在线段AC 上时,如图3,作AH=AD 同理可得△AD H 为等边三角形当AB =AC =5,CE =1,∠EDF =60°时,AE =4,此时F 在BA 的延长线上,∴∠DAF=180-∠BAD=180°-60°=120° ∠DHC=180-∠AHD=180°-60°=120°∴∠FAD=∠CHD=120°同(2)可得:△ADF ≌△HDE (ASA ),∴AF =HE ,同(2)可得:DH=HC ,AH=DH∴AH=HC∵AH =CH =AC =,CE =1,∴,GDF ADE DG ADAGD DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩GDF ADE ≅ 1212125253122AF HE CH CE ==-=-=当点E 在AC 延长线上时,如图4,同理可得:;综上:AF 的长为或.………………………12分57122AF HE CH CE ==+=+=3272。

人教版八年级上学期期中考试数学试卷共五套(含答案)

人教版八年级上学期期中考试数学试卷共五套(含答案)

人教版八年级上学期期中考试数学试卷(一)一、选择题(本大题共10小题,每小题2分,共20分)1.(2分)下列图形中,不是轴对称图形的是()A. B.C. D.2.(2分)点(﹣2,3)关于y轴对称的点的坐标是()A.(2,﹣3)B.(2,3)C.(﹣2,﹣3)D.(3,﹣2)3.(2分)下列运算中,错误的是()A.2a﹣3a=﹣a B.(﹣ab)3=﹣a3b3 C.a6÷a2=a4D.a•a2=a24.(2分)如图:已知∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=6,则PD=()A.6 B.4 C.3 D.25.(2分)若(﹣x+a)(x﹣3)的积不含x的一次项,则a的值为()A.3 B.﹣3 C.D.6.(2分)若9x2+mxy+16y2是一个完全平方式,那m的值是()A.±12 B.﹣12 C.±24 D.﹣247.(2分)如图,AB=AC,AD=AE,∠B=50°,∠AEC=120°,则∠DAC的度数等于()A.120°B.70°C.60°D.50°8.(2分)如图,BE⊥AC于点D,且AD=CD,BD=ED.若∠ABC=72°,则∠E等于()A.18°B.36°C.54°D.72°9.(2分)已知a、b、c是三角形的三边,则代数式a2﹣2ab+b2﹣c2的值()A.不能确定B.大于0 C.等于0 D.小于010.(2分)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D,下列四个结论:①EF=BE+CF;②∠BOC=90°+∠A;③点O到△ABC各边的距离相等;④设OD=m,AE+AF=n,则S=mn.△AEF其中正确的结论是()A.①②③B.①②④C.②③④D.①③④二.填空题(本题共8小题;每小题3分,共24分.)11.(3分)计算:(6x2﹣3x)÷3x= .12.(3分)计算:20152﹣2014×2016= .13.(3分)若a m=2,a n=3,则a2m+n= .14.(3分)已知a+=4,则a2+= .15.(3分)当x 时,(x﹣3)0=1.16.(3分)如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧,分别交AB,AC于点M和N,再分别以点M,N为圆心,大于MN长的一半为半径画弧,两弧交于点P,连结AP并延长,交BC于点D,则下列说法中,正确的有.(填写序号)①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC :S△ABC=1:3.17.(3分)如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是.18.(3分)如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为(度).三.解答题(本大题共8小题,共56分)19.(8分)计算:(1)(x+4)2﹣(x+3)(x﹣3)(2)(x+2y﹣3)(x﹣2y+3)20.(12分)因式分解:(1)2a3﹣12a2b+18ab2(2)﹣4(x+2y)2+9(2x﹣y)2(3)x4﹣16(4)(x﹣1)(x﹣3)﹣8.21.(4分)如图,在Rt△ABC中,∠C=90°,∠A=15°.(1)在AC边上求作点D,使得DA=DB.(尺规作图,不写作法,保留作图痕迹).= .(2)在(1)的基础上,连接BD,若BC=1,则S△ABD22.(5分)化简求值:已知[(x﹣2y)2﹣4y2+2xy]÷2x,其中 x=1,y=2.23.(5分)如图,已知△ABC中,∠C=90°,AD平分∠BAC交BC于D,DE⊥AB 于E,点F在AC上,且BD=FD,求证:AE﹣BE=AF.24.(6分)如图,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.(1)证明:AD=BE;(2)求∠AEB的度数.25.(8分)如图,在△ABC中,点D为边BC的中点,过点A作射线AE,过点C 作CF⊥AE于点F,过点B作BG⊥AE于点G,连接FD并延长,交BG于点H (1)求证:DF=DH;(2)若∠CFD=120°,求证:△DHG为等边三角形.26.(8分)如图所示:△ABC是等腰直角三角形,BC=AC,直角顶点C在x轴上,一锐角顶点B在y轴上(1)如图1所示,若C的坐标是(2,0),点A的坐标是(﹣2,﹣2),求:点B的坐标;(2)如图2,若y轴恰好平分∠ABC,AC与y轴交于点D,过点A作AE⊥y轴于E,问BD与AE有怎样的数量关系,并说明理由;(3)如图3角边BC在两坐标轴上滑动,使点A在第四象限内,过A点作AF⊥y 轴于F,在滑动的过程中,两个结论①为定值;②为定值,只有一个结论成立,请你判断正确的结论加以证明,并求出定值.参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分)1.(2分)下列图形中,不是轴对称图形的是()A. B.C. D.【解答】解:A、是轴对称图形,不符合题意;B、不是轴对称图形,符合题意;C、是轴对称图形,不符合题意;D、是轴对称图形,不符合题意;故选:B.2.(2分)点(﹣2,3)关于y轴对称的点的坐标是()A.(2,﹣3)B.(2,3)C.(﹣2,﹣3)D.(3,﹣2)【解答】解:点(﹣2,3)关于y轴对称的点的坐标是(2,3),故选:B.3.(2分)下列运算中,错误的是()A.2a﹣3a=﹣a B.(﹣ab)3=﹣a3b3 C.a6÷a2=a4D.a•a2=a2【解答】解:A、2a﹣3a=﹣a,正确,不合题意;B、(﹣ab)3=﹣a3b3,正确,不合题意;C、a6÷a2=a4,正确,不合题意;D、a•a2=a3,错误,故此选项符合题意.故选:D.4.(2分)如图:已知∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=6,则PD=()A.6 B.4 C.3 D.2【解答】解:过P作PE⊥OB于E,∵∠AOP=∠BOP,PD⊥OA,∴PE=PD,∵PC∥OA,∴∠CPO=∠POA=15°=∠BOP,∴∠ECP=∠BOP+∠CPO=30°,∵∠PEC=90°,∴PE=PC=×6=3,即PD=PE=3.故选:C.5.(2分)若(﹣x+a)(x﹣3)的积不含x的一次项,则a的值为()A.3 B.﹣3 C.D.【解答】解:∵(﹣x+a)(x﹣3)=﹣x2+(3+a)x﹣3a,∴3+a=0,解得:a=﹣3,故选:B.6.(2分)若9x2+mxy+16y2是一个完全平方式,那m的值是()A.±12 B.﹣12 C.±24 D.﹣24【解答】解:∵9x2+mxy+16y2是一个完全平方式,∴m=±24,故选:C.7.(2分)如图,AB=AC,AD=AE,∠B=50°,∠AEC=120°,则∠DAC的度数等于()A.120°B.70°C.60°D.50°【解答】解:∵AB=AC,AD=AE,∠B=50°,∠AEC=120°,∴∠AED=∠ADE=60°,∠EAC=60°﹣∠C=60°﹣50°=10°,∴∠DAC=60°+10°=70°.故选:B.8.(2分)如图,BE⊥AC于点D,且AD=CD,BD=ED.若∠ABC=72°,则∠E等于()A.18°B.36°C.54°D.72°【解答】解:∵BE⊥AC,AD=DC,∴BA=BC,∴∠ABD=∠CBD=∠ABC=36°,在△ADB和△CDE中,,∴△ADB≌△CDE,∴∠E=∠ABD=36°,故选:B.9.(2分)已知a、b、c是三角形的三边,则代数式a2﹣2ab+b2﹣c2的值()A.不能确定B.大于0 C.等于0 D.小于0【解答】解:a2﹣2ab+b2﹣c2=(a﹣b)2﹣c2=(a+c﹣b)[a﹣(b+c)].∵a,b,c是三角形的三边.∴a+c﹣b>0,a﹣(b+c)<0.∴a2﹣2ab+b2﹣c2<0.故选:D.10.(2分)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D,下列四个结论:①EF=BE+CF;②∠BOC=90°+∠A;③点O到△ABC各边的距离相等;④设OD=m,AE+AF=n,则S=mn.△AEF其中正确的结论是()A.①②③B.①②④C.②③④D.①③④【解答】解:∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠ABC,∠OCB=∠ACB,∠A+∠ABC+∠ACB=180°,∴∠OBC+∠OCB=90°﹣∠A,∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+∠A;故②正确;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠OBE,∠OCB=∠OCF,∵EF∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∴∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,故①正确;过点O作OM⊥A B于M,作ON⊥BC于N,连接OA,∵在△AB C中,∠ABC和∠ACB的平分线相交于点O,∴ON=OD=OM=m,∴S△AEF =S△AOE+S△AOF=AE•OM+AF•OD=OD•(AE+AF)=mn;故④错误;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴点O到△ABC各边的距离相等,故③正确.故选:A.二.填空题(本题共8小题;每小题3分,共24分.)11.(3分)计算:(6x2﹣3x)÷3x= 2x﹣1 .【解答】解:(6x2﹣3x)÷3x,=6x2÷3x﹣3x÷3x,=2x﹣1.故答案为:2x﹣1.12.(3分)计算:20152﹣2014×2016= 1 .【解答】解:20152﹣2014×2016=20152﹣(2015﹣1)×(2015+1)=20152﹣(20152﹣1)=20152﹣20152+1=1.故答案是:1.13.(3分)若a m=2,a n=3,则a2m+n= 12 .【解答】解:∵a m=2,a n=3,∴a2m+n=a2m•a n=(a m)2•a n=22×3=12.故答案为:12.14.(3分)已知a+=4,则a2+= 14 .【解答】解:∵a+=4,∴(a+)2=16,∴a2+2+=16,∴a2+=14.故答案为14.15.(3分)当x ≠3 时,(x﹣3)0=1.【解答】解:由题意得:x﹣3≠0,解得:x≠3,故答案为:≠3.16.(3分)如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧,分别交AB,AC于点M和N,再分别以点M,N为圆心,大于MN长的一半为半径画弧,两弧交于点P,连结AP并延长,交BC于点D,则下列说法中,正确的有①②③④.(填写序号)①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC :S△ABC=1:3.【解答】①证明:连接NP,MP,在△ANP与△AMP中,∵,∴△ANP≌△AMP,则∠CAD=∠BAD,故AD是∠BAC的平分线,故此选项正确;②证明:∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=30°,∴∠3=90°﹣∠2=60°,∠ADC=60°,故此选项正确;③证明:∵∠1=∠B=30°,∴AD=BD,∴点D在AB的中垂线上,故此选项正确;④证明:∵在Rt△ACD中,∠2=30°,∴CD=AD,∴BC=BD+CD=AD+AD=AD,S△DAC=AC•CD=AC•AD,∴S△ABC=AC•BC=AC•AD=AC•AD,∴S△DAC :S△ABC=1:3,故此选项正确;故答案为:①②③④.17.(3分)如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是50°.【解答】解:∵MN是AB的垂直平分线,∴AD=BD,∴∠A=∠ABD,∵∠DBC=15°,∴∠ABC=∠A+15°,∵AB=AC,∴∠C=∠ABC=∠A+15°,∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为:50°.18.(3分)如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为45 (度).【解答】解:设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°﹣∠ACE=90°﹣x ﹣y.∵AE=AC,∴∠ACE=∠AEC=x+y,∵BD=BC,∴∠BDC=∠BCD=∠BCE+∠DCE=90°﹣x﹣y+x=90°﹣y.在△DCE中,∵∠DCE+∠CDE+∠DEC=180°,∴x+(90°﹣y)+(x+y)=180°,解得x=45°,∴∠DCE=45°.故答案为:45.三.解答题(本大题共8小题,共56分)19.(8分)计算:(1)(x+4)2﹣(x+3)(x﹣3)(2)(x+2y﹣3)(x﹣2y+3)【解答】解:(1)(x+4)2﹣(x+3)(x﹣3)=x2+8x+16﹣(x2﹣9)=8x+25;(2)(x+2y﹣3)(x﹣2y+3)=[x+(2y﹣3)][x﹣(2y﹣3)]=x2﹣(2y﹣3)2=x2﹣4y2+12y﹣9.20.(12分)因式分解:(1)2a3﹣12a2b+18ab2(2)﹣4(x+2y)2+9(2x﹣y)2(3)x4﹣16(4)(x﹣1)(x﹣3)﹣8.【解答】解:(1)原式=2a(a2﹣6a+9b2)=2a(a﹣3b)2;(2)原式=[3(2x﹣y)+2(x+2y)][3(2x﹣y)﹣2(x+2y)]=(8x+y)(4x ﹣7y);(3)原式=(x2+4)(x2﹣4)=(x2+4)(x+2)(x﹣2);(4)原式=x2﹣4x﹣5=(x﹣5)(x+1).21.(4分)如图,在Rt△ABC中,∠C=90°,∠A=15°.(1)在AC边上求作点D,使得DA=DB.(尺规作图,不写作法,保留作图痕迹).= 1 .(2)在(1)的基础上,连接BD,若BC=1,则S△ABD【解答】解:(1)如图所示:此时DA=DB;(2)如图所示:∵∠C=90°,∠A=15°,AD=BD,∴∠A=∠ABD=15°,∴∠CDB=30°,∵BC=1,∴AD=BD=2,∴S=×1×2=1.△ABD故答案为:1.22.(5分)化简求值:已知[(x﹣2y)2﹣4y2+2xy]÷2x,其中 x=1,y=2.【解答】解:原式=(x2﹣4xy+4y2﹣4y2+2xy)÷2x=(x2﹣2xy)÷2x=x﹣y当x=1,y=2时,原式=﹣2=﹣23.(5分)如图,已知△ABC中,∠C=90°,AD平分∠BAC交BC于D,DE⊥AB 于E,点F在AC上,且BD=FD,求证:AE﹣BE=AF.【解答】证明:∵AD平分∠BAC交BC于D,DE⊥AB于E,∠C=90°,∴DC=DE,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),同理可得Rt△FCD和Rt△BED,∴AC=AE,CF=BE,∴AE﹣BE=AF.24.(6分)如图,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.(1)证明:AD=BE;(2)求∠AEB的度数.【解答】解:(1)∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=60°﹣∠CDB=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴AD=BE.(2)∵△ACD≌△BCE,∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.25.(8分)如图,在△ABC中,点D为边BC的中点,过点A作射线AE,过点C 作CF⊥AE于点F,过点B作BG⊥AE于点G,连接FD并延长,交BG于点H (1)求证:DF=DH;(2)若∠CFD=120°,求证:△DHG为等边三角形.【解答】证明:(1)∵CF⊥AE,BG⊥AE,∴∠BGF=∠CFG=90°,∴∠1+∠GMB=∠2+∠CME,∵∠GMB=∠CME,∴∠1=∠2,∵点D为边BC的中点,∴DB=CD,在△BHD和△CED中,,∴△BHD≌△CED(ASA),∴DF=DH;(2)∵∠CFD=120°,∠CFG=90°,∴∠GFH=30°,∵∠BGM=90°,∵△HGF是直角三角形,HD=DF,∴DG=HF=DH,∴△DHG为等边三角形.26.(8分)如图所示:△ABC是等腰直角三角形,BC=AC,直角顶点C在x轴上,一锐角顶点B在y轴上(1)如图1所示,若C的坐标是(2,0),点A的坐标是(﹣2,﹣2),求:点B的坐标;(2)如图2,若y轴恰好平分∠ABC,AC与y轴交于点D,过点A作AE⊥y轴于E,问BD与AE有怎样的数量关系,并说明理由;(3)如图3角边BC在两坐标轴上滑动,使点A在第四象限内,过A点作AF⊥y 轴于F,在滑动的过程中,两个结论①为定值;②为定值,只有一个结论成立,请你判断正确的结论加以证明,并求出定值.【解答】解:(1)过点B作BD⊥OD,∵∠DAC+∠ACD=90°,∠ACD+∠BCD=90°,∴∠BCD=∠DAC,在△ADC和△COB中,,∴△ADC≌△COB(AAS),∴AD=OC,CD=OB,∴点B坐标为(0,4);(2)延长BC,AE交于点F,∵AC=BC,AC⊥BC,∴∠BAC=∠ABC=45°,∵BD平分∠ABC,∴∠COD=22.5°,∠DAE=90°﹣∠ABD﹣∠BAD=22.5°,在△ACF和△BCD中,,∴△ACF≌△BCD(ASA),∴AF=BD,在△ABE和△FBE中,,∴△ABE≌△FBE(ASA),∴AE=EF,∴BD=2AE;(3)作AE⊥OC,则AF=OE,∵∠CBO+∠OCB=90°,∠OCB+∠ACO=90°,∴∠ACO=∠CBO,在△BCO和△ACE中,,∴△BCO≌△ACE(AAS),∴CE=OB,∴OB+AF=OC.∴=1.人教版八年级上学期期中考试数学试卷(二)一、选择题(每小题3分,共30分)1.(3分)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C.D.2.(3分)若等腰三角形底角为72°,则顶角为()A.108°B.72°C.54°D.36°3.(3分)对于任意三角形的高,下列说法不正确的是()A.锐角三角形有三条高B.直角三角形只有一条高C.任意三角形都有三条高D.钝角三角形有两条高在三角形的外部4.(3分)一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7 B.7或9 C.7 D.95.(3分)在△ABC和△DEF中,AB=DE,∠B=∠E,如果补充一个条件后不一定能使△ABC≌△DEF,则补充的条件是()A.BC=EF B.∠A=∠D C.AC=DF D.∠C=∠F6.(3分)如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30°B.40°C.50°D.60°7.(3分)下列各组数可能是一个三角形的边长的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,118.(3分)已知等腰三角形其中一个内角为70°,那么这个等腰三角形的顶角度数为()A.70°B.70°或55°C.40°或55°D.70°或40°9.(3分)点M(3,2)关于y轴对称的点的坐标为()A.(﹣3,2)B.(﹣3,﹣2)C.(3,﹣2)D.(2,﹣3)10.(3分)已知△ABC≌△DEF,∠A=80°,∠E=40°,则∠F等于()A.80°B.40°C.120°D.60°二、填空题(每小题4分,共24分)11.(4分)如果△ABC和△DEF全等,△DEF和△GHI全等,则△ABC和△GHI 全等,如果△ABC和△DEF不全等,△DEF和△GHI全等,则△ABC和△GHI全等.(填“一定”或“不一定”或“一定不”)12.(4分)点P(﹣1,2)关于x轴对称点P的坐标为.113.(4分)如图,已知△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠DAC= .14.(4分)如图,已知AO=OB,若增加一个条件,则有△AOC≌△BOC.15.(4分)如图,△ABC中,∠C=90°,AD平分∠CAB交BC于D,DE⊥AB于E,且CD=3cm,则ED长为.16.(4分)如图,在△ABC中,AD=DE, AB=BE,∠A=92°,则∠CED= .三、计算题(本大题7小题,共66分)17.(8分)在等腰三角形ABC中,已知它的两边分别为3cm和7cm,试求三角形ABC的周长.18.(8分)一个等腰三角形的周长为18cm.(1)已知腰长是底边长的2倍,求各边长.(2)已知其中一边长为4cm,求另两边长.19.(8分)已知:点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:(1)△ABC≌△DEF;(2)BE=CF.20.(10分)如图,AE是∠BAC的平分线,AB=AC.若点D是AE上任意一点,请证明:△ABD≌△ACD.21.(10分)已知:如图,点D在△ABC的边BC上,AB=AC=CD,AD=BD,求△ABC 各内角的度数.22.(10分)如图,AF=DB,BC=EF,AC=DE,求证:BC∥EF.23.(12分)△ABC在平面直角坐标系中的位置如图所示A、B、C三点在格点上.(1)作出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于y对称的△A2B2C2,并写出点C2的坐标.(3)求△ABC的面积.参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、不是轴对称图形,故错误;D、是轴对称图形,故正确.故选:D.2.(3分)若等腰三角形底角为72°,则顶角为()A.108°B.72°C.54°D.36°【解答】解:∵等腰三角形底角为72°∴顶角=180°﹣(72°×2)=36°故选:D.3.(3分)对于任意三角形的高,下列说法不正确的是()A.锐角三角形有三条高B.直角三角形只有一条高C.任意三角形都有三条高D.钝角三角形有两条高在三角形的外部【解答】解:A、锐角三角形有三条高,说法正确,故本选项不符合题意;B、直角三角形有三条高,说法错误,故本选项符合题意;C、任意三角形都有三条高,说法正确,故本选项不符合题意;D、钝角三角形有两条高在三角形的外部,说法正确,故本选项不符合题意;故选:B.4.(3分)一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7 B.7或9 C.7 D.9【解答】解:根据三角形的三边关系,得第三边大于8﹣3=5,而小于两边之和8+3=11.又第三边应是奇数,则第三边等于7或9.故选:B.5.(3分)在△ABC和△DEF中,AB=DE,∠B=∠E,如果补充一个条件后不一定能使△ABC≌△DEF,则补充的条件是()A.BC=EF B.∠A=∠D C.AC=DF D.∠C=∠F【解答】解:A、添加BC=EF,可利用SAS判定△ABC≌△DEF,故此选项错误;B、添加∠A=∠D,可利用ASA判定△ABC≌△DEF,故此选项错误;C、添加AC=DF,不能判定△ABC≌△DEF,故此选项正确;D、添加∠C=∠F,可利用AAS判定△ABC≌△DEF,故此选项错误;故选:C.6.(3分)如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30°B.40°C.50°D.60°【解答】解:∵∠B=90°,∠1=30°,∴∠3=90°﹣∠1=90°﹣30°=60°,在Rt△ABC和Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL),∴∠2=∠3=60°.故选:D.7.(3分)下列各组数可能是一个三角形的边长的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,11【解答】解:A、因为1+2<4,所以本组数不能构成三角形.故本选项错误;B、因为4+5=9,所以本组数不能构成三角形.故本选项错误;C、因为4+6>8,所以本组数可以构成三角形.故本选项正确;D、因为5+5<11,所以本组数不能构成三角形.故本选项错误;故选:C.8.(3分)已知等腰三角形其中一个内角为70°,那么这个等腰三角形的顶角度数为()A.70°B.70°或55°C.40°或55°D.70°或40°【解答】解:分两种情况:当70°的角是底角时,则顶角度数为40°;当70°的角是顶角时,则顶角为70°.故选:D.9.(3分)点M(3,2)关于y轴对称的点的坐标为()A.(﹣3,2)B.(﹣3,﹣2)C.(3,﹣2)D.(2,﹣3)【解答】解:点M(3,2)关于y轴对称的点的坐标为(﹣3,2),故选:A.10.(3分)已知△ABC≌△DEF,∠A=80°,∠E=40°,则∠F等于()A.80°B.40°C.120°D.60°【解答】解:∵△ABC≌△DEF,∴∠D=∠A=80°,∵∠E=40°,∴∠F=180°﹣∠D﹣∠E=180°﹣80°﹣40°=60°.故选:D.二、填空题(每小题4分,共24分)11.(4分)如果△ABC和△DEF全等,△DEF和△GHI全等,则△ABC和△GHI 一定全等,如果△ABC和△DEF不全等,△DEF和△GHI全等,则△ABC和△GHI 一定不全等.(填“一定”或“不一定”或“一定不”)【解答】解:根据全等三角形的传递性,△ABC和△GHI一定全等,三者有一对不重合则△ABC和△GHI一定不重合,则二者不全等.故结果分别为一定,一定不.的坐标为(﹣1,﹣2).12.(4分)点P(﹣1,2)关于x轴对称点P1【解答】解:点P(﹣1,2)关于x轴对称点P的坐标为(﹣1,﹣2),1故答案为:(﹣1,﹣2).13.(4分)如图,已知△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠DAC=【解答】解:∵△ABC≌△ADE,∴∠DAE=∠BAC,∵∠CAD=∠BAC﹣∠BAD=∠DAE﹣∠CAE,∴∠BAD=∠CAE=40°,∵∠BAE=120°,∠BAD=40°,∴∠DAC=BAE﹣∠BAD﹣∠CAE=120°﹣40°﹣40°=40°.故答案为40°.14.(4分)如图,已知AO=OB,若增加一个条件∠1=∠2 ,则有△AOC≌△BOC.【解答】解:∵AO=OB,∠1=∠2,OC=OC,∴△AOC≌△BOC.故答案为:∠1=∠2.15.(4分)如图,△ABC中,∠C=90°,AD平分∠CAB交BC于D,DE⊥AB于E,且CD=3cm,则ED长为3cm .【解答】解:∵AD平分∠CAB,∠C=90°,DE⊥AB于点E,∵CD=3cm,∴DE=3cm.故答案为3cm.16.(4分)如图,在△ABC中,AD=DE,AB=BE,∠A=92°,则∠CED= 88°.【解答】解:∵在△ABD和△EBD中,∴△ABD≌△EBD(SSS),∴∠BED=∠A=92°,∴∠CED=180°﹣∠DEB=88°,故答案为:88°.三、计算题(本大题7小题,共66分)17.(8分)在等腰三角形ABC中,已知它的两边分别为3cm和7cm,试求三角形ABC的周长.【解答】解:当3cm是腰时,3+3<7cm,不符合三角形三边关系,故舍去;当7cm是腰时,周长=7+7+3=17cm.故该三角形的周长为17cm.18.(8分)一个等腰三角形的周长为18cm.(1)已知腰长是底边长的2倍,求各边长.(2)已知其中一边长为4cm,求另两边长.【解答】解:(1)设底边BC=acm,则AC=AB=2acm,∵三角形的周长是18cm,∴2a+2a+a=18,∴a=,2a=.答:等腰三角形的三边长是cm, cm, cm.(2)当4cm为腰,设底边为xcm,可得:4+4+x=18,解得:x=10,三角形的三边长是4cm,4m,10cm,不符合三角形的三边关系定理,当4cm为底,设腰为xcm,可得:x+4+x=18,解得:x=7,三角形的三边长是7cm,7cm,4cm,符合三角形的三边关系定理,所以另两边长7cm,7cm.19.(8分)已知:点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:(1)△ABC≌△DEF;(2)BE=CF.【解答】证明:(1)∵AC∥DF∴∠ACB=∠F在△ABC与△DEF中,∴△ABC≌△DEF(2)∵△ABC≌△DEF∴BC=EF∴BC﹣EC=EF﹣EC即BE=CF20.(10分)如图,AE是∠BAC的平分线,AB=AC.若点D是AE上任意一点,请证明:△ABD≌△ACD.【解答】证明:∵AE是∠BA C的平分线,∴∠BAD=∠CAD,在△ABD和△ACD中,,∴△BAD≌△CAD(SAS)21.(10分)已知:如图,点D在△ABC的边BC上,AB=AC=CD,AD=BD,求△ABC 各内角的度数.【解答】解:设∠B=α∵AB=AC,∴∠C=α,∵BD=BA,∴∠BAD=α,∵∠ADC为△ABC外角,∴∠ADC=2α,∵AC=DC,∴∠CAD=2α,∴∠BAC=3α,∴在△ABC中∠B+∠C+∠BAC=5α=180°,∴α=36°,∴∠B=∠C=36°,∴∠CAB=108°.22.(10分)如图,AF=DB,BC=EF,AC=DE,求证:BC∥EF.【解答】证明:∵AF=DB,∴AF+FB=DB+FB,∴AB=DF,在△ACB和△DEF中,,∴△ACB≌△DEF(SSS),∴∠ABC=∠EFD,∴CB∥EF.23.(12分)△ABC在平面直角坐标系中的位置如图所示A、B、C三点在格点上.(1)作出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于y对称的△A2B2C2,并写出点C2的坐标.(3)求△ABC的面积.【解答】解:(1)如图,△A1B1C1即为所求;点C1的坐标(3,﹣2)(2)如图,△A2B2C2即为所求;点C2的坐标(﹣3,2).(3)S△ABC=2×3﹣×1×2﹣×1×2﹣×1×3=2.5.人教版八年级上学期期中考试数学试卷(三)一、选择题(共10小题,每小题3分,共30分.)1.(3分)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C.D.2.(3分)点(﹣4,﹣2)关于y轴对称的点的坐标是()A.(4,2)B.(4,﹣2)C.(﹣4,﹣2)D.(﹣4,2)3.(3分)对于任意三角形的高,下列说法不正确的是()A.锐角三角形有三条高B.直角三角形只有一条高C.任意三角形都有三条高D.钝角三角形有两条高在三角形的外部4.(3分)一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7 B.7或9 C.7 D.95.(3分)等腰三角形的一个角是80°,则它的底角是()A.50°B.80°C.50°或80°D.20°或80°6.(3分)如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短7.(3分)如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30°B.40°C.50°D.60°8.(3分)如图,△ABC中,AB=AC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AD⊥BC;(3)∠B=∠C;(4)AD是△ABC的角平分线.其中正确的有()A.1个B.2个C.3个D.4个9.(3分)如图所示,△ABC中,AC=AD=BD,∠DAC=80°,则∠B的度数是()A.40°B.35°C.25°D.20°10.(3分)如图,点A的坐标是(2,2),若点P在x轴或y轴上且△APO是等腰三角形,这样的点P共有()个.A.6 B.7 C.8 D.9二、填空题(本大题共6小题,每小题3分,共18分.)11.(3分)三角形的外角和等于度.12.(3分)直线CD是线段AB的垂直平分线,点P在直线CD上,如果PA=5,则PB= .13.(3分)如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7= °.14.(3分)如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为.15.(3分)如图,等边三角形ABC中,BD是AC边上的中线,BD=BE,则∠EDA= 度.16.(3分)如图,△ABC是等边三角形,D为AB的中点,DE⊥AC垂足为点E,EF∥AB,AE=1,则△EFC的周长= .三、作图题:(每题8分,共16分)17.(8分)如图,在平面直角坐标系xoy中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1.(2)写出点A1,B1,C1的坐标(直接写答案).A 1B1.C118.(8分)如图,在5×5的正方形网格中,每个小正方形的边长均为1,线段AB的端点在格点上,按要求画出格点三角形,并求其面积.(1)在图①中画出一个以AB为腰的等腰三角形ABC,其面积为.(2)在图②中画出一个以AB为底的等腰三角形ABC,其面积为.四、解答题(每题8,共32分)19.(8分)已知,如图,点B、F、C、E在同一直线上,AC、DF相交于点G,AB ⊥BE,垂足为B,DE⊥BE,垂足为E,且AB=DE,AC=DF.求证:BF=CE.20.(8分)如图,在△ABC中,AB=AC,BD垂直AC,垂足为D,∠A=40°,求∠DBC的度数.21.(8分)如图∠BAC=30°,D为角平分线上一点,DE⊥AC于E,DF∥AC且交AB于F.(1)求证:△ADF是等腰三角形.(2)若DF=10cm,求DE的长.22.(8分)如图,已知△ABC和△BED都是等边三角形,且A、E、D在一条直线上,且DC=4,BD=2,求AD的长度?五、解答题:(每题12分,共24分)23.(12分)如图:在等边三角形ABC中,AE=CD,(1)求证:△ABE≌△CAD;(2)过B点作BQ⊥AD于Q,求证:BP=2PQ.24.(12分)实验与探究:(1)由图观察易知A(0,2)关于直线l的对称点A′的坐标为(2,0),请在图中分别标明B(5,3)、C(﹣2,5)关于直线l的对称点B′、C′的位置,并写出他们的坐标:B′、C′;归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P'的坐标为(不必证明);运用与拓广:(3)已知两点D(1,﹣3)、E(﹣1,﹣4),试在直线l上确定一点Q,使点Q 到D、E两点的距离之和最小.(要有必要的画图说明,并保留作图痕迹)参考答案与试题解析一、选择题(共10小题,每小题3分,共30分.)1.(3分)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、不是轴对称图形,故错误;D、是轴对称图形,故正确.故选:D.2.(3分)点(﹣4,﹣2)关于y轴对称的点的坐标是()A.(4,2)B.(4,﹣2)C.(﹣4,﹣2)D.(﹣4,2)【解答】解:点(﹣4,﹣2)关于y轴对称的点的坐标是(4,﹣2),故选:B.3.(3分)对于任意三角形的高,下列说法不正确的是()A.锐角三角形有三条高B.直角三角形只有一条高C.任意三角形都有三条高D.钝角三角形有两条高在三角形的外部【解答】解:A、锐角三角形有三条高,说法正确,故本选项不符合题意;B、直角三角形有三条高,说法错误,故本选项符合题意;C、任意三角形都有三条高,说法正确,故本选项不符合题意;D、钝角三角形有两条高在三角形的外部,说法正确,故本选项不符合题意;故选:B.4.(3分)一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7 B.7或9 C.7 D.9【解答】解:根据三角形的三边关系,得第三边大于8﹣3=5,而小于两边之和8+3=11.又第三边应是奇数,则第三边等于7或9.故选:B.5.(3分)等腰三角形的一个角是80°,则它的底角是()A.50°B.80°C.50°或80°D.20°或80°【解答】解:①当顶角是80°时,它的底角=(180°﹣80°)=50°;②底角是80°.所以底角是50°或80°.故选:C.6.(3分)如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短【解答】解:构成△AOB,这里所运用的几何原理是三角形的稳定性.故选:A.7.(3分)如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30°B.40°C.50°D.60°【解答】解:∵∠B=90°,∠1=30°,∴∠3=90°﹣∠1=90°﹣30°=60°,在Rt△ABC和Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL),∴∠2=∠3=60°.故选:D.8.(3分)如图,△ABC中,AB=AC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AD⊥BC;(3)∠B=∠C;(4)AD是△ABC的角平分线.其中正确的有()A.1个B.2个C.3个D.4个【解答】解:∵AB=AC,∴∠B=∠C,∴(3)正确,∵D为BC的中点,∴AD⊥BC,∠BAD=∠CAD,∴(2)(4)正确,在△ABD和△ACD中∴△ABD≌△ACD(SSS),∴(1)正确,∴正确的有4个,故选:D.9.(3分)如图所示,△ABC中,AC=AD=BD,∠DAC=80°,则∠B的度数是()A.40°B.35°C.25°D.20°【解答】解:∵AD=AC,∠DAC=80°,∴∠ADC==50°,又∵AD=BD,∴∠B=∠BAD,∵∠B+∠BAD=∠ADC,∴2∠B=∠ADC,∴∠B=∠ADC=25°,故选:C.10.(3分)如图,点A的坐标是(2,2),若点P在x轴或y轴上且△APO是等腰三角形,这样的点P共有()个.A.6 B.7 C.8 D.9【解答】解:如图,满足条件的点P有8个,故选:C.二、填空题(本大题共6小题,每小题3分,共18分.)11.(3分)三角形的外角和等于360 度.【解答】解:三角形的外角和等于360°.故答案是:360.12.(3分)直线CD是线段AB的垂直平分线,点P在直线CD上,如果PA=5,则PB= 5 .【解答】解:∵直线CD是线段AB的垂直平分线,P为直线CD上的一点,∴PB=PA,而已知线段PA=5,∴PB=5.故答案是:5.13.(3分)如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7= 540 °.【解答】解:如图,∵∠1+∠2+γ=180°①,∠3+∠4+β+θ=360°②,∠5+∠6+∠7+α=360°③,∴①+②+③得,∠1+∠2+∠3+∠4+∠5+∠6+∠7+α+β+γ+θ=900°,∵α+β=180°,γ+θ=180°,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7,=900°﹣180°﹣180°,=540°.故答案为:540.14.(3分)如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为30°.【解答】解:∵AB=AC,∠A=40°,∴∠ABC=∠C=70°,∵DE是AB的垂直平分线,∴EA=EB,∴∠EBA=∠A=40°,∴∠CBE=∠ABC﹣∠EBA=30°,故答案为:30°.15.(3分)如图,等边三角形ABC中,BD是AC边上的中线,BD=BE,则∠EDA= 15 度.【解答】解:∵等边三角形ABC中,BD是AC边上的中线,∴∠ABD=ABC=30°,∠ADB=90°,∵BD=BE,∴∠BDE=∠BED==75°,∴∠EDA=15°.故答案为:15.16.(3分)如图,△ABC是等边三角形,D为AB的中点,DE⊥AC垂足为点E,EF∥AB,AE=1,则△EFC的周长= 9 .【解答】解:在Rt△ADE中,∠A=60°,∴∠A DE=30°,又AE=1,∴AD=2AE=2,∵D为AB的中点,∴AB=AC=4,∴CE=AC﹣AE=4﹣1=3,∵EF∥AB,∴∠EFC=∠B=60°,又∠C=60°,∴△EFC为等边三角形,∴EF=FC=EC=3,∴△EFC的周长=3+3+3=9.三、作图题:(每题8分,共16分)17.(8分)如图,在平面直角坐标系xoy中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1.(2)写出点A1,B1,C1的坐标(直接写答案).A1(﹣1,2)B1(﹣3,1)C1(2,﹣1).【解答】解:(1)所作图形如下所示:(2)A1,B1,C1的坐标分别为:(﹣1,2),(﹣3,1),(2,﹣1).故答案为:(﹣1,2),(﹣3,1),(2,﹣1).18.(8分)如图,在5×5的正方形网格中,每个小正方形的边长均为1,线段AB的端点在格点上,按要求画出格点三角形,并求其面积.(1)在图①中画出一个以AB为腰的等腰三角形ABC,其面积为4或5或3 .(2)在图②中画出一个以AB为底的等腰三角形ABC,其面积为3,2.5 .【解答】解:(1)以AB为腰的等腰三角形的面积:×2×3=3;面积为:4或5或3;(2)以AB为底的等腰三角形的面积:2×3﹣×3×1﹣×1×2×2=2.5,故答案为3,2.5.四、解答题(每题8,共32分)19.(8分)已知,如图,点B、F、C、E在同一直线上,AC、DF相交于点G,AB ⊥BE,垂足为B,DE⊥BE,垂足为E,且AB=DE,AC=DF.求证:BF=CE.【解答】证明:∵AB⊥BE,DE⊥BE,∴∠B=∠E=90°.在Rt△ABC和△RtDEF中,,∴△RtABC≌Rt△DEF,∴BC=EF,∴BC﹣CF=EF﹣CF,即:BF=CE.20.(8分)如图,在△ABC中,AB=AC,BD垂直AC,垂足为D,∠A=40°,求∠DBC的度数.【解答】解:∵在△ABC中,AB=AC,∠A=40°,∴∠ABC=∠ACB=(180°﹣40°)÷2=70°;又∵BD⊥AC垂足为D,∴∠DBC=90°﹣∠ACB=90°﹣70°=20°.21.(8分)如图∠BAC=30°,D为角平分线上一点,DE⊥AC于E,DF∥AC且交AB于F.(1)求证:△ADF是等腰三角形.(2)若DF=10cm,求DE的长.【解答】(1)证明:∵∠BAC=30°,D为角平分线上一点,∴∠BAD=∠CAD,∵DF∥AC,∴∠CAD=∠FDA,∴∠BAD=∠FDA,∴FA=FD,即△ADF是等腰三角形;(2)解:作DH⊥AB于H,∵DF∥AC,∴∠BFD=∠BAC=30°,∴DH=DF=5,∵D为角平分线上一点,DE⊥AC,DH⊥AB,∴DE=DH=5cm.22.(8分)如图,已知△ABC和△BED都是等边三角形,且A、E、D在一条直线上,且DC=4,BD=2,求AD的长度?【解答】解:∵△ABC和△BED都是等边三角形,∴AB=BC,BE=BD,∠ABC=∠EBD=60°,∴∠ABE=∠CBD=60°﹣∠CBE,在△ABE和△CBD中,∴△ABE≌△CBD(SAS),∴AE=CD=4,∵△BED是等边三角形,。

