圆的一般方程
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
是指点M的坐标(x,y)满足的关系式
练习 P124—B组 3 例2 已知线段AB的端点B的坐标是(4,3)
端点A在圆 x 12 y2 4 上运动,
求线段AB的中点M的轨迹方程
练习 P124—B组 1
小结 1、 x2 y2 Dx Ey F 0
x
D 2
2
y
E 2
2
D2
E2 4
4F
(4) x2 y2 Dx Ey F 0
x
D 2
2
y
E 2
2
D2
E2 4
4F
(1)当 D2 E2 4F 0 时,表示圆,
圆心
-
D 2
,
E 2
(2)当 D2 E2 4F
r D2 E2 4F 2
0 时,表示点
-
D 2
,
E 2
(3)当 D2 E2 4F 0 时,不表示任何图形
圆的一般方程
(x 3)2 ( y 4)2 6
展开得
x2 y2 6x 8y 19 0 x2 y2 Dx Ey F 0
任何一个圆的方程都是二元二次方程
反之是否成立?
圆的一般方程
方程 (1)x2 y2 2x 4 y 1 0 表示什么图形?
配方得
(x 1)2 ( y 2)2 4
4.1.2圆的一般方程
圆心 半径
定位条件 定形条件
圆的标准方程
圆心C(a,b),半径r
y
M(x,y)
(x a)2 (y b)2 r2
标准方程
OC
x
若圆心为O(0,0),则圆的方程为:
x2 y2 r2
பைடு நூலகம்
课堂快练
1.圆心在原点,半径是3的圆的方程. 2.圆心在(3,4),半径是 的7 圆的方程. 3.经过点P(5,1),圆心在点C(4,1)的圆的方程.
配方法
以(1,-2)为圆心,以2为半径的圆
方程 (2)x2 y2 2x 4 y 6 0 表示圆吗?
配方得
(x 1)2 ( y 2)2 1
不是圆
x2 y2 Dx Ey F 0
不一定是圆
练习
▪ 判断下列方程是不是表示圆
(1)x2 y2 4x 6 y 4 0
(x 2)2 ( y 3)2 9
以(2,3)为圆心,以3为半径的圆
(2)x2 y2 4x 6 y 13 0
(x 2)2 ( y 3)2 0 x 2, y 3
表示点(2,3)
(3)x2 y2 4x 6 y 15 0
(x 2)2 ( y 3)2 2 不表示任何图形
练习
判断下列方圆程的是不一是般表方示程圆
3、要画出圆,必须要知道圆心和半径,应会用配方 法求圆心和半径,还有公式求圆心和半径。
小结:求圆的方程 教材P122—步骤
几何方法
待定系数法
求圆心坐标 (两条直线的交点) (常用弦的中垂线)
设方程为 (x a)2 ( y b)2 r2 (或x2 y2 Dx Ey F 0)
求 半径 (圆心到圆上一点的距离)
(1)当 D2 E2 4F 0 时,表示圆,
圆心
-
D 2
,
E 2
(2)当 D2 E2 4F
r D2 E2 4F 2
0 时,表示点
-
D 2
,
E 2
(3)当 D2 E2 4F 0 时,不表示任何图形
2、用待定系数法求圆的方程时,对容易求出圆心坐 标的,一般采用圆的标准方程,否则采用一般方程。
列关于a,b,r(或D,E,F) 的方程组
写出圆的标准方程
解出a,b,r(或D,E,F), 写出标准方程(或一般方程)
4. 求以(1,3)为圆心,并且和直线 3x-4y-7=0相切
的圆的方程. 5. 圆x2+(y+1)2=16的圆心坐标和半径.
6.点(4,2)与圆 (x+4)2+(y-2)2=7的位置关系.
7.圆(x-3)2+(y+3)2=1关于直线x+y=0的对称圆的方程
8.曲线 y 4 x2 所表示的图形
(5 a)2 (1 b)2 r2 a 2 (7 a)2 (3 b)2 r2 b 3 (2 a)2 (8 b)2 r2 r 5
所求圆的方程为
(x 2)2 (y 3)2 25
待定系数法
方法三:待定系数法
解:设所求圆的方程为:
x2 y2 Dx Ey F 0
因为A(5,1),B (7,-3),C(2,8)都在圆上
52 12 5D E F 0
72
(1)2
7D
E
F
0
22 82 2D 8E F 0
所求圆的方程为
D 4
E
6
F 12
x2 y2 4x 6 y 12 0
即 (x 2)2 (y 3)2 25
点M的轨迹方程 与点M的轨迹不一样
例:求过三点A(5,1),B (7,-3),C(2,8)的圆的方程
方法一: 几何方法
y
A(5,1)
O
x
E
B(7,-3)
C(2,-8)
圆心:两条弦的中垂线的交点
半径:圆心到圆上一点
方法二:待定系数法
解:设所求圆的方程为:
(x a)2 (y b)2 r2
因为A(5,1),B (7,-3),C(2,8)都在圆上
练习
▪ 教材P123 练习2 (1)表示点(0,0) (2)(x 1)2 ( y 2)2 11
以(1,-2)为圆心,以 11 为半径的圆
(3)(x a)2 y2 a2 b2
当a2 b2 0时 表示以(-a,0)为圆心,以 a2 b2 为半
径的圆
当a2 b2 0时
表示点(-a,0)
练习 P124—B组 3 例2 已知线段AB的端点B的坐标是(4,3)
端点A在圆 x 12 y2 4 上运动,
求线段AB的中点M的轨迹方程
练习 P124—B组 1
小结 1、 x2 y2 Dx Ey F 0
x
D 2
2
y
E 2
2
D2
E2 4
4F
(4) x2 y2 Dx Ey F 0
x
D 2
2
y
E 2
2
D2
E2 4
4F
(1)当 D2 E2 4F 0 时,表示圆,
圆心
-
D 2
,
E 2
(2)当 D2 E2 4F
r D2 E2 4F 2
0 时,表示点
-
D 2
,
E 2
(3)当 D2 E2 4F 0 时,不表示任何图形
圆的一般方程
(x 3)2 ( y 4)2 6
展开得
x2 y2 6x 8y 19 0 x2 y2 Dx Ey F 0
任何一个圆的方程都是二元二次方程
反之是否成立?
