北京八中2020年中考数学模拟试卷解析版
2020年北京八中高考数学模拟试卷(3月份)
2020年北京八中高考数学模拟试卷(二)(3月份)一.选择题(本大题共10道小题,每道小题4分,共40分)1.(4分)已知集合{|21}A x x =-<<,{|0}B x x =>,则集合(A B =U )A .(2,1)-B .(0,1)C .(0,)+∞D .(2,)-+∞2.(4分)在复平面内,复数(1)i i -对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.(4分)已知命题:p x R +∀∈,0lnx >,那么命题p ⌝为( )A .x R +∃∈,0lnx „B .x R +∀∈,0lnx <C .x R +∃∈,0lnx <D .x R +∀∈,0lnx „4.(4分)设a ,b ,c R ∈,且a b <,则( )A .ac bc <B .11a b >C .22a b <D .33a b <5.(4分)已知函数()f x 的图象与函数2x y =的图象关于x 轴对称,则()(f x = )A .2x -B .2x -C .2log x -D .2log x6.(4分)已知向量(1,3)a =r ,(1,0)b =-r ,(3c =r ,)k .若2a b -r r 与c r 共线,则实数(k =)A .0B .1C .3D .37.(4分)已知双曲线221x y m-=的离心率为3,则(m = ) A .14 B .12 C .2 D .28.(4分)某几何体的三视图如图所示,则该几何体的体积是( )A .13B .23C .1D .29.(4分)设m r ,n r 为非零向量,则“m n λ=r r ,1λ-…”是“||||||m n m n +=-r r r r ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件10.(4分)为配合“2019双十二”促销活动,某公司的四个商品派送点如图环形分布,并且公司给A ,B ,C ,D 四个派送点准备某种商品各50个.根据平台数据中心统计发现,需要将发送给A ,B ,C ,D 四个派送点的商品数调整为40,45,54,61,但调整只能在相邻派送点进行,每次调动可以调整1件商品.为完成调整,则( )A .最少需要16次调动,有2种可行方案B .最少需要15次调动,有1种可行方案C .最少需要16次调动,有1种可行方案D .最少需要15次调动,有2种可行方案二、填空题(本大题共5道小题,每道小题5分,共25分)11.(5分)在5(2)x -的展开式中,3x 的系数为 .(用数字作答)12.(5分)各项均为正数的等比数列{}n a 中,11a =,236a a +=,则63S S = . 13.(5分)抛物线22y px =上一点M 到焦点(1,0)F 的距离等于4,则p = ;点M 的坐标为 .14.(5分)在ABC ∆中,2a b =,sin 3sin C B =,则cos B = .15.(5分)已知函数()sin 2cos f x x x =-.①()f x 的最大值为 ;②设当x θ=时,()f x 取得最大值,则cos θ= .三、解答题(本大题共6道小题,共85分)16.(14分)已知函数2()3sin cos sin 222xxxf x ωωω=+,其中0ω>.(Ⅰ)若函数()f x 的最小正周期为2,求ω的值;(Ⅱ)若函数()f x 在区间[0,]2π上的最大值为32,求ω的取值范围. 17.(14分)为了提高学生的身体素质,某校高一、高二两个年级共336名学生同时参与了“我运动,我健康,我快乐”的跳绳、踢毽等系列体育健身活动.为了了解学生的运动状况,采用分层抽样的方法从高一、高二两个年级的学生中分别抽取7名和5名学生进行测试.如表是高二年级的5名学生的测试数据(单位:个/分钟):学生编号1 2 3 4 5 跳绳个数179 181 168 177 183 踢毽个数 85 78 79 72 80(Ⅰ)求高一、高二两个年级各有多少人?()II 设某学生跳绳m 个/分钟,踢毽n 个/分钟.当175m …,且75n …时,称该学生为“运动达人”.①从高二年级的学生中任选一人,试估计该学生为“运动达人”的概率;②从高二年级抽出的上述5名学生中,随机抽取3人,求抽取的3名学生中为“运动达人”的人数ξ的分布列和数学期望.18.(14分)已知在四棱锥P ABCD -中,底面ABCD 是边长为4的正方形,PAD ∆是正三角形,CD ⊥平面PAD ,E ,F ,G ,O 分别是PC ,PD ,BC ,AD 的中点.(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求平面EFG 与平面ABCD 所成锐二面角的大小;(Ⅲ)线段PA 上是否存在点M ,使得直线GM 与平面EFG 所成角为6π,若存在,求线段PM 的长度;若不存在,说明理由.。
2020年北京中考数学模拟试卷解析版
中考数学模拟试卷题号一二三总分得分一、选择题(本大题共8小题,共40.0分)1.在国家大数据战略的引领下,我国在人工智能领域取得显著成就,自主研发的人工智能“绝艺”获得全球最前沿的人工智能赛事冠军,这得益于所建立的大数据中心的规模和数据存储量,它们决定着人工智能深度学习的质量和速度,其中的一个大数据中心能存储58000000000本书籍,将58000000000用科学记数法表示应为( )A. 5.8×1010B. 5.8×1011C. 58×109D. 0.58×10112.在中国集邮总公司设计的2017年纪特邮票首日纪念戳图案中,可以看作中心对称图形的是( )A. 千里江山图B. 京津冀协同发展C. 内蒙古自治区成立七十周年D. 河北雄安新区建立纪念3.如图是某个几何体的三视图,该几何体是( )A. 三棱柱B. 圆柱C. 六棱柱D. 圆锥4.若实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是( )A. a<-5B. b+d<0C. |a|-c<0D. c5.如果一个正多边形的内角和等于720°,那么该正多边形的一个外角等于( )A. 45°B. 60°C. 72°D. 90°6.二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关.如图是一年中部分节气所对应的白昼时长示意图.在下列选项中白昼时长不足11小时的节气是( )A. 惊蛰B. 小满C. 秋分D. 大寒7.如图,△ABC中,AC<BC,如果用尺规作图的方法在BC上确定点P,使PA+PC=BC,那么符合要求的作图痕迹是( )A. B.C. D.8.图1是2020年3月26日全国新冠疫情数据表,图2是3月28日海外各国疫情统计表,图3是中国和海外的病死率趋势对比图,根据这些图表,选出下例说法中错误的项( )A. 图1显示每天现有确诊数的增加量=累计确诊增加量-治愈人数增加量-死亡人数增加量B. 图2显示美国累计确诊人数虽然约是德国的两倍,但每百万人口的确诊人数大约只有德国的一半C. 图2显示意大利当前的治愈率高于西班牙D. 图3显示大约从3月16日开始海外的病死率开始高于中国的病死率二、填空题(本大题共8小题,共40.0分)9.若代数式的值为0,则实数x的值为______.10.若a-b=2,则代数式(-b)•=______.11.如图,在△ABC中,DE∥AB,DE分别与AC,BC交于D,E两点.若,AC=3,则DC=______.12.比较大小:______1(填“>”、“<”或“=”).13.举例说明命题“若>,则b>a.”是假命题,a=______,b=______.14.如图所示的网格是正方形网格,则∠ABC+∠ACB=______.(点A,B,C是网格线交点).15.数学课上,王老师让同学们对给定的正方形ABCD,建立合适的平面直角坐标系,并表示出各顶点的坐标.下面是4名同学表示各顶点坐标的结果:甲同学:A(0,1),B(0,0),C(1,0),D(1,1);乙同学:A(0,0),B(0,-1),C(-1,-1),D(1,0);丙同学:A(0,3),B(0,0),C(3,0),D(3,3);丁同学:A(1,1),B(1,-2),C(4,-2),D(4,1);上述四名同学表示的结果中,四个点的坐标都表示正确的同学是______.16.某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如表统计表,其中“√”表示购买,“×”表示未购买.假定每位顾客购买商品的可能性相同.商品甲乙丙丁顾客人数100√×√√217×√×√200√√√×300√×√×85√×××98×√××(1)估计顾客同时购买乙和丙的概率为______.(2)如果顾客购买了甲,并且同时也在乙、丙、丁中进行了选购,则购买______(填“乙”、“丙”、“丁”)商品的可能性最大.三、解答题(本大题共7小题,共56.0分)17.计算:+()-1-2cos45°-|2-3|.18.解不等式组,并求该不等式组的非负整数解.19.已知关于x的方程mx2+(3m+1)x+3=0.(1)求证:不论m为任何实数,此方程总有实数根;(2)若抛物线y=mx2+(3m+1)x+3与x轴交于两个不同的整数点,且m为正整数,试确定此抛物线的解析式.20.如图,四边形ABCD是矩形,点E在BC边上,点F在BC延长线上,且∠CDF=∠BAE.(1)求证:四边形AEFD是平行四边形;(2)若DF=3,DE=4,AD=5,求CD的长度.21.国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x <60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:61.7、62.4、63.6、65.9、66.4、68.5、69.1、69.3、69.5c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:d.中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第______;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l1的上方,请在图中用“〇”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为______万美元;(结果保留一位小数)(4)下列推断合理的是______.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值.22.在平面直角坐标系xOy中,抛物线G:y=mx2+2mx+m-1(m≠0)与y轴交于点C,抛物线G的顶点为D,直线:y=mx+m-1(m≠0).(1)当m=1时,画出直线和抛物线G,并直接写出直线被抛物线G截得的线段长.(2)随着m取值的变化,判断点C,D是否都在直线上并说明理由.(3)若直线被抛物线G截得的线段长不小于2,结合函数的图象,直接写出m的取值范围.23.已知C为线段AB中点,∠ACM=α.Q为线段BC上一动点(不与点B重合),点P在射线CM上,连接PA,PQ,记BQ=kCP.(1)若α=60°,k=1,①如图1,当Q为BC中点时,求∠PAC的度数;②直接写出PA、PQ的数量关系;(2)如图2,当α=45°时.探究是否存在常数k,使得②中的结论仍成立?若存在,写出k的值并证明;若不存在,请说明理由.答案和解析1.【答案】A【解析】解:将580 00000000用科学记数法表示应为5.8×1010.故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.【答案】C【解析】解:A选项是轴对称图形,不是中心对称图形,故本选项错误;B选项不是中心对称图形,故本选项错误;C选项为中心对称图形,故本选项正确;D选项不是中心对称图形,故本选项错误.故选:C.根据中心对称图形的概念求解.本题主要考查了中心对称图形的概念:关键是找到相关图形的对称中心,旋转180度后与原图重合.3.【答案】C【解析】【分析】由主视图和左视图确定是柱体、锥体还是球体,再由俯视图确定具体形状.考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由俯视图可知有六个棱,再由主视图及左视图分析可知为六棱柱,故选C.4.【答案】D【解析】【分析】本题考查了实数与数轴、实数加减的符号法则及算术平方根.解决本题的关键是掌握实数加减的符号法则:减法:大数-小数>0,小数-大数<0;加法:正数+正数>0,负数+负数<0,正数+负数的符号与绝对值较大的加数的符号相一致.根据各点在数轴上的位置、加减法符号法则、实数的算术平方根,对各个选择作出判断.【解答】解:由数轴知:-5<a<-4,a<b<0<d,|b|<|d|,|a|>|c|∵-5<a<-4,所以选项A错误;∵b<0<d且|b|<|d|,所以b+d>0,故选项B错误;∵a<0<c且|a|>|c|,所以|a|-c>0.故选项C错误;∵0<c<1,,所以c<.故选项D正确.故选D.5.【答案】B【解析】【分析】本题考查了正多边形的内角和与外角和,掌握多边形内角和公式:(n-2)•180°,外角和等于360°是解题的关键.根据正多边形的内角和公式(n-2)×180°列方程求出多边形的边数,再根据正多边形外角和为360°,且每个外角相等求解可得.【解答】解:多边形内角和(n-2)×180°=720°,∴n=6.则正多边形的一个外角=,故选B.6.【答案】D【解析】解:由图可得,白昼时长不足11小时的节气是立春、立秋、冬至、大寒,故选:D.根据图象,可以写出白昼时长不足11小时的节气,然后即可解答本题.本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.7.【答案】C【解析】解:∵PB+PC=BC,而PA+PC=BC,∴PA=PB,∴点P在AB的垂直平分线上,即点P为AB的垂直平分线与BC的交点.故选:C.由PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得,点P在AB的垂直平分线上,进而得出结论.本题考查了复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.8.【答案】C【解析】解:A、图1显示每天现有确诊数的增加量=累计确诊增加量-治愈人数增加量-死亡人数增加量,故原题说法正确;B、图2显示美国累计确诊人数虽然约是德国的两倍,但每百万人口的确诊人数大约只有德国的一半,故原题说法正确;C、图2显示西班牙当前的治愈率高于意大利,故原题说法错误;D、图3显示大约从3月16日开始海外的病死率开始高于中国的病死率,故原题说法正确;故选:C.根据所给图表和折线图针对每个选项进行分析即可.本题主要考查了统计表和折线统计图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.9.【答案】x=1【解析】【分析】本题考查了分式的值为零的条件.分式值为零的条件是分子等于零且分母不等于零.分式的值为零,分子等于零.【解答】解:依题意得:,所以x-1=0,解得x=1.故答案为1.10.【答案】【解析】解:(-b)•===,当a-b=2时,原式==,故答案为:.根据分式的减法和乘法可以化简题目中的式子,然后将a-b的值代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.11.【答案】2【解析】【分析】本题考查了相似三角形的判定与性质,利用相似三角形的判定定理找出△DEC∽△ABC 是解题的关键.由DE∥AB可得出△DEC∽△ABC,根据相似三角形的性质可得出=()2=,再结合AC=3即可求出DC的长度.【解答】解:∵DE∥AB,∴△DEC∽△ABC,∴=()2=,∴=.又∵AC=3,∴DC=2.故答案为2.12.【答案】>【解析】解:∵2<<3,∴1<-1<2,故>1.故答案为:>.直接估计出的取值范围,进而得出答案.此题主要考查了实数大小比较,正确得出的取值范围是解题关键.13.【答案】1答案不唯一 -2【解析】解:当a=1,b=-2时,>,得出a>b,故答案为:答案不唯一,1,-2.通过实例说明命题不成立即可.本题考查了命题与定理、不等式的性质、命题的组成、真命题和假命题的定义;熟练掌握命题的组成和不等式的性质是解题的关键.14.【答案】45°【解析】解:延长BA交格点于D,连接CD,则AD2=CD2=1+22=5,AC2=12+32=10,∴AD2+CD2=AC2,∴∠ADC=90°,∴∠DAC=∠ABC+∠ACB=45°.故答案为:45°.延长BA交格点于D,连接CD,根据勾股定理得到AD2=CD2=1+22=5,AC2=12+32=10,求得AD2+CD2=AC2,于是得到∠ADC=90°,根据三角形外角的性质即可得到结论.本题考查了勾股定理的逆定理,勾股定理,三角形的外角的性质,等腰直角三角形的判定和性质,正确的作出辅助线是解题的关键.15.【答案】甲,丙,丁【解析】解:甲同学:如图1,易知点B为原点,则AB=BC=CD=AD=1,故甲同学所标的四个点的坐标正确;乙同学:如图2,易知点A为原点,则AB=BC=CD=AD=1,则A(0,0),B(0,-1),C(1,-1),D(1,0),故乙同学所标C点的坐标错误;丙同学:如图1,易知点B为原点,则AB=BC=CD=AD=3,故丙同学所标的四个点的坐标正确;丁同学:如图3,易知AB=BC=CD=AD=3,故丁同学所标的四个点的坐标正确;上述四名同学表示的结果都正确的是:甲,丙,丁;故答案为:甲,丙,丁.正确画图,根据四个同学的原点确定平面直角坐标系,根据各点的坐标确定正方形的边长,可得结论.本题主要考查对正方形的性质及坐标系的特点,正确画图确定平面直角坐标系是关键.16.【答案】0.2 丙【解析】解:(1)从统计表可得,在这1000名顾客中,同时购买乙和丙的有200人,故顾客同时购买乙和丙的概率为=0.2.(2)在这1000名顾客中,同时购买甲和乙的概率为=0.2,同时购买甲和丙的概率为=0.6,同时购买甲和丁的概率为=0.1,故同时购买甲和丙的概率最大.故答案为:0.2;丙.(1)从统计表可得,在这1000名顾客中,同时购买乙和丙的有200人,从而求得顾客同时购买乙和丙的概率.(2)在这1000名顾客中,求出同时购买甲和乙的概率、同时购买甲和丙的概率、同时购买甲和丁的概率,从而得出结论.本题比较容易,考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.17.【答案】解:+()-1-2cos45°-|2-3|=3+5-2×-(3-2)=3+5--3+2=4+2.【解析】直接利用负指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.18.【答案】解:解不等式3(x+2)≥x+4,得:x≥-1,解不等式<1,得:x<3,∴原不等式解集为-1≤x<3,∴原不等式的非负整数解为0,1,2.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.【答案】(1)证明:当m=0时,方程变形为x+3=0,解得x=-3;当m≠0时,△=(3m+1)2-4m•3=(3m-1)2,∵(3m-1)2≥0,即△≥0,∴m≠0时,方程总有两个实数解,∴不论m为任何实数,此方程总有实数根;(2)解:根据题意得m≠0,mx2+(3m+1)x+3=0.(mx+1)(x+3)=0,解得x1=-,x2=-3,则抛物线y=mx2+(3m+1)x+3与x轴的两交点坐标为(-,0),(-3,0),而m为正整数,-也为整数,所以m=1,所以抛物线解析式为y=x2+4x+3.【解析】(1)分类讨论:当m=0时,方程变形为一元一次方程,有一个解;当m≠0时,先计算判别式的值得到△=(3m-1)2,根据非负数的性质得△≥0,则根据判别式的意义得到方程总有两个实数解,然后综合两种情况得到不论m为任何实数,此方程总有实数根;(2)先解方程得到x1=-,x2=-3,根据抛物线与x轴的两交点问题得到交点坐标为(-,0),(-3,0),再根据正数的整除性易得m=1,从而得到抛物线解析式.本题考查了一元二次方程根的判别式(△=b2-4ac):一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.也考查了抛物线与x轴的交点问题.20.【答案】(1)证明:∵四边形ABCD是矩形,∴AB=DC,∠B=∠DCF=90°,∵∠BAE=∠CDF,在△ABE和△DCF中,,∴△ABE≌△DCF(ASA),∴BE=CF,∴BC=EF,∵BC=AD,∴EF=AD,又∵EF∥AD,∴四边形AEFD是平行四边形;(2)解:由(1)知:EF=AD=5,在△EFD中,∵DF=3,DE=4,EF=5,∴DE2+DF2=EF2,∴∠EDF=90°,∴•ED•DF=EF•CD,∴CD=.【解析】此题主要考查了矩形的性质以及勾股定理的逆定理,得出BC=EF是解题关键.(1)直接利用矩形的性质结合全等三角形的判定与性质得出BE=CF,进而得出答案;(2)利用勾股定理的逆定理得出∠EDF=90°,进而得出•ED•DF=EF•CD,求出答案即可.21.【答案】解:(1)∵国家创新指数得分为69.5以上(含69.5)的国家有17个,∴国家创新指数得分排名前40的国家中,中国的国家创新指数得分排名世界第17,故答案为:17;(2)如图所示:(3)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为2.7万美元;故答案为:2.7;(4)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,①相比于点A、B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;合理;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值;合理;故答案为:①②.【解析】本题考查了频数分布直方图、统计图、近似数等知识;读懂频数分布直方图和统计图是解题的关键.(1)由国家创新指数得分为69.5以上(含69.5)的国家有17个,即可得出结果;(2)根据中国在虚线l1的上方,中国的创新指数得分为69.5,找出该点即可;(3)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可得出结果;(4)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可判断①②的合理性.22.【答案】解:(1)当m=1时,抛物线G的函数表达式为y=x2+2x,直线的函数表达式为y=x,直线被抛物线G截得的线段长为,画出的两个函数的图象如图所示:(2)无论m取何值,点C,D都在直线上.理由如下:∵抛物线G:y=mx2+2mx+m-1(m≠0)与y轴交于点C,∴点C的坐标为C(0,m-1),∵y=mx2+2mx+m-1=m(x+1)2-1,∴抛物线G的顶点D的坐标为(-1,-1),对于直线:y=mx+m-1(m≠0),当x=0时,y=m-1,当x=-1时,y=m×(-1)+m-1=-1,∴无论m取何值,点C,D都在直线上;(3)解方程组,得,或,∴直线与抛物线G的交点为(0,m-1),(-1,-1).∵直线被抛物线G截得的线段长不小于2,∴≥2,∴1+m2≥4,m2≥3,∴m≤-或m≥,∴m的取值范围是m≤-或m≥.【解析】(1)当m=1时,抛物线G的函数表达式为y=x2+2x,直线的函数表达式为y=x ,求出直线被抛物线G截得的线段,再画出两个函数的图象即可;(2)先求出C、D两点的坐标,再代入直线的解析式进行检验即可;(3)先联立直线与抛物线的解析式,求出它们的交点坐标,再根据这两个交点之间的距离不小于2列出不等式,求解即可.本题考查了二次函数的性质,二次函数图象上点的坐标特征,两函数交点坐标的求法,函数的图象,都是基础知识,需熟练掌握.23.【答案】解:(1)①如图1,在CM上取点D,使得CD=CA,连接AD,∵∠ACM=60°,∴△ADC为等边三角形.∴∠DAC=60°.∵C为AB的中点,Q为BC的中点,∴AC=BC=2BQ.∵BQ=CP,∴AC=BC=CD=2CP.∴AP平分∠DAC.∴∠PAC=∠PAD=30°.②∵△ADC是等边三角形,∴∠ACP=60°,∵PC=CQ,∴∠PQC=∠CPQ=30°,∴∠PAC=∠PQC=30°,∴PA=PQ;(2)存在,使得②中的结论成立.证明:过点P作PC的垂线交AC于点D.∵∠ACM=45°,∴∠PDC=∠PCD=45°.∴PC=PD,∠PDA=∠PCQ=135°.∵,,∴CD=BQ.∵AC=BC,∴AD=CQ.∴△PAD≌△PQC(SAS).∴PA=PQ.【解析】(1)如图1,作辅助线,构建等边三角形,证明△ADC为等边三角形.根据等边三角形三线合一可得∠PAC=∠PAD=30°;②根据①中得结论:∠PAC=∠PQC=30°,则PA=PQ;(2)存在,如图2,作辅助线,构建全等三角形,证明△PAD≌△PQC(SAS).可得结论.本题是三角形的综合题,考查三角形全等的性质和判定、等边三角形、等腰直角三角形、勾股定理等知识,解题的关键是作辅助线,构建等边三角形和三角形全等,难度适中,属于中考常考题型.。