八年级第一学期学期中考试数学试卷(附带答案)

八年级第一学期学期中考试数学试卷(附带答案)

八年级第一学期学期中考试数学试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________注意事项:本试题共6页,满分为150分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并同时将考点、姓名、准考证号和座号填写在试卷规定的位置上.答选择题时,必须使用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;答非选择题时,用0.5mm 黑色签字笔在答题卡上题号所提示的答题区域作答.答案写在试卷上无效.考试结束后,将本试卷和答题卡一并交回.第I 卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只 有一项是符合题目要求的.) 1.4的算术平方根是( )A.±2B.2C.﹣2D.±16 2.下列各数中,是无理数的是( )A.3.1415926B.√4C.√﹣83D.π 3.下列各点在第二象限的是( )A.(﹣√3,0)B.(﹣2,1)C.(0,﹣1)D.(2,﹣1) 4.下列运算正确的是( )A.√2+√3=√5B.3√3-√3=3C.√3×√5=√15D.√24+√6=45.已知点(-1,y 1),(3,y 2)在一次函数y=2x+1的图象上,则y 1,y 2的大小关系是( ) A.y 1<y 2 B.y 1=y 2 C.y 1>y 2 D.不能确定6.已知(k ,b )为第四象限内的点,则一次函数y =kx -b 的图象大致( )A. B. C. D.7.已知{x =1y =﹣1是方程x -my=3的解,那么m 的值( )A.2B.﹣2C.4D.﹣48.我国古代《算法统宗》里有这样一首诗:"我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空."诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住:如果每一间客房住9人,那么就空出一间客房,设该店有客房x 间、房客y 人,下列方程组中正确的是( ) A.{7x +7=y9(x -1)=y B.{7x +7=y 9(x +1)=y C.{7x -7=y 9(x -1)=y D.{7x -7=y9(x +1)=y9.如图,△ABC 是直角三角形,点C 在数轴上对应的数为﹣2,且AC=3,AB=1,若以点C 为圆心,CB 为半径画弧交数轴于点M ,则A 和M 两点间的距离为( )A.0.4B.√10-2C.√10-3D.√5-1(第9题图) (第10题图)10.甲、乙两车从A 城出发匀速行驶至B 城,在整个行驶过程中,甲、乙两车离开A 城的距 离y (千米)与甲车行驶的时间1(小时)之间的函数关系如图所示,则下列结论:①A 、B 两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t =54或154.其中正确的结论有( ) A.1个 B.2个 C.3个 D.4个第II 卷(非选择题共110分)二.填空题:(本大题共6个小题,每小题4分,共24分) 11.电影票上"8排5号"记作(8,5),则"6排7号"记作 . 12.。

2020-2021学年第一学期八年级数学期中考试卷(及答案)共五套

2020-2021学年第一学期八年级数学期中考试卷(及答案)共五套

2020-2021学年第一学期期中考试试卷八年级数学一、选择题(本大题共10小题,每小题2分,共20分)1.下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的A .B .C .D .2.在平面直角坐标系中,点P (1,﹣2)的位置在A .第一象限B .第二象限C .第三象限D .第四象限3.等腰三角形两边长分别为2和4,则这个等腰三角形的周长为A .6B .8C .10D .8或104.今年10月环太湖中长跑中参赛选手达到21780人,这个数精确到千位表示约为( ) A .2.2×104B .22000C .2.1×104D .225.如图,在数轴上表示实数7+1的点可能是A .PB .QC .RD .S6.如图是跷跷板的示意图,支柱OC 与地面垂直,点O 是AB 的中点,AB 绕着点O 上下转动.当A 端落地时,∠OAC =20°,跷跷板上下可转动的最大角度(即∠A ′OA )是 A .80° B .60° C .40° D .20°7.如图,将一个三角形纸片ABC 沿过点B 的直线折叠,使点C 落在AB 边上的点E 处,折痕为BD ,则下列结论一定正确的是 A .AD =BDB .AE =ACC .ED +EB =DBD .AE +CB =AB8.由下列条件不能判定△ABC 为直角三角形的是A .a =,b =,c =B .∠A +∠B =∠C C .∠A :∠B :∠C =1:3:2D .(b +c )(b ﹣c )=a 29.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC =6,DE =3,则△BCE 的面积等于A .6B .8C .9D .1810.如图,在四边形ABCD 中,AB =AC =BD ,AC 与BD 相交于H ,且AC ⊥BD .①ABPQ RS(第5题)ABCA 'B 'O(第6题)(第7题)∥CD ;②△ABD ≌△BAC ;③AB 2+CD 2=AD 2+CB 2;④∠ACB +∠BDA =135°.其中真命题的个数是A .1B .2C .3D .4二、填空题(本大题共8小题,每空2分,共16分) 11.81的算术平方根是 ▲ .12.在平面直角坐标系中,点P (-1,2)关于x 轴的对称点的坐标为 ▲ . 13.如图,在R t △ABC 中,CD 是斜边AB 上的中线,若AB =20,则CD = ▲ . 14.如图,△ABC 是边长为6的等边三角形,D 是BC 上一点,BD =2,DE ⊥BC 交AB 于点E ,则线段AE = ▲ .15.如图,三个正方形中,其中两个正方形的面积分别是100,36,则字母A 所代表的正方形的边长是 ▲ .16.如图,在△ABC 中,AB =AC ,∠B =66°,D ,E 分别为AB ,BC 上一点,AF ∥DE ,若∠BDE =30°,则∠F AC 的度数为 ▲ .17.如图,数轴上点A 、点B 表示的数分别中1和5,若点A 是线段BC 的中点,则点C 所表示的数是 ▲ .18.已知:如图,ΔABC 中,∠A =45°,AB =6,AC =24,点D 、E 、F 分别是三边AB 、BC 、CA 上的点,则ΔDEF 周长的最小值是 ▲ .AB CD E(第14题)AB CD(第13题)(第15题)ABCDH(第10题)(第9题)A BCF DE(第16题)(第17题)(第18题)FEDCBA三、解答题(本大题共9题,共64分) 19.(8分)(1)计算:()234272-+-; (2)已知:4x 2=20,求x 的值.20.(4分)如图,四边形ABCD 中,AB =BC ,AD =CD ,求证:∠A =∠C .CDBA21.(6分)如图,在△ABC 中,AD ⊥BC ,AB =10,BD =8,∠ACD =45°. (1)求线段AD 的长;(2)求△ABC 的周长.22.(6分)已知点A (1,2a -1),点B (-a ,a -3) . ①若点A 在第一、三象限角平分线上,求a 值.②若点B 到x 轴的距离是到y 轴距离的2倍,求点B 所在的象限.23.(8分)如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB ,在图③中已画出点A .按下列要求画图:(1)在图①中,以格点为顶点,AB 为一边画一个等腰三角形ABC ; (2)在图②中,以格点为顶点,AB 为一边画一个正方形;(3)在图③中,以点A 为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形,这个正方形的面积= .24.(8分)如图,在△ABC 中,AB =AC ,点D 、E 、F 分别在BC 、AB 、AC 边上,且BE =CF ,BD =CE .(1)求证:△DEF 是等腰三角形;(2)当∠A =40°时,求∠DEF 的度数.25.(8分)如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足P A=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值.26.(8分)如图,在Rt△ABC中,∠ACB=90°,AD、BE、CF分别是三边上的中线.(1)若AC=1,BC=.求证:AD2+CF2=BE2;(2)是否存在这样的Rt△ABC,使得它三边上的中线AD、BE、CF的长恰好是一组勾股数?请说明理由.(提示:满足关系a2+b2=c2的3个正整数a、b、c称为勾股数.)27.(8分)定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在△ABC中,AB=AC,点D在AC边上,且AD=BD=BC,求∠A的大小;(2)在图1中过点C作一条线段CE,使BD,CE是△ABC的三等分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC 边上,且AD=BD,DE=CE,请直接写出∠C所有可能的值.2020~2021学年度第一学期期中考试八年级数学试题一、选择题(共10小题,每小题3分,共30分) 1.下列图形中不是轴对称图形的是( )2.在平面直角坐标系中,点P (-3,2)在( ) A .第一象限B .第二象限C .第三象限D .第四象限 3.三角形中最大的内角不能小于( ) A .30°B .45°C .60°D .90°4.下列关于两个三角形全等的说法: ① 三个角对应相等的两个三角形全等 ② 三条边对应相等的两个三角形全等③ 有两边和它们的夹角对应相等的两个三角形全等 ④ 有两边和其中一边上的高对应相等的两个三角形全等 正确的说法个数是( ) A .1个 B .2个 C .3个 D .4个 5.在平面直角坐标系中,点P (2,-3)关于x 轴的对称点是( )A .(-2,3)B .(2,3)C .(-2,-3)D .(-3,2) 6.如图所示,∠A =28°,∠BFC =92°,∠B =∠C ,则∠BDC 的度数是( )A .85°B .75°C .64°D .60°7.如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别是D 、E ,AD 、CE 交于点H .已知EH =EB =3,AE =5,则CH 的长是( ) A .1B .2C .53D .358.如图所示的正方形网格中,网格线的交点称为格点,已知A 、B 是两格点,如果C 也是图中的格点,且使得△ABC 为等腰三角形,则点C 的个数是( ) A .6个B .7个C .8个D .9个9.如图,AB =2,BC =AE =6,CE =CF =7,BF =8,四边形ABDE 与△CDF 面积的比值是( ) A .21B .32C .43 D .110.如图,在△ABC 中,BC 的垂直平分线DF 交△ABC 的外角平分线AD 于点D ,DE ⊥AB 于点E ,且AB >AC ,则( ) A .BC =AC +AEB .BE =AC +AEC .BC =AC +AD D .BE =AC +AD二、填空题(本大题共6个小题,每小题3分,共18分)11.若一个多边形的内角和是外角和的2倍,则它的边数是___________12.设△ABC 的三边长分别为a 、b 、c ,其中a 、b 满足|a +b -6|+(a -b +4)2=0,则第三边长c 的取值范围是_____________13.点M (-5,3)关于直线x =1的对称点的坐标是___________14.如图所示,在△FED 中,AD =FC ,∠A =∠F .如果用“SAS ”证明△ABC ≌△FED ,只需添加条件_____________即可15.在△ABC 中,高AD 、BE 所在的直线相交于点G ,若BG =AC ,则∠ABC 的度数是_____16.如图,在Rt △ABC 中,∠C =90°,BC =6,AC =8,一条线段PQ =AB =10,P 、Q 两点分别在AC 和过点A 且垂直于AC 的射线AX 上运动,如果以A 、P 、Q 为顶点的三角形与△ABC 全等,则AP =____________三、解答题(共8小题,共72分)17.(本题8分)解方程组:(1) ⎩⎨⎧=-=-32373y x y x(2) ⎩⎨⎧=-=+5342y x y x18.(本题8分)如图所示,在△ABC 中:(1) 画出BC 边上的高AD 和中线AE(2) 若∠B =30°,∠ACB =130°,求∠BAD 和∠CAD 的度数19.(本题8分)如图,点B 、E 、C 、F 在同一直线上,且AB =DE ,AC =DF ,BE =CF ,请将下面说明△ABC ≌△DEF 的过程和理由补充完整解:∵BE =CF (_____________)∴BE +EC =CF +EC即BC =EF在△ABC 和△DEF 中⎪⎩⎪⎨⎧===__________________BC DF AB )()(∴△ABC ≌△DEF (__________)20.(本题8分)如图所示,D是边AB的中点,△BCD的周长比△ACD的周长大3 cm,BC=8 cm,求边AC的长21.(本题8分)已知,如图所示,CE⊥AB与E,BF⊥AC与F,且BD=CD,求证:(1) △BDE≌△CDF(2) 点D在∠BAC的角平分线上22.(本题10分)如图,设△ABC和△CDE都是等边三角形,并且∠EBD=90°,求证:(1) △ACE≌△BCD(2) 求∠AEB的度数23.(本题10分)如图1,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F(1) 直接写出∠AFC的度数(2) 请你判断并写出FE与FD之间的数量关系(3) 如图2,在△ABC中,如果∠ACB不是直角,而(1)中的其它条件不变,试判断线段AE、CD 与AC之间的数量关系并说明理由24.(本题12分)如图1,直线AB分别与x轴、y轴交于A、B两点,OC平分∠AOB交AB于点C,点D为线段AB上一点,过点D作DE∥OC交y轴于点E.已知AO=m,BO=n,且m、n 满足(n-6)2+|n-2m|=0(1) 求A、B两点的坐标(2) 若点D为AB中点,求OE的长(3) 如图2,若点P(x,-2x+6)为直线AB在x轴下方的一点,点E是y轴的正半轴上一动点,以E为直角顶点作等腰直角△PEF,使点F在第一象限,且F点的横、纵坐标始终相等,求点P 的坐标2020-2021学年八年级(上)期中数学模拟试卷一.选择题(共12小题,满分36分,每小题3分)1.下面的图形中,是轴对称图形的是()A.B.C.D.2.下列因式分解结果正确的是()A.x2+3x+2=x(x+3)+2 B.4x2﹣9=(4x+3)(4x﹣3)C.x2﹣5x+6=(x﹣2)(x﹣3)D.a2﹣2a+1=(a+1)23.利用尺规进行作图,根据下列条件作三角形,画出的三角形不唯一的是()A.已知三条边B.已知两边和夹角C.已知两角和夹边D.已知三个角4.用尺规作图法作已知角∠AOB的平分线的步骤如下:①以点O为圆心,任意长为半径作弧,交OB于点D,交OA于点E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB的内部相交于点C;③作射线OC.则射线OC为∠AOB的平分线.由上述作法可得△OCD≌△OCE的依据是()A.SAS B.ASA C.AAS D.SSS5.已知一个三角形有两边相等,且周长为25,若量得一边为5,则另两边长分别为()A.10,10 B.5,10 C.12.5,12.5 D.5,156.若关于x的二次三项式x2+kx+b因式分解为(x﹣1)(x﹣3),则k+b的值为()A.﹣1 B.1 C.﹣3 D.37.如图,已知AB∥CF,E为DF的中点,若AB=8cm,CF=5cm,则BD为()A.2cm B.3cm C.4cm D.1cm8.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°9.当x=1时,代数式x3+x+m的值是7,则当x=﹣1时,这个代数式的值是()A.7 B.3 C.1 D.﹣710.如图,△BDC′是将矩形纸片ABCD沿BD折叠得到的,BC′与AD交于点E,则图中共有全等三角形()A.2对B.3对C.4对D.5对11.已知AD∥BC,AB⊥AD,点E,点F分别在射线AD,射线BC上.若点E与点B关于AC 对称,点E与点F关于BD对称,AC与BD相交于点G,则()A.1+AB/AD=B.2BC=5CFC.∠AEB+22°=∠DEF D.4AB/BD =12.如图,Rt△ABC中,AD是∠BAC的平分线,DE⊥AB,垂足为E,若AB=10cm,AC=6cm,则BE的长度为()A.10cm B.6cm C.4cm D.2cm二.填空题(共6小题,满分18分,每小题3分)13.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为.14.如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B=70°,∠FAE=19°,则∠C= 度.15.已知:在△ABC中,AH⊥BC,垂足为点H,若AB+BH=CH,∠ABH=70°,则∠BAC= °.16.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=2,则EF= .17.矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于.18.我们将1×2×3×…×n记作n!(读作n的阶乘),如2!=1×2,3!=1×2×3,4!=1×2×3×4,若设S=1×1!+2×2!+3×3!+…+2016×2016!,则S除以2017的余数是.三.解答题(共7小题)19.因式分解:(1)9a2﹣4(2)ax2+2a2x+a320.如图,△ABC三个顶点的坐标分别为A(4,5)、B(1,0)、C(4,0).(1)画出△ABC关于y轴的对称图形△A1B1C1,并写出A1点的坐标;(2)在y轴上求作一点P,使△PAB的周长最小,并求出点P的坐标及△PAB的周长最小值.21.如图,已知:A、F、C、D在同一条直线上,BC=EF,AB=DE,AF=CD.求证:BC∥EF.22.若m2﹣2m n+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+()=0,即()2+()2=0.根据非负数的性质,∴m=n=阅读上述解答过程,解答下面的问题,设等腰三角形ABC的三边长a、b、c,且满足a2+b2﹣4a﹣6b+13=0,求△ABC的周长.23.如图,BC⊥CD,∠1=∠2=∠3,∠4=60°,∠5=∠6.(1)CO是△BCD的高吗?为什么?(2)求∠5、∠7的度数.24.如图,△ABC中,AB=AC,∠BAC=90°,点D是直线AB上的一动点(不和A、B重合),BE⊥CD于E,交直线AC于F.(1)点D在边AB上时,证明:AB=FA+BD;(2)点D在AB的延长线或反向延长线上时,(1)中的结论是否成立?若不成立,请画出图形并直接写出正确结论.25.如图,某学校(A点)与公路(直线L)的距离AB为300米,又与公路车站(D点)的距离AD为500米,现要在公路上建一个小商店(C点),使CA=CD,求商店与车站之间的距离CD的长.参考答案一.选择题1. D.2. C.3. D.4. D.5. A.6. A.7. B.8. B.9. B.10. C.11. A.12. C.二.填空题13. 4.14. 24.15. 75°或35°16. 4.17..18. 2016.三.解答题19.解:(1)9a2﹣4=(3a+2)(3a﹣2)(2)ax2+2a2x+a3=a(x+a)220.解:(1)如图所示,由图可知 A1(﹣4,5);(2)如图所示,点P即为所求点.设直线AB1的解析式为y=kx+b(k≠0),∵A(4,5),B1(﹣1,0),∴,解得,∴直线AB1的解析式为y=x+1,∴点P坐标(0,1),∴△PAB的周长最小值=AB1+AB=+=5+.21.证明:如图,∵AF=CD,∴AF+CF=CD+CF,即AC=DF.∴在△ABC与△DEF中,,∴△ABC≌△DEF(SSS),∴∠BCA=∠EFD,∴BC∥EF.22.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0,即(m﹣n)2+(n﹣4)2=0.根据非负数的性质,∴m=n=4,故答案为:n2﹣8n+16;m﹣n;n﹣4;4;已知等式变形得:(a﹣2)2+(b﹣3)2=0,所以a=2,b=3,第一种情况2,2,3,周长=7;第二种情况3,3,2,周长=8.23.解:(1)CO是△BCD的高.理由如下:∵BC⊥CD,∴∠DCB=90°,∴∠1=∠2=∠3=45°,∴△DCB是等腰直角三角形,∴CO是∠DCB的角平分线,∴CO⊥BD(等腰三角形三线合一);(2)∵在△ACD中,∠1=∠3=45°,∠4=60°,∴∠5=30°,又∵∠5=∠6,∴∠6=30°,∴在直角△AOB中,∠7=180°﹣90°﹣30°=60°.24.(本题满分8分)(1)证明:如图1,∵BE⊥CD,即∠BEC=90°,∠BAC=90°,∴∠F+∠FBA=90°,∠F+∠FCE=90°.∴∠FBA=∠FCE.……………………………………………………………(1分)∵∠FAB=180°﹣∠DAC=90°,∴∠FAB=∠DAC.∵AB=AC,∴△FAB≌△DAC.………………………………………………(2分)∴FA=DA.………………………………………………∴AB=AD+BD=FA+BD.………………………………………(4分)(2)如图2,当D在AB延长线上时,AF=AB+BD,…………(6分)理由是:同理得:△FAB≌△DAC,∴AF=AD=AB+BD;如图3,当D在AB反向延长线上时,BD=AB+AF,…………………(8分)理由是:同理得:△FAB≌△DAC,∴AF=AD,∴BD=AB+AD=AB+AF.25.解:∵AB⊥l于B,AB=300m,AD=500m.∴BD==400m.设CD=x米,则CB=(400﹣x)米,x2=(400﹣x)2+3002,x2=160000+x2﹣800x+3002,800x=250000,x=312.5m.答:商店与车站之间的距离为312.5米.2020-2021学年八年级(上)期中数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cmC.5cm,5cm,10cm D.6cm,7cm,14cm2.下列四个图案中,不是轴对称图案的是()A.B.C.D.3.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)4.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CADC.BE=DC D.AD=DE5.下列计算正确的是()A.a2+a2=2a4B.2a2×a3=2a6C.3a﹣2a=1 D.(a2)3=a6[来6.只用一种正六边形地砖密铺地板,则能围绕在正六边形的一个顶点处的正六边形地砖有()A.3块B.4块C.5块D.6块7.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC ≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE8.到三角形三个顶点的距离相等的点是三角形()的交点.A.三个内角平分线B.三边垂直平分线C.三条中线D.三条高9.如图,四边形ABCD中,F是CD上一点,E是BF上一点,连接AE、AC、DE.若AB=AC,AD=AE,∠BAC=∠DAE=70°,AE平分∠BAC,则下列结论中:①△ABE≌△ACD:②BE=EF;③∠BFD=110°;④AC垂直平分DE,正确的个数有()A.1个B.2个C.3个D.4个10.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 个B.7 个C.8 个D.9个二.填空题(共6小题,满分18分,每小题3分)11.计算(2m2n2)2•3m2n3的结果是.12.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是.13.等腰三角形的一个外角是80°,则其底角是度.14.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是.15.如图,在Rt△ABC中,斜边AB的垂直平分线交边AB于点E,交边BC于点D,如果∠B=28°,那么∠CAD= 度.16.在等边三角形ABC中,AD是BC边上的高,E为AC的中点P为AD上一动点,若AD=12,则PC+PE的最小值为.三.解答题(共9小题,满分72分)17.(6分)计算:(1)(12a3﹣6a2+3a)÷3a;(2)(x﹣y)(x2+xy+y2).18.(6分)如图,∠A=50°,OB、OC为角平分线,求∠BOC.19.(8分)如图,方格图中每个小正方形的边长为1,点A,B,C都是格点.(1)画出△ABC关于直线BM对称的△A1B1C1;(2)写出AA1的长度.20.(8分)计算:(1)﹣(a2b)3+2a2b•(﹣3a2b)2(2)(a+2b﹣c)(a﹣2b+c)(3)已知6x﹣5y=10,求[(﹣2x+y)(﹣2x﹣y)﹣(2x﹣3y)2]÷4y的值.21.(8分)如图,点D,C在BF上,AB∥EF,∠A=∠E,BD=CF.求证:AB=EF.22.(8分)已知一个等腰三角形的三边长分别为2x﹣1、x+1、3x﹣2,求这个等腰三角形的周长.(1)完成部分解题过程,在以下解答过程的空白处填上适当的内容.解:①当2x﹣1=x+1时,解x= ,此时构成三角形(填“能”或“不能”).②当2x﹣1=3x﹣2时,解x= ,此时构成三角形(填“能”或“不能”).(2)请你根据(1)中两种情况的分类讨论,完成第三种情况的分析,若能构成等腰三角形,求出这个三角形的周长.24.(10分)已知,△ABC是等边三角形,过点C作CD∥AB,且CD=AB,连接BD交AC于点O(1)如图1,求证:AC垂直平分BD;(2)点M在BC的延长线上,点N在AC上,且MD=NM,连接BN.①如图2,点N在线段CO上,求∠NMD的度数;②如图3,点N在线段AO上,求证:NA=MC.25.(10分)已知△ABC是等边三角形,点D,E,F分别是边AB,BC,AC的中点,点M是射线EC上的一个动点,作等边△DMN,使△DMN与△ABC在BC边同侧,连接NF.(1)如图1,当点M与点C重合时,直接写出线段FN与线段EM的数量关系;(2)当点M在线段EC上(点M与点E,C不重合)时,在图2中依题意补全图形,并判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)连接DF,直线DM与直线AC相交于点G,若△DNF的面积是△GMC面积的9倍,AB=8,请直接写出线段CM的长.参考答案与试题解析一.选择题1.【解答】解:A、∵5+4=9,9=9,∴该三边不能组成三角形,故此选项错误;B、8+8=16, 16>15,∴该三边能组成三角形,故此选项正确;C、5+5=10,10=10,∴该三边不能组成三角形,故此选项错误;D、6+7=13,13<14,∴该三边不能组成三角形,故此选项错误;故选:B.2.【解答】解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.3.【解答】解:点M(1,2)关于y轴对称点的坐标为(﹣1,2).故选:A.4.【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选:D.5.【解答】解:A、应为a2+a2=2a2,故本选项错误;B、应为2a2×a3=2a5,故本选项错误;C、应为3a﹣2a=a,故本选项错误;D、(a2)3=a6,正确.故选:D.6.【解答】解:因为正六边形的内角为120°,所以360°÷120°=3,即每一个顶点周围的正六边形的个数为3.故选:A.7.【解答】解:A、添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故A选项正确.B、添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故B选项错误.C、添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项错误.D、添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故D选项错误.故选:A.8.【解答】解:到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.故选:B.9.【解答】解:∵AB=AC,∠BAC=∠DAE,AE=AD,∴ABE≌△ACD,故①正确.∵ABE≌△ACD,∴∠AEB=∠ADC.∵∠AEB+∠AEF=180°,∴∠AEF+∠ADC=180°,∴∠BFD=180°﹣∠EAD=180°﹣70°=110°,故③正确.∵AE平分∠BAC,∴∠EAC=35°.又∵∠DAE=70°,∴AC平分∠EAD.又∵AE=AD,∴AC⊥EF,AC平分EF.∴AC是EF的垂直平分线,故④正确.由已知条件无法证明BE=EF,故②错误.故选:C.10.【解答】解:如图,分情况讨论:①AB为等腰△ABC的底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.二.填空题(共6小题,满分18分,每小题3分)11.【解答】解:原式=4m4n4•3m2n3=12m6n7,故答案是:12m6n7.12.【解答】解:设多边形的边数为n,根据题意,得(n﹣2)•180=3×360,解得n=8.则这个多边形的边数是八.13.【解答】解:与80°角相邻的内角度数为100°;当100°角是底角时,100°+100°>180°,不符合三角形内角和定理,此种情况不成立;当100°角是顶角时,底角的度数=80°÷2=40°;故此等腰三角形的底角为40°.故填40.14.【解答】解:过O作OE⊥AB于E,OF⊥AC于F,连接OA,∵OB,OC分别平分∠ABC和∠ACB,OD⊥BC,∴OE=OD,OD=OF,即OE=OF=OD=4,∴△ABC的面积是:S△AOB+S△AOC+S△OBC=×AB×OE+×AC×OF+×BC×OD=×4×(AB+AC+BC)=×4×21=42,故答案为:42.15.【解答】解:在Rt△ABC中,∠B=28°,∴∠CAB=90°﹣28°=62°,∵DE垂直平分AB,∴AD=BD,∴∠DAB=∠B=28°,∴∠CAD=∠CAB﹣∠DAB=62°﹣28°=34°.故答案为:34.16.【解答】解:如图,连接BE,与AD交于点P,此时PE+PC最小,∵△ABC是等边三角形,AD⊥BC,∴PC=PB,∴PE+PC=PB+PE=BE,即BE就是PE+PC的最小值,∵AD=12,点E是边AC的中点,∴AD=BE=12,∴PE+PC的最小值是12.故答案为12,三.解答题(共9小题,满分72分)17.【解答】解:(1)(12a3﹣6a2+3a)÷3a;=12a3÷3a﹣6a2÷3a+3a÷3a=4a2﹣2a+1;(2)(x﹣y)(x2+xy+y2).=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.18.【解答】解:∵OB、OC为角平分线,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∵∠ABC+∠ACB=180°﹣∠A,∠OBC+∠OCB=180°﹣∠BOC,∴2∠OBC+2∠OCB=180°﹣∠A,∴180°﹣∠A=2(180°﹣∠BOC),∴∠BOC=90°+∠A=90°+×50°=115°.19.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)由图可知,点A与点A1之间10个格子,所以AA1的长度为10.20.【解答】解:(1)原式=﹣a6b3+2a2b•9a4b2=﹣a6b3+18a6b3=17a6b3(2)原式=[a+(2b﹣c)][a﹣(2b﹣c)]=a2﹣(2b﹣c)2=a2﹣(4b2﹣4bc+c2)=a2﹣4b2+4bc﹣c2(3)当6x﹣5y=10时,∴3x﹣2.5y=5原式=[4x2﹣y2﹣(4x2﹣12xy+9y2)]÷4y=(12xy﹣10y2)÷4y=3x﹣2.5y=522.【解答】解:(1)①当2x﹣1=x+1时,解x=2,此时3,3,4,能构成三角形.②当2x﹣1=3x﹣2时,解x=1,此时1,2,1不能构成三角形.故答案为2,能,1,不能;(2)③当x+1=3x﹣2,解得x=,此时2,,能构成三角形.23.【解答】解:接OA,OB后,可证∠OAP=∠OBP=90°,其依据是直径所对圆周角为直角;由此可证明直线PA,PB都是⊙O的切线,其依据是经过半径外端且垂直于这条半径的直线是圆的切线,证明过程如下:由作图可知OP为⊙C的直径,∴∠OAP=∠OBP=90°,即OA⊥PA、OB⊥PB,∵OA、OB是⊙O的半径,∴OP是⊙O的切线.故答案为:直径所对圆周角为直角,经过半径外端且垂直于这条半径的直线是圆的切线.2020-2021学年八年级(上)期中数学模拟试卷一.选择题(共6小题,满分18分,每小题3分)1.如果三角形的三个内角的度数比是2:3:4,则它是()A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形2.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cmC.5cm,5cm,10cm D.6cm,7cm,14cm3.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙4.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE 5.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2) C.(1,﹣2)D.(2,﹣1)6.如右图是三条两两相交的笔直公路,某物流公司现要修建一个货物中转站,使它到三条公路的距离相等,这个货物中转站可选的位置有()A.3个B.4个C.5个D.6个二.填空题(共8小题,满分24分,每小题3分)7.如图,点E在△ABC边BC的延长线上,CD平分∠ACE,若∠A=70°,∠DCA=65°,则∠B的度数是.8.(3分)如图,在△ABC中,∠B=40°,∠C=28°,点D在BA的延长线上,则∠CAD的大小为.9.若一个多边形的内角和比外角和大360°,则这个多边形的边数为.10.如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为度.11.在△ABC中,∠C=∠A=∠B,则∠A= 度.12.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是(填上你认为适当的一个条件即可).13.已知点P(3,1)关于y轴的对称点Q的坐标是(a+b,﹣1﹣b),则ab的值为.14.在△ABC中,BC=9,AB的垂直平分线交BC与点M,AC的垂直平分线交BC于点N,则△AMN的周长= .三.解答题(共4小题,满分24分,每小题6分)15.(6分)等腰三角形一腰上的中线,分别将该三角形周长分成30cm 和33cm,试求该等腰三角形的底边长.16.(6分)如图,点F是△ABC的边BC延长线上一点.DF⊥AB,∠A=30°,∠F=40°,求∠ACF的度数.17.(6分)如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.18.(6分)如图所示,已知在△ABC中,AB=AC,D为线段BC上一点,E为线段AC上一点,且AD=AE.(1)若∠ABC=60°,∠ADE=70°,求∠BAD与∠CDE的度数;(2)设∠BAD=α,∠CDE=β,试写出α、β之间的关系并加以证明.四.解答题(共3小题,满分21分,每小题7分)19.(7分)已知:如图,△ABC中,D是BC延长线上一点,E是CA 延长线上一点,F是AB上一点,连接EF.求证:∠ACD>∠E.20.(7分)一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数.21.(7分)如图,在△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠C=40°,求∠BAD的度数;(2)若AC=5,DC=4,求△ABC的周长.五.解答题(共2小题,满分16分,每小题8分)22.(8分)如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).23.(8分)已知:如图1所示,等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN经过点A,BD⊥MN于点D,CE⊥MN于点E.(1)试判断线段DE、BD、CE之间的数量关系,并说明理由;(2)当直线MN运动到如图2所示位置时,其余条件不变,判断线段DE、BD、CE之间的数量关系.六.解答题(共2小题,满分17分)24.(8分)如图1,P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连接PQ交AC于点D.(1)求证:PD=DQ;(2)如图2,过P作PE⊥AC于E,若AB=2,求DE的长.25.(9分)如图,△ABC中,∠ACB=90°,AC=BC,将△ABC绕点C 逆时针旋转角α.(0°<α<90°)得到△A1B1C1,连接BB1.设CB1交AB于D,A1B1分别交AB、AC于E、F.(1)在图中不再添加其它任何线段的情况下,请你找出一对全等的三角形,并加以说明(△ABC与△A1B1C1全等除外);(2)当△BB1D是等腰三角形时,求α.参考答案一.选择题1. A.2. B.3. B.4. D.5. A.6. B.二.填空题7.60°.8.68°.9. 6.10.37.11. 60.12.【解答】解:∵∠1=∠2,∴∠AEB=∠AEC,又 AE公共,∴当∠B=∠C时,△ABE≌△ACE(AAS);或BE=CE时,△ABE≌△ACE(SAS);或∠BAE=∠CAE时,△ABE≌△ACE(ASA).13. 214. 9三.解答题16.解:在△DFB中,∵DF⊥AB,∴∠FDB=90°,∵∠F=40°,∠FDB+∠F+∠B=180°,∴∠B=50°.在△ABC中,∵∠A=30°,∠B=50°,∴∠ACF=∠A+∠B=30°+50°=80°.18.解:(1)∵AB=AC,∴∠B=∠C=60°,∴∠BAC=60°,∵AD=AE,∴∠ADE=∠AED=70°,∴∠DAE=40°,∴∠BAD=∠BAC﹣∠DAE=20°,∵∠AED=∠CDE+∠C,∴∠CDE=70°﹣60°=10°.(2)结论:α=2β,理由是:设∠BAC=x°,∠DAE=y°,则α=x°﹣y°,∵∠ACB=∠ABC,∴∠ACB=,∵∠ADE=∠AED,∴∠AED=,∴β=∠AED﹣∠ACB=﹣==,∴α=2β;19.证明:∵∠ACD是△ABC的一个外角,∴∠ACD>∠BAC,∵∠BAC是△AEF的一个外角,∴∠BAC>∠E,∴∠ACD>∠E.20.解:根据题意,得(n﹣2)•180=1620,解得:n=11.则这个多边形的边数是11,内角和度数是1620度.21.(1)解:∵EF垂直平分AC,∴AE=CE,∴∠C=∠EAC=40°,∵AD⊥BC,BD=DE,∴AB=AE,∴∠B=∠BEA=2∠C=80°,∴∠BAD=90°﹣80°=10°;(2)由(1)知:AE=EC=AB,∵BD=DE,∴AB+BD=DE+AE=DE+CE=DC,∴C△ABC=AB+BC+AC=2DC+AC=2×4+5=13..25.解:(1)全等的三角形有:△CBD≌△CA1F或△AEF≌△B1ED或△ACD≌△B1CF;证明:∵∠ACB1+∠A1CF=∠ACB1+∠BCD=90°∴∠A1CF=∠BCD∵A1C=BC∴∠A1=∠CBD=45°∴△CBD≌△CA1F;∴CF=CD,∵CA=CB1,∴AF=B1D,∵∠A=∠EB1D,∠AEF=∠B1ED,∴△AEF≌△B1ED,∵AC=B1C,∠ACD=∠B1CF,∠A=∠CB1F,∴△ACD≌△≌△B1CF.(2)在△CBB1中。