圆的一般方程
方程 (1)x2 y2 2x 4 y 1 0 表示什么图形?
配方得
(x 1)2 ( y 2)2 4
4.1.2圆的一般方程
圆心 半径
定位条件 定形条件
圆的标准方程
圆心C(a,b),半径r
y
M(x,y)
(x a)2 (y b)2 r2
标准方程
OC
x
若圆心为O(0,0),则圆的方程为:
x2 y2 r2
பைடு நூலகம்
课堂快练
1.圆心在原点,半径是3的圆的方程. 2.圆心在(3,4),半径是 的7 圆的方程. 3.经过点P(5,1),圆心在点C(4,1)的圆的方程.
配方法
以(1,-2)为圆心,以2为半径的圆
方程 (2)x2 y2 2x 4 y 6 0 表示圆吗?
配方得
(x 1)2 ( y 2)2 1
不是圆
x2 y2 Dx Ey F 0
不一定是圆
练习
▪ 判断下列方程是不是表示圆
(1)x2 y2 4x 6 y 4 0
(x 2)2 ( y 3)2 9
以(2,3)为圆心,以3为半径的圆
(2)x2 y2 4x 6 y 13 0
(x 2)2 ( y 3)2 0 x 2, y 3
表示点(2,3)
(3)x2 y2 4x 6 y 15 0
(x 2)2 ( y 3)2 2 不表示任何图形
练习
判断下列方圆程的是不一是般表方示程圆
3、要画出圆,必须要知道圆心和半径,应会用配方 法求圆心和半径,还有公式求圆心和半径。
小结:求圆的方程 教材P122—步骤
几何方法
待定系数法
求圆心坐标 (两条直线的交点) (常用弦的中垂线)
设方程为 (x a)2 ( y b)2 r2 (或x2 y2 Dx Ey F 0)
求 半径 (圆心到圆上一点的距离)
(1)当 D2 E2 4F 0 时,表示圆,
圆心
-
D 2
,
E 2
(2)当 D2 E2 4F
r D2 E2 4F 2
0 时,表示点
-
D 2
,
E 2
(3)当 D2 E2 4F 0 时,不表示任何图形
2、用待定系数法求圆的方程时,对容易求出圆心坐 标的,一般采用圆的标准方程,否则采用一般方程。
列关于a,b,r(或D,E,F) 的方程组
写出圆的标准方程
解出a,b,r(或D,E,F), 写出标准方程(或一般方程)
4. 求以(1,3)为圆心,并且和直线 3x-4y-7=0相切
的圆的方程. 5. 圆x2+(y+1)2=16的圆心坐标和半径.
6.点(4,2)与圆 (x+4)2+(y-2)2=7的位置关系.
7.圆(x-3)2+(y+3)2=1关于直线x+y=0的对称圆的方程
8.曲线 y 4 x2 所表示的图形
(5 a)2 (1 b)2 r2 a 2 (7 a)2 (3 b)2 r2 b 3 (2 a)2 (8 b)2 r2 r 5
所求圆的方程为
(x 2)2 (y 3)2 25
待定系数法
方法三:待定系数法
解:设所求圆的方程为:
x2 y2 Dx Ey F 0
因为A(5,1),B (7,-3),C(2,8)都在圆上
52 12 5D E F 0
72
(1)2
7D
E
F
0
22 82 2D 8E F 0
所求圆的方程为
D 4
E
6
F 12
x2 y2 4x 6 y 12 0
即 (x 2)2 (y 3)2 25
点M的轨迹方程 与点M的轨迹不一样
例:求过三点A(5,1),B (7,-3),C(2,8)的圆的方程
方法一: 几何方法
y
A(5,1)
O
x
E
B(7,-3)
C(2,-8)
圆心:两条弦的中垂线的交点
半径:圆心到圆上一点
方法二:待定系数法
解:设所求圆的方程为:
(x a)2 (y b)2 r2
因为A(5,1),B (7,-3),C(2,8)都在圆上
练习
▪ 教材P123 练习2 (1)表示点(0,0) (2)(x 1)2 ( y 2)2 11
以(1,-2)为圆心,以 11 为半径的圆
(3)(x a)2 y2 a2 b2
当a2 b2 0时 表示以(-a,0)为圆心,以 a2 b2 为半
径的圆
当a2 b2 0时
表示点(-a,0)