2020年北京八中高考数学模拟试卷(二)(3月份)(有答案解析)
2020年北京八中高考数学模拟试卷(二)(3月份)一、选择题(本大题共10小题,共40.0分)1.已知集合,,则集合A. B. C. D.2.在复平面内,复数对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.已知命题p:,,那么命题为A. ,B. ,C. ,D. ,4.设a,b,,且,则A. B. C. D.5.已知函数的图象与函数的图象关于x轴对称,则A. B. C. D.6.已知向量,,若与共线,则实数A. 0B. 1C.D. 37.已知双曲线的离心率为,则A. B. C. D. 28.某几何体的三视图如图所示,则该几何体的体积是A.B.C. 1D. 29.设,为非零向量,则“,”是“”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件10.为配合“2019双十二”促销活动,某公司的四个商品派送点如图环形分布,并且公司给A,B,C,D四个派送点准备某种商品各50个.根据平台数据中心统计发现,需要将发送给A,B,C,D四个派送点的商品数调整为40,45,54,61,但调整只能在相邻派送点进行,每次调动可以调整1件商品.为完成调整,则A. 最少需要16次调动,有2种可行方案B. 最少需要15次调动,有1种可行方案C. 最少需要16次调动,有1种可行方案D. 最少需要15次调动,有2种可行方案二、填空题(本大题共5小题,共25.0分)11.在的展开式中,的系数为______用数字作答12.各项均为正数的等比数列中,,,则______.13.抛物线上一点M到焦点的距离等于4,则______;点M的坐标为______.14.在中,,,则______.15.已知函数.的最大值为______;设当时,取得最大值,则______.三、解答题(本大题共6小题,共85.0分)16.已知函数,其中.Ⅰ若函数的最小正周期为2,求的值;Ⅱ若函数在区间上的最大值为,求的取值范围.17.为了提高学生的身体素质,某校高一、高二两个年级共336名学生同时参与了“我运动,我健康,我快乐”的跳绳、踢毽等系列体育健身活动.为了了解学生的运动状况,采用分层抽样的方法从高一、高二两个年级的学生中分别抽取7名和5名学生进行测试.如表是高二年级的5名学生的测试数据单位:个分钟:学生编号12345跳绳个数179181168177183踢毽个数8578797280Ⅰ求高一、高二两个年级各有多少人?设某学生跳绳m个分钟,踢毽n个分钟.当,且时,称该学生为“运动达人”.从高二年级的学生中任选一人,试估计该学生为“运动达人”的概率;从高二年级抽出的上述5名学生中,随机抽取3人,求抽取的3名学生中为“运动达人”的人数的分布列和数学期望.18.已知在四棱锥中,底面ABCD是边长为4的正方形,是正三角形,平面PAD,E,F,G,O分别是PC,PD,BC,AD的中点.Ⅰ求证:平面ABCD;Ⅱ求平面EFG与平面ABCD所成锐二面角的大小;Ⅲ线段PA上是否存在点M,使得直线GM与平面EFG所成角为,若存在,求线段PM的长度;若不存在,说明理由.19.已知椭圆C:的两个焦点是,,点在椭圆C上,且Ⅰ求椭圆C的方程;Ⅱ设点P关于x轴的对称点为Q,M是椭圆C上一点,直线MP和MQ与x轴分别相交于点E,F,O为原点.证明:为定值.20.已知函数.Ⅰ求曲线在点处的切线方程;Ⅱ求的单调区间;Ⅲ若对于任意,都有,求实数a的取值范围.21.已知由个正整数构成的集合,,记,对于任意不大于的正整数m,均存在集合A的一个子集,使得该子集的所有元素之和等于m.Ⅰ求,的值;Ⅱ求证:“,,,成等差数列”的充要条件是“”;Ⅲ若,求n的最小值,并指出n取最小值时的最大值.-------- 答案与解析 --------1.答案:D解析:解:,,.故选:D.进行并集的运算即可.本题考查了描述法、区间的定义,并集的运算,考查了计算能力,属于基础题.2.答案:C解析:解:,复数对应的点的坐标为,位于底数象限.故选:C.利用复数代数形式的乘法运算求出复数对应的点的坐标得答案.本题考查复数代数形式的乘法运算,考查复数的代数表示法及其几何意义,是基础题.3.答案:A解析:解:因为特称命题的否定是全称命题,故命题“p:,”的否定命题为:,.故选:A.利用特称命题的否定是全称命题写出结果即可.本题考查了命题的否定,考查了推理能力,属于基础题.4.答案:D解析:解:由,则,,不一定成立,利用函数在R上单调递增,可得:.故选:D.由,利用不等式的基本性质及其函数在R上单调递增即可判断出结论.本题考查了不等式的基本性质、函数的单调性,考查了推理能力与计算能力,属于基础题.5.答案:A解析:解:根据题意,设,点为函数上任意一点,又由函数的图象与函数的图象关于x轴对称,则有,故选:A.根据题意,设,点为函数上任意一点,进而分析可得,即可得答案.本题考查函数图象的对称性,涉及函数解析式的求法,属于基础题.6.答案:B解析:【分析】先求出,再根据向量共线的结论即可求解.本题考查了平面向量共线的坐标表示,属基础题.【解答】解:因为向量,,.;与共线;.故选:B.7.答案:B解析:解:双曲线的,,可得,由离心率为可得,解得,故选:B.由题意可得,求得a,b,c,运用双曲线的离心率公式解方程可得所求值.本题考查双曲线的方程和性质,考查方程思想和运算能力,属于基础题.8.答案:C解析:解:根据几何体的三视图转换为几何体为:该几何体为三棱柱.如图所示:可以转换角度所以:.故选:C.首先把三视图转换为几何体,进一步求出几何体的体积.本题考查的知识要点:三视图和几何体之间的转换,几何体的体积公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.9.答案:C解析:解:,为非零向量,则“,”,则,而,,“”反之也成立.“,”是“”的充要条件.故选:C.,为非零向量,则“,”,可得,而,,即可判断出结论.本题考查了向量共线定理、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.10.答案:A解析:解:因为B、D两处互不相邻,所以B处至少调整5次,D处至少调整11次,故最少需要调整16次相应的可行方案有2种,方案:A调整10给D,B调整5给C,然后C再调整1给D;方案:A调整11给D,B调整1给A,调整4台给C,故选:A.先看互不相邻的两点B、D,B处至少调整5次,D处至少调整11次,故最少需要调整16次本题考查了阅读能力及简单的合情推理,属中档题.11.答案:40解析:解:的展开式中通项公式为,令,解得;展开式中含项是第3项,它的系数是.故答案为:40.根据二项式展开式的通项公式,求出展开式中含项的系数是多少.本题考查了二项式定理的应用问题,解题时应灵活应用二项式展开式的通项公式,是基础题目.12.答案:9解析:解:各项均为正数的等比数列中,,,公比,.则,故答案为:9.由题意利用等比数列的定义、性质、通项公式,前n项和公式,得出结论.本题主要考查等比数列的定义、性质、通项公式,前n项和公式,属于基础题.13.答案:2解析:解:抛物线的焦点坐标为,由题意可得,即;抛物线的准线方程为,设,可得,即,可得,即,故答案为:2,由抛物线的焦点坐标为,可得p的值;由抛物线的定义,可得M的横坐标,代入抛物线方程可得M的坐标.本题考查抛物线的定义、方程和性质,考查方程思想和运算能力,属于基础题.14.答案:解析:解:,,由正弦定理可得,由余弦定理可得.故答案为:.由已知利用正弦定理可求由正弦定理可得,进而根据余弦定理可得cos B的值.本题主要考查了正弦定理,余弦定理在解三角形中的应用,考查了转化思想,属于基础题.15.答案:解析:解:函数,当时,函数的最大值为.由于,所以当时,.故答案为:,直接利用函数的关系式的变换,把函数的关系式变形成正弦型函数,进一步利用函数的性质的应用求出结果.利用函数的关系式的变换的应用求出结果.本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.16.答案:解:Ⅰ因为函数,,因为的最小正周期为2,即,所以.Ⅱ因为,,所以,若在区间上取到最大值,只需,所以.解析:Ⅰ直接利用三角函数关系式的恒等变换和正弦型函数的性质的应用求出结果.Ⅱ利用正弦型函数的性质的应用和不等式的解法求出结果.本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.17.答案:解:Ⅰ设高一年级有a人,高二年级有b人.采用分层抽样,有,.解得,,所以高一年级有196人,高二年级有140人.从上表可知,从高二抽取的5名学生中,编号为1,2,5的学生是“运动达人”.故从高二年级的学生中任选一人,该学生为“运动达人”的概率估计为.的所有可能取值为1,2,3,,,.123P故的期望.解析:Ⅰ设高一年级有a人,高二年级有b人.采用分层抽样,有,由此能求出高一、高二两个年级各有多少人.从高二抽取的5名学生中,编号为1,2,5的学生是“运动达人”由此能求出从高二年级的学生中任选一人,该学生为“运动达人”的概率.的所有可能取值为1,2,3,分别求出相应的概率,由此能求出的分布列和的期望.本题考查概率、离散型随机变量、数学期望的求法,考查分层抽样、排列组合等基础知识,考查运算求解能力和应用意识,是中档题.18.答案:解:Ⅰ证明:因为是正三角形,O是AD的中点,所以.又因为平面PAD,平面PAD,所以,,AD,平面ABCD,所以面ABCD;Ⅱ如图,以O点为原点分别以OA、OG、OP所在直线为x轴、y轴、z轴建立空间直角坐标系.则,,,设平面EFG的法向量为,由,得令,则,又平面ABCD的法向量,设平面EFG与平面ABCD所成锐二面角为,所以.所以平面EFG与平面ABCD所成锐二面角为;Ⅲ假设线段PA上存在点M,使得直线GM与平面EFG所成角为,设,由,所以.所以,整理得,无解,所以,不存在这样的点M.解析:因为,又平面PAD,得到,进而证明结论;以O点为原点分别以OA、OG、OP所在直线为x轴、y轴、z轴建立空间直角坐标系,平面EFG 的法向量,又平面ABCD的法向量,利用夹角公式求出即可;假设线段PA上存在点M,设,由直线GM与平面EFG所成角为,得到关于的方程,解方程判断即可.考查线面垂直的判定,向量法求二面角和线面所成的角的余弦值,考查运算能力,中档题.19.答案:解:Ⅰ由椭圆的定义,得,即分将点的坐标代入,得,解得:分椭圆C的方程是分Ⅱ证明:由Q关于x轴于P对称,得.设,则有,,分直线MP的方程为,分令,得,分丨OE丨丨丨.直线MQ的方程为:,分令,得,分丨OF丨丨丨.丨OE丨丨OF丨丨丨丨丨丨丨丨丨分丨OE丨丨OF丨丨OE丨丨OF丨为定值.分解析:Ⅰ椭圆的定义,得,即,将点的坐标代入,解得:即可求得椭圆C的方程;Ⅱ由题意可知:设,则有,直线MP的方程为,令,得,从而丨OE丨丨丨.,同理即可求得丨OF丨丨丨,则丨OE丨丨OF丨丨丨丨丨.本题考查椭圆的标准方程,直线与椭圆的位置关系的应用,考查三角形的面积公式,直线的点斜式方程,考查计算能力,属于中档题.20.答案:解:Ⅰ因为函数,所以,,又因为,则所求切线斜率为1,切点坐标为,所以在点处的切线方程为;Ⅱ函数的定义域为,由Ⅰ可知,,由,解得,由,解得,所以的单调递增区间是,的单调递减区间是;Ⅲ当时,恒成立,等价于恒成立,令,,,.当时,,所以在区间单调递减;当时,,所以在区间单调递增.而,.所以在区间上的最大值为,所以当时,对于任意,都有.实数a的取值范围为.解析:本题考查了利用导数求曲线的切线方程、利用导数研究函数的单调性及利用导数研究恒成立问题,考查转化思想,属于中档题.Ⅰ求出函数的导数,计算,的值,求出切线方程即可;Ⅱ求出函数的导数,根据导数和函数单调的关系,求出函数的单调区间即可;Ⅲ问题等价于“”构造函数,利用导数求出函数的最值,从而求出a的范围即可.21.答案:解:Ⅰ由条件知,必有,又均为整数,,,由的定义及均为整数,必有,;Ⅱ证明:必要性:由“,,,成等差数列”及,,得2,,此时2,3,,满足题目要求,从而;充分性:由条件知,且均为正整数,可得2,3,,,故,当且仅当2,3,,时,上式等号成立.于是当时,2,3,,,从而,,,成等差数列.所以“,,,成等差数列”的充要条件是“”;Ⅲ由于含有n个元素的非空子集个数有,故当时,,此时A的非空子集的元素之和最多表示1023个不同的整数m,不符合要求.而用11个元素的集合2,4,8,16,32,64,128,256,512,的非空子集的元素之和可以表示1,2,3,,2046,2047共2047个正整数.因此当时,n的最小值为11.记,则并且.事实上若,,则,,所以时无法用集合A的非空子集的元素之和表示,与题意不符.于是,得,,所以.当时,2,4,8,16,32,64,128,256,499,满足题意,所以当时,n的最小值为11,此时的最大值1010.解析:Ⅰ考虑元素1,2,结合新定义,可得所求值;Ⅱ从两个方面证明,结合等差数列的性质和求和公式,即可得证;Ⅲ由于含有n个元素的非空子集个数有,讨论当时,时,结合条件和新定义,推理可得所求.本题考查新定义的理解和运用,考查等差数列的性质和求和公式的运用,考查化简运算能力和推理能力,属于难题.。
2020年北京市某某校中考数学模拟试卷含解析版
绝密★启用前2020年北京市某某校中考数学模拟试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上,在试卷上作答无效,选择题需使用2B铅笔填涂一.选择题(共8小题,满分16分,每小题2分)1.(2.00分)如图,直线a∥b,则直线a,b之间距离是()A.线段AB的长度B.线段CD的长度C.线段EF的长度D.线段GH的长度2.(2.00分)把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.3.(2.00分)下列运算正确的是()A.(﹣a3)2+(﹣a2)3=0B.(﹣b)2•(﹣b)4=﹣b6C.(﹣a3)2(﹣a2)3=﹣a6D.x2•x4=x84.(2.00分)估计2﹣1的值应在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间5.(2.00分)如图,AB∥DE,∠ABC的角平分线BP和∠CDE的角平分线DK的反向延长线交于点P且∠P﹣2∠C=57°,则∠C等于()A.24°B.34°C.26°D.22°6.(2.00分)如图,左、右并排的两棵树AB和CD,小树的高AB=6m,大树的高CD=9m,小明估计自己眼睛距地面EF=1.5m,当他站在F点时恰好看到大树顶端C点.已知此时他与小树的距离BF=2m,则两棵树之间的距离BD是()A.1m B.m C.3m D.m7.(2.00分)李大伯在承包的果园里种植了100棵樱桃树,今年已经进入收获期,收获时,从中任意采摘了6棵树上的樱桃,分别称得每棵树的产量(单位:千克)如下表:这组数据的中位数为m,樱桃的总产量约为n,则m,n分别是()A.18,2000B.19,1900C.18.5,1900D.19,18508.(2.00分)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的是()A.①②③B.①②④C.①③④D.①②③④二.填空题(共8小题,满分16分,每小题2分)9.(2.00分)若x,y为实数,y=,则4y﹣3x的平方根是.10.(2.00分)袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有个.11.(2.00分)如图,边长为6cm的正三角形内接于⊙O,则阴影部分的面积为(结果保留π).12.(2.00分)5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少.设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据题意列关于x,y的方程组为.13.(2.00分)若顺次连接四边形ABCD四边中点所得的四边形是矩形,则原四边形的对角线AC、BD所满足的条件是.14.(2.00分)抛物线y=2x2+4向左平移2个单位长度,得到新抛物线的表达式为.15.(2.00分)如图,△ABC内接于⊙O,DA、DC分别切⊙O于A、C两点,∠ABC=114°,则∠ADC的度数为.16.(2.00分)我们知道,四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D'处,则点C的对应点C'的坐标为.三.解答题(共12小题,满分68分)17.(5.00分)计算:﹣2cos60°﹣(π﹣2018)0+|1﹣|18.(5.00分)解方程:+﹣=1.19.(5.00分)如图,在△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=5,求△ADE的周长.(2)若∠BAC=120°,求∠DAE的度数.20.(5.00分)先化简,再求值:,其中.21.(5.00分)在▱ABCD中,过点D作DE⊥AB于点E,点F在CD上,CF=AE,连接BF,AF.(1)求证:四边形BFDE是矩形;(2)若AF平分∠BAD,且AE=3,DE=4,求tan∠BAF的值.22.(6.00分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.23.(6.00分)如图所示,已知矩形ABOC中,AC=4,双曲线y=与矩形两边AB、AC分别交于D、E,E为AC边中点.(1)求点E的坐标;(2)点P是线段OB上的一个动点,是否存在点P,使∠DPC=90°?若存在,求出此时点P的坐标,若不存在,请说明理由.24.(5.00分)如图,AB为⊙O的直径,CD⊥AB于点G,E是CD上一点,且BE=DE,延长EB至点P,连结CP,使PC=PE,延长BE与⊙O交于点F,连结BD,FD.(1)求证:CD=BF;(2)求证:PC是⊙O的切线;(3)若tanF=,AG﹣BG=,求ED的值.25.(6.00分)【操作与发现】如图1,△MNQ中,MQ≠NQ.请你以MN为一边,在MN的同侧构造一个与△MNQ全等的三角形,画出图形,并简要说明构造的方法;【借鉴与应用】参考你画图构造全等三角形的方法解决下面问题:如图2,在四边形ABCD中,∠ACB+∠CAD=180°,∠B=∠D,求证:CD=AB.26.(6.00分)如图11,已知二次函数y=ax2﹣(2a﹣)x+3的图象经过点A(4,0),与y轴交于点B.在x轴上有一动点C(m,0)(0<m<4),过点C作x轴的垂线交直线AB于点E,交该二次函数图象于点D.(1)求a的值和直线AB的解析式;(2)过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S1,S2,若S1=4S2,求m的值;(3)点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且▱DEGH周长取最大值时,求点G的坐标.27.(7.00分)阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE.(1)在图1中证明小胖的发现;借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;(3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).28.(7.00分)如图,在平面直角坐标系中,点F的坐标为(0,10).点E的坐标为(20,0),直线l1经过点F和点E,直线l1与直线l2 、y=x相交于点P.(1)求直线l1的表达式和点P的坐标;(2)矩形ABCD的边AB在y轴的正半轴上,点A与点F重合,点B在线段OF 上,边AD平行于x 轴,且AB=6,AD=9,将矩形ABCD沿射线FE的方向平移,边AD始终与x 轴平行.已知矩形ABCD以每秒个单位的速度匀速移动(点A 移动到点E时止移动),设移动时间为t秒(t>0).①矩形ABCD在移动过程中,B、C、D三点中有且只有一个顶点落在直线l1或l2上,请直接写出此时t的值;②若矩形ABCD在移动的过程中,直线CD交直线l1于点N,交直线l2于点M.当△PMN的面积等于18时,请直接写出此时t的值.参考答案与试题解析一.选择题(共8小题,满分16分,每小题2分)1.(2.00分)如图,直线a∥b,则直线a,b之间距离是()A.线段AB的长度B.线段CD的长度C.线段EF的长度D.线段GH的长度【分析】根据平行线间的距离的定义,可得答案.【解答】解:由直线a∥b,CD⊥b,得线段CD的长度是直线a,b之间距离,故选:B.【点评】本题考查了平行线间的距离,利用平行线间的距离的定义是解题关键.2.(2.00分)把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.【分析】求得不等式组的解集为x<﹣1,所以C是正确的.【解答】解:不等式组的解集为x<﹣1.故选:C.【点评】此题考查不等式问题,不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.(2.00分)下列运算正确的是()A.(﹣a3)2+(﹣a2)3=0B.(﹣b)2•(﹣b)4=﹣b6C.(﹣a3)2(﹣a2)3=﹣a6D.x2•x4=x8【分析】各式计算得到结果,即可作出判断.【解答】解:A、原式=a6﹣a6=0,符合题意;B、原式=b2•b4=b6,不符合题意;C、原式=a6•(﹣a6)=﹣a12,不符合题意;D、原式=x6,不符合题意.故选:A.【点评】此题考查了幂的乘方与积的乘方,合并同类项,以及同底数幂的乘法,熟练掌握运算法则是解本题的关键.4.(2.00分)估计2﹣1的值应在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【分析】因为2.22=4.84,2.32=5.29,所以4<2<5,推出3<2﹣1<4,由此即可解决问题.【解答】解:∵2.22=4.84,2.32=5.29,∴4<2<5,∴3<2﹣1<4.故选:B.【点评】本题考查估算无理数的大小,解题的关键是学会利用逼近法解决问题.5.(2.00分)如图,AB∥DE,∠ABC的角平分线BP和∠CDE的角平分线DK的反向延长线交于点P且∠P﹣2∠C=57°,则∠C等于()A.24°B.34°C.26°D.22°【分析】延长KP交AB于F,设∠C=α,则∠BPG=2α+57°,利用三角形的外角性质,即可得到2α+57°﹣∠ABP=α+180°﹣(2α+57°)﹣∠CBP,再根据∠ABP=∠CBP,即可得出2α+57°=α+180°﹣(2α+57°),进而得到∠C的度数.【解答】解:如图,延长KP交AB于F,∵AB∥DE,DK平分∠CDE,∴∠BPF=∠EDK=∠CDK,设∠C=α,则∠BPG=2α+57°,∵∠BPG是△BPF的外角,∠CDK是△CDG的外角,∴∠BFP=∠BPG﹣∠ABP=2α+57°﹣∠ABP,∠CDK=∠C+∠CGD=α+∠BGP=α+(180°﹣∠BPG﹣∠CBP),∴2α+57°﹣∠ABP=α+180°﹣(2α+57°)﹣∠CBP,∵PB平分∠ABC,∴∠ABP=∠CBP,∴2α+57°=α+180°﹣(2α+57°),解得α=22°,故选:D.【点评】本题考查的是平行线的性质及三角形外角的性质,解答此题的关键是熟知以下知识:①三角形的外角等于与之不相邻的两个内角的和;②三角形的内角和是180°.6.(2.00分)如图,左、右并排的两棵树AB和CD,小树的高AB=6m,大树的高CD=9m,小明估计自己眼睛距地面EF=1.5m,当他站在F点时恰好看到大树顶端C点.已知此时他与小树的距离BF=2m,则两棵树之间的距离BD是()A.1m B.m C.3m D.m【分析】由题意求出EG,AG,CH的长,由三角形AEG与三角形CEH相似,得比例求出GH的长,即为BD的长.【解答】解:由题意得:FB=EG=2m,AG=AB﹣BG=6﹣1.5=4.5m,CH=CD﹣DH=9﹣1.5=7.5m,∵AG⊥EH,CH⊥EH,∴∠AGE=∠CHE=90°,∵∠AEG=∠CEH,∴△AEG∽△CEH,∴==,即=,解得:GH=,则BD=GH=m,故选:B.【点评】此题考查了相似三角形的应用,熟练掌握相似三角形的判定与性质是解本题的关键.7.(2.00分)李大伯在承包的果园里种植了100棵樱桃树,今年已经进入收获期,收获时,从中任意采摘了6棵树上的樱桃,分别称得每棵树的产量(单位:千克)如下表:这组数据的中位数为m,樱桃的总产量约为n,则m,n分别是()A.18,2000B.19,1900C.18.5,1900D.19,1850【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;根据已知数据利用平均数的计算公式求出6棵树上的樱桃的平均产量,然后利用样本估计总体的思想即可求出樱桃的总产量.【解答】解:先对这组数据按从小到大的顺序重新排序:17,18,19,19,20,21.位于最中间的数是19,19,所以这组数的中位数是m=(19+19)÷2=19;从100棵樱桃中抽样6棵,每颗的平均产量为(17+18+19+19+20+21)=19(千克),所以估计樱桃的总产量n=19×100=1900(千克);故选:B.【点评】此题考查了中位数、平均数、样本估计总体等知识,综合性比较强,要求学生熟练掌握定义并且能够运用这些知识才能很好解决问题.8.(2.00分)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的是()A.①②③B.①②④C.①③④D.①②③④【分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【解答】解:由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.故选:A.【点评】本题以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态.二.填空题(共8小题,满分16分,每小题2分)9.(2.00分)若x,y为实数,y=,则4y﹣3x的平方根是±.【分析】要求4y﹣3x的平方根,一要先求出x,y的值,要求x、y的值就要根据:与同时成立,根号里的数一定是0.依此来求x、y的值.【解答】解:∵与同时成立,∴故只有x2﹣4=0,即x=±2,又∵x﹣2≠0,∴x=﹣2,y==﹣,4y﹣3x=﹣1﹣(﹣6)=5,故4y﹣3x的平方根是±.故答案:±.【点评】根据与同时成立,得到x的值是解答本题的关键.10.(2.00分)袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有2个.【分析】根据若从中任摸一个球,恰好是黑球的概率为,列出关于n的方程,解方程即可.【解答】解:∵袋中装有6个黑球和n个白球,∴袋中一共有球(6+n)个,∵从中任摸一个球,恰好是黑球的概率为,∴=,解得:n=2.故答案为:2.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.注意方程思想的应用.11.(2.00分)如图,边长为6cm的正三角形内接于⊙O,则阴影部分的面积为(结果保留π)(4π﹣3)cm2.【分析】连接OB、OC,作OH⊥BC于H,根据垂径定理得到BH=HC=BC,根据圆周角定理得到∠BOC=2∠A=120°,根据三角形面积公式、扇形面积公式计算即可.【解答】解:连接OB、OC,作OH⊥BC于H,则BH=HC=BC=3,∵△ABC为等边三角形,∴∠A=60°,由圆周角定理得,∠BOC=2∠A=120°,∵OB=OC,∴∠OBC=30°,∴OB==2,OH=,∴阴影部分的面积=﹣×6×=4π﹣3,故答案为:(4π﹣3)cm2.【点评】本题考查的是三角形的外接圆与外心、扇形面积计算,掌握圆周角定理、等边三角形的性质、扇形面积公式是解题的关键.12.(2.00分)5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少.设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据题意列关于x,y的方程组为.【分析】设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据两厂5月份的用水量及6月份的用水量,即可得出关于x、y的二元一次方程组,此题得解.【解答】解:设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据题意得:.故答案为:.【点评】本题考查了二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.13.(2.00分)若顺次连接四边形ABCD四边中点所得的四边形是矩形,则原四边形的对角线AC、BD所满足的条件是AC⊥BD.【分析】利用三角形中位线定理可以推知四边形EFGH是平行四边形;然后由三角形中位线定理,当“AC⊥BD”推知HE⊥HG;最后由矩形判定定理“有一内角为直角是平行四边形是矩形”可以证得▱EFGH是矩形.【解答】解:如图所示:点E、F、G、H分别是边AB、BC、CD、DA的中点;∵在△DAC中,根据三角形中位线定理知,HG∥AC且HG=AC,同理,在△ABC中,EF∥AC且EF=AC,∴HG∥EF∥AC,且HG=EF,∴四边形EFGH是平行四边形;同理,HE∥DB;当AC⊥BD时,HE⊥HG,∴▱EFGH是矩形;故答案为:AC⊥BD.【点评】本题考查了三角形中位线定理、矩形的判定定理.三角形的中位线平行于第三边且等于第三边的一半.14.(2.00分)抛物线y=2x2+4向左平移2个单位长度,得到新抛物线的表达式为y=2(x+2)2+4.【分析】根据题意易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.【解答】解:∵y=2x2+4=2(x+0)2+4,∴抛物线y=2x2+4的顶点坐标是(0,4),∴将抛物线y=2x2+4向左平移2个单位长度后的顶点坐标是(﹣2,4),则平移后新抛物线的解析式为:y=2(x+2)2+4.故答案是:y=2(x+2)2+4【点评】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.15.(2.00分)如图,△ABC内接于⊙O,DA、DC分别切⊙O于A、C两点,∠ABC=114°,则∠ADC的度数为48°.【分析】如图,在⊙O上取一点K,连接AK、KC、OA、OC.求出∠AOC的角度,即可解决问题;【解答】解:如图,在⊙O上取一点K,连接AK、KC、OA、OC.∵∠AKC+∠ABC=180°,∵∠ABC=114°,∴∠AKC=66°,∴∠AOC=2∠AKC=132°,∵DA、DC分别切⊙O于A、C两点,∴∠OAD=∠OCB=90°,∴∠ADC+∠AOC=180°,∴∠ADC=48°故答案为48°.【点评】本题考查切线的性质、圆周角定理、圆内接四边形的性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.16.(2.00分)我们知道,四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D'处,则点C的对应点C'的坐标为(2,).【分析】由已知条件得到AD′=AD=2,AO=AB=1,根据勾股定理得到OD′= =,于是得到结论.【解答】解:∵AD′=AD=2,AO=AB=1,∴OD′==,∵C′D′=2,C′D′∥AB,∴C′(2,),故答案为(2,).【点评】本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.三.解答题(共12小题,满分68分)17.(5.00分)计算:﹣2cos60°﹣(π﹣2018)0+|1﹣|【分析】本题涉及开立方、零指数幂、绝对值、特殊角的三角函数4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=2﹣2×﹣1+2﹣1,=2﹣1﹣1+2﹣1,=1.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(5.00分)解方程:+﹣=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程两边同乘(x+2)(x﹣2)得x﹣2+4x﹣2(x+2)=x2﹣4,整理,得x2﹣3x+2=0,解这个方程得x1=1,x2=2,经检验,x2=2是增根,舍去,所以,原方程的根是x=1.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.19.(5.00分)如图,在△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=5,求△ADE的周长.(2)若∠BAC=120°,求∠DAE的度数.【分析】(1)根据线段垂直平分线的性质得到DA=DB,EA=EC,根据三角形的周长公式计算;(2)根据三角形内角和定理求出∠B+∠C=60°,根据等边对等角、结合图形计算即可.【解答】解:(1)∵边AB、AC的垂直平分线分别交BC于D、E,∴DA=DB,EA=EC,∴△ADE的周长=AD+DE+AE=DB+DE+EC=BC=5;(2)∵∠BAC=120°,∴∠B+∠C=60°,∵DA=DB,EA=EC,∴∠DAB=∠B,∠EAC=∠C,∴∠DAE=∠BAC﹣(∠DAB+∠EAC)=∠BAC﹣(∠B+∠C)=60°.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.20.(5.00分)先化简,再求值:,其中.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=•=•=,当a=﹣1时,原式=.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21.(5.00分)在▱ABCD中,过点D作DE⊥AB于点E,点F在CD上,CF=AE,连接BF,AF.(1)求证:四边形BFDE是矩形;(2)若AF平分∠BAD,且AE=3,DE=4,求tan∠BAF的值.【分析】(1)根据平行四边形的性质得到AB∥CD.AB=CD,证明四边形BFDE是平行四边形,根据矩形的判定定理证明即可;(2)根据勾股定理求出AD,根据角平分线的定义和平行线的性质得到DF=AD,根据正切的定义计算即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.AB=CD,∵AE=CF,∴BE=DF,∴四边形BFDE是平行四边形,∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)解:在Rt△BCF中,由勾股定理,得AD==5,∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB,∵AF平分∠DAB,∴∠DAF=∠FAB,∴∠DAF=∠DFA,∴DF=AD=5,∴AB=8,∴tan∠BAF===.【点评】本题考查的是矩形的判定和性质、平行四边形的性质以及锐角三角函数的定义,掌握矩形的判定定理和性质定理是解题的关键.22.(6.00分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.根据以上统计图,解答下列问题:(1)本次接受调查的市民共有2000人;(2)扇形统计图中,扇形E的圆心角度数是28.8°;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.【分析】(1)将A选项人数除以总人数即可得;(2)用360°乘以E选项人数所占比例可得;(3)用总人数乘以D选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中C选项人数所占百分比可得.【解答】解:(1)本次接受调查的市民人数为300÷15%=2000人,故答案为:2000;(2)扇形统计图中,扇形E的圆心角度数是360°×=28.8°,故答案为:28.8°;(3)D选项的人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为70×40%=28(万人).【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(6.00分)如图所示,已知矩形ABOC中,AC=4,双曲线y=与矩形两边AB、AC分别交于D、E,E为AC边中点.(1)求点E的坐标;(2)点P是线段OB上的一个动点,是否存在点P,使∠DPC=90°?若存在,求出此时点P的坐标,若不存在,请说明理由.【分析】(1)根据矩形的性质求出点E的横坐标为2,代入反比例函数解析式计算,求出点E的坐标;(2)设点P的坐标为(a,0),证明△COP∽△PBD,根据相似三角形的性质列出方程,根据一元二次方程根的判别式解答.【解答】解:(1)矩形ABOC中,AC=4,E为AC边中点,∴CE=2,即点E的横坐标为2,∵点E在双曲线y=上,∴y==3,∴点E的坐标为(2,3);(2)不存在点P,使∠DPC=90°,理由如下:设点P的坐标为(a,0),则OP=a,PB=4﹣a,由题意可知,点D的横坐标为4,则纵坐标为:y==,即BD=,∵∠COP=∠CPD=∠PBD=90°,∴△COP∽△PBD,∴=,即=,整理得,a2﹣4a+=0,△=16﹣18<0,∴方程无实根,∴不存在点P,使∠DPC=90°.【点评】本题考查的是反比例函数的图象和性质、相似三角形的判定和性质以及一元二次方程根的判别式的应用,掌握一次函数的性质、相似三角形的判定定理和性质定理是解题的关键.24.(5.00分)如图,AB为⊙O的直径,CD⊥AB于点G,E是CD上一点,且BE=DE,延长EB至点P,连结CP,使PC=PE,延长BE与⊙O交于点F,连结BD,FD.(1)求证:CD=BF;(2)求证:PC是⊙O的切线;(3)若tanF=,AG﹣BG=,求ED的值.【分析】(1)连接BC,由于BE=DE,∠BDE=∠DBE,BD=DB,从而得证;(2)连接OC,由于∠COB=2∠CDB,∠CEB=∠CDB+∠DBE=2∠CDB,从而可得∠COB=∠CEB,又因为PC=PE,从而可知∠COB=∠CEB=∠PCE,由于AB⊥CD,∠COB+∠OCG=90°,所以∠PCE+∠OCG=∠PCO=90°,从而得证;(3)易证∠BDG=∠A=∠F,所以tan∠F==tan∠A==,即BG=GD,从而可求出BG的长度,再由勾股定理可知BD的长度,由于∠BCD=∠EDB,∠BDC=∠EBD,所以△BCD∽△EDB,=,BC=BD,从而可求出ED的值.【解答】解:(1)连接BC,∵BE=DE,∴∠BDE=∠DBE,在△BCD与△DFB中,∴△BCD≌△DFB(AAS)∴CD=BF(2)连接OC,∵∠COB=2∠CDB,∠CEB=∠CDB+∠DBE=2∠CDB∴∠COB=∠CEB,∵PC=PE,∴∠COB=∠CEB=∠PCE,∵AB⊥CD,∴∠COB+∠OCG=90°,∴∠PCE+∠OCG=∠PCO=90°,∴OC⊥CP∵OC是半径,∴PC是⊙O的切线,(3)连接AD,∵AB是直径,∴∠ADB=90°,∵AB⊥CD,∴=,∴∠BDG=∠A=∠F∵tan∠F=∴tan∠A==,即AG=GD同理可得:BG=GD,∴AG﹣BG=GD﹣GD=,解得:GD=2,∴CD=2GD=4,∴BG=∴由勾股定理可知:BD=∵∠BCD=∠EDB,∠BDC=∠EBD,∴△BCD∽△EDB∴=∵BC=BD,∴ED===【点评】本题考查圆的综合问题,涉及相似三角形的性质与判断,全等三角形的判定与性质,勾股定理,解方程,切线的判定,圆周角定理等知识,综合程度较高,需要学生综合运用知识.25.(6.00分)【操作与发现】如图1,△MNQ中,MQ≠NQ.请你以MN为一边,在MN的同侧构造一个与△MNQ全等的三角形,画出图形,并简要说明构造的方法;【借鉴与应用】参考你画图构造全等三角形的方法解决下面问题:如图2,在四边形ABCD中,∠ACB+∠CAD=180°,∠B=∠D,求证:CD=AB.【分析】【操作与发现】如图1,理由全等三角形的判断方法“SAS”作图,先作MNP=∠NMQ,再截取NP=MN,则可判断△QMN与△PMN全等;【借鉴与应用】构建△EAC≌△DCA,如图2,理由全等的性质得∠ECA=∠DAC,AE=CD,∠E=∠D,再证明E点在BC的延长线上,接着证明∠E=∠B得到AE=AB,从而得到AB=CD.【解答】【操作与发现】如图1,作MNP=∠NMQ,截取NP=MN,连接PM,则△PMN为所作.【借鉴与应用】证明:构建△EAC≌△DCA,如图2,∴∠ECA=∠DAC,AE=CD,∠E=∠D,∵∠ACB+∠CAD=180°,∴∠ACB+∠ECA=180°,∴E点在BC的延长线上,∵∠B=∠D,∴∠E=∠B,∴AE=AB,∴AB=CD.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了全等三角形的判定与性质.26.(6.00分)如图11,已知二次函数y=ax2﹣(2a﹣)x+3的图象经过点A(4,0),与y轴交于点B.在x轴上有一动点C(m,0)(0<m<4),过点C作x轴的垂线交直线AB于点E,交该二次函数图象于点D.(1)求a的值和直线AB的解析式;(2)过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S1,S2,若S1=4S2,求m的值;(3)点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且▱DEGH周长取最大值时,求点G的坐标.【分析】(1)把点A坐标代入y=ax2﹣(2a﹣)x+3可求a,应用待定系数法可求直线AB的解析式;(2)用m表示DE、AC,易证△DEF∽△AEC,S1=4S2,得到DE与AE的数量关系可以构造方程;(3)用n表示GH,由平行四边形性质DE=GH,可得m,n之间数量关系,利用相似用GM表示EG,表示▱DEGH周长,利用函数性质求出周长最大时的m值,可得n值,进而求G点坐标.【解答】解:(1)把点A(4,0)代入,得0=a•42﹣(2a﹣)×4+3解得。