八年级上学期期中考试数学试卷含答案(共5套)

八年级上学期期中考试数学试卷含答案(共5套)

八年级上学期期中质量检测数学试题一、选择题(本大题共10小题,共40.0分)1.以下微信图标不是轴对称图形的是A. B. C. D.2.如图,下列条件中,不能证明≌的是A. ,B. ,C. ,D. ,3.如图,将三角形纸板的直角顶点放在直尺的一边上,,,则等于A.B.C.D.4.到三角形三个顶点的距离都相等的点是这个三角形的A. 三条高的交点B. 三条角平分线的交点C. 三条中线的交点D. 三条边的垂直平分线的交点5.在中,,,则的度数是A. B. C. D.6.如图所示,在中,,,AD是的角平分线,,垂足于E,,则BC等于A. 1B. 2C. 3D. 47.下列运算正确的是A. B. C. D.8.如图,已知D为边AB的中点,E在AC上,将沿着DE折叠,使A点落在BC上的F处若,则等于A.B.C.D.9.如果多边形的内角和是外角和的k倍,那么这个多边形的边数是A. kB.C.D.10.如图,,E是BC的中点,DE平分,下列说法:平分,点E到AD的距离等于CE,,其中正确的有A. 3个B. 2个C. 1个D. 4个二、填空题(本大题共6小题,共24.0分)11.等腰三角形的两边分别为1和2,则其周长为______.12.已知点与点关于y轴对称,则______.13.如图所示,有一块三角形田地,,作AB的垂直平分线ED交AC于D,交AB于E,量得BC的长是7m,请你替测量人员计算的周长为______14.等腰三角形一腰上的高与另一腰的夹角为,则顶角的度数为______.15.如图,AD是的角平分线,,垂足为F,,和的面积分别为48和26,求的面积______.16.如图,和都是等腰直角三角形,,连结CE交AD于点F,连结BD交CE于点G,连结下列结论中,正确的结论有______填序号;是等腰直角三角形;;;三、计算题(本大题共2小题,共19.0分)17.如图,,点E是CD的中点,BE的延长线与AD的延长线交于点若,,求AD长.18.如图,在平面直角坐标系中,,,.在图中作出关于y轴对称的,写出点,,的坐标直接写答案.的面积为______.在y轴上画出点Q,使的周长最小.四、解答题(本大题共7小题,共67.0分)19.如图所示,在中:画出BC边上的高AD和中线AE.若,,求和的度数.20.如图,已知是等边三角形,过点B作,过A作,垂足为D,若的周长为12,求AD的长.21.如图,中,,于D点,于点E,于点F,,求BF的长.22.已知,如图,中,,D是BC上一点,点E、F分别在AB、AC上,,,G为EF的中点,问:与全等吗?请说明理由.判断DG与EF的位置关系,并说明理由.23.已知:在中,,D为AC的中点,,,垂足分别为点E,F,且求证:是等边三角形.24.如图1,,,以B点为直角顶点在第二象限作等腰直角.求C点的坐标;在坐标平面内是否存在一点P,使与全等?若存在,直接写出P点坐标,若不存在,请说明理由;如图2,点E为y轴正半轴上一动点,以E为直角顶点作等腰直角,过M作轴于N,直接写出的值为.25.如图,在中,,,点D为内一点,且.求证:;,E为AD延长线上的一点,且.求证:DE平分;若点M在DE上,且,请判断ME、BD的数量关系,并给出证明;若N为直线AE上一点,且为等腰三角形,直接写出的度数.参考答案1【答案】D【解析】解:A、是轴对称图形;B、是轴对称图形;C、是轴对称图形;D、不是轴对称图形.故选:D.根据轴对称图形的概念求解,看图形是不是关于直线对称.本题主要考查了轴对称的概念,轴对称的关键是寻找对称轴,两边图象折叠后可重合.2【答案】D【解析】解:A、依据SSS可知≌,故A不符合要求;B、依据SAS可知≌,故B不符合要求;C、依据AAS可知≌,故C不符合要求;D、依据SSA可知≌,故D符合要求.故选:D.依据全等三角形的判定定理解答即可.本题主要考查的是全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.3【答案】C【解析】解:由题意得:;由外角定理得:,,故选:C.如图,首先运用平行线的性质求出,然后借助三角形的外角性质求出,即可解决问题.该题主要考查了三角形外角的性质、平行线的性质等几何知识点及其应用问题;解题的关键是牢固掌握三角形外角的性质、平行线的性质等几何知识点,这也是灵活运用、解题的基础.4【答案】D【解析】解:到三角形三个顶点的距离都相等的点是这个三角形的三条边的垂直平分线的交点,故选:D.根据线段的垂直平分线上的点到线段的两个端点的距离相等解答即可.本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.5【答案】C【解析】解:在中,,,.故选:C.由已知条件,根据等腰三角形的性质可得,,再由三角形的内角和可得.此题主要考查三角形的内角和定理和等腰三角形的性质;利用三角形的内角和求角度是很常用的方法,要熟练掌握.6【答案】C【解析】解:是的角平分线,,,,又直角中,,,.故选:C.根据角平分线的性质即可求得CD的长,然后在直角中,根据的锐角所对的直角边等于斜边的一半,即可求得BD长,则BC即可求得.本题考查了角的平分线的性质以及直角三角形的性质,的锐角所对的直角边等于斜边的一半,理解性质定理是关键.7【答案】C【解析】解:A:因为,不是同类项,所以故计算错误;B:因为,所以计算错误;C:因为,所以计算正确;D:,所以计算错误.故选:C.根据同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法的法则可判断各个选项.本题考查了同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法,熟练运用法则是本题的关键.8【答案】B【解析】解:是沿直线DE翻折变换而来,,是AB边的中点,,,,,.故选:B.先根据图形翻折不变性的性质可得,根据等边对等角的性质可得,再根据三角形的内角和定理列式计算即可求解.本题考查的是图形翻折变换的图形能够重合的性质,以及等边对等角的性质,熟知折叠的性质是解答此题的关键.9【答案】C【解析】解:设这个多边形的边数是n,则,解得.故选:C.根据多边形的内角和公式与外角和等于列式,然后解方程即可得解.本题考查了多边形的内角和公式与外角和定理,任何多边形的外角和都是,与边数无关.10【答案】A【解析】解:,,;如图,作垂足为点F,,,平分,点E到AD的距离等于CE,正确,又,≌;,,,又,,≌;,,,平分,正确正确;,,错误;故选:A.根据平行线的性质和据全等三角形全等的判定判断即可.本题考查了平行线的判定及性质、等腰三角形的性质、全等三角形的判定等知识点,关键是根据平行线的性质和据全等三角形全等的判定判断.11【答案】5【解析】解:是腰长时,三角形的三边分别为1、1、2,,不能组成三角形;是底边时,三角形的三边分别为1、2、2,能组成三角形,周长,综上所述,三角形的周长为5.故答案为:5.分1是腰长与底边两种情况讨论求解.本题考查了等腰三角形的性质,难点在于要分情况讨论并利用三角形的三边关系判断是否能组成三角形.12【答案】【解析】解:点与点关于y轴对称,,,.故答案为:.根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出a、b的值,然后代入代数式进行计算即可得解.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数.13【答案】17【解析】解:根据中垂线的性质得:,所以,而,的周长为:17m.根据中垂线的性质进行解答,线段中垂线上的点到线段两端点的距离相等,点D在中垂线上,所以,所以,而BC的长度又已知,所以的周长可求出.本题主要根据中垂线的性质进行解答线段中垂线上的点到线段端点的距离相等.14【答案】或【解析】解:当为锐角三角形时,如图1,,,,三角形的顶角为;当为钝角三角形时,如图2,,,,,三角形的顶角为,故答案为或.本题要分情况讨论当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况.本题主要考查了等腰三角形的性质及三角形内角和定理,做题时,考虑问题要全面,必要的时候可以做出模型帮助解答,进行分类讨论是正确解答本题的关键,难度适中.15【答案】11【解析】解:如图,作于H,是的角平分线,,,,在和中,,≌,同理,≌,设的面积为x,由题意得,,解得,即的面积为11,故答案为:11.作于H,根据角平分线的性质得到,证明≌,≌,根据题意列方程,解方程即可.本题考查的是角平分线的性质、全等三角形的判定和性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.16【答案】【解析】解:和都是等腰直角三角形,,,,,,在和中,,≌,,故正确;,,在中,,,,故正确;只有时,,,无法说明,故错误;≌,,与相等无法证明,不一定成立,故错误;综上所述,正确的结论有共2个.故答案为:.根据等腰直角三角形的性质可得,,然后求出,再利用“边角边”证明和全等,根据全等三角形对应边相等可得,判断正确;根据全等三角形对应角相等可得,从而求出,再求出,从而得到,根据四边形的面积判断出正确;再求出时,,判断出错误;与不一定相等判断出错误.此题考查了全等三角形的判定与性质,等腰直角三角形的性质,对角线互相垂直的四边形的面积等于对角线乘积的一半的性质,熟记各性质是解题的关键.17【答案】解:点E是DC中点,,又,F在AD延长线上,,,在与中,≌,,,.【解析】根据点E是DC中点,得到,根据平行线的性质得到,,根据全等三角形的性质即可得到结论.本题考查了全等三角形的判定和性质,平行线的性质,熟练掌握全等三角形的判定和性质是解题的关键.18【答案】【解析】解:如图所示:即为所求;由图可知:,,;.故答案为:;连接交y轴于Q,则此时的周长最小.根据关于y轴对称的点的坐标特点作出,根据各点在坐标系中的位置写出点,,的坐标即可;根据进行解答即可;连接交y轴于Q,于是得到结论;本题考查的是作图轴对称变换,熟知关于y轴对称的点的坐标特点是解答此题的关键.19【答案】解:如图:,,,,,,.【解析】延长BC,作于D;作BC的中点E,连接AE即可;可根据三角形的内角和定理求,由外角性质求,那可得.此题是计算与作图相结合的探索考查学生运用作图工具的能力,以及运用直角三角形、三角形内角和外角等基础知识解决问题的能力.20【答案】解:为等边三角形,且的周长为12,,.,,,,.【解析】根据等边三角形的性质可得出,,进而可得出,在中,利用角所对的直角边等于斜边的一半即可求出AD的长.本题考查了等边三角形的性质以及含30度角的直角三角形,利用等边三角形的性质找出及AB的值是解题的关键.21【答案】解:中,,,是的中线,,,,,,.【解析】先得出AD是的中线,得出,又,将代入即可求出BF.本题考查了全等三角形的判定与性质,等腰三角形的性质,三角形的面积,利用面积公式得出等式是解题的关键.22【答案】解:与全等,理由:,,在和中,,≌,,理由:≌,,是EF的中点,.【解析】根据SAS证明与全等即可;利用全等三角形的性质、等腰三角形的三线合一即可证明;此题主要考查了全等三角形的性质与判定,以及等腰三角形的性质,关键是掌握全等三角形的判定定理.23【答案】证明:,,垂足分别为点E,F,,为AC的中点,,在和中,,≌,,,,,是等边三角形.【解析】只要证明≌,推出,推出,又,即可推出;本题考查全等三角形的判定和性质、等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.24【答案】解:作轴于E,如图1,,,,,,,,,,在和中,,≌,,,即,.存在一点P,使与全等,分为四种情况:如图2,当P和C重合时,和全等,即此时P的坐标是;如图3,过P作轴于E,则,,,,在和中,≌,,,,即P的坐标是;如图4,过C作轴于M,过P作轴于E,则,≌,,,,,,,在和中,,≌,,,,,,,即P的坐标是;如图5,过P作轴于E,≌,,,则,,,,在和中,,≌,,,,即P的坐标是,综合上述:符合条件的P的坐标是或或或.如图6,作轴于F,则,,,,在和中,≌,,,轴,轴,,四边形FONM是矩形,,.【解析】作轴于E,证≌,推出,,即可得出答案;分为四种情况,画出符合条件的图形,构造直角三角形,证三角形全等,即可得出答案;作轴于F,证≌,求出EF,即可得出答案.本题考查了全等三角形的性质和判定,三角形内角和定理,等腰三角形性质的应用,主要考查学生综合运用性质进行推理的能力,用了分类讨论思想.25【答案】证明:,,垂直平分线段AB,.证明:,,又,,又,,,,,,在和中,,≌,,,,平分;解:结论:,理由:连接MC,,,为等边三角形,,,,在和中,,≌,.当时,或;当时,;当时,,所以的度数为、、、.【解析】利用线段的垂直平分线的性质即可证明;易证,可得≌,即可求得即可解题;连接MC,易证为等边三角形,即可证明≌即可解题;分三种情形讨论即可;本题考查了全等三角形的判定、等边三角形的判定和性质、等腰三角形的性质和判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题.2018-2019学年八年级(上册)期中数学试卷一、选择题(共10小题,每小题3分,共30分)1.下列线段能组成三角形的是()A.3、4、8B.5、6、11C.5、6、10D.2、2、42.下列图案中,不是轴对称图形的是()A.B.C.D.3.在平面直角坐标系中,点A(1,﹣2)关于x轴对称的点的坐标为()A.(1,2)B.(﹣1,2)C.(2,1)D.(﹣1,﹣2)4.一个多边形的各个内角都等于120°,则它的边数为()A.3B.6C.7D.85.如图,已知CD=CA,∠D=∠A,添加下列条件中的()仍不能证明△ABC≌△DEC.A.DE=AB B.CE=CB C.∠DEC=∠B D.∠ECD=∠BCA6.已知:点P、Q是△ABC的边BC上的两个点,且BP=PQ=QC=AP=AQ,∠BAC的度数是()A.100°B.120°C.130°D.150°7.用一条长20cm的细绳围成一个三角形,已知第一条边长为xcm,第二条边长比第一条边长的2倍少4cm.若第一条边最短,则x的取值范围是()A.2<x<8B.C.0<x<10D.7<x<88.如图为正方形网格,顶点在格点上的三角形称为格点三角形,每个小正方形均为边长为1的正方形,图中与△ABC全等的格点三角形(不含△ABC)共有()个.A.4B.16C.23D.249.正三角形ABC所在平面内有一点P,使得△PAB、△PBC、△PCA都是等腰三角形,则这样的P点有()A.1个B.4个C.7个D.10个10.已知△ABC的两条高线的长分别为5和20,若第三条高线的长也是整数,则第三条高线长的最大值为()A.5B.6C.7D.8二、填空题(本大题共6个小题,每小题3分,共18分)11.等腰三角形的一个角100°,它的另外两个角的度数分别为.12.如图,AD平分∠BAO,D(0,﹣3),AB=10,则△ABD的面积为.13.如图,△ABC中,∠ACB=90°,CD是高,∠A=30°,若BD=2,则AD=.14.平面直角坐标系中,已知A(4,3)、B(2,1),x轴上有一点P,要使PA﹣PB最大,则P点坐标为15.△ABC的三个内角满足5∠A>7∠B,5∠C<2∠B,则△ABC是三角形(填“锐角”、“直角”或“钝角”)16.在△ABC中,AB=AC,CE是高,且∠ECA=20°,平面内有一异于A、B、C、E的D点,若△ABC ≌△CDA,则∠DAE的度数为.三、解答题(共8题,共72分)17.(8分)如图,AB=AC,AD=AE.求证:∠B=∠C.18.(8分)已知等腰三角形的一边等于4,另一边等于9,求它的周长.19.(8分)如图,P为∠MON平分线上一点,PA⊥OM于A,PB⊥ON于B,求证:OP垂直平分AB.20.(8分)△ABC在平面直角坐标系中的位置如图所示,点A(﹣2,2),点B(﹣3,﹣1),点C(﹣1,1).(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1的坐标.(2)求出△A1B1C1的面积.21.(8分)如图,△ABC中,AB=AC,AD=AE,∠CAD=60°,∠C=α(1)用α表示∠BAD,则∠BAD=;(2)求∠EDB的度数.22.(10分)如图,AB=AC,AB⊥AC,∠ADC=∠BAE.(1)求证:∠DAE=45°;(2)过B作BF⊥AD于F交直线AE于M,连CM,画出图形并判断BM与CM的位置关系,说明理由.23.(10分)如图,牧马人从A地出发,先到草地边某一处牧马,再到河边饮马,然后回到B处,要求指出最短路径.同学甲:牧马人把马牵到草地与河边的交汇处N点,牧马又饮马,然后回到B处同学乙:作A点关于直线MN的对称点A1,再作A1关于直线l的对称点A2,连A2B交直线l于P,连PA交MN于Q,则路径A→Q→P→B为最短路径.你认为哪位同学方案正确?并证明其正确性.24.(12分)在平面直角坐标系中,点A(m,1),点B(3,n),C,D是y轴上两点(1)如图1,△AOC和△ABD是等边三角形,连接BC并延长交x轴于E,求CE的长;(2)如图2,直线AC交x轴于E,∠DCA的平分线交直线OA于F,FD⊥y轴于D,交直线AC于G,若m=1,请你写出线段OD,EG与DG之间的数量关系,并证明;(3)如图3,若m=2,n=4,在x轴上是否存在点P,使△ABP为等腰三角形?若存在,求出P的坐标;若不存在,说明理由.2018-2019学年八年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.【分析】根据三角形的三边满足任意两边之和大于第三边来进行判断.【解答】解:A、∵3+4<8,∴3、4、8不能组成三角形,故本选项错误;B、∵5+6=11,∴5、6、11不能组成三角形,故本选项错误;C、∵5+6>10,∴5、6、10能组成三角形,故本选项正确;D、∵2+2=4,∴2、2、4不能组成三角形,故本选项错误.故选:C.【点评】本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.2.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,不符合题意,本选项错误;B、是轴对称图形,不符合题意,本选项错误;C、不是轴对称图形,符合题意,本选项正确;D、是轴对称图形,不符合题意,本选项错误.故选:C.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.【分析】直接利用关于x轴对称,则其纵坐标互为相反数进而得出答案.【解答】解:点A(1,﹣2)关于x轴对称的点的坐标为:(1,2).故选:A.【点评】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题关键.4.【分析】先求出这个多边形的每一个外角的度数,再用360°除以每一个外角的度数即可得到边数.【解答】解:∵多边形的每一个内角都等于120°,∴多边形的每一个外角都等于180°﹣120°=60°,∴边数n=360°÷60°=6.故选:B.【点评】本题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是关键.5.【分析】添加的条件取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.【解答】解:A.当DE=AB,CD=CA,∠D=∠A时,可得△ABC≌△DEC(SAS).B.当CE=CB,CD=CA,∠D=∠A时,不能得到△ABC≌△DEC.C.当∠DEC=∠B,CD=CA,∠D=∠A时,可得△ABC≌△DEC(AAS).D.当∠ECD=∠BCA,CD=CA,∠D=∠A时,可得△ABC≌△DEC(ASA).故选:B.【点评】本题主要考查了全等三角形的判定,解题时注意:两边及其夹角分别对应相等的两个三角形全等;两角及其夹边分别对应相等的两个三角形全等;两角及其中一个角的对边对应相等的两个三角形全等.6.【分析】根据等边三角形的性质,得∠PAQ=∠APQ=∠AQP=60°,再根据等腰三角形的性质和三角形的外角的性质求得∠BAP=∠CAQ=30°,从而求解.【解答】解:∵BP=PQ=QC=AP=AQ,∴∠PAQ=∠APQ=∠AQP=60°,∠B=∠BAP,∠C=∠CAQ.又∵∠BAP+∠ABP=∠APQ,∠C+∠CAQ=∠AQP,∴∠BAP=∠CAQ=30°.∴∠BAC=120°.故∠BAC的度数是120°.故选:B.【点评】此题主要考查了运用等边三角形的性质、等腰三角形的性质以及三角形的外角的性质.7.【分析】根据第一条边长最短以及三角形的三边关系列出不等式组,即可求出x的取值范围.【解答】解:根据题意可得:第二条边长为(2x﹣4)米,∴第三条边长为20﹣x﹣(2x﹣4)=(24﹣3x)米;由题意得,解得<x<6.故选:B.【点评】本题主要考查了三角形的三边关系,在解题时根据三角形的三边关系,列出不等式组是本题的关键.8.【分析】用SSS判定两三角形全等.认真观察图形可得答案.【解答】解:如图所示:故选:C.【点评】本题考查的是SSS判定三角形全等,注意观察图形,数形结合是解决本题的又一关键.9.【分析】(1)点P在三角形的内部时,点P到△ABC的三个顶点的距离相等,所以点P是三角形的外心;(2)点P在三角形的外部时,每条边的垂直平分线上的点只要能够使顶点这条边的两端点连接而成的三角形是等腰三角形即可.【解答】解:(1)点P在三角形内部时,点P是边AB、BC、CA的垂直平分线的交点,是三角形的外心;(2)分别以三角形各顶点为圆心,边长为半径,交垂直平分线的交点就是满足要求的.每条垂直平分线上得3个交点,再加三角形的垂心,一共10个.故选:D.【点评】本题主要考查等腰三角形的性质;要注意分点在三角形内部和三角形外部两种情况讨论,思考全面是正确解答本题的关键.10.【分析】如果设△ABC的面积为S,所求的第三条高线的长为h,根据三角形的面积公式,先用含S、h 的代数式分别表示出三边的长度,再由三角形三边关系定理,列出不等式组,求出不等式组的解集,得到h的取值范围,然后根据h为整数,确定h的值.【解答】解:设△ABC的面积为S,所求的第三条高线的长为h,则三边长分别为,则.由三边关系,得,解得.所以h的最大整数值为6,即第三条高线的长的最大值为6.故选:B.【点评】本题主要考查了三角形的面积公式,三角形三边关系定理及不等式组的解法,有一定难度.利用三角形的面积公式,表示出△ABC三边的长度,从而运用三角形三边关系定理,列出不等式组是解题的关键,难点是解不等式组.二、填空题(本大题共6个小题,每小题3分,共18分)11.【分析】先判断出100°的角是顶角,再根据等腰三角形的两底角相等解答.【解答】解:∵等腰三角形的一个角100°,∴100°的角是顶角,∴另两个角是(180°﹣100°)=40°,即40°,40°.故答案为:40°,40°.【点评】本题考查了等腰三角形的性质,主要利用了等腰三角形两底角相等,需要注意100°的角只能是顶角.12.【分析】过D作DE⊥AB于E,由角平分线的性质,即可求得DE的长,即可求得△ABD的面积.【解答】解:如图,过D作DE⊥AB于E,∵AD平分∠BAO,∠AOD=90°,D(0,﹣3),∴DE=DO=3,∵AB=10,∴△ABD的面积=AB•DE=×10×3=15.故答案为:15.【点评】本题考查了角平分线的性质,能根据角平分线性质得出DE=OD是解此题的关键,解题时注意:角平分线上的点到这个角两边的距离相等.13.【分析】由含30°角的直角三角形的性质得出AB=2BC,BC=2BD=4,得出AB,即可得出AD.【解答】解:∵∠ACB=90°,∠A=30°,∴AB=2BC,∠B=90°﹣∠A=60°,∵CD是高,∴∠CDB=90°,∴∠BCD=90°﹣∠B=30°,∴BC=2BD=4,∴AB=2BC=8,∴AD=AB﹣BD=8﹣2=6,故答案为:6.【点评】本题考查了含30°角的直角三角形的性质、角的互余关系;熟练掌握含30°角的直角三角形的性质,并能进行推理计算是解决问题的关键.14.【分析】根据|PA﹣PB|≤AB,即可得到当A,B,P三点共线时,PA﹣PB最大值等于AB长,依据待定系数法求得直线AB的解析式,即可得到P点坐标.【解答】解:∵A(4,3)、B(2,1),x轴上有一点P,∴|PA﹣PB|≤AB,∴当A,B,P三点共线时,PA﹣PB最大值等于AB长,此时,设直线AB的解析式为y=kx+b,把A(4,3)、B(2,1)代入,可得,解得,∴直线AB的解析式为y=x﹣1,令y=0,则x=1,∴P点坐标为(1,0),故答案为:(1,0).【点评】本题主要考查了坐标与图形性质,利用待定系数法求得直线AB的解析式是解决问题的关键.15.【分析】利用已知条件,结合等式性质1可得5∠A+>5∠B+5∠C,整理得∠A>∠B+∠C,再利用等式性质,左右同加上∠A,结合∠A+∠B+∠C=180°,解不等式可得∠A>90°,从而可判断三角形的形状.【解答】解:∵5∠A>7∠B,2∠B>5∠C,∴5∠A+2∠B>7∠B+5∠C,即5∠A+>5∠B+5∠C,∴∠A>∠B+∠C,不等式两边加∠A,可得2∠A>∠A+∠B+∠C,而∠A+∠B+∠C=180°,∴2∠A>180°,即∠A>90°,∴这个三角形是钝角三角形.故答案是:钝角.【点评】本题考查了三角形内角和定理、不等式的性质的运用,解题的关键是掌握三角形内角和定理.16.【分析】根据等腰三角形的性质和全等三角形的性质解答即可.【解答】解:如图:∵在△ABC中,AB=AC,CE是高,且∠ECA=20°,∴∠BAC=70°,∠ACB=∠ABC=55°,∵△ABC≌△CDA,∴∠CAD=∠ACB=55°,∴∠DAE=∠CAD+∠BAC=55°+70°=125°,当△ABC为钝角三角形时,∠DAE=15°、105°和35°故答案为:125°、15°、105°和35°【点评】此题考查全等三角形的性质,关键是根据等腰三角形的性质和全等三角形的性质解答.三、解答题(共8题,共72分)17.【分析】要证∠B=∠C,可利用判定两个三角形全等的方法“两边和它们的夹角对应相等的两个三角形全等”证△ABE≌△ACD,然后由全等三角形对应边相等得出.【解答】证明:在△ABE与△ACD中,,∴△ABE≌△ACD(SAS),∴∠B=∠C.【点评】本题主要考查了两个三角形全等的其中一种判定方法,即“边角边”判定方法.观察出公共角∠A是解决本题的关键.18.【分析】此题先要分类讨论,已知等腰三角形的一边等于4,另一边等于9,先根据三角形的三边关系判定能否组成三角形,若能则求出其周长.【解答】解:当4为腰,9为底时,∵4+4<9,∴不能构成三角形;当腰为9时,∵9+9>4,∴能构成三角形,∴等腰三角形的周长为:9+9+4=22.【点评】此题考查了等腰三角形的基本性质及分类讨论的思想方法,另外求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.19.【分析】根据角平分线性质得出PA=PB,根据HL证Rt△PAO≌Rt△PBO,推出OA=OB,根据等腰三角形性质推出即可.。

八年级数学上册期中试卷(含答案)

八年级数学上册期中试卷(含答案)

-第一学期考试八年级数学试卷题号 一 二 三 四 五 六 总分 得分一、选择题(每题3分,共30分)1、在△ABC 和△DEF 中,AB =DE , ∠B =∠E ,如果补充一个条件后不一定能使△ABC ≌△DEF ,则补充的条件是( )A 、BC =EFB 、∠A =∠DC 、AC =DFD 、∠C =∠F 2、下列命题中正确个数为( )①全等三角形对应边相等;②三个角对应相等的两个三角形全等; ③三边对应相等的两个三角形全等; ④有两边对应相等的两个三角形全等.A .4个B 、3个C 、2个D 、1个 3、已知△ABC ≌△DEF ,∠A =80°,∠E =40°,则∠F 等于 ( )A 、 80°B 、40°C 、 120°D 、 60°4、已知等腰三角形其中一个内角为70°,那么这个等腰三角形的顶角度数为( ) A 、70° B 、70°或55° C 、40°或55° D 、70°或40°5、如右图,图中显示的是从镜子中看到背后墙上的电子钟读数,由此你可以推断这时的实际时间是( )A 、10:05B 、20:01C 、20:10D 、10:02 6、等腰三角形底边上的高为腰的一半,则它的顶角为( )A 、120°B 、90°C 、100°D 、60°7、点P (1,-2)关于x 轴的对称点是P 1,P 1关于y 轴的对称点坐标是P 2,则P 2的坐标为( ) A 、(1,-2) B 、(-1,2) C 、(-1,-2) D 、(-2,-1) 8、已知=0,求y x 的值( )A 、-1B 、-2C 、1D 、29、如图,DE 是△ABC 中AC 边上的垂直平分线,如果BC =8cm ,AB =10cm ,则△EBC 的周长为( ) A 、16 cm B 、18cm C 、26cm D 、28cm()221x y -++班级 姓名 座位号……………………………装………………………订………………………线………………………10、如图,在△ABC 中,AB =AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若△ABC 的面积为12,则图中阴影部分的面积为( )A 、2cm ²B 、4cm²C 、6cm²D 、8cm²二、填空题(每题4分,共20分) 11、等腰三角形的对称轴有 条. 12、(-0.7)²的平方根是 . 13、若,则x -y = .14、如图,在△ABC 中,∠C =90°AD 平分∠BAC ,BC =10cm ,BD =6cm ,则点D 到AB 的距离为__ . 15、如图,△ABE ≌△ACD ,∠ADB =105°,∠B =60°则∠BAE = . 三、作图题(6分)16、如图,A 、B 两村在一条小河的同一侧,要在河边建一水厂向两村供水. (1)若要使自来水厂到两村的距离相等,厂址P 应选在哪个位置? (2)若要使自来水厂到两村的输水管用料最省,厂址Q 应选在哪个位置? 请将上述两种情况下的自来水厂厂址标出,并保留作图痕迹.四、求下列x 的值(8分)2cm 2)(11y x x x +=-+- EDABCFED CBAEDCB AABCD第9题图 第10题图 第14题图第15题图•A •B17、 27x ³=-343 18、 (3x -1)²=(-3)²五、解答题(5分)19、已知5+的小数部分为a ,5-的小数部分为b ,求 (a +b )2012的值。

人教版八年级数学上册《期中考试综合测试卷》测试题及参考答案

人教版八年级数学上册《期中考试综合测试卷》测试题及参考答案

人教版八年级数学上册期中考试综合测试卷(时间:120 分钟,满分:120 分)一、选择题(本大题共10 小题,每小题3 分,共30 分.每小题给出的四个选项中,只有一项符合题目要求)1.某同学手里拿着长为3 和2 的两根木棍,想要找一根长为整数的木棍,用它们围成一个三角形,则他所找的这根木棍的长可以是( ).A.1,3,5B.1,2,3C.2,3,4D.3,4,52.下列四个图形:其中是轴对称图形,且对称轴的条数为2 的图形的个数是( ).A.1B.2C.3D.43.如图,在△ABC 中,点D 在AB 上,点E 在AC 上,DE∥BC.若∠A=62°,∠AED=54°,则∠B 的大小为( ).A.54°B.62°C.64°D.74°4.在四边形ABCD 中,∠A=∠B=∠C,点E 在边AB 上,∠AED=60°,则一定有( ).A.∠ADE=20°B.∠ADE=30°C.∠ADE=1 ADCD.∠ADE=1ADC∠∠2 35.如图,AC 是线段BD 的垂直平分线,则图中全等三角形的对数是( ).A.1B.2C.3D.46.在平面直角坐标系中,点P(-20,a)与点Q(b,13)关于y 轴对称,则a+b 的值为( ).A.33B.-33C.-7D.77.如图,在△ABC 中,∠BAC=90°,∠C=30°,AD⊥BC 于点D,BE 是∠ABC 的平分线,且交AD 于点P, 交AC 于点E.如果AP=2,那么AC 的长为( ).A.8B.6C.4D.28.如图,已知AE=CF,∠AFD=∠CEB,添加下列一个条件后,仍无法判定△ADF≌△CBE 的是( ).A.∠A=∠CB.AD=CBC.BE=DFD.AD∥BC9.如图,A,B,C 三点在同一条直线上,∠A=52°,BD 是AE 的垂直平分线,垂足为点D,则∠EBC 的度数为( ).A.52°B.76°C.104°D.128°10.如图,过边长为1 的等边三角形ABC 的边AB 上的一点P 作PE⊥AC 于点E,Q 为BC 的延长线上一点.当PA=CQ 时,连接PQ 交AC 边于点D,则DE 的长为( ).A.13 B.12C.23D.不能确定二、填空题(本大题共6 小题,每小题4 分,共24 分)11.如图,在△ABC 中,AB=AC,∠A=36°,BD,CE 分别为∠ABC,∠ACB 的平分线,且相交于点O,则图中等腰三角形共有个.12.边长相等的正五边形与正六边形按如图所示拼接在一起,则∠ABC= 度.13.如图,在Rt△ABC 中,∠BAC=90°,∠B=30°,BC=8,AD⊥BC 于点D,则DC= .14.如图,在4×4 的正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7= .15.已知等腰三角形的两边长a,b 满足|a-b-2|+ 2�-3�-1=0,则此等腰三角形的周长为.16.如图,在△ABC 中,∠B=90°,AC=DC,∠D=15°,AB=18 cm,则CD 的长为cm.三、解答题(本大题共8 小题,共66 分)17.(6 分)如图,已知△ABC.(1)画出BC 边上的高AD 和中线AE;(2)若∠B=30°,∠ACB=130°,求∠BAD 和∠CAD 的度数.18.(6 分)△ABC 在平面直角坐标系中如图所示,其中点A,B,C 的坐标分别为(-2,1),(-4,5),(-5,2).(1)作△ABC 关于直线l:x=-1 对称的△A1B1C1,其中点A,B,C 的对应点分别为A1,B1,C1;(2)写出点A1,B1,C1 的坐标.19.(6 分)如图,点C,F,E,B 在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE.写出CD 与AB 之间的关系, 并证明你的结论.20.(8 分)两个大小不同的等腰直角三角尺按如图①所示放置,图②是由它抽象出的几何图形,点B,C,E 在同一条直线上,连接DC.(1)请找出图②中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)求证:DC⊥BE.21.(8 分)如图,在△ABC 中,AB=AC,点D,E 分别在AC,AB 上,BD=BC,AD=DE=BE,求∠A 的度数.22.(8 分)如图,已知D,E,F 分别是△ABC 三边上的点,BF=CE,且△DBF 和△DCE 的面积相等.求证:AD 平分∠BAC.23.(12 分)如图①,②,③,点E,D 分别是等边三角形ABC,正方形ABCM,正五边形ABCMN 中以点C 为顶点的相邻两边上的点,且BE=CD,DB 交AE 于点P.(1)图①中,∠APD 的度数为;(2)图②中,∠APD 的度数为,图③中,∠APD 的度数为;(3)根据前面的探索,你能否将本题推广到一般的正n 边形的情况?若能,写出推广问题和结论;若不能, 请说明理由.24.(12 分)如图,已知△DCE 的顶点C 在∠AOB 的平分线OP 上,CD 交OA 于点F,CE 交OB 于点G.(1)如图①,若CD⊥OA,CE⊥OB,则图中有哪些相等的线段?请直接写出你的结论: .(2)如图②,若∠AOB=120°,∠DCE=∠AOC,试判断线段CF 与线段CG 的数量关系,并加以证明.答案与解析一、选择题1.C 设他所找的这根木棍的长为x,由题意得3-2<x<3+2,∴1<x<5.∵x 为整数,∴x=2,3,4,故选C.2.C3.C4.D 如图,在△AED 中,∵∠AED=60°,∴∠A=180°-∠AED-∠ADE=120°-∠ADE.在四边形 DEBC 中,∵∠DEB=180°-∠AED=180°-60°=120°,∴∠B=∠C=(360°-∠DEB-∠EDC )÷2=120 -1EDC. ° ∠2∵∠A=∠B=∠C ,∴120°-∠ADE=120 -1 EDC. ° 2∠∴∠ADE=1 EDC. ∠2 ∵∠ADC=∠ADE+∠EDC=1 EDC+∠EDC=3EDC ,∴∠ADE=1 ∠ ∠ 2 2ADC.故选D .∠ 35.C 全等三角形有 3 对,分别为 Rt △ABO ≌Rt △ADO ,Rt △CDO ≌Rt △CBO ,△ADC ≌△ABC.6.A 点(x ,y )关于 y 轴对称的点是(-x ,y ),故 b=20,a=13,则 a+b=33,故选A .7.B8.B ∵AE=CF ,∴AE+EF=CF+EF ,即 AF=CE.∠� = ∠�,选项A,在△ADF 和△CBE 中, A = C ,∠A � = ∠C �,∴△ADF ≌△CBE (ASA);选项B,根据 AD=CB ,AF=CE ,∠AFD=∠CEB 不能推出△ADF ≌△CBE;A = C,选项C,在△ADF 和△CBE 中, ∠A�= ∠C�,A = C,∴△ADF≌△CBE(SAS);选项D,∵AD∥BC,∴∠A=∠C,易知△ADF≌△CBE(ASA).故选B.9.C ∵BD 是AE 的垂直平分线,∴AB=BE.∴∠E=∠A=52°,∴∠EBC=∠E+∠A=104°.故选C.10.B 如图,过点P 作PM∥BC,交AC 于点M.易知△APM 是等边三角形.∵PE⊥AM,∴AE=EM.∵PM∥CQ,∴∠PMD=∠QCD,∠MPD=∠Q.又PM=PA=CQ,∴△PMD≌△QCD.∴CD=DM,∴DE=ME+DM=1(AM+MC)=1AC=1,故选B.2 2 2二、填空题11.8 设CE 与BD 的交点为点O.∵AB=AC,∠A=36°,∴∠ABC=∠ACB=180°-36°=72°.2∵BD 是∠ABC 的平分线,∴∠ABD=∠DBC=1 ABC=36°=∠A,∠2∴AD=BD.同理,∠A=∠ACE=∠BCE=36°,AE=CE.∴∠DBC=∠BCE=36°,∴OB=OC.∵∠DBC=36°,∠ACB=72°,∴∠BDC=180°-72°-36°=72°,∴BD=BC,同理CE=BC.∵∠BOC=180°-36°-36°=108°,∴∠ODC=∠DOC=∠OEB=∠EOB=72°.∴CD=CO,BO=BE.∴△ABC,△ADB,△AEC,△BEO,△COD,△BCE,△BDC,△BOC 都是等腰三角形,共8 个.12.24 13.214.315°由题图可知∠4=1×90°=45°,∠1 和∠7 所在的三角形全等,2∴∠1+∠7=90°.同理,∠2+∠6=90°,∠3+∠5=90°,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=3×90°+45°=315°.15.11 或13 由题意可得a-b-2=0,2a-3b-1=0,解得a=5,b=3,即三角形的三边长为5,5,3 或3,3,5. 所以此等腰三角形的周长为11 或13.16.36 在△ACD 中,∵AC=DC,∠D=15°,∴∠D=∠DAC=15°.∵∠ACB 是△ACD 的一个外角,∴∠ACB=∠D+∠DAC=15°+15°=30°.在Rt△ABC 中,∠ACB=30°,∴AC=2AB=2×18=36(cm),即CD=36 cm.三、解答题17.解(1)如图.(2)∠BAD=90°-30°=60°(直角三角形的两个锐角互余),∠ACD=180°-130°=50°(邻补角的定义),∠CAD=90°-50°=40°(直角三角形的两个锐角互余).18.解(1)如图.(2)A1(0,1),B1(2,5),C1(3,2).19.证明CD 与AB 之间的关系为CD=AB,且CD∥AB.∵CE=BF,∴CF=BE.A = C,在△CDF 和△BAE 中, ∠A�= ∠C�,A = C,∴△CDF≌△BAE.∴CD=AB,∠C=∠B,∴CD∥AB.20.(1)解题图②中△ABE≌△ACD.证明如下:∵△ABC 与△AED 均为等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°.∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD.∴△ABE≌△ACD.(2)证明由(1)知△ABE≌△ACD,∠ACD=∠ABE=45°.又∠ACB=45°,∴∠BCD=∠ACB+∠ACD=90°.∴DC⊥BE.21.解∵AD=DE,∴∠A=∠2.∵DE=BE,∴∠3=∠4.又∠2=∠3+∠4,∴∠4=1 2=1 A.∠∠2 2∵BD=BC,∴∠1=∠C.又∠1=∠4+∠A=1 A+∠A=3 A,∠∠2 2∴∠C=3 A.∠2∵AB=AC,∴∠ABC=∠C=3 A.∠2在△ABC 中,∵∠A+∠ABC+∠C=180°,∴∠A+3 A+3 A=180°,即4∠A=180°,∠∠2 2∴∠A=45°.22.证明如图,作DM⊥AB 于点M,DN⊥AC 于点N.∵△DBF 和△DCE 的面积相等,1BF ·DM=1CE ·DN. 2 2 ∵BF=CE ,∴DM=DN.又 DM ⊥AB ,DN ⊥AC ,∴AD 平分∠BAC.23.解 (1)60° (2)90° 108°(3) 能.如图,点 E ,D 分别是正 n 边形 ABCM …中以点 C 为顶点的相邻两边上的点,且 BE=CD ,BD与 AE 交于点 P ,则∠APD的度数为(�-2)×180°.� 24.解 (1)CF=CG ,OF=OG.(2)CF=CG.证明如下:如图,过点 C 作 CM ⊥OA 于点 M ,CN ⊥OB 于点 N ,则∠CMF=∠CNG=90°.①又 OC 平分∠AOB ,∴CM=CN ,②∠AOC=∠BOC.又∠AOB=120°,∴∠AOC=∠BOC=60°,∴∠MCN=360°-∠AOB-∠CMF-∠CNO=60°. ∴∠DCE=∠AOC=60°.∴∠MCN=∠FCG.∴∠MCN-∠FCN=∠FCG-∠FCN,即∠1=∠2.③由①②③得△CMF≌△CNG,∴CF=CG.。