2020年北京八中高考数学模拟试卷(二)(3月份) (含答案解析)
2020年北京八中高考数学模拟试卷(二)(3月份)一、单项选择题(本大题共10小题,共40.0分)1. 设集合A ={x|−5≤x <1},B ={x|x ≤2},则A ∪B =( )A. {x|x ≤2}B. {x|−5≤x <1}C. {x|−5≤x ≤2}D. {x|x <1} 2. 复数(1+i )21−i 在复平面内对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 命题p :∀x ≥0,x 2−ax +3>0,则¬p 为( )A. ∀x <0,x 2−ax +3≤0B. ∃x ≥0,x 2−ax +3≤0C. ∀x ≥0,x 2−ax +3<0D. ∃x <0,x 2−ax +3≤04. 已知函数y =f (x )在R 上单调递减,且图象过(2,−1)与(−3,5)点,则不等式|f(2m −1)−2|≤3的解集为( )A. [−1,+∞)B. (−∞,32]C. [−1,32]D. R5. 已知f(x)是偶函数,当x >0时,f(x)=10x ,则当x <0时,f(x)=( )A. (110)xB. −(10)xC. −(110)xD. 不能确定6. 设向量a⃗ =(2,4)与向量b ⃗ =(x,6)共线,则实数x =( ) A. 2B. 3C. 4D. 6 7. 已知双曲线x 2−y 2b 2=1(b >0)的离心率为√10,则b 等于( ) A. 2 B. 3 C. 4 D. 58. 某几何体的三视图如图,则该几何体的体积为( )A. 1B. 2C. 3D. 23 9. 已知向量a ⃗ =(−1,3),b ⃗ =(2,m),则“m =−1”是“b ⃗ ⊥(a ⃗ +b ⃗ )”的( )A. 充要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件10. 如图,汉诺塔问题是指有3根杆子A.B.C ,B 杆上有若干碟子,把所有碟子从B 杆移到C 杆上,每次只能移动一个碟子,大的碟子不能叠在小的碟子上面.把B 杆上的4个碟子全部移到C 杆上,最少需要移动( )次.A. 12B. 15C. 17D. 19二、填空题(本大题共5小题,共25.0分)11. 已知多项式(2x −3)n 的展开式中二项式系数之和为64,则展开式中x 2的系数为_________(用数字作答).12. 已知等比数列{a n }的各项均为正数,其前n 项和为S n ,若S 2=34,S 4=154,则a 6=________,a n =________.13. 已知抛物线y 2=2px(p >0)上一点A(1,a)到焦点的距离为2,则该抛物线的准线方程为________;a =________.14. 在△ABC 中,若asinA +bsinB −csinC =√3asinB.则角C 等于______ .15. 已知函数f(x)=2sinx +sin2x ,则f(x)的最大值是_________.三、解答题(本大题共6小题,共85.0分)16. 已知函数f(x)=sin(2x −π6)−2sin 2x +1.(1)求f(x)的最小正周期;]上的最大值和最小值.(2)求f(x)在区间[0,π217.今年学雷锋日,乌鲁木齐市某中学计划从高中三个年级选派4名教师和若干名学生去当学雷锋文明交通宣传志愿者,用分层抽样法从高中三个年级的相关人员中抽取若干人组成文明交通宣传小组,学生的选派情况如下:(Ⅰ)求x,y的值;(Ⅱ)若从选派的高一、高二、高三年级学生中抽取3人参加文明交通宣传,求他们中恰好有1人是高三年级学生的概率;(Ⅲ)若4名教师可去A、B、C三个学雷锋文明交通宣传点进行文明交通宣传,其中每名教师去A、B、C三个文明交通宣传点是等可能的,且各位教师的选择相互独立.记到文明交通宣传点A的人数为X,求随机变量X的分布列和数学期望.18.如图,四棱锥P−ABCD的底面是正方形,PD⊥底面ABCD,PD=DC=2,E是PC的中点.(1)求直线DC与平面PBD所成角的大小;(2)求二面角E−BD−P的大小的余弦值.19.已知椭圆的标准方程为:x24a2+y23a2=1(a>0)(1)当a=1时,求椭圆的焦点坐标及椭圆的离心率;(2)过椭圆的右焦点F2的直线与圆C:x2+y2=4a2(常数a>0)交于A,B两点,求|F2A|⋅|F2B|的值.20.已知曲线f(x)=x2+ln x−ax+1.(1)当a=1时,求曲线在x=1处的切线方程;(2)对任意的x∈[1,+∞),都有f(x)≥0,求实数a的取值范围.21.已知公差不为零的等差数列a n中,a1=1,且a1,a2,a5成等比数列(1)求数列{a n}的通项公式;(2)若b n=1,求数列{b n}的前n项和T n.a n a n+!【答案与解析】1.答案:A解析:解:∵A={x|−5≤x<1},B={x|x≤2};∴A∪B={x|x≤2}.故选:A.进行并集的运算即可.考查描述法的定义,以及并集的运算.2.答案:B解析:本题考查了复数的运算,直接根据复数的四则运算求解即可.解:(1+i)21−i =2i1−i=2i(1+i)2=−1+i.所以对应的点的坐标为(−1,1),点在第二象限.故选B.3.答案:B解析:本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查.直接利用全称命题的否定是特称命题写出结果即可.解:因为全称命题的否定是特称命题,所以命题“:∀x≥0,x2−ax+3>0”的否定是∃x≥0,x2−ax+3≤0.故选:B.4.答案:C解析:本题考查函数的单调性及不等式的解法,属于基础题.解:|f(2m−1)−2|≤3等价于−1≤f(2m−1)≤5,由已知函数y=f(x)在R上单调递减,函数图象过(2,−1)与(−3,5),则函数f(x)在[−3,2]满足−1≤f(2m−1)≤5,故−3≤2m−1≤2,,解得−1≤m≤32故选C.5.答案:A解析:解:设x<0,则−x>0∴f(−x)=10−x,又∵f(x)是偶函数∴f(x)=f(−x)=10−x,故选A.先设x<0,然后再将x转化到(0,+∞)上,利用奇偶性求解,即可求出对称区间上的解析式.本题主要考查利用函数的奇偶性求对称区间上的解析式,同时考查了转化能力,属于基础题.6.答案:B解析:利用向量共线的充要条件得到坐标的关系求出x.本题考查了向量共线的坐标关系;如果两个向量a⃗=(x,y)与b⃗ =(m,n)共线,那么xn=ym.解:因为向量a⃗=(2,4)与向量b⃗ =(x,6)共线,所以4x=2×6,解得x=3,故选:B.7.答案:B解析:本题主要考查双曲线的简单性质的应用,属于基础题.由双曲线x2−y2b2=1(b>0)的离心率为√10,可得a=1,c=√10,求出b,即可求出b的值.解:∵双曲线x2−y2b2=1(b>0)的离心率为√10,∴a=1,c=√10,∴b=√10−1=3,故选:B.8.答案:A解析:本题考查了由三视图还原原图,并求体积,属于中档题.关键为找出几何体的形状.解:由几何体的三视图,可得几何体为如图所示:为四棱柱P−ABCD,可得体积为V=13((1+2)×22)×1=1.故选A.9.答案:B解析:本题考查了向量垂直与数量积的关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.由b⃗ ⊥(a⃗+b⃗ ),可得b⃗ ⋅(a⃗+b⃗ )=2+m(3+m)=0,解得m,即可判断出结论.解:a⃗+b⃗ =(1,3+m),∵b⃗ ⊥(a⃗+b⃗ ),∴b⃗ ⋅(a⃗+b⃗ )=2+m(3+m)=0,解得m=−1或−2,∴“m=−1”是“b⃗ ⊥(a⃗+b⃗ )”的充分不必要条件.故选:B.10.答案:B解析:本题考查了合情推理,属于基础题.设ℎ(n)是把n个碟子从B柱移到C柱过程中移动碟子之最少次数.当n=1时,从B杆移到C杆上有一种方法B→C,即ℎ(1)=1;当n=2时,从B杆移到C杆上分3步,即B→A,B→C,A→C,最少需要移动3次,即ℎ(2)=3,当n=3时,从B杆移到C杆上分七步,即B→C,B→A,C→A,B→C,A→B,A→C,B→C,最少需要移动7次,即ℎ(3)=7;同理,得ℎ(4)=15.解:设ℎ(n)是把n个碟子从B柱移到C柱过程中移动碟子之最少次数.当n=1时,ℎ(1)=1;n=2时,当n=2时,从B杆移到C杆上分3步,即B→A,B→C,A→C,最少需要移动3次,即ℎ(2)=3,当n=3时,从B杆移到C杆上分七步,即B→C,B→A,C→A,B→C,A→B,A→C,B→C,最少需要移动7次,即ℎ(3)=7;数列{ℎ(n)}的通项公式为ℎ(n)=2n−1,得ℎ(4)=15.故选:B.11.答案:4860解析:本题考查了二项式展开式通项公式与二项式系数和的应用问题,是基础题.根据二项式展开式的二项式系数和求得n的值,再根据展开式的通项公式求出x2的系数.解:二项式(2x−3)n的展开式中二项式系数之和为2n=64,解得n=6;∴(2x−3)6的展开式中通项公式为T r+1=C6r⋅(2x)6−r⋅(−3)r,令6−r=2,解得r=4,∴展开式中x2的系数为C64⋅22⋅(−3)4=4860.故答案为:4860.12.答案:8;2n−3解析:本题考查等比数列前n项和公式的应用.【关键点拨】利用等比数列的前n项和公式求和,要先判断公比是否为1.解:由题知数列{a n}为等比数列,公比q>0且q≠1,由{S2=34S4=154,得{a1(1−q2)1−q=34,a1(1−q4)1−q=154,解得{a1=14, q=2,故a6=a1q5=14×25=8,a n=a1q n−1=14×2n−1=2n−3.13.答案:x=−1;±2解析:本题主要考查了抛物线的性质及其几何意义,考查学生的计算能力,属于基础题.解:∵抛物线y 2=2px(p>0)上一点A(1,a)到焦点的距离为2,∴该点到准线的距离为2,∵抛物线的准线方程为x=−p2,∴1+p2=2,得p=2,∴抛物线为y2=4x,∴准线方程为x=−1,将A(1,a)代入抛物线可得a2=4,得a=±2,故答案为x=−1;±2.14.答案:π6解析:解:∵asinA+bsinB−csinC=√3asinB.∴由正弦定理可得a2+b2−c2=√3ab,∴由余弦定理可得cosC=a2+b2−c22ab =√32,∵0<C<π,∴C=π6.故答案为:π6.根据正弦定理和余弦定理将条件进行化简即可得到结论.本题主要考查三角函数角的求解,利用正弦定理和余弦定理是解决本题的关键,属于基础题.15.答案:3√32解析:解:由题意知函数f(x)=2sinx+sin2x的周期为2π,只需考虑f(x)在x∈[0,2π)内的最大值即可;计算f′(x)=2cosx+2cos2x,令f′(x)=0,得cosx+cos2x=0,即2cos2x+cosx−1=0,解得cosx=−1或cosx=12,所以在x∈[0,2π)时,有x=π,x=π3或x=5π3;所以f(x)的最大值只能在x=π、π3或5π3和边界点x=0处取到,计算f(0)=0,f(π)=0,f(π3)=3√32,f(5π3)=−3√32;所以f(x)的最大值是3√32.故答案为:3√32.由题意知函数f(x)的周期为2π,考虑f(x)在x∈[0,2π)内的最大值即可;计算f′(x),利用f′(x)=0求得极值点,再求f(x)在x∈[0,2π)内的最值.本题考查了三角函数最值的应用问题,也考查了利用导数求函数单调性与极值的应用问题,是中档题.16.答案:解:(1)f(x)=√32sin2x −12cos2x +cos2x =√32sin2x +12cos2x =sin(2x +π6). 所以f(x)的最小正周期为T =2π2=π.(2)因为x ∈[0,π2],所以2x +π6∈[π6,7π6].当2x +π6=π2,即x =π6时,f(x)取得最大值1;当2x +π6=7π6,即x =π2时,f(x)取得最小值−12.解析:本题考查三角函数的性质,属于基础题型,直接求解即可. (1)利用两角和与差公式和二倍角公式化简函数f(x),可得最小正周期; (2)由x 的范围结合正弦函数的图象,得出函数的最大值和最小值.17.答案:解:(Ⅰ)由题意可得x 99=y 27=218,所以x =11,y =3.(Ⅱ)设“他们中恰好有1人是高三年级学生”为事件A ,则P(A)=C 142C 21C 163=340.(Ⅲ)X 的所有取值为0,1,2,3,4.由题意可知,每位教师选择A 、B 、C 三个学雷锋文明交通宣传点的概率都是13.所以P(X =0)=C 40(13)0(23)4=1681;P(X =1)=C 41(13)1(23)3=3281;P(X =2)=C 42(13)2(23)2=2481=827;P(X =3)=C 43(13)3(23)1=881;P(X =4)=C 44(13)4(23)0=181;随机变量X 的分布列为:EX =0×1681+1×3281+2×2481+3×881+4×181=43.解析:(Ⅰ)利用分层抽样的性质(比例关系)可求x,y;(Ⅱ)列出从高二、高三年级抽取的参加文明交通宣传的5个人中选3个人的所有基本事件,找出其中3人中有2人来自高二年级,1人来自高三年级的基本事件,利用古典概型的概率计算公式求解;(Ⅲ)首先列出X的所有取值,再利用二项分布即可求出X的分布列以及数学期望.本题考查分层抽样的性质,古典概型的概率,以及二项分布概型的分布列以及数学期望,抓住概型是解题的关键,属于基础题.18.答案:解:(1)如图1,连结AC交BD于点O,由ABCD为正方形得AC⊥BD,又PD⊥底面ABCD,则PD⊥AC,且PD∩BD=D,即得,则∠CDO即为所求,易得∠CDO=∠CDB=45°,所以直线DC与平面PBD所成角的大小为45°.(2)由题可以设D为坐标原点,DA,DC,DP所在的直线为x轴,y轴和z轴建立直角坐标系,如图2,则有A(2,0,0),C(0,2,0),D(0,0,0),B(2,2,0),E(0,1,1), 由(1)得AC ⃗⃗⃗⃗⃗ =(−2,2,0)为平面PBD 的一个法向量, 设平面EBD 的法向量为n⃗ =(x,y,z), 又DB ⃗⃗⃗⃗⃗⃗ =(2,2,0),DE ⃗⃗⃗⃗⃗⃗ =(0,1,1),则{DB ⃗⃗⃗⃗⃗⃗ .n ⃗ =0DE ⃗⃗⃗⃗⃗⃗ .n ⃗ =0,即{2x +2y =0y +z =0, 取y =1,则x =−1,z =−1,所以n ⃗ =(−1,1,−1), 所以cos <n ⃗ ,AC⃗⃗⃗⃗⃗ >=n ⃗⃗ .AC⃗⃗⃗⃗⃗ |n ⃗⃗ ||AC ⃗⃗⃗⃗⃗ |=2√2×√3=√63,如图得二面角E −BD −P 为锐角,设为θ,所以cosθ=√63,即得二面角E −BD −P 的大小的余弦值为√63.解析:本题主要考查了线面垂直的判定定理,直线与平面所成的角的求法,利用空间向量求二面角,属于中等题.(1)连结AC 交BD 于点O ,由ABCD 为正方形, PD ⊥底面ABCD ,可证,即得∠CDO即为所求,由图可得答案.(2) 由题可以设D 为坐标原点,DA ,DC ,DP 所在的直线为x 轴,y 轴和z 轴建立直角坐标系,由(1)得AC⃗⃗⃗⃗⃗ =(−2,2,0)为平面PBD 的一个法向量,再求得平面EBD 的法向量为n ⃗ =(−1,1,−1),即得cos <n ⃗ ,AC ⃗⃗⃗⃗⃗ >=n ⃗⃗ .AC ⃗⃗⃗⃗⃗ |n ⃗⃗ ||AC |=2√2×√3=√63,如图得二面角E −BD −P 为锐角,即可得答案. 19.答案:解:(1)当a =1时,x 24+y 23=1,a =2,b =√3,c =1,焦点坐标F 1(−1,0),F 2(1,0),…(2分)离心率e =ca =12;…(3分)(2)当斜率不存在时,丨F 1A 丨=丨F 1B 丨=√4a 2−a 2=√3a 此时|F 2A|⋅|F 2B|=3a 2; (5分)当斜率不存在时,AB :y =k(x −a),设A(x 1,y 1),B(x 2,y 2),由{y =k(x −a)x 2+y 2=4a 2,整理得:(1+k 2)x 2−2ak 2x +k 2a 2−4a 2=0,(7分) x 1+x 2=2ak 21+k2,x 1x 2=k 2a 2−4a 21+k 2,(9分)丨F 1A 丨=√(x 1−a)2+y 12=√1+k 2⋅丨x 1−a 丨,丨F 2A 丨=√1+k 2⋅丨x 2−a 丨,∴|F 2A|⋅|F 2B|=(1+k 2)丨x 1x 2−a(x 1+x 2)+a 2丨, =(1+k 2)丨k 2a 2−4a 21+k 2−2a 2k 21+k 2+a 2丨,=3a 2,(11分) ∴|F 2A|⋅|F 2B|为定值3a 2.(12分)解析:(1)当a =1时,x 24+y 23=1,a =2,b =√3,c =1,焦点坐标F 1(−1,0),F 2(1,0),离心率e =c a =12; (2)当斜率不存在时,丨F 1A 丨=丨F 1B 丨=√3a ,此时|F 2A|⋅|F 2B|=3a 2;当斜率不存在时,AB :y =k(x −a),代入圆方程,由韦达定理及两点之间的距离公式即可|F 2A|⋅|F 2B|的值.本题考查椭圆的标准方程及性质,直线与圆的位置关系,韦达定理,两点间的距离公式,考查计算能力,属于中档题.20.答案:解:(1)函数f(x)的定义域为{x|x >0},当a =1时,f(x)=x 2+lnx −x +1,f′(x)=2x +1x −1, ∴f′(1)=2,f(1)=1,所求切线方程为y −1=2(x −1),即y =2x −1.(2)由题意得f(x)=x 2+lnx −ax +1≥0⇒a ≤x 2+lnx+1x ,x ∈[1,+∞).设g(x)=x 2+lnx+1x ,x ∈[1,+∞),g′(x)=x 2−lnx x 2,x ∈[1,+∞).再设m(x)=x 2−lnx ,x ∈[1,+∞),m′(x)=2x −1x =2x 2−1x>0,m(x)在[1,+∞)上为增函数,m(x)≥m(1)=1, 即g′(x)>0,g(x)在[1,+∞)上为增函数, ∴g(x)≥g(1)=2,即a ≤2.故a 的取值范围为(−∞,2].解析:本题考查导数的应用及含参数不等式恒成立的问题,考查了计算能力,属于中档题. (1)当a =1时,求出导数f′(x),然后求出f′(1)和f(1),即可求出曲线在x =1处的切线方程; (2)将问题转化为a ≤x 2+lnx+1x在x ∈[1,+∞)上恒成立,利用导数求出g(x)=x 2+lnx+1x在x ∈[1,+∞)上的最小值,即可求出答案.21.答案:解:(1)设公差d 不为零的等差数列{a n },a 1=1,且a 1,a 2,a 5成等比数列, 可得a 2 2=a 1a 5,即为(1+d)2=1×(1+4d), 解得d =2,则数列{a n }的通项公式为a n =a 1+(n −1)d =1+2(n −1)=2n −1(n 为正整数); (2)b n =1an ⋅a n+1=1(2n−1)(2n+1)=12(12n−1−12n+1),即有前n 项和T n =b 1+b 2+⋯+b n=12(1−13+13−15+⋯+12n −1−12n +1) =12(1−12n+1)=n2n+1(n 为正整数).解析:本题考查数列的通项公式的求法,注意运用等比数列中项的性质和等差数列的通项公式,考查数列的求和方法:裂项相消求和,考查化简整理的运算能力,属于中档题.(1)设公差d 不为零的等差数列{a n },运用等比数列中项的性质和等差数列的通项公式,解方程可得d =2,进而得到所求通项公式; (2)求得b n =1a n ⋅a n+1=12(12n−1−12n+1),运用数列的求和方法:裂项相消求和,化简计算即可得到所求和.。
北京八中2019-2020学年八年级下学期阶段质量检测数学试题(解析版)
是( )
A. (3,3)
B. (3, 3)
C. (5, 3)
D. (3, 5)
【答案】B 【解析】 【分析】 先根据 C 点坐标和 BC 的长度求出点 B 的坐标,再根据 B,D 关于原点对称求出 D 点坐标即可.
【详解】∵ ABCD 的对角线交点是直角坐标系的原点,
∴B,D 关于原点对称.
∵ C 坐标是 (5, 3) , BC 8, B(3,3) , D(3, 3) ,
bb
C、 4a 4 =2 a 1 ,不合题意;
D、 14 为最简二次根式,符合题意,
故选 D.
【点睛】此题考查了最简二次根式,熟练掌握最简二次根式的判定方法是解本题的关键.
2.下列各式中,计算正确的是( )
A. 2 3 5
【答案】C
B. (2)2 2
C. ( 3)2 3
D. 2 3 3 3 6 3
故选:B. 【点睛】本题主要考查平行四边形的性质和关于原点对称的点的坐标,掌握平行四边形的性质和关于原点 对称的点的坐标的特点是解题的关键. 5.如图,在▱ ABCD 中,AB=3,AD=5,∠BCD 的平分线交 BA 的延长线于点 E,则 AE 的长为( )
A. 3
B. 2.5
C. 2
D. 1.5
EF EH
RtDGE RtFHE(HL) ,
DEG FEH . DEF 2 , GEH 2 , GCH 360 90 90 2 180 2 , DAB 180 2 .
故选:C.
【点睛】本题主要考查菱形的性质,旋转的性质,角平分线的性质,全等三角形的判定及性质,四边形内
角和,能够做出辅助线将角度进行转化是解题的关键.