初中八年级数学上学期期中考前测试卷(人教版)含答案解析

初中八年级数学上学期期中考前测试卷(人教版)含答案解析

2022-2023学年八年级上学期期中考前必刷卷数学(考试时间:90分钟试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:八年级上册第11-13章5.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的.1.(2021·重庆市璧山中学校八年级期中)在一些美术字中,有的汉字是轴对称图形.下列4个汉字中,可以看作“沿某一条直线折叠后,直线两旁的部分能够互相重合”的是()A.B.C.D.2.(2021·四川·东坡区实验中学八年级期中)如图,△ABC≌△DEF,若∠A=132°,∠FED=15°,则∠C等于()A.13°B.23°C.33°D.43°3.(2022·江西赣州·八年级期中)若a、b、c为△ABC的三边长,且满足|a﹣,则c的值可以为()A.6B.7C.8D.94.(2021·山东烟台·七年级期中)如图,要使ABC ABD△≌△,下面给出的四组条件,错误的一组是()A.C D∠=∠,BAC BAD∠=∠B.BC BD=,AC AD=C.BAC BAD∠=∠,ABC ABD∠=∠D.BD BC=,BAC BAD∠=∠5.(2021·浙江·平阳苏步青学校八年级阶段练习)已知△ABC(AC<BC),用尺规作图的方法在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A.B.C.D.6.(2021·湖北·襄阳市樊城区青泥湾中学八年级阶段练习)如图,∠O=∠1,∠2=∠3,∠4=∠5,∠6=∠7,∠8=90°则∠O的度数为()A.10°B.15°C.18°D.20°7.(2021·黑龙江·同江市第三中学八年级期中)如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A.16B.18C.26D.288.(2022·辽宁·丹东第九中学八年级期末)如图,ABC的三边AB,BC,CA的长分别为15,20,25,………………○………………内………………○………………装………………○………………订………………○………………线………………○…此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○…点O是ABC三条角平分线的交点,则ABOS:BCOS△:CAOS△等于()A.1:1:1B.1:2:3C.2:3:4D.3:4:59.(2022·宁夏·中宁县第三中学八年级期末)如图,在ABC中,4AB AC==,15B∠=︒,CD是腰AB上的高,则CD的长()A.4B.2C.1D.1210.(2022·北京一七一中八年级阶段练习)如图所示,ABC的两条角平分线相交于点D,过点D作EF∥BC,交AB于点E,交AC于点F,若AEF的周长为30cm,则AB AC+=()cm.A.10B.20C.30D.4011.(2022·全国·八年级专题练习)如图,△ABC中,AB的垂直平分线交BC边于点E,AC的垂直平分线交BC边于点N,若∠BAC=70︒,则∠EAN的度数为()A.35︒B.40︒C.50︒D.55︒12.(2022·广东·揭西县宝塔实验学校八年级期中)如图,在△ABC中,∠C=90°∠B=30°,以A为圆心,任意长为半径画弧交AB于M、AC于N,再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于D,下列四个结论:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④1:3ACD ACBS S=:.其中正确的有()A.只有①②③B.只有①②④C.只有①③④D.①②③④13.(2021·重庆市璧山中学校八年级期中)如图,过边长为1的等边三角形ABC的边AB上一点P,作PE AC⊥于点E,Q为BC延长线上一点,当AP CQ=时,PQ交AC于点D,则DE的长为()A.13B.12C.23D.不能确定14.(2022·陕西·西安爱知初级中学七年级期末)如图,在ABC中,90BAC∠=︒,2AB AC=,点D是线段AB的中点,将一块锐角为45︒的直角三角板按如图()ADE放置,使直角三角板斜边的两个端点分别与A、D重合,连接BE、CE,CE与AB交于点.F下列判断正确的有()①ACE≌DBE;②BE CE⊥;③DE DF=;④DEF ACFS S=A.①②B.①②③C.①②④D.①②③④第Ⅱ卷二、填空题:本题共4个小题;每个小题3分,共12分,把正确答案填在横线上.15.(2020·福建省福州延安中学八年级期中)已知点Р(a,3)和点Q(4,b)关于x轴对称,则()2021a b+=________.16.(2022·福建省龙岩市永定区第二初级中学九年级期中)如图,将一个正六边形与一个正五边形如图放置,顶点A、B、C、D四点共线,E为公共顶点.则∠BEC=_____.○………………内………………○………………装………………○………………订………………○………………线………………○…………○………………外………………○………………装………………○………………订………………○………………线………………○…………学校:______________姓名:_____________班级:_______________考号:______________________17.(2021·福建·福州教院二附中八年级期末)如图,将等边△ABC 的三条边向外延长一倍,得到第一个新的111A B C △,第二次将等边111A B C △的三边向外延长一倍,得到第二个新的222A B C △,依此规律继续延长下去,若△ABC 的面积01S =,则第2022个新的三角形的面积2022S 为________18.(2021·江苏南京·八年级阶段练习)如图,已知△ABC ,AB =AC =10cm ,∠B =∠C ,BC =8cm ,点D 为AB 的中点.如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段AC 上由C 点向A 点运动.若点Q 的运动速度为v cm/s ,则当△BPD 与△CQP 全等时,v 的值为_______cm/s .三、解答题:本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分.19.(2021·重庆·巴川初级中学校八年级期中)如图,已知点B ,E ,C ,F 在一条直线上,BE =CF ,AC DE ∥,A D ∠=∠.(1)求证:△ABC ≌△DFE ;(2)若BF =12,EC =4,求BC 的长.20.(2019·北京市八一中学八年级期中)在直角坐标系中,ABC 的三个顶点的位置如图所示.(1)请画出ABC 关于y 轴对称的A B C '''V (其中A ',B ',C '分别是A ,B ,C 的对应点,不写画法);(2)直接写出A ',B ',C '三点的坐标:A '(),B '(),C '()(3)在x 轴上找出点P ,使得点P 到点A 、点B 的距离之和最短(保留作图痕迹)(4)点Q 在坐标轴上,且满足BCQ △是等腰三角形,则所有符合条件的Q 点有__________个.21.(2022·黑龙江大庆·八年级期末)如图△ABC 为等边三角形,直线a ∥AB ,D 为直线BC 上任一动点,将一60°角的顶点置于点D 处,它的一边始终经过点A ,另一边与直线a 交于点E .(1)若D 恰好在BC 的中点上(如图1)①求证CD =CE ;②求证:△ADE 是等边三角形;(2)若D 为直线BC 上任一点(如图2)其他条件不变,“△ADE 是等边三角形”的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.22.(2022·江苏·宜兴外国语学校八年级阶段练习)(1)如图,在7×6的方格中,△ABC 的顶点均在格点上.试只用不带刻度的直尺,按要求画出线段EF (E ,F 均为格点),各画出一条即可.(2)如图,△ABC 的顶点均在正方形网格格点上.只用不带刻度的直尺,作出△ABC 的角平分线BD (不写………………○………………内………………○………………装………………○………………订………………○………………线………………○…此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○…23.(2022·河南信阳·八年级期中)我们通过“三角形全等的判定”的学习,可以知道“两边和它们的夹角分别相等的两个三角形全等”是一个基本事实,用它可以判定两个三角形全等;而满足条件“两边和其中一边所对的角分别相等”的两个三角形却不一定全等.下面请你来探究“两边和其中一边所对的角分别相等的两个三角形不一定全等”.探究:已知△ABC,求作一个△DEF,使EF=BC,∠F=∠C,DE=AB(即两边和其中一边所对的角分别相等).(1)动手画图:请依据下面的步骤,用尺规完成作图过程(保留作图痕迹):①画EF=BC;②在线段EF的上方画∠F=∠C;③画DE=AB;④顺次连接相应顶点得所求三角形.(2)观察:观察你画的图形,你会发现满足条件的三角形有____个;其中三角形____(填三角形的名称)与△ABC明显不全等;(3)小结:经历以上探究过程,可得结论:______.24.(2021·重庆·巴川初级中学校八年级期中)如图,△ABC中,点D在边BC延长线上,100ACB∠=︒,∠ABC的平分线交AD于点E,过点E作EH⊥BD,垂足为H,且50CEH∠=︒.(1)求∠ACE的度数;(2)求证:AE平分∠CAF;25.(2022·全国·八年级专题练习)(1)如图①,把△ABC纸片沿DE折叠,当点A落在四边形BCED内部点A'的位置时,∠A、∠1、∠2之间有怎样的数量关系?并说明理由.(2)如图②,把△ABC纸片沿DE折叠,当点A落在四边形BCED外部点A'的位置时,∠A、∠1、∠2之间有怎样的数量关系?并说明理由.(3)如图③,把四边形ABCD沿EF折叠,当点A、D分别落在四边形BCFE内部点A'、D¢的位置时,你能求出∠A'、∠D¢、∠1与∠2之间的数量关系吗?并说明理由.26.(2021·辽宁葫芦岛·八年级期中)如图,在三角形ABC中,∠ABC=90°,AB=BC,点A,B分别在坐标轴上.(1)如图①,若点C的横坐标为﹣3,点B的坐标为;(2)如图②,若x轴恰好平分∠BAC,BC交x轴于点M,过点C作CD垂直x轴于D点,试猜想线段CD与AM的数量关系,并说明理由;(3)如图③,OB=BF,∠OBF=90°,连接CF交y轴于P点,点B在y轴的正半轴上运动时,△BPC与△AOB的面积比是否变化?若不变,直接写出其值,若变化,直接写出取值范围.2022-2023学年八年级上学期期中考前必刷卷(人教版2022)数学·全解全析1234567891011121314 C C A D D C B D B C B D B C 1.C【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:选项A、B、D不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项C能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.C【分析】根据△ABC≌△DEF,∠FED=15°,得∠CBA=15°,再根据三角形内角和即可得答案.【详解】解:∵△ABC≌△DEF,∠FED=15°,∴∠CBA=∠FED=15°,∵∠A=132°,∴∠C=180°-132°=15°=33°,故选:C.【点睛】本题考查了全等三角形的性质,三角形的内角和,解题的关键是掌握三角形全等的性质.3.A【分析】先根据非负数的性质,求出a、b的值,进一步根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,从而确定c的可能值.【详解】解:∵|a﹣,∴a﹣5=0,a=5;b﹣2=0,b=2;则5﹣2<c<5+2,6符合条件;故选:A .【点睛】本题考查非负数的性质和三角形三条边的关系,准确求出a 、b 的值是解题的关键.4.D【分析】根据全等三角形的判定定理逐项判定即可.【详解】解:A 、∵C D ∠=∠,BAC BAD ∠=∠,AB =AB ,∴ABC ABD △≌△(AAS ),正确,故此选项不符合题意;B 、∵BC BD =,AC AD =,AB =AB ,∴ABC ABD △≌△(SSS ),正确,故此选项不符合题意;C 、∵BAC BAD ∠=∠,ABC ABD ∠=∠,AB =AB ,∴ABC ABD △≌△(ASA ),正确,故此选项不符合题意;D 、BD BC =,BAC BAD ∠=∠,AB =AB ,两边以及一边对角对应相等,不能判定ABC ABD △≌△,故此选项符合题意;故选:D .【点睛】本题考查全靠等三角形的判定,熟练掌握全靠三角形判定定理:SSS ,SAS ,ASA ,AAS ,HL 是解题的关键.5.D【分析】若使PA +PC =BC ,则PA =PB ,P 在线段AB 的垂直平分线上,需要做线段AB 的垂直平分线.【详解】解:A.由作图可知BA =BP ,∴BC =BP +PC =BA +PC ,故A 不符合题意;B.由作图可知PA =PC ,∴BC =BP +PC =BP +PA ,故B 不符合题意;C.由作图可知AC =PC ,∴BC =BP +PC =BP +AC ,故C 不符合题意;D.由作图可知PA =PB ,∴BC =BP +PC =PA +PC ,故D 符合题意;故选:D.【点睛】本题考查了垂直平分线的性质及作图,熟练掌握垂直平分线的作图方法是解题关键.6.C【分析】设∠O=x ,进而根据三角形外角的性质表示出∠2,即可表示出∠3,同理表示出∠4,可得∠5,再表示出∠6,即可∠7,最后根据∠8=∠O +∠7得出答案即可.【详解】设∠O=x ,∵∠2是△ABO 的外角,且∠O =∠1,∴∠2=∠O +∠1=2x ,∵∠4是△BCO 的外角,∴∠4=∠O +∠3=3x ,∴∠5=∠4=3x .∵∠6是△CDO 的外角,∴∠6=∠O +∠5=4x ,∴∠7=∠6=4x .∵∠8是△DEO 的外角,∴∠8=∠O +∠7=5x ,即5x =90°,解得x =18°.故选:C .【点睛】本题主要考查了三角形的外角的性质,根据三角形外角的性质得出待求角之间的等量关系是解题的关键.7.B【分析】根据垂直平分线的性质可得EC =AE ,据此即可作答.【详解】∵ED 是边AC 的垂直平分线,∴AE =EC ,∵AB =10厘米,BC =8厘米,∴BC +CE +EB =BC +AE +EB =BC +AB =18厘米,即△BEC 的周长为18厘米,故选:B .【点睛】本题主要考查了垂直平分线的性质,根据垂直平分线的性质可得EC =AE ,是解答本题的关键.8.D【分析】过O 点作⊥OD AB 于D ,OE BC ⊥于E ,OF CA ⊥于F ,如图,利用角平分线的性质得到OD OE OF ==,然后根据三角形面积公式得到ABO S :BCO S △:CAO S AB = :BC :AC .【详解】过O 点作⊥OD AB 于D ,OE BC ⊥于E ,OF CA ⊥于F ,如图,点O 是ABC 三条角平分线的交点,OD OE OF ∴==,ABO S ∴ :BCO S △:12CAO S AB OD ⎛⎫=⋅ ⎪⎝⎭ :12OE BC ⎛⎫⋅ ⎪⎝⎭:12OF AC AB ⎛⎫⋅= ⎪⎝⎭:BC :15AC =:20:253=:4:5.故选:D .【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了三角形的面积公式.9.B【分析】根据三角形外角的性质得30DAC ∠=︒,再利用含30°角的直角三角形的性质可得CD 的长.【详解】解:AB AC = ,15B ∠=︒,15ACB B ∴∠=∠=︒,30DAC ∴∠=︒,CD 是腰AB 上的高,CD AB ∴⊥,122CD AC ∴==,故选:B【点睛】本题主要考查了等腰三角形的性质,含30°角的直角三角形的性质等知识,求出30DAC ∠=︒是解题的关键.10.C【分析】利用平行线的性质和角平分线的定义得到∠EBD =∠EDB ,证出ED =EB ,同理DF =FC ,则△AEF 的周长即为AB +AC ,可得出答案.【详解】解:∵EF ∥BC ,∴∠EDB =∠DBC ,∵BD 平分∠ABC ,∴∠ABD =∠DBC ,∴∠EBD =∠EDB ,同理:FD =FC ,∴AE +AF +EF =AE +EB +AF +FC =AB +AC =30cm ,即AB +AC =30cm ,故选:C .【点睛】本题考查了等腰三角形的判定和性质、平行线的性质等知识,证出ED =EB ,FD =FC 是解题的关键.11.B【分析】根据三角形内角和定理可求∠B +∠C ,根据垂直平分线性质,EA =EB ,NA =NC ,则∠EAB =∠B ,∠NAC =∠C ,从而可得∠BAC =∠BAE +∠NAC -∠EAN =∠B +∠C -∠EAN ,即可得到∠EAN =∠B +∠C -∠BAC ,即可得解.【详解】解:∵∠BAC =70︒,∴∠B +∠C =18070110︒︒︒﹣=,∵AB 的垂直平分线交BC 边于点E ,AC 的垂直平分线交BC 边于点N ,∴EA =EB ,NA =NC ,∴∠EAB =∠B ,∠NAC =∠C ,∴∠BAC =∠BAE +∠NAC -∠EAN =∠B +∠C -∠EAN ,∴∠EAN =∠B +∠C -∠BAC ,=11070︒︒﹣=40︒.故选:B .【点睛】本题主要考查了三角形的内角和,线段垂直平分线的性质,角的和差关系,能得到求∠EAN 的关系式是关键.12.D【分析】①根据作图的过程可以判定AD 是∠BAC 的角平分线;②利用角平分线的定义可以推知∠CAD =30°,则由直角三角形的性质来求∠ADC 的度数;③利用等角对等边可以证得△ADB 的等腰三角形,由等腰三角形的“三线合一”的性质可以证明点D 在AB 的中垂线上;④利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.【详解】解:①根据作图的过程可知,AD 是∠BAC 的平分线.故①正确;∵在△ABC 中,∠C =90°,∠B =30°,∴∠CAB =60°.又∵AD 是∠BAC 的平分线,∴∠1=∠2=12∠CAB =30°,∴∠3=90°-∠2=60°,即∠ADC =60°.故②正确;③∵∠1=∠B =30°,∴AD =BD ,∴点D 在AB 的中垂线上.故③正确;④∵如图,在直角△ACD 中,∠2=30°,∴CD =12AD ,∴BC =CD +BD =12AD +AD =32AD ,DAC S =12AC •CD =14AC •AD .∴ABC S =12AC •BC =12AC •32AD =34AC •AD .∴DAC S :ABC S =14AC •AD :34AC •AD =1:3.故④正确.综上所述,正确的结论是:①②③④,故选D .【点睛】本题考查了角平分线的判定、线段垂直平分线的判定和性质、含30度角的直角三角形的性质以及作图-基本作图.解题时,需要熟悉线段垂直平分线的判定和性质.13.B【分析】根据题意先过点Q 作AD 的延长线的垂线QF ,证明 AEP ≅ CFQ ,再证明 DEP ≅ DFQ 得到DE =DF ,最后可以得到DE =12AC ,求出最终结果.【详解】如图,过点Q 作AD 的延长线的垂线于点F ,∵△ABC 是等边三角形,∴∠A =∠ACB =60°,∵∠ACB =∠QCF ,∴∠QCF =60°,又∵PE ⊥AC ,QF ⊥AC ,∴∠AEP =∠CFQ =90°,又AP =CQ ,∴△AEP ≅△CFQ (AAS ),∴AE =CF ,PE =QF ,同理可证,△DEP ≅△DFQ ,∴DE =DF ,∴AC =AE +DE +CD =DE +CD +CF =DE +DF =2DE ,∴DE =12AC =12.故选B .【点睛】本题属于全等三角形的综合问题,考查作辅助线、全等三角形的判定和等边三角形的性质,熟练掌握和运用全等三角形的判定定理是关键.14.C【分析】利用ADE 为等腰直角三角形得到45EAD EDA ∠∠==︒,EA ED =,则135EAC EDB ∠∠==︒,则可根据“SAS ”判断ACE ≌DBE SAS (),从而对①进行判断;再利用AEC DEB ∠∠=证明90BEC DEA ∠∠==︒,则可对②进行判断;由于9090DEF BED AEC ∠∠∠=︒-=︒-,90DFE AFC ACE ∠∠∠==︒-,而AC AD AE =>得到AEC ACE ∠∠>,所以DEF DFE ∠∠<,于是可对③进行判断;由ACE ≌DBE 得到ACE DBE S S = ,由BD AD =得到DAE DBE S S = ,所以ACE DAE S S = ,从而可对④进行判断.【详解】解:2AB AC = ,点D 是线段AB 的中点,BD AD AC ∴==,ADE 为等腰直角三角形,45EAD EDA ∠∠∴==︒,EA ED =,4590135EAC EAD BAC ∠∠∠=+=︒+︒=︒ ,180********EDB EDA ∠∠=︒-=︒-︒=︒,EAC EDB ∠∠∴=,在ACE 和DBE 中,EA ED EAC EDB AC DB =⎧⎪∠=∠⎨⎪=⎩,ACE ∴ ≌SAS DBE (),所以①正确;AEC DEB ∠∠∴=,90BEC BED DEC AEC DEC DEA ∠∠∠∠∠∠∴=+=+==︒,BE EC ∴⊥,所以②正确;90DEF BED ∠∠=︒- .而AEC DEB ∠∠=,90DEF AEC ∠∠∴=︒-,90DFE AFC ACE ∠∠∠==︒- ,而AC AD AE =>,AEC ACE ∠∠∴>,DEF DFE ∠∠∴<,DE DF ∴>,所以③错误;ACE Q V ≌DBE ,ACE DBE S S ∴= ,BD AD = ,DAE DBE S S ∴= ,ACE DAE S S ∴= ,DEF ACF S S ∴= ,所以④正确.故选:C .【点睛】本题考查全等三角形的判定:熟练掌握全等三角形的5种判定方法是解决问题的关键.15.1【分析】直接利用关于x 轴对称点的性质(横坐标不变,纵坐标互为相反数)得出a ,b 的值,进而得出答案.【详解】解:∵点P (a ,3)和点Q (4,b )关于x 轴对称,∴a =4,b =-3,则20212021()(43)1a b +=-=.故答案为:1.【点睛】此题主要考查了关于x 轴对称点的性质,正确得出a ,b 的值是解题关键.16.48°##48度【分析】根据多边形的内角和,分别得出∠ABE =120°,∠DCE =108°,再根据平角的定义和三角形的内角和算出∠BEC .【详解】解:由多边形的内角和可得,∠ABE =()621806-⨯︒=120°,∴∠EBC =180°﹣∠ABE =180°﹣=60°,∵∠DCE =()521805-⨯︒=108°,∴∠BCE =180°﹣108°=72°,由三角形的内角和得:∠BEC =180°﹣∠EBC ﹣∠BCE =180°﹣60°﹣72°=48°.故答案为:48°.【点睛】本题考查了多边形的内角和定理,掌握定理是解题的关键.17.20227【分析】连接1CB ,根据等底同高可得1111112,2,2B BC A CC A AB S S S === ,从而可得17S =,同样的方法可得227S =,再归纳类推出一般规律即可得.【详解】解:如图,连接1CB ,1AB BB = ,ABC 的面积01S =,101BCB ABC S S S ∴=== ,又1BC CC = ,1111B CC BCB S S ∴== ,112B BC S ∴= ,同理可得:11112,2A CC A AB S S == ,111122217A B C S S ∴==+++= ,同理可得:2221112277A B C A B C S S S === ,归纳类推得:7n n n A B n C n S S == ,其中n 为非负整数,202220227S ∴=,故答案为:20227.【点睛】本题考查了图形类规律探索、三角形中线与面积,正确归纳类推出一般规律是解题关键.18.3或154【分析】分情况讨论BPD △,CQP V 全等:①设运动了t 秒,BPD CQP ≅△△,得BP CQ =,3t vt =,算出v ;②设运动了t 秒,BDP QCP ≅V V ,得BD CQ =,PB PC =;得34t =,5vt =,解出v ,即可.10AB AC ==,8BC =【详解】①设运动了t 秒,BP CQ =,BPD CQP ≅△△,∵点D 是AB 的中点∴152BD AB ==∵BD PC=∴()853BP cm =-=∴B 点向C 点运动了33t =,1t =秒∵BPD CQP≅△△∴BP CQ=∴31v =⨯∴3/sv cm =②设运动了t 秒,当BD CQ =时,BDP QCP≅V V ∵5BD =,142PB PC BC ===∴34t =解得43t =秒∵BD CQ =∴453v =⨯∴15/s 4v cm =故答案为:3或154.【点睛】本题考查全等三角形、动点问题,解题的关键是以静制动,利用全等三角形的性质进行解答.19.(1)证明见解析(2)8【分析】(1)先根据平行线的性质可得ACB DEF ∠=∠,再根据线段和差可得BC FE =,然后根据AAS 定理即可得证;(2)先根据线段和差可得8BE CF +=,从而可得4BE =,再根据BC BE EC =+即可得.(1)证明:AC DE ∥,ACB DEF ∠=∠∴,BE CF = ,BE CE CF CE ∴+=+,即BC FE =,在ABC 和DFE △中,A D ACB DEF BC FE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS ABC DFE ∴≅ .(2)解:12,4BF EC == ,8BE CF BF EC ∴+=-=,BE CF = ,4BE ∴=,448BC BE EC ∴=+=+=.【点睛】本题考查了平行线的性质、三角形全等的判定,线段和差,熟练掌握三角形全等的判定方法是解题关键.20.(1)见解析;(2)4,1;2,3;−1,−2;(3)见解析;(4)10.【分析】(1)由点的对称性,作出图形即可;(2)关于y 轴对称的点的坐标特点:横坐标变为相反数,纵坐标不变,即可求解;(3)作A 点关于x 轴的对称点A '',连接A B ''交x 轴于点P ,P 点即为所求;(4)利用两圆一线确定等腰三角形,作出图形即可求解.(1)如图1:(2)由图可知A (−4,1),B (−2,3),C (1,−2),∴A 点关于y 轴对称的点为(4,1),B 点关于y 轴对称的点为(2,3),C 点关于y 轴对称的点为(−1,−2),∴A′(4,1),B′(2,3),C′(−1,−2),故答案为:4,1;2,3;−1,−2;(3)如图2:作A 点关于x 轴的对称点A ',连接A B ''交x 轴于点P ,∴AP BP A P BP A B ''''+=+=,此时PA +PB 值最小;(4)如图:以B为圆心,BC长为半径做圆,此圆与坐标轴有4个交点,以C为圆心,BC长为半径做圆,此圆与坐标轴有4个交点,作线段BC的垂直平分线,此线与坐标轴有2个交点,∴△BCQ是等腰三角形时,Q点坐标有10个,故答案为:10.【点睛】本题考查轴对称作图,图形与坐标,熟练掌握轴对称的性质,垂直平分线的性质,等腰三角形的性质,两圆一线确定等腰三角形的方法是解题的关键.21.(1)①见解析;②见解析(2)成立,理由见解析【分析】(1)①利用等边三角形的性质得到BD=CD,AD⊥BC,进一步求出∠EDC=30°,然后根据三角形内角和定理推出∠DOC=90°,再根据三角形的外角性质可求出∠DEC=30°,从而得出∠EDC=∠DEC,再根据“等角对等边”即可证明结论;②由SAS证明△ABD≌△ACE得出AD=AE,然后根据“有一个角是60°的等腰三角形是等边三角形”可判断出△ADE是等边三角形的结论;(1)在AC上取点F,使CF=CD,连结DF,先证得△ADF≌△EDC得出AD=ED,再运用已证的结论“∠ADE=60°”和根据“有一个角是60°的等腰三角形是等边三角形”可证明出△ADE是等边三角形的结论.(1)①证明:∵a∥AB,且△ABC为等边三角形,∴∠ACE=∠BAC=∠ABD=60°,AB=AC,∵D是BC中点,即BD=CD,∴AD⊥BC,∴∠ADC=90°,∵∠ADE=60°,∴∠EDC=∠ADC-∠ADE=90°-60°=30°,∴∠DOC=180°-∠EDC-∠ACB=90°,∴∠DEC=∠DOC-∠ACE=90°-60°=30°,∴∠EDC=∠DEC,∴CD=CE;②∵BD=CD,CD=CE,∴BD=CE,在△ABD和△ACE中,∵AB AC ABD ACEBD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△ACE(SAS),∴AD=AE,又∵∠ADE=60°,∴△ADE是等边三角形;(2)解:“△ADE是等边三角形”的结论仍然成立.证明如下:在AC上取点F,使CF=CD,连结DF,如图2所示:,∵∠ACB=60°,∴△DCF是等边三角形,∴DF=CD,∵∠ADF+∠FDE=∠EDC+∠FDE=60°,∴∠ADF=∠EDC,∵∠DAF+∠ADE=∠DEC+∠ACE,∠ACE=∠ADE=60°,∴∠DAF=∠DEC,∴△ADF≌△EDC(AAS),∴AD=ED,又∵∠ADE=60°,∴△ADE是等边三角形.【点睛】本题考查的是等边三角形的判定与性质、全等三角形的判定与性质、等腰三角形的判定与性质、三角形内角和定理、三角形的外角性质、平行线的性质.解题关键是注意熟练掌握及熟练等边三角形的判定定理与性质定理、全等三角形的判定与性质.22.(1)见解析;(2)见解析【分析】(1)根据题目要求,利用数形结合的思想画出线段EF即可;(2)取格点Q,连接AQ,取AQ的中点J,作射线BJ交AC于点D,线段BD即为所求.【详解】解:(1)如图,线段EF即为所求:(2)如图,线段BD即为所求.【点睛】本题考查作图-应用与设计作图,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.23.(1)见解析(2)2,D EF ';(3)两边和其中一边所对的角分别相等的两个三角形不一定全等【分析】(1)根据尺规作线段,作一个角等于已知角的步骤作图即可;(2)根据所画图形填空即可;(3)根据探究过程结合全等三角形的判定可得出结论.(1)解:如图所示:(2)2个;其中三角形D EF '(填三角形的名称)与△ABC 明显不全等,故答案为:2,D EF ';(3)经历以上探究过程,可得结论:两边和其中一边所对的角分别相等的两个三角形不一定全等,故答案为:两边和其中一边所对的角分别相等的两个三角形不一定全等.【点睛】本题考查了尺规作图,全等三角形的判定,熟练掌握尺规作图的方法和全等三角形的判定定理是解题的关键.24.(1)40︒(2)证明见解析(3)514【分析】(1)先求出80ACD ∠=︒,再根据直角三角形的两个锐角互余可得40DCE ∠=︒,然后根据ACE ACD DCE ∠=∠-∠即可得;(2)过点E 作EM BF ⊥于点M ,作EN AC ⊥于点N ,先根据角平分线的性质可得,EM EH EN EH ==,从而可得EM EN =,再根据角平分线的判定即可得证;(3)过点E 作EM BF ⊥于点M ,作EN AC ⊥于点N ,则EM EH EN ==,设EM EH EN x ===,再根据21ACE DCE ACD S S S +== 和三角形的面积公式可得x 的值,从而可得EM 的值,然后利用三角形的面积公式即可得.(1)解:100ACB ∠=︒ ,18080ACD ACB ∴∠=︒-∠=︒,,50EH BD CEH ⊥∠=︒ ,9040DCE CEH ∴∠=︒-∠=︒,40ACE ACD DCE ∴∠=∠-∠=︒.(2)证明:如图,过点E 作EM BF ⊥于点M ,作EN AC ⊥于点N ,BE 平分ABC ∠,,EM BF EH BD ⊥⊥,EM EH ∴=,由(1)可知,40ACE DCE ∠=∠=︒,即CE 平分ACD ∠,EN EH ∴=,EM EN ∴=,又 点E 在CAF ∠的内部,AE ∴平分CAF ∠.(3)解:如图,过点E 作EM BF ⊥于点M ,作EN AC ⊥于点N ,由(2)已得:EM EH EN ==,设EM EH EN x ===,21ACD S = ,21ACE DCE S S +∴= ,112221AC EN CD EH ∴⋅+⋅=,即()1221x AC CD +=,又14AC CD += ,211223142x AC CD ⨯=∴⨯==+,3EM ∴=,8.5AB = ,ABE ∴ 的面积为11518.53224AB EM ⋅=⨯⨯=.【点睛】本题主要考查了角平分线的判定与性质,解题的关键是熟练掌握角平分线的性质定理:角的平分线上的点到角的两边的距离相等.25.(1)2∠A =∠1+∠2;见解析;(2)2∠A =∠1﹣∠2;见解析;(3)2(∠A +∠D )=∠1+∠2+360°,见解析【分析】(1)根据翻折的性质表示出∠3、∠4,再根据三角形的内角和定理列式整理即可得解;(2)先根据翻折的性质以及平角的定义表示出∠3、∠4,再根据三角形的内角和定理列式整理即可得解;(3)先根据翻折的性质表示出∠3、∠4,再根据四边形的内角和定理列式整理即可得解.【详解】解:(1)如图,根据翻折的性质,∠3=EDA '∠=12(180-∠1),∠4=DEA '∠=12(180-∠2),∵∠A +∠3+∠4=180°,∴∠A +12(180-∠1)+12(180-∠2)=180°,整理得,2∠A=∠1+∠2;(2)如图,同理,根据翻折的性质,∠3=12(180-∠1),∠4=12(180+∠2),∵∠A+∠3+∠4=180°,∴∠A+12(180-∠1)+12(180+∠2)=180°,整理得,2∠A=∠1-∠2;(3)如图,同理,根据翻折的性质,∠3=12(180-∠1),∠4=12(180-∠2),∵∠A+∠D+∠3+∠4=360°,∴∠A+∠D+12(180-∠1)+12(180-∠2)=360°,整理得,2(∠A+∠D)=∠1+∠2+360°.【点睛】本题主要考查了三角形的内角和定理,多边形的内角与外角,翻折的性质,整体思想的利用是解题的关键.26.(1)(0,3);(2)AM =2CD ,理由见解析;(3)不变,12【分析】(1)过点C 作CH ⊥y 轴于H ,由全等三角形的判定定理可得ABO BCH ≌,可得3CH BO ==,即可求解;(2)延长AB ,CD 交于点N ,由全等三角形的判定定理可得ADN ADC ≌,得出CD DN =,再依据全等三角形判定定理证明ABM CBN ≌,可得AM CN =,即可得结论;(3)如图③,作CG ⊥y 轴于G ,由全等三角形判定定理可得BAO CBG ≌,得出BG AO =,CG OB =,再依据全等三角形的判定可证CGP FBP ≌,得出PB PG =,可得1122PB BG AO ==,由三角形面积公式可求解.【详解】解:(1)如图①,过点CH ⊥y 轴于H ,∴90BHC ABC ∠=︒=∠,∴90BCH CBH ABH CBH ∠+∠=∠+∠=︒,∴BCH ABH ∠=∠,∵点C 的横坐标为﹣3,∴3CH =,在ABO 和BCH 中,BCH ABHBHC AOB BC AB∠=∠⎧⎪∠∠⎨⎪=⎩=,∴ABO BCH ≌,∴3CH BO ==,∴点B (0,3);故答案为:(0,3);(2)2AM CD =,如图②,延长AB ,CD 交于点N,∵AD 平分BAC ∠,∴BAD CAD ∠=∠,在ADN 和ADC 中,90BAD CADAD AD ADN ADC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴ADN ADC ≌,∴CD DN =,∴2CN CD =,∵90BAD ∠+∠=︒N ,90BCN ∠+∠=︒N ,∴BAD BCN ∠=∠,在ABM 和CBN 中,BAM BCNBA BC ABM CBN∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ABM CBN ≌,∴AM CN =,∴2AM CD =;(3)△BPC 与△AOB 的面积比不会变化,理由:如图③,作CG ⊥y 轴于G,∵90BAO OBA ∠+∠︒=,90OBA CBG ∠+∠︒=,∴BAO CBG ∠∠=,在BAO 和CBG 中,90AOB BGC BAO CBG AB BC∠=∠=︒⎧⎪∠∠⎨⎪=⎩=,∴BAO CBG ≌,∴BG AO =,CG OB =,∵OB BF =,∴BF GC =,在CGP 和FBP 中,90CPG FPBCGP FBP CG BF∠=∠⎧⎪∠∠=︒⎨⎪=⎩=,∴CGP FBP ≌,∴PB PG=,∴1122PB BG AO==,∵12AOBS OB OA∆=⨯⨯,111222PBCS PB GC OB OA∆=⨯⨯=⨯⨯⨯,∴12PBC AOBS S∆∆=:.【点睛】题目主要考查全等三角形的判定定理和性质,理解题意,作出相应辅助线,充分运用全等三角形的判定是解题关键.。

江西省吉安市十校2023-2024学年八年级上学期期中考试数学试卷(含答案)

江西省吉安市十校2023-2024学年八年级上学期期中考试数学试卷(含答案)

2023—2024学年第一学期期中八年级数学试卷考试时间:120分钟全卷满分120分一、选择题(本大题共6小题,每小题3分,共18分)1.在实数,,,3.14中,无理数是()A.B.C.D.3.142.下列各组数分別为一个三角形三边的长,其中能构成直角三角形的一组是()A.1,2,3B.4,5,6C.7,24,25D.8,15,183.如图,是象棋盘的一部分,若“帅”位于点,“相”位于点上,则“炮”位于点()上.A.B.C.D.4.如图,数轴上,点为线段BC的中点,,两点对应的实数分别是和,则点所对应的实数是()A.B.C.D.5.在平面直角坐标系中,一次函数的图象的随的增大而减小,且,则它的图象大致是()A.B.C.D.6.如图,动点在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点,第2次接着运动到点,第3次接着运动到点,……,按这样的运动规律,经过第2025次运动后,动点的坐标是().A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分)7.点关于轴的对称点坐标为__________.8.函数中自变量的取值范围是__________.9.程序框图的算法思路于我国古代数学名著《九章算术》中的“更相减损术”,根据如图的程序进行计算,当输入们值为64时,输出的值是__________.10.若直线下移后经过点,则平移后的直线解析式为__________.11.如图,将两个大小、形状完全相同的和拼在一起,其中点与点重合,点落在边AB上,连接.若,,则的长度为__________.12.在平面直角坐标系中,长方形按如图所示放疽,是AD的中点,且、、的坐标分别为,,,点是BC上的动点,当是腰长为5的等腰三角形时,则点的坐标为__________.三、解答题(本大题共5小题,每小题各6分,共30分)13.计算:(1).(2).14.已知正数的两个不同的平方根分别是和,求的立方根.15.如图,正方形网格中的每个小正方形的边长都是1,每个顶点叫做格点.图1图2(1)在图1中以格点为顶点画一个面积为10的正方形:(2)在图2中以格点为顶点画一个三角形,使三解形三边长分别为2,,.16.在第十四届全国人大一次会议召开之际,某中学举行了庄严的升旗仪式.看着着再升起的五星红旗(如图1),小乐想用刚学过的知识计算旗杆的高度.如图2,AD为旗杆AE上用来固定国旗的绳子,点D距地面的高度.将绳子AD拉至AB的位置,测得点到AE的距离,到地面的垂直高度,求旗杆AE的高度.图1图217.某城市居民用水实行阶梯收费,每户每月用水量如果未超过5吨,每吨收费2元;超过5吨时,超过的部分每吨收费3.5元,设某户每月用水量为吨,应收水费为元.(1)写出每月用水量超过5吨时,与之间的函数关系式:(2)若某户居民某月交水费17元,该户居民用水多少吨?四、(本大题共3小题,每小题各8分,共24分)18.已知,如图,Rt中,,,,以斜边AC为底边作等腰三角形ACD,腰AD刚好满足,并作腰上的高AE.19.如图,在平面直角坐标系中,已知的三个顶点的坐标分别为,,.(1)若和关于轴成轴对称,画出,点的坐标为__________;(2)在轴上求作一点,使得的值最小,请在图中画出点:(3)求的面积和最长边上的高.20.如图,在平面直角坐标系,,,,且与互为相反数.(1)求实数与的值;(2)在轴的正半轴上存在一点,使,请通过计算求出点的坐标;(3)在坐标轴的其他位詛是否存在点,使仍然成立?若存在,请直接写出符合题意的点的坐标.五、(本大题共2小题,每小题9分,共18分)21.先观察下列的计算,再完成:(1)计算:;(2)观察上面的解题过程,请直接写出的结果为__________;(3)根据你的猜想、归纳,运用规律计算:求的值22.在一条直线上依次有、、三个港口,甲、乙两船同时分别从、港口出发,沿直线匀速驶向C港,最终到达C港停止.设甲、乙两船行驶后,与港的距离分别为、,、与的关系则图所示.(1)B、C两港口间的距离为__________,__________;(2)甲船出发几小时追上乙船?(3)在整个过程中,什么时候甲乙两船相距?六、解答题(本大题共1小题,共12分)23.【探索发现】如图1,等腰直角三角形ABC中,,,直线DE经过点,过作于点.过作于点,则,我们称这种全等模型为“型全等”.(不需要证明)【江移应用】已知:直线的图象与轴、轴分别交于A、B两点.图1图2 图3 图4(1)如图2,当时,在第一象限构造等腰直角,;(1)直接写出__________,__________;(2)如图3,当的取值变化,点随之在轴负半轴上运动时,在轴左侧过点B作,并且,连接ON,问的面积是否发生变化?若不变,求出其值;若变,请说明理由;(3)【拓展应用】如图4,当时,直线与轴交于点,点、分别是直线和直线AB上的动点,点在轴上们坐标为,当是以CQ为斜边的等腰直角三角形时,点的坐标是__________.吉安市十校2023—2024学年第一学期联考八年级数学试卷参考答案与评分标准一、选择题(每题3分)1、C2、C3、D4、D5、A6、B二、填空题(每题3分,12题每填对一个得1分,填错一个或不填给0分)7、(-4,-1) 8、9、10、11、12、(-2,4)或(3,4)或(-3,4)三、解答题(每题6分,共30分)13、(1)解:原式=1+4-(-1)=6 .................3分(2)解:..................6分14.(1)解:正数的两个不同的平方根分别是和,,解得:,.................2分则,那么,.................4分∴a的立方根为Ő..................6分15.(1)∵正方形面积为10,∴正方形的边长为,∵,∴画图如下:.................3分(2)画图如下:.................6分16. 解:∵,∴,∵,∴,.................1分设,则,,由题意可得:,在中,,即,.................3分解得:,即,.................5分∴旗杆的高度为:..................6分17.(1)解:............3分(2)用水量刚好5吨时,应交水费为元,∵该户居民某月交水费17元,∴用水量超过5吨,则令,解得:,∴该户居民用水7吨..................6分四、解答题(每题8分,共24分)18. 解:(1)∵DA=DC,∴∠DAC=∠DCA,又AD∥BC,∴∠DAC=∠ACB,于是∠DCA=∠ACB.又∠AEC=∠B=90°,AC=AC,∴△ACE≌△ACB(AAS),∴AB=AE;.................4分(2)由(1)可知AE=AB=6,CE=CB=4,设DC=x,则DA=x,DE=x-4,由勾股定理,即,解得:..................8分19.(1)如下图,即为所求,,.................3分(2)如下图,点P即为所求..................5分(3)的面积为或最长边上的高为..................8分20、解:(1)依题意得解得;............2分(2)设M(x,0),依题意得•x•2=××[3-(-2)]×2,解得x=∴M;................5分(3)..............8分五、解答题(每题9分,共18分)21.(1)解:.................3分(2);.................5分(3).................9分22.(1)解:由图可知:、两港口间的距离为,甲船用从A港口到达B港口,A港口和B港口距离,∴甲船的速度为:,∴甲船从B港口到C港口时间为:,∴,故答案为:90,2;.................2分(2)解:由图可知,乙船用从B港口到达C港口,∴乙船的速度为:,,解得:.答:甲船出发1小时追上乙船;.................5分(3)解:①当甲船还未追上乙船时,,解得:;②当甲船追上乙船后,当未到达C港口时:,解得:;③当甲船到达C港口,乙船还未到达C港口时:,解得:;综上:当经过或或时,甲乙两船相距.(少一种情况扣一分).................9分23.(1)①,;.................2分②.................4分(2)不变,的面积为定值,.................5分理由如下:当变化时,点随之在轴负半轴上运动时,,过点作于,,,,,,,又,.,,变化时,的面积是定值,;.................8分(3)点的坐标为或.................12分。

人教版八年级上学期期中考试数学试卷及答案解析(共六套)

人教版八年级上学期期中考试数学试卷及答案解析(共六套)