9.有公共边的两个直角三角形,称为“双生直角三角形”.下列给定的数组中,不能构成“双生直角三角形”
北京市八中2020年3月中考数学模拟试卷(含解析)
2020年北京八中中考数学模拟试卷(3月份)一.选择题(第1-8题均有四个选项,符合题意的选项只有一个)(本题共16分,每小题2分)1.节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为()A.3.5×107B.3.5×108C.3.5×109D.3.5×10102.如图是某个几何体的展开图,该几何体是()A.三棱柱B.圆锥C.四棱柱D.圆柱3.实数a,b,c,d在数轴上的对应点的位置如图所示.若b+d=0,则下列结论中正确的是()A.b+c>0B.C.ad>bc D.|a|>|d|4.已知l1∥l2,一个含有30°角的三角尺按照如图所示位置摆放,则∠1+∠2的度数为()A.90°B.120°C.150°D.180°5.如果y=﹣x+3,且x≠y,那么代数式的值为()A.3B.﹣3C.D.﹣6.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.7.下面的统计图反映了我国出租车(巡游出租车和网约出租车)客运量结构变化.根据统计图提供的信息,下列推断合理的是()A.2018年与2017年相比,我国网约出租车客运量增加了20%以上B.2018年,我国巡游出租车客运量占出租车客运总量的比例不足60%C.2015年至2018年,我国出租车客运的总量一直未发生变化D.2015年至2018年,我国巡游出租车客运量占出租车客运总量的比例逐年增加8.如图1,荧光屏上的甲、乙两个光斑(可看作点)分别从相距8cm的A,B两点同时开始沿线段AB运动,运动过程中甲光斑与点A的距离S1(cm)与时间t(s)的函数关系图象如图2,乙光斑与点B的距离S2(cm)与时间t(s)的函数关系图象如图3,已知甲光斑全程的平均速度为 1.5cm/s,且两图象中△P1O1Q1≌P2Q2O2,下列叙述正确的是()A.甲光斑从点A到点B的运动速度是从点B到点A的运动速度的4倍B.乙光斑从点A到B的运动速度小于1.5cm/sC.甲乙两光斑全程的平均速度一样D.甲乙两光斑在运动过程中共相遇3次二.填空题(本题共16分,每小题2分)9.当x=时,代数式的值为0.10.已知在同一坐标系中,抛物线y1=ax2的开口向上,且它的开口比抛物线y2=3x2+2的开口小,请你写出一个满足条件的a值:.11.如图,等边三角形ABC内接于⊙O,若⊙O的半径为2,则图中阴影部分的面积等于.12.2019年2月,全球首个5G火车站在上海虹桥火车站启动,虹桥火车站中5G网络峰值速率为4G网络峰值速率的10倍,在峰值速率下传输8千兆数据,5G网络快720秒,求这两种网络的峰值速率,设4G网络的峰值速率为每秒传输x千兆,依题意,可列方程为.13.已知Rt△ABC位于第二象限,点A(﹣1,1),AB=BC=2,且两条直角边AB、BC 分别平行于x轴、y轴,写出一个函数y=(k≠0),使它的图象与△ABC有两个公共点,这个函数的表达式为.14.已知:如图,在△ABC中,D是AB边上一点,圆O过D、B、C三点,∠DOC=2∠ACD=90°.如果∠ACB=75°,圆O的半径为2,则BD的长为.15.我们知道:四边形具有不稳定性.如图,在平面直角坐标系xOy中,矩形ABCD的边AB在x轴上,A(﹣3,0),B(4,0),边AD长为5.现固定边AB,“推”矩形使点D落在y轴的正半轴上(落点记为D′),相应地,点C的对应点C′的坐标为.16.电影公司随机收集了2000部电影的有关数据,经分类整理得到如表:电影类型第一类第二类第三类第四类第五类第六类电影部数14050300200800510好评率0.40.20.150.250.20.1注:好评率是指一类电影中获得好评的部数与该类电影的部数的比值.(1)如果电影公司从收集的电影中随机选取1部,那么抽到的这部电影是获得好评的第四类电影的概率是;(2)电影公司为了增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,可使改变投资策略后总的好评率达到最大?答:.三.解答题(本题共68分,第17-22题,每小题5分;第23-26题,每小题5分;第27,28题每小题5分)17.计算:(2014﹣π)0﹣()﹣2﹣2sin60°+||18.解不等式组:,并在数轴上表示出其解集.19.下面是小明设计的“过直线外一点作已知直线的平行线”的尺规作图过程.已知:如图1,直线l及直线l外一点P.求作:直线PQ,使PQ∥l.作法:如图2,①在直线l上取一点O,以点O为圆心,OP长为半径画半圆,交直线l于A、B两点;②连接PA,以B为圆心,AP长为半径画弧,交半圆于点Q;③作直线PQ;所有直线PQ就是所求作的直线.根据小明设计的尺规作图过程.(1)使用直尺和圆规,补全图形(保留作图痕迹).(2)完成下面的证明:证明:连接PB、QB.∵PA=QB,∴=.∴∠PBA=∠QPB()(填推理的依据).∴PQ∥l()(填推理的依据).20.如图,在四边形ABCD中,AB∥CD,AB=BC=2CD,E为对角线AC的中点,F为边BC的中点,连接DE、EF.(1)求证:四边形CDEF为菱形;(2)连接DF交AC于点G,若DF=2,CD=,求AD的长.21.已知关于x的一元二次方程(m﹣2)x2+2mx+m+3=0 有两个不相等的实数根.(1)求m的取值范围;(2)当m取满足条件的最大整数时,求方程的根.22.如图,在平面直角坐标系xOy中,A(0,3),B(1,0),连接BA,将线段BA绕点B顺时针旋转90°得到线段BC,反比例函数y=的图象G经过点C.(1)请直接写出点C的坐标及k的值;(2)若点P在图象G上,且∠POB=∠BAO,求点P的坐标;(3)在(2)的条件下,若Q(0,m)为y轴正半轴上一点,过点Q作x轴的平行线与图象G交于点M,与直线OP交于点N,若点M在点N左侧,结合图象,直接写出m 的取值范围.23.如图是甲、乙两名射击运动员的10次射击测试成绩的折线统计图.(1)根据折线图把下列表格补充完整;运动员平均数中位数众数甲8.59乙8.5(2)根据上述图表运用所学统计知识对甲、乙两名运动员的射击水平进行评价并说明理由.24.如图,AB为⊙O的直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC,连接CD,过点C作CE⊥DB,垂足为E,直径AB与CE的延长线相交于F点.(1)求证:CF是⊙O的切线;(2)当BD=,sin F=时,求OF的长.25.如图1,P是矩形ABCD内部的一定点,M是AB边上一动点,连接MP并延长与矩形ABCD的一边交于点N,连接AN.已知AB=6cm,设A,M两点间的距离为xcm,M,N 两点间的距离为y1cm,A,N两点间的距离为y2cm.小欣根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小欣的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值;x/cm0123456y1/cm 6.30 5.40 4.22 3.13 3.25 4.52y2/cm 6.30 6.34 6.43 6.69 5.75 4.81 3.98(2)在同一平面直角坐标系xOy中,描出以补全后的表中各组对应值所对应的点(x,y1),并画出函数y1的图象;(3)结合函数图象,解决问题:当△AMN为等腰三角形时,AM的长度约为cm.26.在平面直角坐标系xOy中,直线y=kx+1(k≠0)经过点A(2,3),与y轴交于点B,与抛物线y=ax2+bx+a的对称轴交于点C(m,2).(1)求m的值;(2)求抛物线的顶点坐标;(3)N(x1,y1)是线段AB上一动点,过点N作垂直于y轴的直线与抛物线交于点P(x2,y2),Q(x3,y3)(点P在点Q的左侧).若x2<x1<x3恒成立,结合函数的图象,求a的取值范围.27.如图1,在正方形ABCD中,点F在边BC上,过点F作EF⊥BC,且FE=FC(CE<CB),连接CE、AE,点G是AE的中点,连接FG.(1)用等式表示线段BF与FG的数量关系是;(2)将图1中的△CEF绕点C按逆时针旋转,使△CEF的顶点F恰好在正方形ABCD 的对角线AC上,点G仍是AE的中点,连接FG、DF.①在图2中,依据题意补全图形;②求证:DF=FG.28.在平面直角坐标系xOy中的点P和图形M,给出如下的定义:若在图形M上存在一点Q,使得P、Q两点间的距离小于或等于1,则称P为图形M的关联点.(1)当⊙O的半径为2时,①在点P1(,0),P2(,),P3(,0)中,⊙O的关联点是.②点P在直线y=﹣x上,若P为⊙O的关联点,求点P的横坐标的取值范围.(2)⊙C的圆心在x轴上,半径为2,直线y=﹣x+1与x轴、y轴交于点A、B.若线段AB上的所有点都是⊙C的关联点,直接写出圆心C的横坐标的取值范围.参考答案与试题解析一.选择题(第1-8题均有四个选项,符合题意的选项只有一个)(本题共16分,每小题2分)1.节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为()A.3.5×107B.3.5×108C.3.5×109D.3.5×1010【解答】解:350 000 000=3.5×108.故选:B.2.如图是某个几何体的展开图,该几何体是()A.三棱柱B.圆锥C.四棱柱D.圆柱【解答】解:观察图形可知,这个几何体是三棱柱.故选:A.3.实数a,b,c,d在数轴上的对应点的位置如图所示.若b+d=0,则下列结论中正确的是()A.b+c>0B.C.ad>bc D.|a|>|d|【解答】解:由数轴上的点表示的数右边的总比左边的大,得a<b<0<c<d,A、b+d=0,∴b+c<0,故A不符合题意;B、<0,故B不符合题意;C、ad<bc<0,故C不符合题意;D、|a|>|b|=|d|,故D正确;故选:D.4.已知l1∥l2,一个含有30°角的三角尺按照如图所示位置摆放,则∠1+∠2的度数为()A.90°B.120°C.150°D.180°【解答】解:如图,过直角顶点作l3∥l1,∵l1∥l2,∴l1∥l2∥l3,∴∠1=∠3,∠2=∠4,∴∠1+∠2=∠3+∠4=90°.故选:A.5.如果y=﹣x+3,且x≠y,那么代数式的值为()A.3B.﹣3C.D.﹣【解答】解:===x+y,∵y=﹣x+3,且x≠y,∴原式=x﹣x+3=3.故选:A.6.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.【解答】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选:D.7.下面的统计图反映了我国出租车(巡游出租车和网约出租车)客运量结构变化.根据统计图提供的信息,下列推断合理的是()A.2018年与2017年相比,我国网约出租车客运量增加了20%以上B.2018年,我国巡游出租车客运量占出租车客运总量的比例不足60%C.2015年至2018年,我国出租车客运的总量一直未发生变化D.2015年至2018年,我国巡游出租车客运量占出租车客运总量的比例逐年增加【解答】解:2018年与2017年相比,我国网约出租车客运量增加了:(200﹣157)÷200=21.5%,故选项A正确,2018年,我国巡游出租车客运量占出租车客运总量的比例超过60%,故选项B错误,2015年至2018年,我国出租车客运的总量发生了变化,故选项C错误,2015年至2018年,我国巡游出租车客运量占出租车客运总量的比例逐年减小,故选项D错误,故选:A.8.如图1,荧光屏上的甲、乙两个光斑(可看作点)分别从相距8cm的A,B两点同时开始沿线段AB运动,运动过程中甲光斑与点A的距离S1(cm)与时间t(s)的函数关系图象如图2,乙光斑与点B的距离S2(cm)与时间t(s)的函数关系图象如图3,已知甲光斑全程的平均速度为 1.5cm/s,且两图象中△P1O1Q1≌P2Q2O2,下列叙述正确的是()A.甲光斑从点A到点B的运动速度是从点B到点A的运动速度的4倍B.乙光斑从点A到B的运动速度小于1.5cm/sC.甲乙两光斑全程的平均速度一样D.甲乙两光斑在运动过程中共相遇3次【解答】解:∵甲到B所用时间为t0s,从B回到A所用时间为4t0﹣t0=3t0∵路程不变∴甲光斑从A到B的速度是从B到A运动速度的3倍∴A错误由于,△O1P1Q1≌△O2P2Q2∵甲光斑全程平均速度1.5cm/s∴乙光斑全程平均速度也为1.5cm/s∵乙由B到A时间为其由A到B时间三倍∴乙由B到A速度低于平均速度,则乙由A到B速度大于平均速度∴B错误由已知,两个光斑往返总时间,及总路程相等,则两个光斑全程的平均速度相同∴C正确根据题意,分别将甲、乙光斑与点A的距离与时间的函数图象画在下图中,两个函数图象交点即为两个光斑相遇位置故可知,两个光斑相遇两次,故D 错误.故选:C .二.填空题(本题共16分,每小题2分) 9.当x = 2 时,代数式的值为0.【解答】解:由题意知x ﹣2=0且x ≠0. 解得x =2. 故答案是:2.10.已知在同一坐标系中,抛物线y 1=ax 2的开口向上,且它的开口比抛物线y 2=3x 2+2的开口小,请你写出一个满足条件的a 值: 4 . 【解答】解:∵抛物线y 1=ax 2的开口向上, ∴a >0,又∵它的开口比抛物线y 2=3x 2+2的开口小, ∴|a |>3, ∴a >3,取a =4即符合题意, 故答案为:4(答案不唯一).11.如图,等边三角形ABC 内接于⊙O ,若⊙O 的半径为2,则图中阴影部分的面积等于.【解答】解:连接OC ,如图, ∵△ABC 为等边三角形,∴∠AOC =120°,S △AOB =S △AOC ,∴图中阴影部分的面积=S==π.扇形AOC故答案为π.12.2019年2月,全球首个5G火车站在上海虹桥火车站启动,虹桥火车站中5G网络峰值速率为4G网络峰值速率的10倍,在峰值速率下传输8千兆数据,5G网络快720秒,求这两种网络的峰值速率,设4G网络的峰值速率为每秒传输x千兆,依题意,可列方程为﹣=720.【解答】解:设4G网络的峰值速率为每秒传输x千兆,则5G网络的峰值速率为每秒传输10x千兆,根据题意,得﹣=720.故答案为﹣=720.13.已知Rt△ABC位于第二象限,点A(﹣1,1),AB=BC=2,且两条直角边AB、BC 分别平行于x轴、y轴,写出一个函数y=(k≠0),使它的图象与△ABC有两个公共点,这个函数的表达式为y=﹣.【解答】解:B的坐标是(﹣3,1),C的坐标是(﹣3,3).则这个函数的解析式可以是:y=﹣.(答案不唯一).故答案是:y=﹣.14.已知:如图,在△ABC中,D是AB边上一点,圆O过D、B、C三点,∠DOC=2∠ACD=90°.如果∠ACB=75°,圆O的半径为2,则BD的长为2.【解答】解:如图,连接OB,∵∠DOC=2∠ACD=90°.∴∠ACD=45°,∵∠ACB=75°,∴∠BCD=∠ACB﹣∠ACD=30°,∵OC=OD,∠DOC=90°,∴∠DCO=45°,∴∠BCO=∠DCO﹣∠BCD=15°,∵OB=OC,∴∠CBO=∠BCO=15°,∴∠BOC=150°,∴∠DOB=∠BOC﹣∠DOC=150°﹣90°=60°,∵OB=OD,∴△BOD是等边三角形,∴BD=OD=2.故答案为2.15.我们知道:四边形具有不稳定性.如图,在平面直角坐标系xOy中,矩形ABCD的边AB在x轴上,A(﹣3,0),B(4,0),边AD长为5.现固定边AB,“推”矩形使点D落在y轴的正半轴上(落点记为D′),相应地,点C的对应点C′的坐标为(7,4).【解答】解:由勾股定理,得OD′==4,即D′(0,4).矩形ABCD的边AB在x轴上,∴四边形ABC′D′是平行四边形,AD′=BC′,C′D′=AB=4﹣(﹣3)=7,C′与D′的纵坐标相等,∴C′(7,4)故答案为:(7,4).16.电影公司随机收集了2000部电影的有关数据,经分类整理得到如表:电影类型第一类第二类第三类第四类第五类第六类电影部数14050300200800510好评率0.40.20.150.250.20.1注:好评率是指一类电影中获得好评的部数与该类电影的部数的比值.(1)如果电影公司从收集的电影中随机选取1部,那么抽到的这部电影是获得好评的第四类电影的概率是;(2)电影公司为了增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,可使改变投资策略后总的好评率达到最大?答:只要第五类电影的好评率增加0.1,第二类电影的好评率减少0.1,可使改变投资策略后总的好评率达到最大.【解答】解:(1)总的电影部数为140+50+300+200+800+510=2000(部),获得好评的第四类电影:200×0.25=50(部),故从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率=;故答案为:;(2)根据题意得:只要第五类电影的好评率增加0.1,第二类电影的好评率减少0.1,可使改变投资策略后总的好评率达到最大;故答案为:只要第五类电影的好评率增加0.1,第二类电影的好评率减少0.1,可使改变投资策略后总的好评率达到最大.三.解答题(本题共68分,第17-22题,每小题5分;第23-26题,每小题5分;第27,28题每小题5分)17.计算:(2014﹣π)0﹣()﹣2﹣2sin60°+||【解答】解:原式=1﹣4﹣2×+﹣1=﹣4.18.解不等式组:,并在数轴上表示出其解集.【解答】解:,由①得x>3,由②得x≤5,故此不等式组的解集为:3<x≤5.在数轴上表示为:19.下面是小明设计的“过直线外一点作已知直线的平行线”的尺规作图过程.已知:如图1,直线l及直线l外一点P.求作:直线PQ,使PQ∥l.作法:如图2,①在直线l上取一点O,以点O为圆心,OP长为半径画半圆,交直线l于A、B两点;②连接PA,以B为圆心,AP长为半径画弧,交半圆于点Q;③作直线PQ;所有直线PQ就是所求作的直线.根据小明设计的尺规作图过程.(1)使用直尺和圆规,补全图形(保留作图痕迹).(2)完成下面的证明:证明:连接PB、QB.∵PA=QB,∴=.∴∠PBA=∠QPB(等弧所对圆周角相等)(填推理的依据).∴PQ∥l(内错角相等,两直线平行)(填推理的依据).【解答】解:(1)如图所示:(2)证明:连接PB、QB.∵PA=QB,∴=.∴∠PBA=∠QPB(等弧所对圆周角相等).∴PQ∥l(内错角相等,两直线平行).故答案为:,等弧所对圆周角相等,内错角相等,两直线平行.20.如图,在四边形ABCD中,AB∥CD,AB=BC=2CD,E为对角线AC的中点,F为边BC的中点,连接DE、EF.(1)求证:四边形CDEF为菱形;(2)连接DF交AC于点G,若DF=2,CD=,求AD的长.【解答】证明:(1)∵E为对角线AC的中点,F为边BC的中点,∴EF=AB,EF∥AB,CF=BC,AE=CE∵AB∥CD∴AB∥CD∥EF,∵AB=BC=2CD∴EF=CF=CD,且AB∥CD∥EF,∴四边形DEFC是平行四边形,且EF=CF∴四边形CDEF为菱形;(2)如图,DF与EC交于点G∵四边形CDEF为菱形,DF=2,∴DG=1,DF⊥CE,EG=GC,∴EG=GC==∴AE=CE=2EG=∴AG=AE+EG=4∴AD==21.已知关于x的一元二次方程(m﹣2)x2+2mx+m+3=0 有两个不相等的实数根.(1)求m的取值范围;(2)当m取满足条件的最大整数时,求方程的根.【解答】解:(1)根据题意得m﹣2≠0且△=4m2﹣4(m﹣2)(m+3)>0,解得m<6且m≠2;(2)m满足条件的最大整数为5,则原方程化为3x2+10x+8=0,∴(3x+4)(x+2)=0,∴x1=﹣,x2=﹣2.22.如图,在平面直角坐标系xOy中,A(0,3),B(1,0),连接BA,将线段BA绕点B顺时针旋转90°得到线段BC,反比例函数y=的图象G经过点C.(1)请直接写出点C的坐标及k的值;(2)若点P在图象G上,且∠POB=∠BAO,求点P的坐标;(3)在(2)的条件下,若Q(0,m)为y轴正半轴上一点,过点Q作x轴的平行线与图象G交于点M,与直线OP交于点N,若点M在点N左侧,结合图象,直接写出m 的取值范围.【解答】解:(1)过C点作CH⊥x轴于H,如图,∵线段AB绕点B顺时针旋转90°,得到线段BC,∴BA=BC,∠ABC=90°,∵∠ABO+∠CBH=90°,∠ABO+∠BAO=90°,∴∠BAO=∠CBH,在△ABO和△BCH中,∴△ABO≌△BCH(AAS),∴CH=OB=1,BH=OA=3,∴C(4,1),∵点C落在函数y=(x>0)的图象上,∴k=4×1=4;(2)过O作OP∥BC交y=的图象于点P,过P作PG⊥x轴于G,∵∠POG=∠OAB,∵∠AOB=∠PGO,∴△OAB∽△OHP,∴PG:OG=OB:OA=1:3,∵点P在y=上,∴3y P•y P=4,∴y P=,∴点P的坐标为(2,);(3)∵Q(0,m),∴OQ=m,∵OM∥x轴,与图象G交于点M,与直线OP交于点N,∴M(,m),N(3m,m),∵点M在点N左侧,∴<3m,∵m>0,∴m>.23.