人教版八年级上学期期中考试数学试卷(一)一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c4.下列各式中,正确的是()A.B.C. =D.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±26.下列各分式中,最简分式是()A.B.C.D.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣18.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .12.若(x﹣2)0有意义,则x的取值范围是.13.分解因式:x2+x﹣2= .14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 cm.17.若x2+4x+1=0,则x2+= .18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= .三、解答题(本题共54分)19.(5分)请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误:;(2)从B到C是否正确,若不正确,错误的原因是;(3)请你正确解答.20.(2分)尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.21.(6分)分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.22.(7分)计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.23.(5分)先化简,再求值:,其中x=5.24.(5分)解分式方程:.25.(4分)已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.26.(4分)已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.27.(4分)在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.28.(4分)若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.29.(4分)已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A 旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.30.(4分)已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.参考答案与试题解析一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°【考点】KA:全等三角形的性质.【分析】根据全等三角形对应角相等解答即可.【解答】解:∵两个三角形全等,∴α=58°.故选C.【点评】本题考查了全等三角形的性质,熟记性质并准确识图,确定出对应角是解题的关键.2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等【考点】KB:全等三角形的判定.【分析】根据全等三角形的判定定理逐个判断即可.【解答】解:A、符合全等三角形的判定定理SSS,能推出两三角形全等,故本选项不符合题意;B、不符合全等三角形的判定定理,不能推出两三角形全等,故本选项符合题意;C、符合全等三角形的判定定理SAS,能推出两三角形全等,故本选项不符合题意;D、符合全等三角形的判定定理ASA,能推出两三角形全等,故本选项不符合;故选B.【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c【考点】51:因式分解的意义.【分析】根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【解答】解:A、是整式的乘法运算,故选项错误;B、结果不是积的形式,故选项错误;C、x2﹣1=(x+1)(x﹣1),正确;D、结果不是积的形式,故选项错误.故选:C.【点评】熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.4.下列各式中,正确的是()A.B.C. =D.【考点】65:分式的基本性质.【分析】利用分式的基本性质对各式进行化简即可.【解答】解:A、已经是最简分式,故本选项错误;B、,故本选项错误;C、=,故本选项错误;D、利用分式的基本性质在分式的分子与分母上同时乘以x+y即可得到,故本选项正确;故选D.【点评】本题考查了分式的基本性质,解题的关键是在进行分式的运算时要同时乘除.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±2【考点】63:分式的值为零的条件.【分析】根据分式值为0的条件可得x2﹣4=0且x+2≠0,再解出x的值即可.【解答】解:由题意得:x2﹣4=0且x+2≠0,解得:x=2.故选:B.【点评】此题主要考查了分式的值为零的条件,分式值为零的条件是分子等于零且分母不等于零.6.下列各分式中,最简分式是()A.B.C.D.【考点】68:最简分式.【分析】最简分式是指分子和分母没有公因式.【解答】解:(A)原式=,故A不是最简分式;(B)原式==,故B不是最简分式;(C)原式=,故C是最简分式;(D)原式==,故D不是最简分式;故选(C)【点评】本题考查考查最简分式,要注意将分子分母先分解后,约去公因式.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣1【考点】4E:完全平方式.【分析】这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x 和4积的2倍.【解答】解:依题意,得m﹣3=±4,解得m=7或﹣1.故选D.【点评】本题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.8.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF【考点】KF:角平分线的性质.【分析】题目的已知条件比较充分,满足了角平分线的性质要求的条件,可直接应用性质得到结论,与各选项进行比对,得出答案.【解答】解:∵P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,∴PE=PF,又有AD=AD∴△APE≌△APF(HL∴AE=AF故选D.【点评】本题主要考查平分线的性质,由已知证明△APE≌△APF是解题的关键.9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定【考点】K6:三角形三边关系;K2:三角形的角平分线、中线和高.【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边.倍长中线,构造一个新的三角形.根据三角形的三边关系就可以求解.【解答】解:7﹣3<2x<7+3,即2<x<5.故选A.【点评】本题主要考查了三角形的三边关系,注意此题构造了一条常见的辅助线:倍长中线.10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16【考点】K3:三角形的面积.【分析】利用角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=8:6=4:3,故选:B.【点评】本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键.二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .【考点】6F:负整数指数幂.【分析】根据负整数指数为正整数指数的倒数计算.【解答】解:3﹣2=.故答案为.【点评】本题主要考查了负指数幂的运算,比较简单.12.若(x﹣2)0有意义,则x的取值范围是x≠2 .【考点】6E:零指数幂.【分析】根据非零的零次幂等于1,可得答案.【解答】解:由题意,得x﹣2≠0,解得x≠2,故答案为:x≠2.【点评】本题考查了零指数幂,利用非零的零次幂等于1是解题关键.13.分解因式:x2+x﹣2= (x﹣1)(x+2).【考点】57:因式分解﹣十字相乘法等.【分析】因为(﹣1)×2=﹣2,2﹣1=1,所以利用十字相乘法分解因式即可.【解答】解:∵(﹣1)×2=﹣2,2﹣1=1,∴x2+x﹣2=(x﹣1)(x+2).故答案为:(x﹣1)(x+2).【点评】本题考查的是十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是两角和它们的夹边分别相等的两个三角形全等.【考点】KE:全等三角形的应用.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出即可.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故答案为:两角和它们的夹边分别相等的两个三角形全等.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理:两角及其夹边分别对应相等的两个三角形全等是解题的关键.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是AO=DO或AB=DC或BO=CO .【考点】KB:全等三角形的判定.【分析】本题要判定△AOB≌△DOC,已知∠A=∠D,∠AOB=∠DOC,则可以添加AO=DO或AB=DC或BO=CO从而利用ASA或AAS判定其全等.【解答】解:添加AO=DO或AB=DC或BO=CO后可分别根据ASA、AAS、AAS判定△AOB≌△DOC.故填AO=DO或AB=DC或BO=CO.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 1.5 cm.【考点】KF:角平分线的性质.【分析】作出图形,过点D作DE⊥AB于E,先求出CD的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD解答.【解答】解:如图,过点D作DE⊥AB于E,∵BC=4cm,BD:DC=5:3,∴CD=×4=1.5cm,∵AD是∠BAC的平分线,∴DE=CD=1.5cm.故答案为:1.5.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.17.若x2+4x+1=0,则x2+= 14 .【考点】4C:完全平方公式.【分析】由x2+4x+1=0可得x≠0,两边除以x可得到x+=﹣4,再两边平方,根据完全平方公式展开即可得到x2+的值.【解答】解:∵x2+4x+1=0,∴x+4+=0,即x+=﹣4,∴(x+)2=(﹣4)2,∴x2+2+=16,∴x2+=14.故答案为14.【点评】本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了代数式的变形能力.18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式2n+1﹣2n=2n;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= 2 .【考点】37:规律型:数字的变化类.【分析】(1)根据等式的变化找出变化规律“第n个等式为2n+1﹣2n=2n”,此题得解;(2)根据2n=2n+1﹣2n将算式210﹣29﹣28﹣…﹣22﹣2进行拆项,合并同类项即可得出结论.【解答】解:(1)观察,发现规律:22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23,…,∴第n个等式为2n+1﹣2n=2n.故答案为:2n+1﹣2n=2n.(2)∵2n=2n+1﹣2n,∴210﹣29﹣28﹣…﹣22﹣2=210﹣210+29﹣29+28﹣28+27﹣…﹣23+22﹣2=22﹣2=2.故答案为:2.【点评】本题考查了规律型中数字的变化类,根据等式的变化找出变化规律是解题的关键.三、解答题(本题共54分)19.请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误: A ;(2)从B到C是否正确,若不正确,错误的原因是不能去分母;(3)请你正确解答.【考点】6B:分式的加减法.【分析】异分母分式相加减,先化为同分母分式,再加减.【解答】解:===,(1)故可知从A开始出现错误;(2)不正确,不能去分母;(3)===.【点评】本题考查异分母分式相加减.应先通分,化为同分母分式,再加减.本题需注意应先把能因式分解的分母因式分解,在计算过程中,分母不变,只把分子相加减.20.尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.【考点】N4:作图—应用与设计作图;KF:角平分线的性质.【分析】作出角平分线,进而截取PB=400进而得出答案.【解答】解:如图所示:P点即为所求.【点评】此题主要考查了应用设计与作图,正确掌握角平分线的性质是解题关键.21.分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.【考点】55:提公因式法与公式法的综合运用.【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=(3a+1)(3a﹣1);(2)原式=p(p2﹣16p+64)=p(p﹣8)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22.计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.【考点】6B:分式的加减法;2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】(1)直接利用分式加减运算法则化简求出答案;(2)直接利用负指数幂的性质以及零指数幂的性质以及绝对值的性质分别化简求出答案.【解答】解:(1)原式===;(2)原式=2﹣1+1+3=5.【点评】此题主要考查了分式得加减运算以及实数运算,正确掌握运算法则是解题关键.23.先化简,再求值:,其中x=5.【考点】6D:分式的化简求值.【分析】把原式的第二项被除式分母及除式分母都分解因式,然后利用除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,约分后,再与第一项通分,利用同分母分式的减法运算计算,可化为最简,最后把x的值代入化简的式子中即可求出值.【解答】解:==﹣=﹣===,(4分)当x=5时,原式==.(5分)【点评】此题考查了分式的化简求值,分式的化简求值时,加减的关键是通分,通分的关键是找出各分母的最简公分母,分式的乘除关键是约分,约分的关键是找出公因式,本题属于化简求值题,解答此类题要先将原式化为最简,再代值,同时注意有时计算后还能约分,比如本题倒数第二步约去公因式x+1.24.解分式方程:.【考点】B3:解分式方程;86:解一元一次方程.【分析】方程的两边都乘以5(x+1),把分式方程转化成整式方程,求出方程的解,再代入方程进行检验即可.【解答】解:方程的两边都乘以5(x+1)、去分母得:5x=2x+5x+5,移项、合并同类项得:2x=﹣5,∴系数化成1得:x=﹣,经检验x=﹣是原方程的解,∴原方程的解是x=﹣.【点评】本题考查了分式方程的解法,关键是把分式方程转化成整式方程,注意一定要检验.25.已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.【考点】KB:全等三角形的判定.【分析】首先得出∠EAC=∠BAD,进而利用全等三角形的判定方法(SAS)得出即可.【解答】证明:∵∠1=∠2,∴∠EAC=∠BAD,在△DAB和△EAC中,∴△ABD≌△ACE(SAS)【点评】此题主要考查了全等三角形的判定,正确应用全等三角形的判定方法是解题关键.26.已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.【考点】KD:全等三角形的判定与性质.【分析】(1)易证△ABD≌△CDB,根据全等三角形的对应边相等知AB=DC;(2)因为△ABD≌△CDB,所以全等三角形的对应角∠ADB=∠CBD.然后由平行线的判定定理知AD∥BC.【解答】证明:(1)∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°,∴在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(HL),∴AB=DC(全等三角形的对应边相等);(2)∵Rt△ABD≌Rt△CDB[由(1)知],∴∠ADB=∠CBD(全等三角形的对应角相等),∴AD∥BC(内错角相等,两直线平行).【点评】本题考查了全等三角形的判定与性质.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.以及三角形全等的性质:全等三角形的对应边、对应角相等.27.在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.【考点】KD:全等三角形的判定与性质.【分析】只要以其中三个作为条件,能够得出另一个结论正确即可,下边以(1)、(2)、(4)为条件,(3)为结论为例.【解答】解:以(1)、(2)、(4)为条件,(3)为结论.证明:∵AE=CF,∴AF=CE,∵AD∥BC,∴∠A=∠C,又AD=BC,∴△ADF≌△CBE(SAS),∴∠B=∠D.【点评】本题与命题联系在一起,归根到底主要还是考查了全等三角形的判定及性质问题,应熟练掌握.28.若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.【考点】AE:配方法的应用;1F:非负数的性质:偶次方.【分析】根据x2+y2﹣4x+2y+5=0,可以求得x、y的值,从而可以求得所求式子的值.【解答】解:∵x2+y2﹣4x+2y+5=0,∴x2﹣4x+4+y2+2y+1=0,∴(x﹣2)2+(y+1)2=0,∴x﹣2=0,y+1=0,解得,x=2,y=﹣1,∴()2010+y2010==1+1=2.【点评】本题考查配方法的应用、非负数的性质,解题的关键是明确题意,找出所求问题需要的条件.29.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.【考点】LE:正方形的性质;KD:全等三角形的判定与性质;R2:旋转的性质.【分析】(1)在MB的延长线上截取BE=DN,连接AE,根据正方形性质得出AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,证△ABE≌△ADN推出AE=AN;∠EAB=∠NAD,求出∠EAM=∠MAN,根据SAS证△AEM≌△ANM,推出ME=MN即可;(2)在DN上截取DE=MB,连接AE,证△ABM≌△ADE,推出AM=AE;∠MAB=∠EAD,求出∠EAN=∠MAN,根据SAS证△AMN≌△AEN,推出MN=EN即可.【解答】解:(1)图1中的结论仍然成立,即BM+DN=MN,理由为:如图2,在MB的延长线上截取BE=DN,连接AE,∵四边形ABCD是正方形,∴AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,∵在△ABE和△ADN中,∴△ABE≌△ADN(SAS).∴AE=AN;∠EAB=∠NAD,∵∠DAB=90°,∠MAN=45°,∴∠DAN+∠BAM=45°,∴∠EAM=∠BAM+∠EAB=45°=∠MAN,∵在△AEM和△ANM中,∴△AEM≌△ANM(SAS),∴ME=MN,∴MN=ME=BE+BM=DN+BM,即DN+BM=MN;(2)猜想:线段BM,DN和MN之间的等量关系为:DN﹣BM=MN.证明:如图3,在DN上截取DE=MB,连接AE,∵由(1)知:AD=AB,∠D=∠ABM=90°,BM=DE,∴△ABM≌△ADE(SAS).∴AM=AE;∠MAB=∠EAD,∵∠MAN=45°=∠MAB+∠BAN,∴∠DAE+∠BAN=45°,∴∠EAN=90°﹣45°=45°=∠MAN,∵在△AMN和△AEN中,∴△AMN≌△AEN(SAS),∴MN=EN,∵DN﹣DE=EN,∴DN﹣BM=MN.【点评】本题考查了正方形性质和全等三角形的性质和判定的应用,题目具有一定的代表性,是一道比较好的题目,证明过程类似,培养了学生的猜想能力和分析归纳能力.30.已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.【考点】KD:全等三角形的判定与性质;KF:角平分线的性质.【分析】分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.利用CE是角平分线,角平分线的性质定理,得EF=EH,再证明∠ABD=∠EBF,同理可证:EF=EG,根据HL证明Rt△EDH≌Rt△EDG,根据全等三角形的性质和角的和差关系可求∠CED.【解答】解:分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.∵CE是角平分线,∴EF=EH.∠ABC=100°,∠DBC=20°,∴∠ABD=80°,又∵∠EBF=80°,∴∠ABD=∠EBF,∴EF=EG,∴EH=EG,在Rt△EDH与Rt△EDG中,,∴Rt△EDH≌Rt△EDG(HL),∴∠EDH=∠EDG,∴∠CED=∠EDH﹣∠ECD=(∠BDH﹣∠BCA)=×20°=10°.【点评】本题考查了全等三角形的判定与性质,角的平分线的性质定理和逆定理,本题的关键是作出辅助线,以及角的平分线性质定理的应用.人教版八年级上学期期中考试数学试卷(二)一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣212.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE5.在下列图案中,不是轴对称图形的是()A.B.C.D.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD7.下列等式成立的是()A.B.C.D.8.如图,△ABC≌△BAD,点A和点B,点C和点D是对应点,如果AB=6cm,BD=5cm,AD=4cm,那么BC的长是()A.4 B.5 C.6 D.无法确定9.如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角形板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是()A.16 B.12 C.8 D.410.如图,将一张正方形纸片经两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是()A.B.C.D.二.细心填一填(每小题2分,共20分)11.一种细菌的半径为0.000407m,用科学记数法表示为m.12.当x= 时,分式没有意义;当x= 时,分式的值为0.13.计算(﹣)3÷(﹣)2的结果是.14.计算+的结果是.15.若x2+mx+16是完全平方式,则m= .16.如图,在△ABC和△DEF 中,AB=DE,AC=DF.请再添加一个条件,使△ABC 和△DFE全等.添加的条件是(填写一个即可):,理由是.17.如图,把△ABC绕C点顺时针旋转30°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=80°,则∠A=°.18.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D 到线段AB的距离是cm.19.如图,△ABC中,AB=AC,AB的垂直平分线交AC于P点.(1)若∠A=35°,则∠BPC=;(2)若AB=5cm,BC=3cm,则△PBC的周长= .20.探究:观察下列各式,,,…请你根据以上式子的规律填写: = ;= .三.精心解一解:(21,22每小题2分,23,24,25每小题2分,共16分)21.因式分解:2mx2﹣4mx+2m= .22.因式分解:x2y﹣9y= .23.化简:﹣+.24.先化简,再求值:(1﹣)÷,其中x=2.25.解分式方程:四.耐心想一想:(本小题4分)26.四川5.12特大地震受灾地区急需大量赈灾帐篷,某帐篷生产企业接到生产任务后,加大生产投入,提高生产效率,实际每天生产帐篷比原计划多200顶,已知现在生产3000顶帐篷所用的时间与原计划生产2000顶的时间相同.现在该企业每天能生产多少顶帐篷?五.精确作一作:作图题(本小题4分)27.某地区要在区域S内(即∠COD内部)建一个超市M,如图所示,按照要求,超市M到两个新建的居民小区A,B的距离相等,到两条公路OC,OD的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)六.耐心看一看(每小题6分)28.如图,△ABC中A(﹣2,3),B(﹣31),C(﹣1,2).(1)画出△ABC关于x轴对称的△A1B1C1;并写出△A1B1C1三个顶点坐标:,,.(2)画出△ABC关于y轴对称的△A2B2C2;并写出△A2B2C2三个顶点坐标:,,.七.严密推一推(每小题4分,共20分)29.已知:如图,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.30.如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.31.已知:AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)AO=BO.32.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.33.已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F.求证:AB=FC.八.挑战自我(选做本题4分)34.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,试判断AB﹣AD 与CD﹣CB的大小关系,并证明你的结论.解:结论:证明:参考答案与试题解析一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣21【考点】负整数指数幂.【分析】根据负整数指数为正整数指数的倒数进行计算即可.【解答】解:原式=(﹣7)3=﹣343.故选:C.【点评】此题主要考查了负整数指数幂、乘方,关键是掌握负整数指数为正整数指数的倒数.2.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2 C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<【考点】负整数指数幂;有理数的乘方;零指数幂.【分析】分别根据零指数幂,负整数指数幂和平方的运法则进行计算,再比较大小即可.【解答】解:∵=6,(﹣2)0=1,(﹣3)2=9,又∵1<6<9,∴(﹣2)0<<(﹣3)2.故选A.【点评】主要考查了零指数幂,负整数指数幂和平方的运算.负整数指数幂为相应的正整数指数幂的倒数;任何非0数的0次幂等于1.3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、把一个多项式转化成几个整式积的形式,故A正确;B、每把一个多项式转化成几个整式积的形式,故B错误;C、是整式的乘法,故C错误;D、把一个多项式转化成几个整式积的形式,故D正确;故选:D.【点评】本题考查了因式分解的意义,利用了因式分解的意义.4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE【考点】全等三角形的判定.【分析】△ADC和△AEB中,已知的条件有AB=AC,∠A=∠A;要判定两三角形全等只需条件:一组对应角相等,或AD=AE即可.可据此进行判断,两边及一边的对角相等是不能判定两个三角形全等的.【解答】解:A、当∠B=∠C时,符合ASA的判定条件,故A正确;B、当AD=AE时,符合SAS的判定条件,故B正确;C、当∠ADC=∠AEB时,符合AAS的判定条件,故C正确;D、当DC=BE时,给出的条件是SSA,不能判定两个三角形全等,故D错误;故选:D.【点评】本题主要考查的是全等三角形的判定方法,需注意的是SSA和AAA不能作为判定两个三角形全等的依据.5.在下列图案中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、B、C都是轴对称图形,D不是轴对称图形,故选:D.【点评】此题主要考查了轴对称图形,关键是正确找出对称轴的位置.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD【考点】角平分线的性质.。

2022-2023学年度初二数学第一学期期中考试试卷(含答案)

2022-2023学年度初二数学第一学期期中考试试卷(含答案)

2022-2023学年度第一学期期中考试试卷初二数学 2022.10班级: 姓名:一、 选择题(每小题3分,共30分)1.2020年初,新型冠状病毒引发肺炎疫情.一方有难,八方支援,危难时刻,全国多家医院纷纷选派医护人员驰援武汉.下面是四家医院标志的图案部分,其中是轴对称图形的是( )齐鲁医院 华西医院 湘雅医院 协和医院 A . B . C . D .2.下列长度的三条线段,能组成三角形的是( ) A .3,4,8B .5,6,10C .5,5,11D .6,7,133.如图所示,△ABC 中AB 边上的高线画法正确的是( )4.如图,在△ABC 中,∠A =45°,∠C =75°,BD 是△ABC 的角平分线,则∠BDC 的度数为( ) A .60° B .70° C.75° D.105°5.如图,在△ABC 中,∠C =90°,∠B =30°,边AB 的垂直平分线DE 交AB 于点E ,交BC 于点D ,CD =3,则BC 的长为( )A. 8B. 9C. 10D. 126.如图,已知MON ,以O 为圆心,任意长为半径画弧,与射线OM 、ON 分别交于A 、B ,再分别过点A 、B 作OM 、ON 的垂线,交点为P ,画射线OP ,可以判定△AOP ≌△BOP ,全等的依据是( ) A. SSS B. SAS C. AAS D. HL第4题 第5题 第6题 第7题D CABH C BAABC HH CBABC HAA B C D7.如图,∠AOB=60°,点P 在边OA 上,OP=10,点M ,N 在边OB 上,PM=PN ,若MN=2, 则OM 的长为( ) A. 5 B. 4 C. 4.5 D. 68.借助如图所示的“三等分角仪”能三等分某些度数的角,这个“三等分角仪”由两根有槽的棒OA ,OB 组成,两根棒在O 点相连并可绕O 转动,C 点固定,OC =CD =DE ,点D ,E 可在槽中滑动.若∠BDE =75°,则∠CDE 的度数是( )A .68°B .75°C .80°D .90°9.如图,点P 是∠AOB 内任意一点,且∠AOB=40°,点M 和点N 分别是射线OA 和射线OB 上的动点, 当△PMN 周长取最小值时,则∠MPN 的度数为( )A .140°B .100°C .50°D .40°10.如图,AE ⊥AB 且AE AB =,BC ⊥CD 且BC CD =,请按照图中所标数据,计算图中实线所围成的图形的面积是( )A. 30B. 32C. 35D. 38第8题 第9题 第10题二、填空题(每小题2分,共16分)11.八边形内角和是_________°,外角和是_________°. 12.等腰三角形的两边分别为4和7,则其周长是____________.13.如图,点P 是AD 上一点,∠ABP=∠ACP ,请再添加一个条件:_______________,使得△ABP ≌△ACP . 14. 如图,BD 是∠ABC 的平分线,点P 是射线BD 上一点,PE ⊥BA 于点E ,PE=2,点F 是射线BC 上一个动点,则线段PF 的最小值为________.15.如图,某轮船由西向东航行,在A 处测得小岛P 的方位是北偏东75°,又继续航行7海里后,在B 处测得小岛P 的方位是北偏东60°,则此时轮船与小岛P 的距离BP =__________海里.第13题 第14题 第15题16.如图,△ABC 的面积为10cm 2,AP 垂直∠ABC 的平分线BP 于P ,则△PBC 的面积为_________.17.在平面直角坐标系xOy 中,点A 的坐标为(4,﹣3),在坐标轴上确定一点P ,使△AOP 为等腰三角形,则满足条件的点P 的个数是_________.18.如图,在△ABC 中,∠ABC =45°,过点C 作CD ⊥AB 于点D ,过点B 作BM ⊥AC 于点M ,连接MD ,过点D 作DN ⊥MD ,交BM 于点N .CD 与BM 相交于点E ,若点E 是CD 的中点;下列结论:①BN=CM ;②∠AMD =45°;③NE ﹣EM =MC ;④EM :MC :NE =1:2:3.其中正确的结论有_________________.(填写序号即可)三、解答题(19、20题每题5分,21、22、23题4分,24、25、26题6分,27、28题7分,共54分) 19.如图,点A ,B ,C ,D 在一条直线上,且AB =CD ,若∠1=∠2,EC =FB .求证:∠E =∠F .20.《几何原本》是一部集前人思想和欧几里得个人创造性于一体的不朽之作,把人们公认的一些事实列成定义、公理和公设,用它们来研究各种几何图形的性质,从而建立了一套从定义、公理和公设出发,论证命题得到定理的几何学论证方法.在其第一卷中记载了这样一个命题:“在任意三角形中,大边对大角.”请补全上述命题的证明.已知:如图,在ABC △中,AC AB >. 求证:____________________________.证明:如图,由于AC AB >,故在AC 边上截取AD AB =,连接BD .(在上图中补全图形)AD AB =,ABD ∴=∠∠________.(_________________________________)(填推理的依据) ADB ∠是BCD 的外角,CBA∴∠=∠+∠.(__________________________________)(填推理的依据)ADB C DBC∴∠>∠.ADB C∴∠>∠.ABD C∠∠∠,ABC ABD DBC=+∴∠>∠.ABC ABD∴∠>∠.ABC C21.如图,在平面直角坐标系xOy中,△ABC的三个顶点的坐标分别是A(2,3),B(1,0),C(1,2).A B C;(1)在图中作出△ABC关于y轴对称的△111(2)如果要使以B、C、D为顶点的三角形与△ABC全等,写出所有符合条件的点D坐标.22.2019年12月18日,新版《北京市生活垃圾管理条例》正式发布,并在2020年5月1日起正式实施,这标志着北京市生活垃圾分类将正式步入法制化、常态化、系统化轨道.目前,相关配套设施的建设已经开启.如图,计划在某小区道路l上建一个智能垃圾分类投放点O,使得道路l附近的两栋住宅楼A,B到智能垃圾分类投放点O的距离相等.(1)请在图中利用尺规作图(保留作图痕迹,不写作法),确定点O的位置;(2)得到OA=OB的依据为:.23.如图:点E是∠ABC的边BA上一点,EF//BC.(1)在图中作出∠ABC的平分线BM,交EF于点M.(保留作图痕迹,不写作法和证明);(2)在(1)中,判断△BEM的形状,并证明.24.已知在△ABC 中,∠CAB 的平分线AD 与BC 的垂直平分线DE 交于点D ,DM ⊥AB 于M ,DN ⊥AC 的延长线于N .(1)求证:BM=CN ;(2)当∠BAC =70°时,求∠DCB 的度数.25.如图,已知△ABC 和△ADE 均为等边三角形,连接CD 、BE ,作AF ⊥CD 于点F ,AG ⊥BE 于点G 求证:(1)∠CDA =∠BEA ; (2)△AFG 为等边三角形.26.已知,如图,Rt △ABC 中,90BAC ∠=︒. (1)按要求作图:(保留作图痕迹) ①延长BC 到点D ,使CD BC =; ②延长CA 到点E ,使2AE CA =; ③连接AD ,BE .(2)猜想线段AD 与BE 的数量关系,并证明.27.如图,在平面直角坐标系xoy 中,直线l 经过点M (3,0),且平行于y 轴.给出如下定义:点P (x ,y )先关于y 轴对称得点1P ,再将点1P 关于直线l 对称得点P ',则称点P '是点P 关于y 轴和直线l 的二次反射点.(1)已知A (-4,0),B (-2,0),C (-3,1),则它们关于y 轴和直线l 的二次反射点',','A B C 的坐标分别是________________________________;(2)若点D 的坐标是(a ,0),其中a<0,点D 关于y 轴和直线l 的二次反射点是点D ',求线段DD '的长; (3)已知点E (4,0),点F (6,0),以线段EF 为边在x 轴上方作正方形EFGH 中,若点P (a ,1),Q (a +1,1)关于y 轴和直线l 的二次反射点为P ',Q ',且线段P Q ''与正方形EFGH 的边有公共点,求a 的取值范围.28.已知:线段AB及过点A的直线l.如果线段AC与线段AB关于直线l对称,连接BC交直线l于点D,以AC为边作等边△ACE,使得点E在AC的下方,作射线BE交直线l于点F,连接CF.(1)根据题意将图1补全;(2)如图1,如果∠BAD = α(30°<α<60°).①∠BAE= ,∠ABE= (用含有α代数式表示);②用等式表示线段F A,FE与FC的数量关系,并证明.lABB图1(3)如图2,如果60°<α<90°,直接写出线段F A,FE与FC的数量关系,不证明.lAB图22022-2023学年度第一学期八年级数学期中考试评分标准2022年10月 命题人:安瑞一、选择题(本题共20分,每小题2分)二、填空(本题共16分,每小题2分) 三、解答题(19、20题每题5分,21、22、23题4分,24、25、26题6分,27、28题7分,共54分) 19. 证明:∵∠1+∠DBF =180°,∠2+∠ACE =180°. 又∵∠1=∠2, ∴∠DBF =∠ACE , ∵AB =CD , ∴AB +BC =CD +BC , 即AC =DB ,在△ACE 和△DBF 中,∴△ACE ≌△DBF (SAS ), ∴∠E =∠F .20.ABC C ∠>∠∠ADB 等边对等角三角形的外角等于与它不相邻的两个内角的和21. (1)如图所示:(2)如图,D 的坐标为(0,3),(0,﹣1),(2,﹣1).22.(1)如图:点O 即为所求;(2)得到OA=OB 的依据为:线段的垂直平分线上的点到线段的两个端点的距离相等. 23.略 24. 略25.∵△ABC 和△ADE 均为等边三角形, ∴AD=AE ,AC=AB , ∠DAE=∠CAB60°, ∴∠DAE+∠3=∠CAB+∠3, 即∠DAC=∠EAB ,在△DAC 和△EAB 中 AD AE DAC EAB AC AB =⎧⎪∠=∠⎨⎪=⎩,∴△DAC ≌EAB (SAS) ,∴∠1=∠2 , ∵AF ⊥CD ,AG ⊥BE , ∴∠AFD=∠EGA=90°,在△ADF 和△AEG 中12AFD AGE AD AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AFD ≌△AGE (AAS), ∴AF=AG ,∠DAF=∠EAG ,∴∠DAF=∠FAE=∠EAG+∠FAE , 即 ∠FAG=△DAE=60°, ∴△AFG 为等边三角形.26.(1)如图所示,即为所求,(2)延长AC 到点F ,使CF =AF ,连接BF , 在ACD ∆和FCB ∆中CD CB ACD FCB AC FC =⎧⎪∠=∠⎨⎪=⎩()ACD FCB SAS ∴∆≅∆ AD FB ∴=∵CF AC =2AF AC ∴= 2AE CA =∴AF AE =90BAC ︒∠= AB EF ∴⊥∴AB 是EF 的垂直平分线, ∴BE BF = ∴AD =BF11 G F E D C B l A 27.28.解:(1)补全图形;(2)① 260α-︒,120.α︒-② 数量关系是FA = FC + FE ,证明如下:在FA 上截取FG = EF ,连接EG .由①得,∠ABE = 120°-α,∠BAD = α . ∴ ∠AFB = 180° -∠ABE -∠BAD = 60° . ∴ △EFG 为等边三角形.∴ EG = FE = FG ,∠GEF = 60°. 又∵ 等边三角形AEC ,∴ ∠AEC = 60°.∴ ∠AEC =∠GEF = 60°.∴ ∠AEC -∠GEC =∠GEF -∠GEC . 即 ∠AEG =∠CEF .又∵ 等边三角形AEC ,∴ AE = EC .∴ △AEG ≌△CEF .∴ AG = FC .∴ FA = AG + FG = FC + FE .(3)FA = FC - FE。

陕西省西安市西安高新一中2024-2025学年八年级上学期期中考试数学试题(含答案)

陕西省西安市西安高新一中2024-2025学年八年级上学期期中考试数学试题(含答案)