如图是甲、乙两名射击运动员的10次射击测试成绩的折线统计图.(1)根据折线图把下列表格补充完整;运动员平均数中位数众数甲8.599乙8.58.57和10(2)根据上述图表运用所学统计知识对甲、乙两名运动员的射击水平进行评价并说明理由.【解答】解:(1)补充表格:运动员平均数中位数众数甲8.599乙8.58.57和10故答案为:9;8.5;7和10;(2)答案不唯一,可参考的答案如下:甲选手:和乙选手的平均成绩相同,中位数高于乙,打出9环及以上的次数更多,打出7环的次数较少,说明甲选手相比之下发挥更加稳定;乙选手:与甲选手平均成绩相同,打出10环次数和7环次数都比甲多,说明乙射击时起伏更大,但也更容易打出10环的成绩.24.如图,AB为⊙O的直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC,连接CD,过点C作CE⊥DB,垂足为E,直径AB与CE的延长线相交于F点.(1)求证:CF是⊙O的切线;(2)当BD=,sin F=时,求OF的长.【解答】解:(1)连接OC.如图1所示:∵OA=OC,∴∠1=∠2.又∵∠3=∠1+∠2,∴∠3=2∠1.又∵∠4=2∠1,∴∠4=∠3,∴OC∥DB.∵CE⊥DB,∴OC⊥CF.又∵OC为⊙O的半径,∴CF为⊙O的切线;(2)连接AD.如图2所示:∵AB是直径,∴∠D=90°,∴CF∥AD,∴∠BAD=∠F,∴sin∠BAD=sin F==,∴AB=BD=6,∴OB=OC=3,∵OC⊥CF,∴∠OCF=90°,∴sin F==,解得:OF=5.25.如图1,P是矩形ABCD内部的一定点,M是AB边上一动点,连接MP并延长与矩形ABCD的一边交于点N,连接AN.已知AB=6cm,设A,M两点间的距离为xcm,M,N 两点间的距离为y1cm,A,N两点间的距离为y2cm.小欣根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小欣的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值;x/cm0123456y1/cm 6.30 5.40 4.22 3.13 3.25 4.52y2/cm 6.30 6.34 6.43 6.69 5.75 4.81 3.98(2)在同一平面直角坐标系xOy中,描出以补全后的表中各组对应值所对应的点(x,y1),并画出函数y1的图象;(3)结合函数图象,解决问题:当△AMN为等腰三角形时,AM的长度约为 3.3或4.8或5.7cm.【解答】解:(1)观察图象可知D(2,4.80),故答案为4.80.(2)两个函数图象如图所示:(3)两个函数与直线y=x的交点为A,B,函数y1与y2的交点为C,观察图象可知:A(3.3,3.3),B(4.8,4.8),C(5.7,4).∴△AMN为等腰三角形时,AM的值约为3.3或4.8或5.7.故答案为3.3或4.8或5.7.26.在平面直角坐标系xOy中,直线y=kx+1(k≠0)经过点A(2,3),与y轴交于点B,与抛物线y=ax2+bx+a的对称轴交于点C(m,2).(1)求m的值;(2)求抛物线的顶点坐标;(3)N(x1,y1)是线段AB上一动点,过点N作垂直于y轴的直线与抛物线交于点P(x2,y2),Q(x3,y3)(点P在点Q的左侧).若x2<x1<x3恒成立,结合函数的图象,求a的取值范围.【解答】解:(1)∵y=kx+1(k≠0)经过点A(2,3),∴2k+1=3,解得k=1.∵直线y=x+1与抛物线y=ax2+bx+a的对称轴交于点C(m,2),∴m=1.(2)∵抛物线y=ax2+bx+a的对称轴为x=1,∴,即b=﹣2a.∴y=ax2﹣2ax+a=a(x﹣1)2.∴抛物线的顶点坐标为(1,0).(3)当a>0时,如图,若抛物线过点B(0,1),则a=1.结合函数图象可得0<a<1.当a<0时,过点N垂直于y轴的直线与抛物线没有交点,不符合题意.综上所述,a的取值范围是0<a<1.27.如图1,在正方形ABCD中,点F在边BC上,过点F作EF⊥BC,且FE=FC(CE<CB),连接CE、AE,点G是AE的中点,连接FG.(1)用等式表示线段BF与FG的数量关系是BF=FG;(2)将图1中的△CEF绕点C按逆时针旋转,使△CEF的顶点F恰好在正方形ABCD 的对角线AC上,点G仍是AE的中点,连接FG、DF.①在图2中,依据题意补全图形;②求证:DF=FG.【解答】解:(1)BF=FG,理由是:如图1,连接BG,CG,∵四边形ABCD为正方形,∴∠ABC=90°,∠ACB=45°,AB=BC,∵EF⊥BC,FE=FC,∴∠CFE=90°,∠ECF=45°,∴∠ACE=90°,∵点G是AE的中点,∴EG=CG=AG,∵BG=BG,∴△AGB≌△CGB(SSS),∴∠ABG=∠CBG=∠ABC=45°,∵EG=CG,EF=CF,FG=FG,∴△EFG≌△CFG(SSS),∴∠EFG=∠CFG=(360°﹣∠BFE)=(360°﹣90°)=135°,∵∠BFE=90°,∴∠BFG=45°,∴△BGF为等腰直角三角形,∴BF=FG.故答案为:BF=FG;(2)①如图2所示,②如图2,连接BF、BG,∵四边形ABCD是正方形,∴AD=AB,∠ABC=∠BAD=90°,AC平分∠BAD,∴∠BAC=∠DAC=45°,∵AF=AF,∴△ADF≌△ABF(SAS),∴DF=BF,∵EF⊥AC,∠ABC=90°,点G是AE的中点,∴AG=EG=BG=FG,∴点A、F、E、B在以点G为圆心,AG长为半径的圆上,∵=,∠BAC=45°,∴∠BGF=2∠BAC=90°,∴△BGF是等腰直角三角形,∴BF=FG,∴DF=FG.28.在平面直角坐标系xOy中的点P和图形M,给出如下的定义:若在图形M上存在一点Q,使得P、Q两点间的距离小于或等于1,则称P为图形M的关联点.(1)当⊙O的半径为2时,①在点P1(,0),P2(,),P3(,0)中,⊙O的关联点是P2,P3.②点P在直线y=﹣x上,若P为⊙O的关联点,求点P的横坐标的取值范围.(2)⊙C的圆心在x轴上,半径为2,直线y=﹣x+1与x轴、y轴交于点A、B.若线段AB上的所有点都是⊙C的关联点,直接写出圆心C的横坐标的取值范围.【解答】解:(1)①∵点P1(,0),P2(,),P3(,0),∴OP1=,OP2=1,OP3=,∴P1与⊙O的最小距离为,P2与⊙O的最小距离为1,OP3与⊙O的最小距离为,∴⊙O,⊙O的关联点是P2,P3;故答案为:P2,P3;②根据定义分析,可得当最小y=﹣x上的点P到原点的距离在1到3之间时符合题意,∴设P(x,﹣x),当OP=1时,由距离公式得,OP==1,∴x=,当OP=3时,OP==3,解得:x=±;∴点P的横坐标的取值范围为:﹣≤x≤﹣,或≤x≤;(2)∵直线y=﹣x+1与x轴、y轴交于点A、B,∴A(1,0),B(0,1),如图1,当圆过点A时,此时,CA=3,∴C(﹣2,0),如图2,当直线AB与小圆相切时,切点为D,∴CD=1,∵直线AB的解析式为y=﹣x+1,∴直线AB与x轴的夹角=45°,∴AC=,∴C(1﹣,0),∴圆心C的横坐标的取值范围为:﹣2≤x C≤1﹣;如图3,当圆过点O,则AC=1,∴C(2,0),如图4,当圆过点B,连接BC,此时,BC=3,∴OC==2,∴C(2,0).∴圆心C的横坐标的取值范围为:2≤x C≤2;综上所述;圆心C的横坐标的取值范围为:﹣2≤x C≤1﹣或2≤x C≤2.。
2020年北京八中中考数学模拟试卷(5月份)(含答案解析)
2020年北京八中中考数学模拟试卷(5月份)一、选择题(本大题共8小题,共16.0分)1. 下列所述图形中,既是中心对称图形,又是轴对称图形的是( )A. 平行四边形B. 菱形C. 正三角形D. 正五边形 2. 如图,△ABC 中,DE//BC ,AD DB =12,△ADE 的面积是2,那么△BEC 的面积是( )A. 6B. 8C. 12D. 183. 如图是一个几何体的三视图,则该几何体的名称是( )A. 圆锥B. 棱柱C. 圆柱D. 棱锥4. 如图,在平面直角坐标系中有△ABC ,以点O 为位似中心,相似比为2,将△ABC 放大,则它的对应顶点的坐标为( )A. (2,32),(32,12),(12,1)B. (8,6)(6,2)(2,4)C. (8,6)(6,2)(2,4)或(−8,−6)(−6,−2)(−2,−4)D. (8,−6)(6,−2)(2,−4)或(−8,6)(−6,2)(−2,4)(b≠0)与二次函数y=ax2+bx(a≠0)的图象大5.在同一平面直角坐标系中,反比例函数y=bx致是()A. B.C. D.6.已知⊙O的直径为10,点A在圆内,若OA的长为a,则a应满足()A. 0≤a<5B. a<5C. 0≤a<10D. a<107.下列命题的逆命题错误的是()A. 两个数的绝对值相等,则它们的平方相等B. 同旁内角互补,两直线平行C. 直角三角形两直角边的平方和等于斜边的平方D. 全等三角形的对应角相等8.如图,▱OABC的周长为14,∠AOC=60°,以O为原点,OC所在直(x>0)的图象经过▱OABC的线为x轴建立直角坐标系,函数y=kx顶点A和BC的中点M,则k的值为()A. 2√3B. 4√3C. 6D. 12二、填空题(本大题共8小题,共16.0分)9.如图,在四边形ABCD中,∠DAB的角平分线与∠ABC的外角平分线相交于点P,且∠D+∠C=240°,则∠P=_________°.10.如图,函数y=−(x−ℎ)2+k的图象,则其解析式为______ .11.如图Rt△ABC中,∠ACB=90°,⊙O是△ABC的外接圆,E为⊙O上一点,,AB=2√10,DE=5,连结CE,过C作CD⊥CE,交BE于点D,已知tanA=12则tan∠ACE=____.12.当a=−2时,代数式a2−2a的值等于______ .13.如图小明在楼上点A处测得旗杆BC顶部B的仰角为30°,测得旗杆底部C的俯角为60°,已知点A距地面高AD为12m,旗杆的高度为______ m.14.如图,二次函数y1=mx2+3的图象与反比例函数y2=n的图象交于P(1,2)和Q(t,−1),直线y3=x>kx+b>mx2+3的解为______ .kx+b经过点P,Q.则可得不等式组:nx15.如图,已知在平面直角坐标系xOy中,Rt△OAB的直角顶点B在x轴的正(x>0)的图象经过OA的中点半轴上,点A在第一象限,反比例函数y=kxC.交AB于点D,连结CD.若△ACD的面积是2,则k的值是______.=______.16.如图,在△ABC中,D,E分别是AB,AC的中点,则S△ADES四边形BCED三、计算题(本大题共3小题,共16.0分)17.计算:2−1−√12+4cos30°+(−1)201818.如图,反比例函数y=m的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),x点B的坐标为(n,1).(1)求反比例函数与一次函数的解析式;<kx+b的x的范围.(2)根据图象直接写出mx19.有甲、乙两个不透明的口袋,甲口袋中装有3个小球,上面分别标有数字1,2,3,乙口袋中装有2个小球,上面分别标有数字4,5,每个小球除数字不同外其余均相同,现从甲口袋中随机摸出一个小球,再从乙口袋中随机摸出一个小球.请用画树状图(或列表)的方法,求两次摸出的小球上的数字之和能被3整除的概率.四、解答题(本大题共9小题,共52.0分)20.解不等式组{4x+2≥2(x+3)2x+1>3x−5,并求其整数解.21.(1)在△ABC中,∠BAC=60°,BC=4√3,则△ABC面积的最大值是______;(2)已知:△ABC,用无刻度的直尺和圆规求作△DBC,使∠BDC+∠A=180°,且BD=DC(注:不写作法,保留作图痕迹,对图中涉及到的点用字母进行标注,作出一个符合题意的三角形即可).22.开学前,学校聘请工人用5个工时(工作1天为1个工时)把七年级教师办公室墙面进行了粉刷出新.预计每天粉刷50平方米,下表为工人每天实际粉刷情况,其中大于50m2用“+”表示.时间第1天第2天第3天第4天第5天粉刷面积(单位:m2)+4+4.5−2+1.5−3(1)工人哪天粉刷面积最多?5天合计粉刷的面积是多少?(2)据统计,工人用了80升刷墙漆,已知刷墙漆每升64元.在结算工钱时,有以下几种结算方案:①按每个工时400元计付;②按刷墙漆总费用4折计付;③按粉刷面积每14平方米120元计付.用哪种方案最省钱?23.已知:如图,在平行四边形ABCD中,点E在CD上,连接AE并延长,交BC的延长线于F.若AB=4,AD=6,CF=2,求DE的长.24.如图,AB是⊙O的直径,弦CD⊥AB于点E,G是弧AC上一点,AG,DC的延长线交于点F,连接AD,GD,GC.(1)求证:∠ADG=∠F;(2)已知AE=CD,BE=2.①求⊙O的半径长;②若点G是AF的中点,求△CDG与△ADG的面积之比.25.如图,四边形ABCD内接于⊙O,对角线BD为⊙O直径,点E在BC延长线上,且∠E=∠BAC.(1)求证:DE是⊙O的切线;(2)求AC//DE,当AB=8,CD=2,求⊙O的半径.26.如图,直线x=−4与x轴交于点E,一开口向上的抛物线过原点交线段OE于点A,交直线x=−4于点B,过B且平行于x轴的直线与抛物线交于点C,直线OC交直线AB于D,且AD:BD=1:3.(1)求点A的坐标;(2)若△OBC是等腰三角形,求此抛物线的函数关系式.27.如图1,直角三角形ABC中,∠C=90°,CB=1,∠BCA=30°.(1)求AB、AC的长;(2)如图2,将AB绕点A顺时针旋转60°得到线段AE,将AC绕点A逆时针旋转60°得到线段AD.①连接CE,BD.求证:BD=EC;②连接DE交AB于F,请你作出符合题意的图形并求出DE的长.28.如图,已知二次函数y=ax2+bx+2的图像与x轴相交于A(4,0)、B(2,0)两点,与y轴相交于点C,点Q为抛物线上的一动点.(1)求a,b的值;(2)当点Q坐标为(8,6)时,在直线CQ下方抛物线上取一点M,连接MC、MQ,求△MCQ面积的最大值;。
北京市2020届中考数学仿真模拟试卷 (含解析)
北京市2020届中考数学仿真模拟试卷一、选择题(本大题共8小题,共16.0分)1.下列四个水平放置的几何体中,三视图如图所示的是()A.B.C.D.2.2020年3月9日,中国第54颗北斗导航卫星成功发射,其轨道高度约为36000000m.数36000000用科学记数法表示为()A. 0.36×108B. 36×107C. 3.6×108D.3.6×1073.如图,直线AB,CD,EF相交于点O,则∠1+∠2+∠3的度数为()A. 90°B. 120°C. 180°D.360°4.下面几种中式窗户图形既是轴对称又是中心对称的是()A. B. C. D.5.八边形的外角和等于()。
A. 180ºB. 360ºC. 1080ºD. 1440º6.实数a,b在数轴上的位置如图所示,则a−b的值().a+bA. 大于0B. 小于0C. 等于0D. 为非负数7. 一个不透明的袋子装有3个小球,它们除分别标有的数字1,3,5不同外,其他完全相同,任意从袋子中摸出一球后放回,再任意摸出一球,则两次摸出的球所标数字之和为6的概率是( )A. 16B. 29C. 13D. 23 8. 有一个安装有进出水管的30升容器,水管每单位时间内进出的水量是一定的,设从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,得到水量y(升)与时间x(分)之间的函数关系如图所示.根据下图信息给出下列说法:①每分钟进水5升;②当4≤x ≤12时,容器中水量在减少;③若12分钟后只放水,不进水,还要8分钟可以把水放完;④若从一开始进出水管同时打开需要24分钟可以将容器灌满.以上说法中正确的有( )A. 1个B. 2个C. 3个D. 4个 二、填空题(本大题共8小题,共16.0分) 9. 若使代数式2x−1x+2有意义,则x 的取值范围是_____.10. 若方程x 2−2x +1=m 有两个相等的实数根,则m 的值是______ .11. 写出一个满足√3<a <√17的整数a 的值为______.12. 已知方程组{2x +y =4,x +2y =5,则x +y 的值为 . 13. 已知双曲线y =1x 与直线y =x −2√3相交于点P(a,b),则1a −1b =_______.14. 如图,△ABC 中,AB =AC ,点E 是∠BAC 的平分线AD 上任意一点,则图中有______对全等三角形.15. 如图,在△ABC 中,E 是BC 上的一点,EC =2BE ,点D 是AC 的中点,设△ABC 、△ADF 、△BEF 的面积分别为S △ABC 、S △ADF 、S △BEF ,且S △ABC =12,则S △ADF −S △BEF =________.16. 某旅行团在一城市游览,有甲、乙、丙、丁四个景点,导游说:“①甲、乙要么都去,要么都不去;②乙、丙只能去一个;③丙、丁要么都去,要么都不去.”根据导游的说法,在下列选项中,该旅行团可能游览的景点是( )A .甲、丙 B.甲、丁 C.乙、丁 D.丙、丁三、解答题(本大题共12小题,共68.0分)17. 计算:√16−2sin45°+(13)−1−|2−√2|.18. 解不等式组{2x +1>0①2−x 2≥x+33②.19. 先化简,再求值:(1)[(−3a 5)2÷(−a 2)3+3a 5(2a 2−4a )]÷(−3a 2)2,其中a =−3;(2)已知x 2−4=0,求代数式x (x +1)2−x (x 2−x )−x −7的值.20.如图,四边形ABCD是⊙O的内接四边形,对角线AC⊥BD.(1)用尺规作图,过点O作OF⊥AD于点F(保留作图痕迹,不写作法);(2)若(1)中所作OF=2,求BC的长.AC,连接AE、CE.21.如图,菱形ABCD的对角线AC、BD相交于点O,DE//AC,DE=12(1)求证四边形ODEC为矩形;(2)若AB=2,∠ABC=60°,求AE的长.22.将函数y=2x−3的图象平移,使得它经过点A(2,0),求平移后的函数解析式.23.如图,AB为⊙O直径,且弦CD⊥AB于点E,过点B作⊙O的切线与AD的延长线交于点F.(1)若EN⊥BC于点N,延长NE与AD相交于点M.求证:AM=MD;(2)若⊙O的半径为10,且cosC=45,求切线BF的长.24.已知二次函数y=x2−(3m−1)x+2m2−2m,其中m>−1.(1)若二次函数关于y轴对称,求m的值.(2)若二次函数与x轴的两个交点分别是(x1,0),(x2,0),其中x1>x2,当−2<12x1+13x2<1时,求m的取值范围.(3)请写出一个a的值,使x≤a时,y随x的增大而减小.25.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):(1)根据表格中的数据,分别计算出甲、乙两人的平均成绩;(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.26.在平面直角坐标系xOy中,抛物线y=ax2+bx+3a过点A(−1,0).(1)求抛物线的对称轴;(2)直线y=x+4与y轴交于点B,与该抛物线对称轴交于点C.如果该抛物线与线段BC有交点,结合函数的图象,求a的取值范围;(3)在(2)的条件下,抛物线与线段BC的交点记为D,若D为线段BC的三等分点,求出a的值.27.如图,在△ABC中,AB=AC,M为BC的中点,MD⊥AB于点D,ME⊥AC于点E.求证:MD=ME.28.已知:AB是⊙O直径,点E、F是弦AD、CD延长线上的点,∠F=∠BAD;(1)求EF与AC的位置关系.(2)连接CE交⊙O于G,连接BD,若2∠CAE+∠DAG=∠ABD,求证:AC=CE.(3)在(2)的条件下,延长AB、EF交于K,EK=2AC,AK=10,△AEK的面积=18,求线段EK的长度.-------- 答案与解析 --------1.答案:D解析:本题考查了由三视图判断几何体.关键是根据三视图和空间想象得出从物体正面、左面和上面看,所得到的图形.根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,即可得出答案.解:从主视图、左视图、俯视图可以看出这个几何体的正面、左面、底面是长方形,所以这个几何体是长方体;故选D.2.答案:D解析:此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.解:36000000=3.6×107,故选:D.3.答案:C解析:本题考查对顶角相等的性质,平角的定义,准确识图是解题的关键.根据对顶角相等可得∠4=∠1,再根据平角的定义解答.解:如图,由对顶角性质可知∠4=∠1,∵∠2+∠3+∠4=180°,∴∠1+∠2+∠3=180°.故选C.4.答案:C解析:解:A、不是轴对称图形,也不是中心对称图形,故本选项不合题意;B、不是轴对称图形,也不是中心对称图形,故本选项不合题意;C、既是轴对称图形,又是中心对称图形,故此选项正确;D、不是轴对称图形,是中心对称图形,故本选项不合题意;故选:C.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后完全可重合,中心对称图形是要寻找对称中心,旋转180度后两部分完全重合.5.答案:B解析:本题主要考查的是多边形的外角和的有关知识,由题意利用多边形的外角和等于360°直接求解即可.解:八边形的外角和为360°.故选B.6.答案:B解析:本题考查了实数与数轴,根据数轴得出−1<a<0,b>2,可判断出a−b<0,a+b>0,进而可得答案.解:根据数轴可知:−1<a<0,b>2,所以a−b<0,a+b>0,所以a−ba+b<0.7.答案:C解析:解:画树状图得:∵共有9种等可能的结果,两次摸出的球所标数字之和为6的有:(1,5),(3,3),(5,1),∴两次摸出的球所标数字之和为6的概率是:39=13.故选:C.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球所标数字之和为6的情况,然后利用概率公式求解即可求得答案.此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验.8.答案:C解析:本题考查了一次函数的图象,正确理解图象中表示的实际意义是关键.根据图象可以得到单独打开进水管4分钟注水20升,而同时打开放水管,8分钟内放进10升水,据此即可解答.=5(升),则①正确;解:①每分钟进水204②当4≤x≤12时,y随x的增大而增大,因而容器中水量在增加,则②错误;=5−1.25=3.75(升),③每分钟放水5−30−2012−4=8(分钟),故③正确;则放完水需要303.75=1.25(升),④同时打开进水管和放水管,每分钟进水30−2012−4=24(分钟),④正确.则同时打开将容器灌满需要的时间是301.25故选C.9.答案:x≠−2解析:本题考查了分式有意义的条件,解题的关键是熟练的掌握分式有意义的条件.直接利用分式有意义则其分母不为零,进而得出答案.∵分式2x−1有意义,x+2∴x+2≠0,解得:x≠−2.故答案是:x≠−2.10.答案:0解析:根据已知方程有两个相等的实数根得出△=0,得出△=(−2)2−4×1×(1−m)=0,求出即可.本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△的关系是解答此题的关键.解:x2−2x+1=m,x2−2x+1−m=0,∵方程x2−2x+1=m有两个相等的实数根,∴△=(−2)2−4×1×(1−m)=0,解得:m=0,故答案为0.11.答案:2解析:解:∵1<√3<2,4<√17<5,∴一个满足√3<a<√17的整数a的值为2,故答案为:2.答案不唯一,先估算出√3和√17的范围,再求出一个符合的即可.本题考查了估算无理数的范围,能估算出√3和√17的范围是解此题的关键.12.答案:3解析:本题考查了解二元一次方程组,将方程组中两方程相加,变形即可求出x+y的值;解:{2x+y=4 ①, x+2y=5 ②,①+②得:3x+3y=9,则x+y=3,故答案为:3.13.答案:−2√3解析:此题考查了反比例函数与一次函数的交点问题,利用了待定系数法,熟练掌握待定系数法是解本题的关键.由两函数图象交于P点,将P坐标分别代入两函数解析式,得到ab与a−b的值,将所求式子通分并利用同分母分式的减法法则计算,把ab与a−b的值代入即可求出值.解:∵双曲线y=1x与直线y=x−2√3相交于点P(a,b),∴b=1a,b=a−2√3,∴ab =1,a −b =2√3,则1a −1b =b−a ab =−2√31=−2√3.故答案为−2√3.14.答案:3解析:此题主要考查了全等三角形的判定和性质,属于基础题.首先利用角平分线定义可得∠BAD =∠CAD ,然后利用SAS 判定△ABD≌△ACD ,根据全等三角形的性质可得BD =CD ,∠ADB =∠ADC ,再判定△BDE≌△CDE ,最后证明∴△ABE≌△ACE 即可. 解:∵AD 平分∠BAC ,∴∠BAD =∠CAD ,在△ABD 和△ACD 中{AB =AC∠BAD =∠CAD AD =AD,∴△ABD≌△ACD(SAS),∴BD =CD ,∠ADB =∠ADC ,在△BED 和△CED 中{BD =CD∠BDE =∠CDE ED =ED,∴△BDE≌△CDE(SAS),在△ABE 和△ACE 中{AB =AC∠BAE =∠CAE AE =AE,∴△ABE≌△ACE(SAS),共3对全等三角形,故答案为:3.15.答案:2解析:本题考查三角形的面积,关键知道当高相等时,面积等于底边的比,根据此可求出三角形的面积,然后求出差.S △ADF −S △BEF =S △ABD −S △ABE ,所以求出三角形ABD 的面积和三角形ABE 的面积即可,因为EC =2BE ,点D 是AC 的中点,且S △ABC =12,就可以求出三角形ABD 的面积和三角形ABE 的面积. 解:∵点D 是AC 的中点,∴AD =12AC ,∵S△ABC=12,∴S△ABD=12S△ABC=12×12=6.∵EC=2BE,S△ABC=12,∴S△ABE=13S△ABC=13×12=4,∵S△ABD−S△ABE=(S△ADF+S△ABF)−(S△ABF+S△BEF)=S△ADF−S△BEF,即S△ADF−S△BEF=S△ABD−S△ABE=6−4=2.故答案为2.16.答案:D解析:此题主要考查了推理与论证,关键是正确分情况,进行讨论.根据导游说的分两种情况进行分析:①甲、乙要么都去,要么都不去;②乙、丙只能去一个;③丙、丁要么都去,要么都不去;然后分析可得答案.解:导游说:“①甲、乙要么都去,要么都不去;②乙、丙只能去一个;③丙、丁要么都去,要么都不去.”,①假设甲、乙要么都去,要么都不去,因此可以去甲、乙或丙、丁;②假设乙、丙只能去一个,因此可以去甲、乙或丙、丁;③假设丙、丁要么都去,要么都不去,因此可以去甲、乙或丙、丁.综上所述,该旅行团可能游览的景点是甲、乙或丙、丁.故选D.17.答案:解:原式=4−2×√22+3−(2−√2)=4−√2+3−2+√2=5.解析:直接利用二次根式的性质以及特殊角的三角函数值、绝对值的性质、负指数幂的性质进而化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.18.答案:解:解不等式①,得:x>−12,解不等式②,得:x≤0,∴不等式组的解集为−12<x≤0.解析:分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.答案:解:(1)[(−3a5)2÷(−a2)3+3a5(2a2−4a)]÷(−3a2)2,=[9a10÷(−a6)+6a7−12a6]÷9a4=(−9a4+6a7−12a6)÷9a4=−1+23a3−43a2,当a=−3时,原式=−1−18−12=−31,(2)x(x+1)2−x(x2−x)−x−7=x(x2+2x+1)−x3+x2−x−7=x3+2x2+x−x3+x2−x−7=3x2−7,∵x2−4=0,∴x2=4,原式=3×4−7=5.解析:本题考查了整式的化简求值,(1)本题考查了整式的化简求值,先根据整式的混合运算的法则先化简,再代入求值即可;(2)本题考查了整式的化简求值,根据整式的混合运算的法则,完全平方公式,单项式乘多项式的计算法则化简,再整体代入即可;20.答案:解:(1)用尺规作图,过点O作OF⊥AD于点F,如下图所示:(2)如上图,连接AO并延长交⊙O于点M,连接DM,由(1)得OF⊥AD,∴AF=DF,∵OA=OM,∴DM=2FO=4,∵AC⊥BD,∴∠ABD+∠BAC=90∘,∵AM为直径,∴∠ADM=90∘,∴∠AMD+∠MAD=90∘,∵∠ABD=∠AMD,∴∠BAC=∠MAD,⏜,∴BC⏜=DM∴BC=DM=4.解析:本题考查了尺规作图,垂径定理,三角形中位线性质,圆周角定理及推论.(1)直接利用尺规过点O作出OF⊥AD于点F即可;(2)利用垂径定理,三角形中位线性质,圆周角定理及推论即可求得答案.AC.21.答案:解:(1)证明:在菱形ABCD中,OC=12∴DE=OC.∵DE//AC,∴四边形OCED是平行四边形.∵AC⊥BD,∴平行四边形OCED是矩形;(2)在菱形ABCD中,∠ABC=60°,∴AC=AB=2,∴在矩形OCED中,CE=OD=√AD2−AO2=√22−12=√3.在Rt△ACE中,AE=√AC2+CE2=√7.解析:本题考查了菱形的性质,矩形的判定与性质,勾股定理的应用,是基础题,熟记矩形的判定方法与菱形的性质是解题的关键.(1)先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明OCED 是矩形即可;(2)根据菱形的性质得出AC=AB,再根据勾股定理得出AE的长度即可.22.答案:解:设平移后的函数解析式y=2x+b,∵平移后的函数图象经过点A(2,0),∴0=4+b,解得:b=−4.∴平移后的函数解析式为:y=2x−4.解析:本题要注意利用一次函数的特点,求出未知数的值从而求得其解析式,求直线平移后的解析式时要注意平移时k的值不变.根据平移不改变k的值可设y=2x+b,然后将点(2,0)代入即可得出直线的函数解析式.23.答案:(1)证法一:∵∠A与∠C对同弧BD,∴∠A=∠C,∵CD⊥AB于点E,∴∠CEB=90°.∴∠C+∠CBE=90°.∵MN⊥BC,∴∠ENB=90°.∴∠NEB+∠CBE=90°.∴∠C=∠NEB,∵∠NEB=∠AEM,∴∠AEM=∠A,∴AM=ME,∵∠AEM=∠A,∠MED+∠AEM=90°,∠EDA+∠A=90°,∴∠MED=∠EDA,∴ME=MD,∴AM=MD.证法二:∵∠CDA与∠CBA对同弧AC,∴∠CDA=∠CBA,∵CD⊥AB于点E,∴∠AED=90°,∴∠MED+∠MEA=90°,∵MN⊥BC,∴∠ENB=90°,∴∠CBA+∠BEN=90°,∵∠MEA=∠BEN,∴∠MED=∠CBA,∴∠MED=∠CDA,∴ME=MD,∵∠MED+∠AEM=90°,∠CDA+∠A=90°,∴∠AEM=∠A,∴AM=ME,∴AM=MD.(2)解:∵BF与⊙O相切于点B,∴AB⊥BF.∴∠ABF=90°.∵∠C与∠A对同弧BD,∴∠C=∠A,∴cosA=cosC=45,∴cosA=ABAF =45,∴AF=54AB=54×20=25,∴BF=√AF2−AB2=√252−202=15.解析:(1)想办法证明AM=EM,DM=EM即可解决问题;(2)求出AF=54AB=54×20=25,根据BF=√AF2−AB2计算即可解决问题;本题考查切线的性质、垂径定理、勾股定理、锐角三角函数、解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,所以中考常考题型.24.答案:解:(1)∵二次函数关于y轴对称对称轴为y轴,∴可得−−(3m−1)2=0,∴m=13;(2)根据x1>x2,m>−1可得x1=2m,x2=m−1,代入不等式解得−54<m<1,∴综合得−1< m<1.(3)对称轴为直线x=3m−12=−12+3m2,∵m>−1,∴−12+3m2>−2,∵二次函数开口向上,对称轴左侧y随x的增大而减小∴取a≤−2都可以.解析:本题考查二次函数的图像,二次函数的性质,二次函数与一元二次方程的关系.(1)根据二次函数关于y轴对称得−b2a=0,得方程,解方程即可解答;(2)根据二次函数与一元二次方程的关系.解方程x2−(3m−1)x+2m2−2m=0得x1和x2,代入−2<12x1+13x2<1得不等式组,解不等式组即可解答;(3)根据二次函数的增减性即可解答.25.答案:解:(1)x甲=16(10+9+8+8+10+9)=9,.x乙=16(10+10+8+10+7+9)=9;(2)S甲2=16[(10−9)2+(9−9)2+(8−9)2+(8−9)2+(10−9)2+(9−9)2]=23,S 乙2=16[(10−9)2+(10−9)2+(8−9)2+(10−9)2+(7−9)2+(9−9)2]=43;(3)甲参加省比赛更合适,因为甲比较稳定.理由:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.解析:本题考查的是平均数、方差的计算和性质,掌握平均数、方差的计算公式是解题的关键.(1)根据平均数的计算公式计算即可;(2)根据方差S2=1n[(x1−.x)2+(x2−.x)2+⋯+(x n−.x)2]计算即可;(3)根据方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定解答即可.26.答案:解:(1)把A(−1,0)代入得b=4a所以对称轴为x=−2;(2)把b=4a代入解析式得y=a(x+1)(x+3),则抛物线过(−1,0)(−3,0)两点,当a>0时,x=0代入得y=3a>4,所以a>43,当a<0时,x=−2代入得y=−a>2,所以a<−2,综上,a>43或a<−2;(3)B(0,4),C(−2,2),当a>0时,D(−23,103)则a=307,当a<0时,D(−43,83)则a=−245.解析:本题考查了二次函数的性质以及解一元一次不等式,解题的关键是熟练掌握一元一次不等式,待定系数法求抛物线解析式,此题属于中档题,但实际知识点较多,需要对二次函数足够了解才能快捷的解题.(1)根据坐标轴上点的坐标特征代入点A坐标,得出b=4a,则解析式为y=a(x+1)(x+3),进一步得出对称轴;(2)结合图形,分两种情况:①a>0;②a<0;进行讨论即可求解;(3)求出B(0,4),C(−2,2),分两种情况:①a>0;②a<0;进行讨论即可求解.27.答案:证明:连接AM,如图,在△ABM和△ACM中{AB=AC AM=AM BC=CM,∴△ABM≌△ACM(SSS),∴∠BAM=∠CAM,∵MD⊥AB,ME⊥AC,∴MD=ME.解析:本题考查的是全等三角形的判定与性质有关知识,连接AM,证明出△ABM≌△ACM得出∠BAM=∠CAM,再根据MD⊥AB,ME⊥AC即可解答.28.答案:解:(1)如图1,延长FE,AC交于点H,连接BD,∵AB是直径,∴∠ADB=90°,∴∠DAB+∠ABD=90°,∵四边形ABDC是圆内接四边形,∴∠HCD=∠ABD,且∠F=∠BAD,∴∠HCD+∠F=90°,∴∠H=90°,∴AC⊥EF;(2)如图2,延长FE,AC交于点H,连接BD,∵四边形ABDC是圆内接四边形,∴∠HCD=∠ABD,∵2∠CAE+∠DAG=∠ABD,且∠HCD=∠CAE+∠ADC,∴∠CAE+∠ADC=2∠CAE+∠DAG,∴∠ADC=∠CAE+∠DAG,且∠AGC=∠ADC,且∠AGC=∠AEC+∠GAD,∴∠CAE+∠DAG=∠GAD+∠AEC,∴∠AEC=∠CAE,∴AC=CE;(3)如图3,过点K作KM⊥AE,过点E作EN⊥AK,过点A作AP⊥CE,交EC的延长线于P,∵∠H=∠AMK=90°,∠AEH=∠MEF,∴∠HAE=∠MKE,且∠HAE=∠CEA,∴∠CEA=∠MKE,∵PA⊥AE,∠HAE=∠CEA,∴∠CPA=∠CAP,∴PC=AC,且AC=CE,∴PE=2AC,且EK=2AC,∴PE=EK,且∠PAE=∠KME=90°,∠CEA=∠MKE,∴△PAE≌△EMK(AAS)∴AE=MK,∵AK=10,△AEK的面积=18,∴12AK×EN=12×10×EN=18,12AE×MK=12×AE2=18,∴EN=185,AE=6,∴AN=√AE2−EN2=√36−32425=245,∴KN=AK−AN=265,∴EK=√EN2+NK2=√32425+67625=2√10.解析:(1)如图1,延长FE,AC交于点H,连接BD,由圆周角定理可求∠DAB+∠ABD=90°,由圆的内接四边形的性质可得∠HCD=∠ABD,可求∠H=90°,可得AC⊥EF;(2)如图2,延长FE,AC交于点H,连接BD,由圆的内接四边形的性质可得∠HCD=∠ABD,由角的数量关系可求∠AEC=∠CAE,可得AC=CE;(3)如图3,过点K作KM⊥AE,过点E作EN⊥AK,过点A作AP⊥CE,交EC的延长线于P,由“AAS”可证△PAE≌△EMK,可得AE=MK,由三角形面积公式可求EN=185,AE=6,由勾股定理可求解.本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,等腰三角形的性质,直角三角形的性质,勾股定理等知识,添加恰当辅助线构造全等三角形是本题的关键.。
2020年北京八中中考数学模拟试卷(3月份)(含答案解析)
2020年北京八中中考数学模拟试卷(3月份)一、选择题(本大题共8小题,共16.0分)1.据统计,中国每年浪费的食物总量折合粮食约500亿kg,这个数据用科学记数法表示为()A. 5×102kgB. 50×109kgC. 5×1010kgD. 0.5×1011kg2.如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为()A. 圆锥,正方体,三棱锥,圆柱B. 圆锥,正方体,四棱锥,圆柱C. 圆锥,正方体,四棱柱,圆柱D. 正方体,圆锥,圆柱,三棱柱3.实数a在数轴上的位置如图所示,则|a−2.5|=()A. a−2.5B. 2.5−aC. a+2.5D. −a−2.54.如图,直线a//b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为().A. 30°B. 32°C. 42°D. 58°5.如果3x−4y=0,那么代数式(x2y −y)⋅3x+y的值为()A. 1B. 2C. 3D. 46.如下字体的四个汉字中,是轴对称图形的是()A. B. C. D.7.根据条形统计图,下面信息不正确的是A. 乘公共汽车的人数最少,为12人B. 全校共有教师90人C. 有1的教师自驾车到校 D. 自驾车的人数比步行的人数多68.如图1,在长方形ABCD中,动点P从点B出发,沿长方形的边由B→C→D→A运动,设点P运动的路程为x,△ABP的面积为y,把y看作x的函数,函数的图象如图2所示,则当x=9时,点P运动到()A. A处B. B处C. C处D. D处二、填空题(本大题共8小题,共16.0分)9.若分式a−2值为0,则a的值为______.a+310.若抛物线y=(a−2)x2的开口向上,则a的取值范围是______.11.如图,△ABC是半径为2的圆内接正三角形,则图中阴影部分的面积是______(结果用含π的式子表示).12.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快50千米,提速后从北京到上海运行时间缩短了30分钟.已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x千米/时,依题意,可列方程为__________________.13.如图,一次函数y=x−2的图象与反比例函数y=k的图象交于点x<x−2<0的解集是______.A(3,1)、点B,则不等式kx14.如图,已知⊙O为四边形ABCD的外接圆,O为圆心,若∠BCD=120°,AB=AD=1,则⊙O的半径长为______.15.已知点A(m,−2),B(3,m−1),且直线AB//x轴,则m的值是_________.16.如果从1,2,3,4,5,6,7,8,9,10这10个数中任意选取一个数,那么取到的数恰好是5的倍数的概率是______.三、计算题(本大题共3小题,共16.0分))−1−2sin45°+(π−2015)0.17.计算:|−√2|+(−1318.已知关于x的一元二次方程kx2−6x+1=0有两个不相等的实数根.(1)求实数k的取值范围;(2)写出满足条件的k的最大整数值,并求此时方程的根.19.某校八年级(1)班一个小组十位同学的年龄(岁)分别如下;13,13,14,14,14,14,15,15,16,17;求这十位同学年龄的平均数、中位数、众数.四、解答题(本大题共9小题,共52.0分)20.解不等式组{3(x+2)≤2(x+4)2x+1>−1并把解集表示在数轴上.21.下面是小元设计的“作已知角的角平分线”的尺规作图过程.已知:如图,∠AOB.求作:∠AOB的角平分线OP.作法:如图,①在射线OA上任取点C;②作∠ACD=∠AOB;③以点C为圆心CO长为半径画圆,交射线CD于点P;④作射线OP;所以射线OP即为所求.根据小元设计的尺规作图过程,完成以下任务.(1)补全图形;(2)完成下面的证明:证明:∵∠ACD=∠AOB,∴CD//OB(______)(填推理的依据).