2024-2025学年度第一学期期中考试试题八年级数学一、选择题(每小题3分,共30分)1.下列是二元一次方程的是( )A .B .C .D .2.已知点在第二象限,则点在( )A .第一象限B .第二象限C .第三象限D .第四象限3.物理课上小新学习了利用排水法测量物体的体积(即物块的体积等于排出的水的体积).如图,他将一个正方体物块悬挂后完全浸入盛满水的圆柱形小桶中(绳子的体积忽略不计),水溢出至一个量简中,测得溢出的水的体积为.由此,可估计该正方体物块的棱长位于哪两个相邻的整数之间( )第3题图A .1和2之间B .2和3之间C .3和4之间D .4和5之间4.利用加减消元法解方程组,小致说:要消去,可以将①②;小远说:要消去,可以将①②.关于小致和小远的说法,下列判断正确的是( )A .小致对,小远不对B .小致不对,小远对C .小致和小远都对D .小致和小远都不对5.若一个正比例函数的图象经过点,则这个图象一定也经过点( )A .B .C .D .6.如图,在平面直角坐标系中,直线:与直线:交于点,则关于、的方程组的解为()3xy =21x y +=23x y +=215x -=(),4A x (),4B x --350cm 34165633x y x y -=⎧⎨+=⎩①②x 3⨯-5⨯y 3⨯+2⨯()4,5-()5,4-4,15⎛⎫-⎪⎝⎭5,14⎛⎫-⎪⎝⎭()5,4-1l 4y x =+2l y kx b =+(),3A a x y4y x y kx b =+⎧⎨=+⎩第6题图A .B .C .D .7.如图,在平面直角坐标系中,,,,点是线段上一点,直线解析式为,当随增大而增大时,点的坐标可以是( )第7题图A .B .C .D .8.如果表中给出的每一对,的值都是二元一次方程的解,则表中的值为( )012531A .B .C .0D .79.《九章算术》是人类科学史上应用数学的“算经之首”,书中有这样一个问题:若2人坐一辆车,则9人需要步行,若“……”.问:人与车各多少?小高同学设有辆车,人数为,根据题意的列方程组为,根据已有信息,题中用“……”表示的缺失条件应补为( )A .三人坐一辆车,有一车少坐2人B .三人坐一辆车,则2人需要步行C .三人坐一辆车,则有两辆空车D .三人坐一辆车,则还缺两辆车10.如图,在一场篮球比赛中,某队甲、乙两队员的位置分别在、两点处,队员甲抢到篮板后,迅速将球抛向对方半场,队员乙看到后同时快跑到点处恰好接住了球,则图中分别表示球、乙队员离点的距离(单位:米)与甲队员抛球后的时间(单位:秒)关系的大致图象是( )A .B .C .D .二、填空题(每小题3分,共21分)31x y =⎧⎨=-⎩14x y =-⎧⎨=⎩13x y =-⎧⎨=⎩13x y =-⎧⎨=-⎩()1,1A -()3,1B ()2,3P M AB PM y kx b =+y x M ()2,1-()0,1()2,1()3,1x y 3ax by -=m x y1-m7-3-x y ()2932y x y x =+⎧⎨=-⎩A B C A y x11.若是同类二次根式,请写出一个符合条件的最简二次根式为________.12.如图,是一只蝴蝶标本,已知表示蝴蝶两“翅膀尾部”,两点的坐标分别为,,则表示蝴蝶“翅膀顶端”点的坐标为________.第12题图13.将直线向左平移2个单位,再向下平移6个单位后,正好经过点,则的值为________.14.如果某个二元一次方程组的解中两个未知数的值互为相反数,我们称这个方程组为“和谐方程组”.若关于,的方程组是“和谐方程组”,则的值为________.15.若一次函数的图象不经过第一象限,则的取值范围是________.16.小明在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图①;小红看见了,说:“我也来试一试.”结果小红七拼八凑,拼成了如图②那样的正方形,中间还留下了一个洞,恰好是面积为的小正方形,则每个小长方形的面积为________.图①图②17.如图,在平面直角坐标系中,点,点,点为轴上一点,连接,将绕点逆时针旋转得,连接,得到等腰直角,且为直角,连接,请写出当最大时点的坐标为________.第17题图a a A B ()3,1--()3,1-C 2y kx =-()2,4k x y 343x y ax y a+=+⎧⎨-=⎩a 25y kx k =++k 225mm 2mm ()1,5B ()3,0D A y AB AB B BC AC ABC △ABC ∠CD CB CD -C三、解答题(共8小题,共69分)18.(本题满分8分)计算:(1);(2.19.(本解满分8分)解方程组:(1);(2).20.(本题满分7分)如图,在平面直角坐标系中,点的坐标为,点的坐标为,点的坐标为.(1)将先向右平移5个单位,再关于轴对称,得到,请画出;(2)直接写出,,三点的坐标分别为________,________,________;(3)的面积为________.21.(本题满分7分)定义:若两个二次根式,满足,且是有理数,则称与是关于的“友好二次根式”。

陕西省西安市经开第二中学2024-2025学年八年级上学期期中考试数学试题(含答案)

陕西省西安市经开第二中学2024-2025学年八年级上学期期中考试数学试题(含答案)

2024~2025学年度第一学期期中检测八年级数学(北师大版)考生注意:本试卷共8页,满分120分,时间120分钟。

一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题目要求的)1.下列各数中,是无理数的是( )A.BC .-2D .1.52.已知一直角三角形两直角边的长分别为9,12,则它的斜边长为()A .15B .16C .17D.253.下列二次根式中,是最简二次根式的是( )A B CD 4.下列表示与之间关系的图象中,不是的函数的是()A .B .C .D .5.中国象棋具有悠久的历史,战国时期,就有了关于象棋的正式记载.如图是中国象棋棋局的一部分,以“士”所在位置为原点,以图中小正方形的边长为单位长度,建立平面直角坐系标系,则“炮”的位置应表示为()(第5题图)A .(4,-1)B .(-1,4)C .(3,-2)D .(-2,-3)6,则的取值范围是( )A .B .C .D .7.在平面直角坐标系中,将一次函数的图象向下平移3个单位长度后得到一个正比例函数的图象,若点在一次函数的图象上,则的值为( )A .2B .-2C .D .13y x y x 5b =-b 5b <5b ≤5b ≥5b >2y x b =-+(),2a 2y x b =-+a 1212-8.如图,在中,的垂直平分线交于点的垂直平分线交于点,点为垂足,连接,若,则的长为( )(第8题图)ABCD二、填空题(共5小题,每小题3分,计15分)9______9.(填“>”“<”或“=”)10.已知一次函数中,随增大而增大,则的取值范围是______.11.长方形在平面直角坐标系中的位置如图所示,若,点的坐标为(-6,6),则点的坐标为______.(第11题图)12.现有一个容器,在注水之前容器内有少量水,现向容器内注水,并同时开始计时,在注水过程中,水面高度匀速增加,在容器注满水之前,发现容器内的水面高度是时间的一次函数,将容器内的水面高度与时间记录如下表:x /s 051025…y /cm10111215…则容器内的水面高度关于时间的函数关系式为______.13.如图,在中,是边上的高,若分别是和上的动点,则的最小值为______.ABC △AB BC ,D AC BC E ,M N ,AD AE 35,2,22BD DE EC ===AC ()211y m x =-+y x m ABCD 10AD =B C ()cm y ()s x ()cm y ()s x ()cm y ()s x ABC △10,12,AB AC BC AD ===BC ,P Q AD AC PC PQ +(第13题图)三、解答题(共13小题,计81分.解答应写出过程)14.(5分)计算:.15.(5分)计算:16.(5分)已知正数的两个平方根分别是和,求的算术平方根.17.(5分)已知平面直角坐标系如图所示:(第17题图)(1)画出一次函数的图象;(2)当时,的取值范围是______.18.(5分)如图,在等腰中,,若的度数.(第18题图)19.(5分)小明有一根铁丝,他用这根铁丝围成了一个长方形,其中长方形的宽为,长是宽的4倍.若小明用这根铁丝首尾相接围成正方形,则围成的正方形与原长方形相比,谁的面积大?20.(5分)如图,在平面直角坐标系中,的顶点坐标分别为A (4,1),B (3,4),C (1,2).114-(77-+a 23x -1x -3=2a b +21y x =+0y >x ABC △30BCD ∠=︒3,AB BC BD CD ====ACD∠dm ABC △(第20题图)(1)请画出关于x 轴对称的图形,点A ,B ,C 的对应点分别为;(2)若点P 在在内部,则点P 在中对应点的坐标为_______.21.(6分)“儿童散学归来早,忙趁东风放纸莺”.又到了放风筝的最佳时节.如图,小亮的风筝在点C 处,点A 表示线轴所在的位置,已知引线的长度为10米,两处的水平距离为8米(风筝本身的长、宽忽略不计).现要使风筝沿竖直方向上升9米至处,若位置不变,引线的长度应加长多少米?(第21题图)22.(7分)在平面直角坐标系中,点.(1)若点M 在y 轴上,求m 的值;(2)若点M 到x 轴的距离为8,求点M 的坐标.23.(7分)我们知道气球放在空气中会往上飘,小颖利用一只气球研究其上升的速度,发现该气球所在位置距离地面的高度与气球上升的时间之间的函数关系如图所示.请根据图象回答下列问题:(第23题图)(1)气球的起始高度为______;(2)若气球所在位置距离地面的高度与气球上升的时间之间的函数关系式为,则的值为______;(3)若小颖测得气球此时的高度为,则气球在空气中上升了多长时间?ABC △111A B C △111,A B C ,(),m n ABC △111A B C △1P AC ,A B M ,A B AC ()1,24M m m -+()m y ()min x m ()m y ()min x y kx b =+k 30m24.(8分)如图,在中,点在边上,已知,点在上,且.(第24题图)(1)试说明:;(2)若,求的长.25.(8分)随着电动车的普及,电动车的安全充电问题越来越受重视,各个小区内的充电棚随处可见.小明调查了自己小区内的充电APP 的收费方案,方案如下:方式一:不办充电APP 会员,每充电1小时需按原价支付0.5元;方式二:办理充电APP 会员,需要首先支付办理会员的费用10元,每充电1小时在原价的基础上打五折.(1)设充电时间为小时,选择不办会员充电所需费用为元,办理会员后充电所需费用为元,请分别写出与之间的关系式;(2)一个电动车每年充电时长为1200小时,请问选哪种充电方式更划算?(3)当充电时长为多少时,两种充电模式的费用相差5元.26.(10分)如图①,直线分别与轴交于两点,过点的直线交轴负半轴于点.(1)请直接写出直线的表达式:______.(2)已知在直线上存在一点,使得,请求出所有满足条件的点的坐标;(3)如图②,点的坐标为(11,0),点为轴正半轴上一动点,以点为直角顶点,为腰在第一象限内作等腰直角三角形,连接.求的最大值.(第26题图)ABC △D BC 13,5,12AC CD AD ===E AD EBD CAD ∠=∠AD BC ⊥BE AC =AB x 1y 2y 12,y y x :6AB y x =-+,x y ,A B B x ()3,0C -BC BC D ABD AOD S S = D D P x P BP BPQ ,QA QD QB QD -2024~2025学年度第一学期期中检测八年级数学参考答案及评分标准(北师大版)一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题目要求的)题号12345678选项BABDACCD二、填空题(共5小题,每小题3分,计15分)9.< 10. 11.(4,6) 12. 13.9.6三、解答题(共13小题,计81分.解答应写出过程)14.解:.(3分).(5分)15.解:(3分).(5分)16.解:因为正数的两个平方根分别是和,所以.(1分)所以,所以.,所以,解得,(3分)所以.所以.(5分)17.解:(1)列表:x …-202…y…-315…如图为一次函数的图象.12m >1105y x =+114-1=--+1=-(77-+49203=--26=a 23x -1x -()2310x x -+-=2x =()()221121a x =-=-=3==3427b +=6b =212613a b +=+⨯=2a b +21y x =+(2).(5分)18.解:因为所以.所以.即是直角三角形,.(3分)因为,所以.所以.(5分)19.解:由题意可知,长方形的长为所以长方形的周长为.所以围成的正方形边长为..围成的正方形面积为因为,所以围成的正方形面积大.(5分)20.解:(1)如图,即为所求.(3分)(2).(5分)12x >-3,BC BD CD ===22212,12BC BD CD +==222BC BD CD +=BCD △90B ∠=︒AB BC =45BCA ∠=︒15ACD BCA BCD ∠=∠-∠=︒)22dm ⨯+=⨯=)4dm ÷=()232dm =()250dm =5032>111A B C △(),m n -21.解:在中,米,米,则(米).(2分)在中,米,米.则(米).(4分)则引线的长度应加长米(6分)22.解:(1)因为在轴上,所以,解得.(3分)(2)因为点到轴的距离为8,所以或.所以或-6.当时,,当时,.所以点的标为(1,8)或(-7,-8).(7分)23.解:(1)15.(2分)(2)0.5.(4分)(3)由(1)、(2)可知气球所在位置距离地面的高度与气球上升的时间之间的函数关系式为.当时,即,解得.答:若小颖测得气球此时的高度为,则气球在空气中上升了.(7分)24.解:(1)因为,所以,所以.(2分)所以是直角三角形.所以.所以.(4分)(2)因为,所以.因为,所以.所以.(6分)所以.(8分)25.解:(1)根据题意可得,(1分)(3分)(2)把代入可得,把代入可得.因为,所以办理该APP 会员更划算.(5分)(3)当时,即,解得.当时,即,解得.答:充电时长为60或20小时时,两种充电模式的费用相差5元.(8分)Rt ABC △8AB =10AC=6BC ==Rt ABM △8AB =6915BM BC CM =+=+=17AM ==AC 7AM AC -=()1,24M m m -+y 10m -=1m =M y 248m +=248m +=-2m =2m =11m -=6m =-17m -=-M ()m y ()min x 0.515y x =+30y =300.515x =+30x =30m 30min 12,13,5AD AC CD ===222222125169,13169AD CD AC +=+===222AD CD AC +=ACD △90ADC ∠=︒AD BC ⊥AD BC ⊥90BDE ADC ∠=∠=︒,EBD CAD BE AC ∠=∠=()AAS BDE ADC ≌△△12BD AD ==AB ==10.5y x =20.50.5100.2510.y x x =⨯+=+1200x =10.5y x =1600y =1200x =20.2510y x =+2310y =310600<125y y -=()0.50.25105x x -+=160x =215y y -=0.25100.55x x +-=20x =26.解:(1).(2分)(2)由(1)可知直线的表达式为,直线的表达式为,所以.所以.如图①,点在直线上,过点作轴于点,所以设.所以,,.①当,即时,,即,若,则,解得.则.(4分)②当,即时,,即,若,则,解得(舍去);③当,即时,,即,若,则,解得.则.综上所述,当或时,.(6分)图①(3)已知,设,在中,,因为是等腰直角三角形,,所以.如图②,过点作轴于点,26y x=+BC26y x=+AB6y x=-+()()()6,0,0,6,3,0A B C-6,6,3OA BO OC===D BC D DE x⊥E()(),26,,0D a aE a+()116362722ABCS AC OB=⋅=⨯+⨯=△()119632626222ADCS AC DE a a=⋅=⨯+⨯+=+△1162632622AODS OA DE a a=⋅=⨯⨯+=+△0266a<+<30a-<<ABD ABC ADCS S S=-△△△()9927262726922a a a-+=-+=-ABD AODS S=△△()9326a a-=+65a=-618,55D⎛⎫- ⎪⎝⎭260a+<3a<-ABD ABC ADCS S S=+△△△()9927262726922a a a++=-+=-ABD AODS S=△△()9326a a-=-+6a=266a+>0a>ABD ADC ABCS S S=-△△△()9926272627922a a a+-=+-= ABD AODS S=△△()9326a a=+6a=()6,18D618,55D⎛⎫- ⎪⎝⎭()6,18DABD AODS S=△△()()()6,0,0,6,11,0A B D()(),00P m m>Rt BOP△6,OB OP m==BPQ△90BPQ∠=︒BP QP=Q QT x⊥T因为,所以.在和中,所以.所以.(7分)所以.所以.所以是等腰直角三角形,.(8分)作点关于直线的对称点,连接.所以.所以.所以轴,且.所以,则(9分)当点在一条直线上时,的值最大,最大值为的值.所以由勾股定理得.(10分)图②90BPO QPT QPT PQT ∠+∠=∠+∠=︒BPO PQT ∠=∠BOP △PTQ △,,,BOP PTQ BPO PQT BP OP ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS BOP PTQ ≌△△,6OP TQ m OB PT ====66AT OP PT OA m m =+-=+-=AT QT =ATQ △45QAT ∠=︒D AQ R ,,QR BR AR 45QAR ∠=︒90RAT ∠=︒RA x ⊥DQA RQA ≌△△1165AR AD ==-=()6,5R ,,B R Q QB QD -BRBR ==。

辽宁省丹东市东港市2024-2025学年八年级上学期期中教学质量监测数学试卷(含答案)

辽宁省丹东市东港市2024-2025学年八年级上学期期中教学质量监测数学试卷(含答案)

2024—2025学年度上学期期中教学质量监测八年级数学试题考试时间:90分钟 满分:100分第一部分 选择题一、选择题(本题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项符合题目要求)1.下列计算正确的是( )B.2.如图所示,面积为5的正方形的顶点在数轴上,且点表示的数为1,若点在数轴上(点在点左侧),且,则点所表示的数为( )B. C. D.3.最接近的整数是( )A.5B.4C.3D.24.下列说法错误的有( )个①9的平方根是3;②-3是9的平方根;⑤的平方根是;⑥平方根等于本身的数是0和1.A.1B.2C.3D.45.若点在轴上,则点在( )A.第一象限B.第二象限C.第三象限 D.第四象限6.的三边分别为,,,下列条件不能使为直角三角形的是( )A. B.C.,, D.7.一次函数与(,为常数,且),在同一平面直角坐标系的图像是( )=3=2÷==ABCD A A E E A AD AE =E 11+1+()20.1-0.1±()3,A a -x ()1,2B a a -+ABC △a b c ABC △a b ==2c =A B C∠∠∠=+5a =12b =13c =::3:4:5A B C ∠∠∠=y mx n =+y mnx =m n 0mn ≠A. B. C. D.8.如图,在平面直角坐标系中,长方形的顶点为坐标原点,顶点,分别在轴、轴上,,,为边的中点,是边上的一个动点,当的周长最小时,点的坐标为( )A. B. C. D.9.已知,,是直线(为常数)上的三个点,则,,的大小关系( )A. B. C. D.10.将直线沿轴向上平移6个单位长度,若关于原点的对称点落在平移后的直线上,则的值为( )A.12B.-12C.-4D.4第二部分 非选择题(共80分)二、填空题(本题共5小题,每小题2分,共10分)11.已知的平方根是,则的立方根是_____.12.棱长分别是,的两个正方体如图放置,点在上,且,一只蚂蚁如果要沿着图形表面从点爬到点,需要爬行的最短距离是_____cm.13.如图,有一只摆钟,摆锤看作一个点,当它摆动到底座最近时,摆锤离底座的垂直高度,OABC O A C x y 3OA =4OC =D OC E OA BDE △E (1,0)(1.5,0)(1.2,0)(0.8,0)()11,y -()21.8,y ()32,y 3y x m =-+m 1y 2y 3y 123y y y <<321y y y <<213y y y <<312y y y <<y x b =+y ()2,4A -b x 8±x 4cm 3cm P 11E F 11113E P EF =A P 4cm DE =当它来回摆动到底座的距离最高与最低时的水平距离为时,摆锤离底座的垂直高度,钟摆__________.14.如图,正方形的边长为4,点,分别在边,上,将四方形沿折叠得到四边形,点的对应点恰好落在直线上.若,则线段的长度为_____.15.如图,在平面直角坐标系中,点,,,和点,,,分别在直线和轴上,直线与轴交于点,,,都是等腰直角三角形,如果点,那么点的纵坐标是_____.三、解答题(本题共8小题,共70分.解答应写出文字说明、演算步骤或推理过程)16.(10分)(1)(5(2)(517.(5分)18.(7分)如图,在平面直角坐标系内,已知点,,,点,平行于轴.8cm 6cm BF =AD =cmE F AD BC ABFE EF EFNM A M CD 1DM =BF 1A 2A 3A ⋯1B 2B 3B ⋯1233y x =+x 1233y x =+x M 11OA B △122B A B △233B A B ⋯△()11,1A 2024A )(215++()4,1A -()2,4B -()1,2C -()4,56P m m +--PB x(1)求出点的坐标;(2)作出关于轴对称的;(3)在轴上找一点,使得,请直接写出点的坐标_____.19.(9分)的立方根是-5,36的平方根是6与,是的整数部分.(1)求,,的值;(2)求的算术平方根.20.(8分)消防云梯主要用于高层建筑火灾等救援任务,它能让消防员快速到达高层建筑的火灾现场,执行灭火、疏散等救援任务.如图,已知云梯最多能伸长,消防车高.某次任务中,消防车在处将云梯伸长至最长,消防员在高的处救人后,消防车需到达处使消防员从高的处救人,求消防车从处向着火的楼房靠近的距离.21.(10分)在平面直角坐标系中,对于点、两点给出如下定义:若点到,轴的距离的较大值等于点到,轴的距离的较大值,则称、两点为“等距点”.如点和点就是等距点.(1)已知点的坐标是,在点、、中,点的“等距点”是_____;P ABC △y 111A B C △y Q 2BCP BPQ S S =△△Q 323a -15b +c 7-a b c 2b c a +-()25m 25m AA BB ='='4m A ()19m 19m A M ='A B ()2424m m B M ='B 'A AB P Q P x y Q x y P Q ()2,5P -()5,1Q --A ()3,1-()0,3G ()3,3H -()2,5I -A(2)已知点的坐标是,点的坐标是,若点与点是“等距点”,求点的坐标;(3)若点与点是直线上的两个“等距点”,直接写出的值.22.(10分)甲、乙两地相距,一辆货车从甲地开往乙地,一辆轿车从乙地开往甲地,其中轿车的速度大于货车的速度,两车同时出发,中途不停留,各自到达目的地后停止.两车之间的距离与货车行驶时间之间的关系如图所示.(1)分别求出轿车和货车的平均速度.(2)求轿车到达终点时,货车离终点的距离.(3)货车出发多长时间后,两车相距?23.(11分)如图,在平面直角坐标系中,直线与直线交于点,与轴交与点,与轴交与点.(1)求直线的函数表达式;(2)在平面直角坐标系中有一点,使得,请求出点的坐标;(3)点为直线上的动点,过点作轴的平行线,交于点,点为轴上的一动点,且为等腰直角三角形,请直接写出满足条件的点的坐标.B ()4,2-C ()1,m m -B C C ()11,D t -()24,E t ():30l y kx k =->k 300km ()km y ()h x 240km ()1:0l y kx b k =+≠2:l y x =()2,A a y ()0,8B x C 1l (),4P m AOP AOC S S =△△P M 1l M y 2l N Q y MNQ △M八年级上期中数学试题答案(若有其它正确方法,请参照此标准赋分)一、选择题:20分1.D2.D3.B4.C5.B6.D7.C8.A9.B 10.B二、填空题:10分11. 413. 17 14.或 15.三、解答题(本题共8小题,共70分.解答应写出文字说明、演算步骤或推理过程)16.(10分)解:(1)(5分)(2)(5分).17.(5分)18.7分(1)9825820232()32=---32=+-1=+=4=-)(215++6=-62=-+8=()2,4P(2)正确画出三角形为所求的三角形(3)19.9分解:(1)的立方根是-5,,解得:的平方根是6与,,解得:是的整数部分,(2),,,,20.8分解:由题意,易得,,,,三点在同一直线上.,,.在中,由勾股定理,得在中,由勾股定理,得.答:消防车从处向着火的楼房靠近的距离为.21.10分(1),(2)由题意,可分两种情况:①,解得或(不合题意,舍去);②,解得(不合题意,舍去)或,111A B C △()0,8()0,03a 23- ()33a 235125∴-=-=-34a =-36 15b +156b ∴+=-21b =-c 7-3c ∴=34a =- 21b =-3c =2b c a∴+-()213234=-+-⨯-21368=-++50=2b c a ∴+-=4m DM =AD B M ⊥'A B D 90ADA ∠∴=' ()19415m A D A M DM -=-='='()24420m B D B M DM -=-='='Rt AA D '△()20m AD ===Rt BB D '△()15m BD ===()20155m AB AD BD ∴=-=-=A AB 5m G H14m -=-3m =-5m =4m =-4m =-4m =综上所述,点的坐标为或;(3)1或222.10分(1)轿车的平均速度为,货车的平均速度为,轿车的平均速度为,货车的平均速度为;(2),轿车到达终点时,货车离终点的距离为;(3)相遇前:,解得:轿车到了,货车继续前行:,,货车出发或后,两车相距23.11分解:在直线上,,即,直线过点、点,解得,直线的函数表达式为:,(2)令,解得:,,即,当以为底边时,两三角形等高,过点且与直线平行的直线设为,①直线过点,得为:当时,,点②点关于点的对称点为,直线过点,得为:,当时,,综上所述,点坐标为或C ()4,3--()3,4()300560km /h ÷=()3007.540km /h ÷=∴60km /h 40km /h ()()407.55100km ⨯-=∴100km ()6040300240x +=-0.6x =24040540-⨯=40401÷=516+=0.6h 6h 240km()()12,A a y x =2a ∴=()2,2A 1:l y kx b =+()2,2A ()0,8B 228k b b +=⎧⎨=⎩38k b ⎧⎨⎩=-=1l 38y x =-+380y x =-+=83x =8,03C ⎛⎫∴ ⎪⎝⎭83OC =AOP AOC S S = △△AO P AO 3:l y x d =+3l 8,03C ⎛⎫ ⎪⎝⎭83y x =-4y =820433m =+=∴20,43P ⎛⎫ ⎪⎝⎭8,03C ⎛⎫ ⎪⎝⎭()2,2A 4,43⎛⎫ ⎪⎝⎭3l 4,43⎛⎫ ⎪⎝⎭3l 83y x =+y 4=43m =4,43P ⎛⎫∴ ⎪⎝⎭P 20,43⎛⎫ ⎪⎝⎭4,43⎛⎫ ⎪⎝⎭(3)8,03⎛⎫⎪⎝⎭()4,4-4,43⎛⎫⎪⎝⎭816,55⎛⎫⎪⎝⎭。

山东省菏泽市巨野县2023-2024学年八年级上学期期中考试数学试卷(含解析)

山东省菏泽市巨野县2023-2024学年八年级上学期期中考试数学试卷(含解析)

山东省菏泽市巨野县2023-2024学年八年级上学期期中数学试卷一、选择题(本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项是正确的,请把正确选项的序号涂在答题卡的相应位置.)1.(3分)如图,点C在∠AOB的边OB上,用尺规作出了∠BCN=∠AOC,作图痕迹中,弧FG是()A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧解析:解:根据作一个角等于已知角可得弧FG是以点E为圆心,DM为半径的弧.故选:D.2.(3分)下列四幅图案中,不是轴对称图形的是()A.B.C.D.解析:解:A、沿某条直线折叠后直线两旁的部分不能够完全重合,不是轴对称图形,故A符合题意;B、C、D都是轴对称图形,不符合题意.故选:A.3.(3分)下面给出几种三角形:(1)有两个角为60°的三角形;(2)三个外角都相等的三角形;(3)一边上的高也是这边上的中线的三角形;(4)有一个角为60°的等腰三角形,其中是等边三角形的个数是()A.4个B.3个C.2个D.1个解析:解:有三角都是60°,或有三边相等的三角形是等边三角形,那么可由(1),(2),(4)推出等边三角形,而(3)只能得出这个三角形是等腰三角形.故选:B.4.(3分)若把分式:中的x和y都扩大2倍,那么分式的值()A.不变B.扩大2倍C.缩小2倍D.扩大4倍解析:解:分别用2x和2y去代换原分式中的x和y,得=,可见新分式是原分式的.故选:C.5.(3分)如图,CE平分∠ACB且CE⊥DB于E,∠DAB=∠DBA,又知AC=18,△CDB的周长为28,则DB的长为()A.7B.8C.9D.10解析:解:∵CE平分∠ACB,且CE⊥DB,∴CD=BC,∵∠DAB=∠DBA,∴AD=BD,∵AC=CD+AD=18,∴AC=CD+BD=18,∴BC=△BCD的周长﹣AC=28﹣18=10,∴CD=10,∴BD=18﹣10=8.故选:B.6.(3分)已知=(a、c≠0),则下列等式中不成立的是()A.=B.=C.=D.=解析:解:A、=⇒=,故选项正确;B、=⇒=,故选项正确;C、=⇒=,故选项正确;D、=≠=,故选项错误.故选:D.7.(3分)某厂储存了t天用的煤m吨,要使储存的煤比预定的多用d天,那么每天应节约煤的吨数为()A.B.C.D.解析:解:∵节约用煤=原计划用煤﹣实际用煤,∴﹣.故选:B.8.(3分)问题背景:已知,在△ABC中,AB=AC,如果过某一顶点的直线可以将△ABC分割成两个等腰三角形,求∠A的大小.某数学学习小组的成员在自主探究后得出如下结果:①∠A=36°,②∠A=90°,③∠A=108°,④∠A=,你认为其中正确的结果有()A.4个B.3个C.2个D.1个解析:解:在△ABC中,AB=AC,∴∠B=∠C,∵∠A+∠B+∠C=180°∴∠B=∠C=(180°﹣∠A),①当∠A=36°时,则∠ABC=∠C=(180°﹣∠A)=×(180°﹣36°)=72°,作∠ABC的平分线交AC于点D,如图1所示:∴∠ABD=∠CBD=36°,∴∠BDC=∠A+∠ABD=72°,∴∠ABD=∠A=36°,∠BDC=∠C=72°,∴△ABD和△BCD均为等腰三角形,即直线BD将△ABC分成两个等腰三角形;故①正确;②当∠BAC=90°时,则∠B=∠C=(180°﹣∠A)=×(180°﹣90°)=45°,作∠BAC的平分线交BC于点D,如图2所示:∴∠BAD=∠CAD=45°,∴∠B=∠BAD=45°,∠C=CAD=45°,∴△ABD和△ACD均为等腰三角形,即直线AD将△ABC分成两个等腰三角形;故②正确;③当∠BAC=108°时,则∠B=∠C=(180°﹣∠A)=×(180°﹣108°)=36°,作AB的垂直平分线角BC于点D,连接AD,如图3所示:则BD=AD,即△ABD为等腰三角形,∴∠DAB=∠B=36°,∴∠CAD=∠BAC﹣∠DAB=108°﹣36°=72°,∠CDA=∠DAB+∠B=72°,∴∠CAD=∠CDA=72°∴△CAD为等腰三角形,即直线AD将△ABC分成两个等腰三角形.故③正确;④当∠A=时,则∠ABC=∠C=(180°﹣∠A)=×(180°﹣)=,作AB的垂直平分线交AC于点D,连接BD,如图4所示:则AD=BD,即△ABD为等腰三角形,∴∠ABD=∠A=,∴∠CBD=∠ABC﹣∠ABD=﹣=,∠CDB=∠A+∠ABD=,∴∠CBD=∠CDB=,∴△CBD为等腰三角形,即直线BD将△ABC分成两个等腰三角形.故④正确.综上所述:正确的结果是①②③④,共4个.故选:A.二、填空题(本大题共6个小题,每小题3分,共18分,只要求把最后结果填写在答题卡的相应区域内)9.(3分)若分式的值为负数,则x的取值范围是x<3且x≠0.解析:解:由题意,得到<0,则不等式的两边同时乘以正数x2,得x﹣3<0,且x≠0,解得,x<3且x≠0故答案为:x<3且x≠0.10.(3分)已知等腰三角形的两边a,b,满足|2a﹣3b+5|+(2a+3b﹣13)2=0,则此等腰三角形的周长为8或7.解析:解:∵|2a﹣3b+5|+(2a+3b﹣13)2=0,∴,∴.当a=2为底时,腰长为3,3,能组成三角形,故周长为2+3+3=8.当b=3为底时,腰长为2,2,能组成三角形,故周长为3+2+2=7.故周长为:8或7.故答案为:8或7.11.(3分)以下三个分式的最简公分母是2x(x+1)(x﹣1).解析:解:∵2x+2=2(x+1),x2+x=x(x+1),x2﹣1=(x+1)(x﹣1),∴,,的最简公分母是2x(x+1)(x﹣1),故答案为:2x(x+1)(x﹣1).12.(3分)如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别为∠ABC与∠ACB的角平分线,且相交于点F,则图中的等腰三角形有8个.解析:解:∵在△ABC中,AB=AC,∠A=36°,∴∠ABC=∠ACB==72°,∵BD、CE分别为∠ABC与∠ACB的角平分线,∴∠ABD=∠CBD=∠ACE=∠BCE=∠A=36°,∴AE=CE,AD=BD,BF=CF,∴△ABC,△ABD,△ACE,△BFC是等腰三角形,∵∠BEC=180°﹣∠ABC﹣∠BCE=72°,∠CDB=180°﹣∠BCD﹣∠CBD=72°,∠EFB=∠DFC=∠CBD+∠BCE=72°,∴∠BEF=∠BFE=∠ABC=∠ACB=∠CDF=∠CFD=72°,∴BE=BF,CF=CD,BC=BD=CE,∴△BEF,△CDF,△BCD,△CBE是等腰三角形.∴图中的等腰三角形有8个.故答案为:8.13.(3分)已知,△ABC≌△A′B′C′,△ABC的三边为3、m、n,△A′B′C′的三边为4、p、q,若△ABC的各边长都是整数,则m+n+p+q的最大值为19.解析:解:∵△ABC≌△A′B′C′,∴△ABC与△A′B′C′三边对应相等,∵△ABC的三边长为3、m、n,△A′B′C′的三边长为4、p、q,∴设△ABC与△A′B′C′的三边长为4、3、k(k为整数).∵三角形任意两边之和大于第三边,任意两边之差小于第三边,∴1<k<7,∴k的最大值为6.当k取最大值时△ABC与△A′B′C′三边长为4、3、6,∴m+n=10,p+q=9,∴m+n+p+q=10+9=19.故答案为:19.14.(3分)若关于x的分式方程无解,则a的值为1或8或﹣6.解析:解:,3x+9+ax=4x﹣12,(a﹣1)x=﹣21,∵分式方程无解,∴分两种情况:当a﹣1=0时,a=1,当(x+3)(x﹣3)=0时,x=±3,把x=±3分别代入(a﹣1)x=﹣21中,得a=8或﹣6,综上所述:a的值为1或8或﹣6.故答案为:1或8或﹣6.三、解答题(本大题共78分,请把解答或证明过程写在答题卡的相应区域内)15.(6分)已知:如图AE=AC,AD=AB,∠EAC=∠DAB.求证:△EAD≌△CAB.解析:证明:∵∠EAC=∠DAB,∴∠EAD=∠CAB,在△EAD和△CAB中,∴△EAD≌△CAB(SAS).16.(6分)如图,已知△ABC中,点D、E在BC上,AB=AC,AD=AE.请说明BD=CE的理由.解析:证明:过点A作AF⊥BC,垂足为F,∵AB=AC,∴BF=CF(等腰三角形三线合一),∵AD=AE,∴DF=EF,(等腰三角形三线合一)∴BF﹣DF=CF﹣EF,即BD=CE.17.(6分)如图,阴影部分是由5个小正方形组成的一个直角图形,请用四种方法分别在如图方格内添涂黑二个小正方形,使阴影部分成为轴对称图形.解析:解:如图所示:.18.(8分)计算:(1);(2).解析:解:(1)=+﹣=+﹣====;(2)=•﹣=﹣===1.19.(8分)解方程:(1);(2).解析:解:(1)原方程去分母得:1+x2=(x﹣2)2,整理得:1+x2=x2﹣4x+4,移项,合并同类项得:4x=3,系数化为1得:x=,经检验,x=是原分式方程的解,故原方程的解为x=;(2)原方程去分母得:4x﹣3(x﹣1)=2(x+1),去括号得:4x﹣3x+3=2x+2,移项,合并同类项得:﹣x=﹣1,系数化为1得:x=1,经检验,x=1是原分式方程的增根,故原方程无解.20.(8分)已知:如图,BD=CD,BF⊥AC于点F,CE⊥AB于点E,BF和CE交于点D,试说明:AD 平分∠BAC.解析:解:∵BF⊥AC于点F,CE⊥AB于点E,∴∠AFB=∠AEC=∠BED=∠CFD=90°,∴∠B=∠C=90°﹣∠BAC,。

2022-2023学年八年级上学期数学期中考试试卷及答案

2022-2023学年八年级上学期数学期中考试试卷及答案

2022-2023学年八年级上学期数学期中考试试卷及答案一、单选题(共10题;共20分)1.下列运算中,正确的是()A. B. C. D.2.下列运算正确的是()A. B. C. D.3.光速约为米秒,太阳光射到地球上的时间约为秒,地球与太阳的距离约是米.A. B. C. D.4.下列等式从左到右的变形,属于因式分解的是()A. x2 2x﹣1=x(x 2)﹣1 B.(a b)(a﹣b)=a2﹣b2C. x2 4x 4=(x 2)2D. ax2﹣a=a(x2﹣1)5.下列命题中,是假命题的是()A. 如果一个等腰三角形有两边长分别是,,那么三角形的周长为B. 等边三角形一边上的高、中线和对应的角平分线一定重合C. 两个全等三角形的面积一定相等D. 有两条边对应相等的两个直角三角形一定全等6.如图,、、分别表示的三边长,下面三角形中与一定全等的是()A. B. C. D.7.如图,将图1中的阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式( )A. a2−b2=(ab)(a−b)B. (a−b)2=a2−2ab b2C. (a−b)2=a2 2ab b2D. (a b)2=(a−b)2 4ab8.如图,已知△ABC≌△CDA,则下列结论:①AB=CD,BC=DA.②∠BAC=∠DCA,∠ACB=∠CAD.③AB∥CD,BC∥DA.其中正确的是()A. ①B. ②C. ①②D. ①②③9.如图,在四边形中,是的中点、连接,,若,,,则图中的全等三角形有:( )A. 1对B. 2对C. 3对D. 4对10.如图,在和中,,连接交于点,连接.下列结论:① ;② ;③ 平分;④ 平分.其中正确的个数为().A. 4B. 3C. 2D. 1二、填空题(共5题;共6分)11.计算________.12.如图,、相交于点,,请你补充一个条件,使得 .你补充的条件是________.13.若且,则代数式________.14.已知:如图,△OAD≌△OBC,且∠O=70°,∠C=25°,则∠AEB=________度.15.在中,,,平分,交的延长线于、为垂足,则结论:①;② ;③ ;④ .其中正确的结论是________.(只需填序号)三、解答题(共8题;共66分)16.计算:(1)(2)(3)17.把下列多项式分解因式:(1)(2)18.先化简,再求值:,其,19.如图,分别将“ ”记为,“ ”记为,“ ”记为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上学期期中质量检测数学试题一、选择题(本大题共10小题,共40.0分)1.以下微信图标不是轴对称图形的是A. B. C. D.2.如图,下列条件中,不能证明≌的是A. ,B. ,C. ,D. ,3.如图,将三角形纸板的直角顶点放在直尺的一边上,,,则等于A.B.C.D.4.到三角形三个顶点的距离都相等的点是这个三角形的A. 三条高的交点B. 三条角平分线的交点C. 三条中线的交点D. 三条边的垂直平分线的交点5.在中,,,则的度数是A. B. C. D.6.如图所示,在中,,,AD是的角平分线,,垂足于E,,则BC等于A. 1B. 2C. 3D. 47.下列运算正确的是A. B. C. D.8.如图,已知D为边AB的中点,E在AC上,将沿着DE折叠,使A点落在BC上的F处若,则等于A.B.C.D.9.如果多边形的内角和是外角和的k倍,那么这个多边形的边数是A. kB.C.D.10.如图,,E是BC的中点,DE平分,下列说法:平分,点E到AD的距离等于CE,,其中正确的有A. 3个B. 2个C. 1个D. 4个二、填空题(本大题共6小题,共24.0分)11.等腰三角形的两边分别为1和2,则其周长为______.12.已知点与点关于y轴对称,则______.13.如图所示,有一块三角形田地,,作AB的垂直平分线ED交AC于D,交AB于E,量得BC的长是7m,请你替测量人员计算的周长为______14.等腰三角形一腰上的高与另一腰的夹角为,则顶角的度数为______.15.如图,AD是的角平分线,,垂足为F,,和的面积分别为48和26,求的面积______.16.如图,和都是等腰直角三角形,,连结CE交AD于点F,连结BD交CE于点G,连结下列结论中,正确的结论有______填序号;是等腰直角三角形;;;三、计算题(本大题共2小题,共19.0分)17.如图,,点E是CD的中点,BE的延长线与AD的延长线交于点若,,求AD长.18.如图,在平面直角坐标系中,,,.在图中作出关于y轴对称的,写出点,,的坐标直接写答案.的面积为______.在y轴上画出点Q,使的周长最小.四、解答题(本大题共7小题,共67.0分)19.如图所示,在中:画出BC边上的高AD和中线AE.若,,求和的度数.20.如图,已知是等边三角形,过点B作,过A作,垂足为D,若的周长为12,求AD的长.21.如图,中,,于D点,于点E,于点F,,求BF的长.22.已知,如图,中,,D是BC上一点,点E、F分别在AB、AC上,,,G为EF的中点,问:与全等吗?请说明理由.判断DG与EF的位置关系,并说明理由.23.已知:在中,,D为AC的中点,,,垂足分别为点E,F,且求证:是等边三角形.24.如图1,,,以B点为直角顶点在第二象限作等腰直角.求C点的坐标;在坐标平面内是否存在一点P,使与全等?若存在,直接写出P点坐标,若不存在,请说明理由;如图2,点E为y轴正半轴上一动点,以E为直角顶点作等腰直角,过M作轴于N,直接写出的值为.25.如图,在中,,,点D为内一点,且.求证:;,E为AD延长线上的一点,且.求证:DE平分;若点M在DE上,且,请判断ME、BD的数量关系,并给出证明;若N为直线AE上一点,且为等腰三角形,直接写出的度数.参考答案1【答案】D【解析】解:A、是轴对称图形;B、是轴对称图形;C、是轴对称图形;D、不是轴对称图形.故选:D.根据轴对称图形的概念求解,看图形是不是关于直线对称.本题主要考查了轴对称的概念,轴对称的关键是寻找对称轴,两边图象折叠后可重合.2【答案】D【解析】解:A、依据SSS可知≌,故A不符合要求;B、依据SAS可知≌,故B不符合要求;C、依据AAS可知≌,故C不符合要求;D、依据SSA可知≌,故D符合要求.故选:D.依据全等三角形的判定定理解答即可.本题主要考查的是全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.3【答案】C【解析】解:由题意得:;由外角定理得:,,故选:C.如图,首先运用平行线的性质求出,然后借助三角形的外角性质求出,即可解决问题.该题主要考查了三角形外角的性质、平行线的性质等几何知识点及其应用问题;解题的关键是牢固掌握三角形外角的性质、平行线的性质等几何知识点,这也是灵活运用、解题的基础.4【答案】D【解析】解:到三角形三个顶点的距离都相等的点是这个三角形的三条边的垂直平分线的交点,故选:D.根据线段的垂直平分线上的点到线段的两个端点的距离相等解答即可.本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.5【答案】C【解析】解:在中,,,.故选:C.由已知条件,根据等腰三角形的性质可得,,再由三角形的内角和可得.此题主要考查三角形的内角和定理和等腰三角形的性质;利用三角形的内角和求角度是很常用的方法,要熟练掌握.6【答案】C【解析】解:是的角平分线,,,,又直角中,,,.故选:C.根据角平分线的性质即可求得CD的长,然后在直角中,根据的锐角所对的直角边等于斜边的一半,即可求得BD长,则BC即可求得.本题考查了角的平分线的性质以及直角三角形的性质,的锐角所对的直角边等于斜边的一半,理解性质定理是关键.7【答案】C【解析】解:A:因为,不是同类项,所以故计算错误;B:因为,所以计算错误;C:因为,所以计算正确;D:,所以计算错误.故选:C.根据同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法的法则可判断各个选项.本题考查了同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法,熟练运用法则是本题的关键.8【答案】B【解析】解:是沿直线DE翻折变换而来,,是AB边的中点,,,,,.故选:B.先根据图形翻折不变性的性质可得,根据等边对等角的性质可得,再根据三角形的内角和定理列式计算即可求解.本题考查的是图形翻折变换的图形能够重合的性质,以及等边对等角的性质,熟知折叠的性质是解答此题的关键.9【答案】C【解析】解:设这个多边形的边数是n,则,解得.故选:C.根据多边形的内角和公式与外角和等于列式,然后解方程即可得解.本题考查了多边形的内角和公式与外角和定理,任何多边形的外角和都是,与边数无关.10【答案】A【解析】解:,,;如图,作垂足为点F,,,平分,点E到AD的距离等于CE,正确,又,≌;,,,又,,≌;,,,平分,正确正确;,,错误;故选:A.根据平行线的性质和据全等三角形全等的判定判断即可.本题考查了平行线的判定及性质、等腰三角形的性质、全等三角形的判定等知识点,关键是根据平行线的性质和据全等三角形全等的判定判断.11【答案】5【解析】解:是腰长时,三角形的三边分别为1、1、2,,不能组成三角形;是底边时,三角形的三边分别为1、2、2,能组成三角形,周长,综上所述,三角形的周长为5.故答案为:5.分1是腰长与底边两种情况讨论求解.本题考查了等腰三角形的性质,难点在于要分情况讨论并利用三角形的三边关系判断是否能组成三角形.12【答案】【解析】解:点与点关于y轴对称,,,.故答案为:.根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出a、b的值,然后代入代数式进行计算即可得解.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数.13【答案】17【解析】解:根据中垂线的性质得:,所以,而,的周长为:17m.根据中垂线的性质进行解答,线段中垂线上的点到线段两端点的距离相等,点D在中垂线上,所以,所以,而BC的长度又已知,所以的周长可求出.本题主要根据中垂线的性质进行解答线段中垂线上的点到线段端点的距离相等.14【答案】或【解析】解:当为锐角三角形时,如图1,,,,三角形的顶角为;当为钝角三角形时,如图2,,,,,三角形的顶角为,故答案为或.本题要分情况讨论当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况.本题主要考查了等腰三角形的性质及三角形内角和定理,做题时,考虑问题要全面,必要的时候可以做出模型帮助解答,进行分类讨论是正确解答本题的关键,难度适中.15【答案】11【解析】解:如图,作于H,是的角平分线,,,,在和中,,≌,同理,≌,设的面积为x,由题意得,,解得,即的面积为11,故答案为:11.作于H,根据角平分线的性质得到,证明≌,≌,根据题意列方程,解方程即可.本题考查的是角平分线的性质、全等三角形的判定和性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.16【答案】【解析】解:和都是等腰直角三角形,,,,,,在和中,,≌,,故正确;,,在中,,,,故正确;只有时,,,无法说明,故错误;≌,,与相等无法证明,不一定成立,故错误;综上所述,正确的结论有共2个.故答案为:.根据等腰直角三角形的性质可得,,然后求出,再利用“边角边”证明和全等,根据全等三角形对应边相等可得,判断正确;根据全等三角形对应角相等可得,从而求出,再求出,从而得到,根据四边形的面积判断出正确;再求出时,,判断出错误;与不一定相等判断出错误.此题考查了全等三角形的判定与性质,等腰直角三角形的性质,对角线互相垂直的四边形的面积等于对角线乘积的一半的性质,熟记各性质是解题的关键.17【答案】解:点E是DC中点,,又,F在AD延长线上,,,在与中,≌,,,.【解析】根据点E是DC中点,得到,根据平行线的性质得到,,根据全等三角形的性质即可得到结论.本题考查了全等三角形的判定和性质,平行线的性质,熟练掌握全等三角形的判定和性质是解题的关键.18【答案】【解析】解:如图所示:即为所求;由图可知:,,;.故答案为:;连接交y轴于Q,则此时的周长最小.根据关于y轴对称的点的坐标特点作出,根据各点在坐标系中的位置写出点,,的坐标即可;根据进行解答即可;连接交y轴于Q,于是得到结论;本题考查的是作图轴对称变换,熟知关于y轴对称的点的坐标特点是解答此题的关键.19【答案】解:如图:,,,,,,.【解析】延长BC,作于D;作BC的中点E,连接AE即可;可根据三角形的内角和定理求,由外角性质求,那可得.此题是计算与作图相结合的探索考查学生运用作图工具的能力,以及运用直角三角形、三角形内角和外角等基础知识解决问题的能力.20【答案】解:为等边三角形,且的周长为12,,.,,,,.【解析】根据等边三角形的性质可得出,,进而可得出,在中,利用角所对的直角边等于斜边的一半即可求出AD的长.本题考查了等边三角形的性质以及含30度角的直角三角形,利用等边三角形的性质找出及AB的值是解题的关键.21【答案】解:中,,,是的中线,,,,,,.【解析】先得出AD是的中线,得出,又,将代入即可求出BF.本题考查了全等三角形的判定与性质,等腰三角形的性质,三角形的面积,利用面积公式得出等式是解题的关键.22【答案】解:与全等,理由:,,在和中,,≌,,理由:≌,,是EF的中点,.【解析】根据SAS证明与全等即可;利用全等三角形的性质、等腰三角形的三线合一即可证明;此题主要考查了全等三角形的性质与判定,以及等腰三角形的性质,关键是掌握全等三角形的判定定理.23【答案】证明:,,垂足分别为点E,F,,为AC的中点,,在和中,,≌,,,,,是等边三角形.【解析】只要证明≌,推出,推出,又,即可推出;本题考查全等三角形的判定和性质、等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.24【答案】解:作轴于E,如图1,,,,,,,,,,在和中,,≌,,,即,.存在一点P,使与全等,分为四种情况:如图2,当P和C重合时,和全等,即此时P的坐标是;如图3,过P作轴于E,则,,,,在和中,≌,,,,即P的坐标是;如图4,过C作轴于M,过P作轴于E,则,≌,,,,,,,在和中,,≌,,,,,,,即P的坐标是;如图5,过P作轴于E,≌,,,则,,,,在和中,,≌,,,,即P的坐标是,综合上述:符合条件的P的坐标是或或或.如图6,作轴于F,则,,,,在和中,≌,,,轴,轴,,四边形FONM是矩形,,.【解析】作轴于E,证≌,推出,,即可得出答案;分为四种情况,画出符合条件的图形,构造直角三角形,证三角形全等,即可得出答案;作轴于F,证≌,求出EF,即可得出答案.本题考查了全等三角形的性质和判定,三角形内角和定理,等腰三角形性质的应用,主要考查学生综合运用性质进行推理的能力,用了分类讨论思想.25【答案】证明:,,垂直平分线段AB,.证明:,,又,,又,,,,,,在和中,,≌,,,,平分;解:结论:,理由:连接MC,,,为等边三角形,,,,在和中,,≌,.当时,或;当时,;当时,,所以的度数为、、、.【解析】利用线段的垂直平分线的性质即可证明;易证,可得≌,即可求得即可解题;连接MC,易证为等边三角形,即可证明≌即可解题;分三种情形讨论即可;本题考查了全等三角形的判定、等边三角形的判定和性质、等腰三角形的性质和判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题.2018-2019学年八年级(上册)期中数学试卷一、选择题(共10小题,每小题3分,共30分)1.下列线段能组成三角形的是()A.3、4、8B.5、6、11C.5、6、10D.2、2、42.下列图案中,不是轴对称图形的是()A.B.C.D.3.在平面直角坐标系中,点A(1,﹣2)关于x轴对称的点的坐标为()A.(1,2)B.(﹣1,2)C.(2,1)D.(﹣1,﹣2)4.一个多边形的各个内角都等于120°,则它的边数为()A.3B.6C.7D.85.如图,已知CD=CA,∠D=∠A,添加下列条件中的()仍不能证明△ABC≌△DEC.A.DE=AB B.CE=CB C.∠DEC=∠B D.∠ECD=∠BCA6.已知:点P、Q是△ABC的边BC上的两个点,且BP=PQ=QC=AP=AQ,∠BAC的度数是()A.100°B.120°C.130°D.150°7.用一条长20cm的细绳围成一个三角形,已知第一条边长为xcm,第二条边长比第一条边长的2倍少4cm.若第一条边最短,则x的取值范围是()A.2<x<8B.C.0<x<10D.7<x<88.如图为正方形网格,顶点在格点上的三角形称为格点三角形,每个小正方形均为边长为1的正方形,图中与△ABC全等的格点三角形(不含△ABC)共有()个.A.4B.16C.23D.249.正三角形ABC所在平面内有一点P,使得△PAB、△PBC、△PCA都是等腰三角形,则这样的P点有()A.1个B.4个C.7个D.10个10.已知△ABC的两条高线的长分别为5和20,若第三条高线的长也是整数,则第三条高线长的最大值为()A.5B.6C.7D.8二、填空题(本大题共6个小题,每小题3分,共18分)11.等腰三角形的一个角100°,它的另外两个角的度数分别为.12.如图,AD平分∠BAO,D(0,﹣3),AB=10,则△ABD的面积为.13.如图,△ABC中,∠ACB=90°,CD是高,∠A=30°,若BD=2,则AD=.14.平面直角坐标系中,已知A(4,3)、B(2,1),x轴上有一点P,要使PA﹣PB最大,则P点坐标为15.△ABC的三个内角满足5∠A>7∠B,5∠C<2∠B,则△ABC是三角形(填“锐角”、“直角”或“钝角”)16.在△ABC中,AB=AC,CE是高,且∠ECA=20°,平面内有一异于A、B、C、E的D点,若△ABC ≌△CDA,则∠DAE的度数为.三、解答题(共8题,共72分)17.(8分)如图,AB=AC,AD=AE.求证:∠B=∠C.18.(8分)已知等腰三角形的一边等于4,另一边等于9,求它的周长.19.(8分)如图,P为∠MON平分线上一点,PA⊥OM于A,PB⊥ON于B,求证:OP垂直平分AB.20.(8分)△ABC在平面直角坐标系中的位置如图所示,点A(﹣2,2),点B(﹣3,﹣1),点C(﹣1,1).(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1的坐标.(2)求出△A1B1C1的面积.21.(8分)如图,△ABC中,AB=AC,AD=AE,∠CAD=60°,∠C=α(1)用α表示∠BAD,则∠BAD=;(2)求∠EDB的度数.22.(10分)如图,AB=AC,AB⊥AC,∠ADC=∠BAE.(1)求证:∠DAE=45°;(2)过B作BF⊥AD于F交直线AE于M,连CM,画出图形并判断BM与CM的位置关系,说明理由.23.(10分)如图,牧马人从A地出发,先到草地边某一处牧马,再到河边饮马,然后回到B处,要求指出最短路径.同学甲:牧马人把马牵到草地与河边的交汇处N点,牧马又饮马,然后回到B处同学乙:作A点关于直线MN的对称点A1,再作A1关于直线l的对称点A2,连A2B交直线l于P,连PA交MN于Q,则路径A→Q→P→B为最短路径.你认为哪位同学方案正确?并证明其正确性.24.(12分)在平面直角坐标系中,点A(m,1),点B(3,n),C,D是y轴上两点(1)如图1,△AOC和△ABD是等边三角形,连接BC并延长交x轴于E,求CE的长;(2)如图2,直线AC交x轴于E,∠DCA的平分线交直线OA于F,FD⊥y轴于D,交直线AC于G,若m=1,请你写出线段OD,EG与DG之间的数量关系,并证明;(3)如图3,若m=2,n=4,在x轴上是否存在点P,使△ABP为等腰三角形?若存在,求出P的坐标;若不存在,说明理由.2018-2019学年八年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.【分析】根据三角形的三边满足任意两边之和大于第三边来进行判断.【解答】解:A、∵3+4<8,∴3、4、8不能组成三角形,故本选项错误;B、∵5+6=11,∴5、6、11不能组成三角形,故本选项错误;C、∵5+6>10,∴5、6、10能组成三角形,故本选项正确;D、∵2+2=4,∴2、2、4不能组成三角形,故本选项错误.故选:C.【点评】本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.2.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,不符合题意,本选项错误;B、是轴对称图形,不符合题意,本选项错误;C、不是轴对称图形,符合题意,本选项正确;D、是轴对称图形,不符合题意,本选项错误.故选:C.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.【分析】直接利用关于x轴对称,则其纵坐标互为相反数进而得出答案.【解答】解:点A(1,﹣2)关于x轴对称的点的坐标为:(1,2).故选:A.【点评】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题关键.4.【分析】先求出这个多边形的每一个外角的度数,再用360°除以每一个外角的度数即可得到边数.【解答】解:∵多边形的每一个内角都等于120°,∴多边形的每一个外角都等于180°﹣120°=60°,∴边数n=360°÷60°=6.故选:B.【点评】本题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是关键.5.【分析】添加的条件取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.【解答】解:A.当DE=AB,CD=CA,∠D=∠A时,可得△ABC≌△DEC(SAS).B.当CE=CB,CD=CA,∠D=∠A时,不能得到△ABC≌△DEC.C.当∠DEC=∠B,CD=CA,∠D=∠A时,可得△ABC≌△DEC(AAS).D.当∠ECD=∠BCA,CD=CA,∠D=∠A时,可得△ABC≌△DEC(ASA).故选:B.【点评】本题主要考查了全等三角形的判定,解题时注意:两边及其夹角分别对应相等的两个三角形全等;两角及其夹边分别对应相等的两个三角形全等;两角及其中一个角的对边对应相等的两个三角形全等.6.【分析】根据等边三角形的性质,得∠PAQ=∠APQ=∠AQP=60°,再根据等腰三角形的性质和三角形的外角的性质求得∠BAP=∠CAQ=30°,从而求解.【解答】解:∵BP=PQ=QC=AP=AQ,∴∠PAQ=∠APQ=∠AQP=60°,∠B=∠BAP,∠C=∠CAQ.又∵∠BAP+∠ABP=∠APQ,∠C+∠CAQ=∠AQP,∴∠BAP=∠CAQ=30°.∴∠BAC=120°.故∠BAC的度数是120°.故选:B.【点评】此题主要考查了运用等边三角形的性质、等腰三角形的性质以及三角形的外角的性质.7.【分析】根据第一条边长最短以及三角形的三边关系列出不等式组,即可求出x的取值范围.【解答】解:根据题意可得:第二条边长为(2x﹣4)米,∴第三条边长为20﹣x﹣(2x﹣4)=(24﹣3x)米;由题意得,解得<x<6.故选:B.【点评】本题主要考查了三角形的三边关系,在解题时根据三角形的三边关系,列出不等式组是本题的关键.8.【分析】用SSS判定两三角形全等.认真观察图形可得答案.【解答】解:如图所示:故选:C.【点评】本题考查的是SSS判定三角形全等,注意观察图形,数形结合是解决本题的又一关键.9.【分析】(1)点P在三角形的内部时,点P到△ABC的三个顶点的距离相等,所以点P是三角形的外心;(2)点P在三角形的外部时,每条边的垂直平分线上的点只要能够使顶点这条边的两端点连接而成的三角形是等腰三角形即可.【解答】解:(1)点P在三角形内部时,点P是边AB、BC、CA的垂直平分线的交点,是三角形的外心;(2)分别以三角形各顶点为圆心,边长为半径,交垂直平分线的交点就是满足要求的.每条垂直平分线上得3个交点,再加三角形的垂心,一共10个.故选:D.【点评】本题主要考查等腰三角形的性质;要注意分点在三角形内部和三角形外部两种情况讨论,思考全面是正确解答本题的关键.10.【分析】如果设△ABC的面积为S,所求的第三条高线的长为h,根据三角形的面积公式,先用含S、h 的代数式分别表示出三边的长度,再由三角形三边关系定理,列出不等式组,求出不等式组的解集,得到h的取值范围,然后根据h为整数,确定h的值.【解答】解:设△ABC的面积为S,所求的第三条高线的长为h,则三边长分别为,则.由三边关系,得,解得.所以h的最大整数值为6,即第三条高线的长的最大值为6.故选:B.【点评】本题主要考查了三角形的面积公式,三角形三边关系定理及不等式组的解法,有一定难度.利用三角形的面积公式,表示出△ABC三边的长度,从而运用三角形三边关系定理,列出不等式组是解题的关键,难点是解不等式组.二、填空题(本大题共6个小题,每小题3分,共18分)11.【分析】先判断出100°的角是顶角,再根据等腰三角形的两底角相等解答.【解答】解:∵等腰三角形的一个角100°,∴100°的角是顶角,∴另两个角是(180°﹣100°)=40°,即40°,40°.故答案为:40°,40°.【点评】本题考查了等腰三角形的性质,主要利用了等腰三角形两底角相等,需要注意100°的角只能是顶角.12.【分析】过D作DE⊥AB于E,由角平分线的性质,即可求得DE的长,即可求得△ABD的面积.【解答】解:如图,过D作DE⊥AB于E,∵AD平分∠BAO,∠AOD=90°,D(0,﹣3),∴DE=DO=3,∵AB=10,∴△ABD的面积=AB•DE=×10×3=15.故答案为:15.【点评】本题考查了角平分线的性质,能根据角平分线性质得出DE=OD是解此题的关键,解题时注意:角平分线上的点到这个角两边的距离相等.13.【分析】由含30°角的直角三角形的性质得出AB=2BC,BC=2BD=4,得出AB,即可得出AD.【解答】解:∵∠ACB=90°,∠A=30°,∴AB=2BC,∠B=90°﹣∠A=60°,∵CD是高,∴∠CDB=90°,∴∠BCD=90°﹣∠B=30°,∴BC=2BD=4,∴AB=2BC=8,∴AD=AB﹣BD=8﹣2=6,故答案为:6.【点评】本题考查了含30°角的直角三角形的性质、角的互余关系;熟练掌握含30°角的直角三角形的性质,并能进行推理计算是解决问题的关键.14.【分析】根据|PA﹣PB|≤AB,即可得到当A,B,P三点共线时,PA﹣PB最大值等于AB长,依据待定系数法求得直线AB的解析式,即可得到P点坐标.【解答】解:∵A(4,3)、B(2,1),x轴上有一点P,∴|PA﹣PB|≤AB,∴当A,B,P三点共线时,PA﹣PB最大值等于AB长,此时,设直线AB的解析式为y=kx+b,把A(4,3)、B(2,1)代入,可得,解得,∴直线AB的解析式为y=x﹣1,令y=0,则x=1,∴P点坐标为(1,0),故答案为:(1,0).【点评】本题主要考查了坐标与图形性质,利用待定系数法求得直线AB的解析式是解决问题的关键.15.【分析】利用已知条件,结合等式性质1可得5∠A+>5∠B+5∠C,整理得∠A>∠B+∠C,再利用等式性质,左右同加上∠A,结合∠A+∠B+∠C=180°,解不等式可得∠A>90°,从而可判断三角形的形状.【解答】解:∵5∠A>7∠B,2∠B>5∠C,∴5∠A+2∠B>7∠B+5∠C,即5∠A+>5∠B+5∠C,∴∠A>∠B+∠C,不等式两边加∠A,可得2∠A>∠A+∠B+∠C,而∠A+∠B+∠C=180°,∴2∠A>180°,即∠A>90°,∴这个三角形是钝角三角形.故答案是:钝角.【点评】本题考查了三角形内角和定理、不等式的性质的运用,解题的关键是掌握三角形内角和定理.16.【分析】根据等腰三角形的性质和全等三角形的性质解答即可.【解答】解:如图:∵在△ABC中,AB=AC,CE是高,且∠ECA=20°,∴∠BAC=70°,∠ACB=∠ABC=55°,∵△ABC≌△CDA,∴∠CAD=∠ACB=55°,∴∠DAE=∠CAD+∠BAC=55°+70°=125°,当△ABC为钝角三角形时,∠DAE=15°、105°和35°故答案为:125°、15°、105°和35°【点评】此题考查全等三角形的性质,关键是根据等腰三角形的性质和全等三角形的性质解答.三、解答题(共8题,共72分)17.【分析】要证∠B=∠C,可利用判定两个三角形全等的方法“两边和它们的夹角对应相等的两个三角形全等”证△ABE≌△ACD,然后由全等三角形对应边相等得出.【解答】证明:在△ABE与△ACD中,,∴△ABE≌△ACD(SAS),∴∠B=∠C.【点评】本题主要考查了两个三角形全等的其中一种判定方法,即“边角边”判定方法.观察出公共角∠A是解决本题的关键.18.【分析】此题先要分类讨论,已知等腰三角形的一边等于4,另一边等于9,先根据三角形的三边关系判定能否组成三角形,若能则求出其周长.【解答】解:当4为腰,9为底时,∵4+4<9,∴不能构成三角形;当腰为9时,∵9+9>4,∴能构成三角形,∴等腰三角形的周长为:9+9+4=22.【点评】此题考查了等腰三角形的基本性质及分类讨论的思想方法,另外求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.19.【分析】根据角平分线性质得出PA=PB,根据HL证Rt△PAO≌Rt△PBO,推出OA=OB,根据等腰三角形性质推出即可.。

相关文档
最新文档