∴∠BOP=∠CPO.又∵OC=CP,∴∠COP=∠CPO(______)(填推理的依据).∴∠COP=∠BOP.∴OP平分∠AOB.22.如图,在Rt△ABC中,∠ACB=90∘,D 、E 分别是AB 、AC 的中点,连接DE 并延长至点F ,使EF=DE,连接AF 、DC 和FC .求证:四边形ADCF 是菱形.23.如图,在平面直角坐标系xOy中,一次函数y=kx−2的图象与x、y轴分别交于点A、B,与反比例函数y=−32x (x<0)的图象交于点M(−32,n).(1)求A、B两点的坐标;(2)设点P是一次函数y=kx−2图象上的一点,且满足△APO的面积是△ABO的面积的2倍,直接写出点P的坐标.24.如图,C、D为⊙O上两点,AB为直径,E在AB延长线上,且AD平分∠CAB,过D点的直线EF⊥AF,交AC的延长线于点F,连接BD.(1)求证:EF是⊙O的切线;(2)若EB:ED=1:√3,⊙O的半径为r,当r=4时,求FC的长.25.如图,Rt△ABC中,∠C=90°,AC=BC,AB=4cm.动点D沿着A→C→B的方向从A点运动到B点.DE⊥AB,垂足为E.设AE长为xcm,BD长为ycm(当D与A重合时,y=4;当D 与B重合时y=0).小云根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小云的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm00.51 1.52 2.53 3.54y/cm4 3.5 3.2 2.8 2.1 1.40.70补全上面表格,要求结果保留一位小数.则t≈______.(2)在下面的网格中建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当DB=AE时,AE的长度约为______cm.26.如图,在平面直角坐标系中,抛物线y=ax2+bx+4与x轴的一个交点为A(−2,0),与y轴的交点为C,对称轴是x=3,对称轴与x轴交于点B.(1)求抛物线的函数表达式;(2)经过B,C的直线l平移后与抛物线交于点M,与x轴交于点N,当以B,C,M,N为顶点的四边形是平行四边形时,求出点M的坐标.27.如图,正方形ABCD中,点E是BC边上的一个动点,连接AE,将线段AE绕点A逆时针旋转90°,得到AF,连接EF,交对角线BD于点G,连接AG.(1)根据题意补全图形;(2)判定AG与EF的位置关系并证明;(3)当AB=3,BE=2时,求线段BG的长.28.在平面直角坐标系xOy中,正方形ABCD的顶点分别为A(0,1),B(−1,0),C(0,−1),D(1,0).对于图形M,给出如下定义:P为图形M上任意一点,Q为正方形ABCD边上任意一点,如果P,Q两点间的距离有最大值,那么称这个最大值为图形M的“正方距”,记作d(M).(1)已知点E(0,4),①直接写出d(点E)的值;②直线y=kx+4(k≠0)与x轴交于点F,当d(线段EF)取最小值时,求k的取值范围;(2)⊙T的圆心为T(t,3),半径为1.若d(⊙T)<6,直接写出t的取值范围.【答案与解析】1.答案:C解析:解:500亿=50000000000=5×1010千克.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.2.答案:D解析:解:根据几何体的平面展开图,则从左到右,其对应的几何体名称分别为:正方体,圆锥,圆柱,三棱柱.故选:D.根据常见的几何体的展开图进行判断,即可得出结果.本题考查了常见几何体的展开图;熟记常见几何体的平面展开图的特征,是解决此类问题的关键.3.答案:B解析:此题考查了利用数轴比较实数的大小及绝对值的定义等知识.此题比较简单,注意数轴上的任意两个数,右边的数总比左边的数大.首先观察数轴,可得a<2.5,然后由绝对值的性质,可得|a−2.5|=−(a−2.5),则可求得答案.解:如图可得:a<2.5,即a−2.5<0,则|a−2.5|=−(a−2.5)=2.5−a.故选:B.4.答案:B解析:这是一道考查平行线的性质的题目,解题关键在于掌握两直线平行,内错角相等,解:如图,过点A作AB//b,∴∠3=∠1=58°,∵∠3+∠4=90°,∴∠4=90°−∠3=32°,∵a//b,AB//b,∴AB//a,∴∠2=∠4=32°.故选B.5.答案:A解析:解:∵3x−4y=0,∴x=43y,∴(x2y −y)⋅3x+y=x2−y2y⋅3x+y=3(x−y)y=3(43y−y)y=1.故选:A.由3x−4y=0,可得x=43y,再将代数式(x2y−y)⋅3x+y化简为3(x−y)y,然后把x=43y代入计算即可.本题考查了分式的化简求值,掌握运算法则是解题的关键.6.答案:D解析:本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.根据轴对称图形的概念对各选项分析判断即可得解.解:A.不是轴对称图形,故本选项错误;B.不是轴对称图形,故本选项错误;C.不是轴对称图形,故本选项错误;D.是轴对称图形,故本选项正确.故选D.7.答案:C解析:本题考查的是条形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键;条形统计图能清楚地表示出每个项目的数据.由条形统计图可获知步行、骑自行车、坐公共车的人数,进一步求出总人数,即可判断四个选项的正确与否.解:由条形统计图可知:乘公共汽车的人数最少为12人;总人数为15+45+18+12=90人;自×100%=5%;步行的人数为15人,则自驾车的人数比步行的驾车的人数为18人,占总人数的1890人数多.可知C信息错误.故选C.8.答案:D解析:本题考查的是动点问题的函数图象,根据矩形中三角形ABP的面积和函数图象,当点P在CD上运动时,三角形ABP的面积保持不变,据此进行求解即可.解:∵当4≤x≤9时,y的值不变,即△ABP的面积不变,∴P在CD上运动,当x=4时,P点在C点上,当x=9时,P点在D点上.故选D.9.答案:2解析:解:由题意得:a−2=0,且a+3≠0,解得:a=2,故答案为:2.根据分式值为零的条件可得a−2=0,且a+3≠0,再解可得答案.此题主要考查了分式值为零的条件,分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.10.答案:a>2解析:解:∵抛物线y=(a−2)x2的开口向上,∴a−2>0,解得a>2.故答案为:a>2;根据抛物线的开口向上列出关于a的不等式,求出a的取值范围即可.此题考查的是二次函数的性质,熟知二次函数y=ax2+bx+c(a≠0)中,当a>0时,抛物线y= ax2+bx+c(a≠0)的开口向上是解答此题的关键.11.答案:4π−3√3解析:解:如图,点O既是它的外心也是其内心,∴OB=2,∠1=30°,OB=1,BD=√3,∴OD=12∴AD=3,BC=2√3,×2√3×3=3√3;∴S△ABC=12而圆的面积=π×22=4π,所以阴影部分的面积=4π−3√3,故答案为:4π−3√3.利用正三角形的性质,由它的内接圆半径可求出它的高和边,再用圆的面积减去三角形的面积即可.本题考查的是正多边形和圆、特殊角的三角函数值及三角形的面积、圆的面积公式等知识,熟练掌握正三角形的性质,特别是它的外心,内心,重心,垂心重合.记住正三角形的内切圆半径,外接圆半径和它的高的比(1:2:3)是解题的关键.12.答案:1320x =1320x−50−3060解析:本题主要考查由实际问题抽象出分式方程,解题的关键是理解题意,找到题目蕴含的相等关系.设“复兴号”的速度为x千米/时,则原来列车的速度为(x−50)千米/时,根据提速后从北京到上海运行时间缩短了30分钟列出方程即可.解:设“复兴号”的速度为x千米/时,则原来列车的速度为(x−50)千米/时,根据题意得:1320 x =1320x−50−3060.故答案为1320x =1320x−50−3060.13.答案:−1<x<0解析:本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征、待定系数法求函数解析式,求得B点的坐标是解题的关键.由点A的坐标利用反比例函数图象上点的坐标特征即可得出反比例函数系数k,从而得出反比例函数解析式;联立方程即可求出点B的坐标,根据两函数图象的上下关系结合交点B的坐标,即可得出不等式的解集.解:∵点A(3,1)在反比例函数y=kx的图象上,∴k=3×1=3,∴反比例函数解析式为y=3x,解x−2=3x得,x1=3,x2=−1,∴B(−1,−3),观察两函数图象,不等式kx<x−2<0的解集为−1<x<0,故答案为−1<x<0.14.答案:√33解析:解:如右图所示,连接AO,BO,DO,BD,连接AO交BD于点E,∵⊙O为四边形ABCD的外接圆,O为圆心,∠BCD=120°,AB=AD=1,∴∠BAD=180°−∠BCD=60°,∠AOB=∠AOD,∴∠BOD=2∠BAD=120°,∴∠AOB=∠AOD=120°,∴AB=BD=AD=1,∴△ABD是等边三角形,∴AE⊥BD,AE平分BD,∴∠BOE=60°设OA=a,则OE=12a,BE=12,∴a2=√(12a)2+(12)2,解得,a=√33,故答案为:√33.根据题意、可以求得△ABD是等边三角形,再根据等边三角形的性质和勾股定理即可求得⊙O的半径.本题考查三角形的外接圆与外心,解答本题的关键是明确题意,利用数形结合的思想解答.15.答案:−1解析:此题考查坐标与图形的性质,根据直线AB//x 轴可知,直线AB 上的纵坐标相等,进而求解出m 的值.解:∵点A(m,−2),B(3,m −1),且直线AB//x 轴,∴m −1=−2,解得m =−1.故答案为−1.16.答案:15解析:解:∵从1,2,3,4,5,6,7,8,9,10这10个数中任意选取一个数,是5的倍数的有:5,10,∴取到的数恰好是5的倍数的概率是210=15.故答案为:15.根据从1,2,3,4,5,6,7,8,9,10这10个数中任意选取一个数,得出是5的倍数的数据,再根据概率公式即可得出答案.此题主要考查了概率公式,概率=所求情况数与总情况数之比求出是解决问题的关键.17.答案:解:原式=√2−3−2×√22+1=−2.解析:原式第一项利用绝对值的代数意义化简,第二项利用负指数幂法则计算,第三项利用特殊角的三角函数值计算,最后一项利用零指数幂法则计算即可得到结果.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.答案:解:(1)根据题意得k ≠0且△=(−6)2−4k >0,解得k <9且k ≠0;(2)k 的最大整数为8,此时方程化为8x 2−6x +1=0,(2x −1)(4x −1)=0,所以x 1=12,x 2=14.解析:(1)利用一元二次方程的定义和判别式的意义得到k ≠0且△=(−6)2−4k >0,然后求出两不等式的公共部分即可;(2)先确定k 的最大整数值得到方程8x 2−6x +1=0,然后利用因式分解法解方程即可. 本题考查了根的判别式:一元二次方程ax 2+bx +c =0(a ≠0)的根与△=b 2−4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.也考查了一元二次方程的定义.19.答案:解:平均数为13×2+14×4+15×2+16+1710=14.5(岁),中位数为14岁,众数为14岁.解析:根据平均数、中位数和众数的定义求解可得.本题主要考查平均数、众数、中位数,解题的关键平均数、中位数和众数的定义.20.答案:解:{3(x +2)≤2(x +4)①2x +1>−1②, 由①得:x ≤2,由②得:x >−1,在数轴上表示为:,所以此不等式组的解集为:−1<x ≤2.解析:【试题解析】首先分别计算出两个不等式的解集,然后再根据解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到确定不等式组的解集.此题主要考查了解一元一次不等式组,关键是正确解出两个不等式的解集.21.答案:(1)如图,OP 为所作;;(2)同位角相等,两直线平行;等边对等角.解析:解:(1)见答案;(2)证明:∵∠ACD=∠AOB,∴CD//OB(同位角相等,两直线平行);∴∠BOP=∠CPO.又∵OC=CP,∴∠COP=∠CPO(等边对等角).∴∠COP=∠BOP.∴OP平分∠AOB.故答案为同位角相等,两直线平行;等边对等角.(1)在CD上截取OP=CO即可;(2)利用平行线的判定方法可先判断CD//OB,则∠BOP=∠CPO.再利用等边对等角∠COP=∠CPO,所以∠COP=∠BOP.本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行线的判定与性质.22.答案:证明:∵点E是边AC的中点,∴AE=EC.又∵EF=DE,∴四边形ADCF是平行四边形.又∵点D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∴DE//BC.又∵∠ACB=90°,∴∠AED=90°.∴AC⊥DF.∴四边形ADCF是菱形.解析:本题考查了菱形的判定与性质、三角形中位线定理;熟练掌握菱形的判定与性质,由三角形中位线定理得出DE//BC是解决该题的关键.先证明四边形ADCF是平行四边形,再证明DE是△ABC的中位线,得出DE//BC,证出AC⊥DF,即可得出结论.23.答案:解:(1)∵点M(−32,n)在反比例函数y=−32x(x<0)的图象上,∴n=1,∴M(−32,1).∵一次函数y=kx−2的图象经过点M(−32,1),∴1=−32k−2.∴k=−2,∴一次函数的解析式为y=−2x−2,∴A(−1,0),B(0,−2).(2)S△AOB=12OA×OB=1,设点P的坐标为(a,−2a−2),由题意得,12×1×|−2a−2|=2,解得:a1=1,a2=−3,故P1(−3,4),P2(1,−4).解析:本题考查了反比例函数的综合,解答本题的关键是求出点M的坐标,第二问中要设出点P的纵坐标,根据△AOP的面积求出纵坐标.(1)将点M的坐标代入反比例函数,可得出n的值,再将点M的具体坐标代入一次函数,从而得出k 的值,然后求A、B的坐标即可.(2)根据△APO的面积,求出点P的纵坐标,代入直线解析式可得出点P的坐标.24.答案:解:(1)证明:如图,连接OD,则OD=OA,∴∠,2=∠3,∵AD平分∠CAB,∴∠1=∠2,∴∠1=∠3,∴OD//AF,又∵EF⊥AF,∴OD⊥EF,∵OD是⊙O的直径,∴EF是⊙O的切线;(2)解:∵AB为⊙O的直径,∴∠ADB=90°,∴∠3+∠ODB=90°,由(1)可知,∠ODB+∠EDB=90°,∴∠EDB=∠3=∠2,∵∠E=∠E,∴△EDB∽△EAD,∴EBED =EDEA,∵EBED =√3,∴EDEA =√3,∴EA=√3ED=√3×√3EB=3EB,∴EB=r=4,在Rt△ODE中,,∴∠E=30°,连接BC,则BC⊥AF,∴BC//EF,∴∠ABC=∠E=30°,在Rt△ACB中,AC=12AB=4,在Rt△AFE中,AF=12AE=6,∴FC=AF−AC=6−4=2.解析:本题考查了圆周角定理,切线的判定和性质,角平分线定义,平行线的判定和性质以及直角三角形的性质等知识,掌握和灵活运用圆周角定理是解题关键.(1)连接OD,只要证明OD⊥EF即可证明EF是⊙O的切线;(2)首先证明△EDB∽△EAD,得到EB=4,然后利用解直角三角形证明∠E=30°,再根据直角三角形的性质即可求出FC的长.25.答案:(1)2.9;(2)根据已知数据描点连线得:(3)2.3解析:解:(1)根据题意量取数据为2.9故答案为:2.9(2)见答案(3)当DB=AE时,y与x满足y=x,在(2)图中,画y=x图象,测量交点横坐标为2.3.故答案为:2.3(1)按题意,认真测量即可;(2)利用数据描点、连线;(3)当DB=AE时,y=x,画图形测量交点横坐标即可.本题以考查画函数图象为背景,应用了数形结合思想和转化的数学思想.26.答案:解:(1)∵抛物线y=ax2+bx+4交x轴于A(−2,0),∴0=4a−2b+4,∵对称轴是直线x=3,∴−b=3,即6a+b=0,2a关于a ,b 的方程联立为{4a −2b +4=06a +b =0, 解得 a =−14,b =32, ∴抛物线的表达式为y =−14x 2+32x +4;(2)∵四边形为平行四边形,且BC//MN ,∴BC =MN .分两种情况:①N 点在M 点下方,如图所示:即M 点向下平移4个单位,向右平移3个单位与N 重合.设M(x,−14x 2+32x +4),则N(x +3,−14x 2+32x),∵N 在x 轴上,∴−14x 2+32x =0,解得 x =0(舍去),或x =6,∴x M =6,∴M(6,4);②M 点在N 点右下方,即N 向下平移4个单位,向右平移3个单位与M 重合.设M(x,−14x 2+32x +4),则N(x −3,−14x 2+32x +8),∵N 在x 轴上,∴−14x 2+32x +8=0,解得 x =3−√41,或x =3+√41,∴x M =3−√41或3+√41.∴M 2(3−√41,−4)或M 3(3+√41,−4).综上所述,M 的坐标为(6,4)或(3−√41,−4)或(3+√41,−4)解析:(1)根据点A 的坐标和对称轴得出方程组,解方程组求出a 和b 即可;(2)由平行四边形的性质得出BC//MN ,BC =MN.分两种情况:①N 点在M 点下方,设M(x,−14x 2+32x +4),则N(x +3,−14x 2+32x),由N 在x 轴上得出−14x 2+32x =0,解方程即可;②M点在N点右下方,设M(x,−14x2+32x+4),则N(x−3,−14x2+32x+8),由N在x轴上得出方程,解方程即可.本题是二次函数综合题目,考查了二次函数解析式的求法、平行四边形的性质、平移的性质、解方程等知识;本题综合性强,有一定难度.27.答案:解:(1)补全图形如图所示,(2)连接DF,由旋转知,AE=AF,∠EAF=90°,∵四边形ABCD是正方形,∴AB//CD,AD=AB,∠ABC=∠ADC=∠BAD=90°,∴∠DAF=∠BAE,∴△ADF≌△ABE(SAS),∴DF=BE,∠ADF=∠ABC=90°,∴∠ADF+∠ADC=180°,∴点C,D,F共线,∴CF//AB,过点E作EH//BC交BD于H,∴∠BEH=∠BCD=90°,DF//EH,∴∠DFG=∠HEG,∵BD是正方形ABCD的对角线,∴∠CBD=45°,∴BE=EH,∵∠DGF=∠HGE,∴△DFG≌△HEG(AAS),∴FG=EG∵AE=AF,∴AG⊥EF;(3)∵BD是正方形的对角线,∴BD=√2AB=3√2,由(2)知,在Rt△BEH中,BH=√2BE=2√2,∴DH=BD−BH=√2由(2)知,△DFG≌△HEG,∴DG=HG,∴HG=12DH=√22,∴BG=BH+HG=2√2+√22=5√22.解析:(1)根据题意补全图形即可;(2)先判断出△ADF≌△ABE,进而判断出点C,D,F共线,即可判断出△DFG≌△HEG,得出FG=EG,即可得出结论;(3)先求出正方形的对角线BD,再求出BH,进而求出DH,即可得出HG,求和即可得出结论.此题是四边形综合题,主要考查了旋转的性质,全等三角形的判定和性质,正方形的性质,勾股定理,作出辅助线是解本题的关键.28.答案:解:(1)①∵正方形ABCD的顶点分别为A(0,1),B(−1,0),C(0,−1),D(1,0),点E(0,4)在y轴上,∴点E到正方形ABCD边上C点间的距离最大值,EC=5,即d(点E)的值为5;②如图1所示:∵d(点E)=5,∴d(线段EF)的最小值是5,∴符合题意的点F满足d(点F)≤5,当d(点F)=5时,BF1=DF2=5,∴点F1的坐标为(4,0),点F2的坐标为(−4,0),将点F1的坐标代入y=kx+4得:0=4k+4,解得:k=−1,将点F 2的坐标代入y=kx+4得:0=−4k+4,解得:k=1,∴k=−1或k=1.∴当d(线段EF)取最小值时,EF1直线y=kx+4中k≤−1,EF2直线y=kx+4中k≥1,∴当d(线段EF)取最小值时,k的取值范围为:k≤−1或k≥1;(2)⊙T的圆心为T(t,3),半径为1,当d(⊙T)=6时,如图2所示:CM=CN=6,OH=3,∴T1C=TC=5,CH=OC+OH=1+3=4,∴T1H=√T1C2−CH2=√52−42=3,TH=√TC2−CH2=√52−42=3,∴d(⊙T)<6,t的取值范围为:−3<t<3.解析:(1)①由题意得点E到正方形ABCD边上C点间的距离最大值,EC=5,即d(点E)的值为5②由d(点E)=5得出d(线段EF)的最小值是5,得出符合题意的点F满足d(点F)≤5,求出当d(点F)=5时,BF1=DF2=5,得出点F1的坐标为(4,0),点F2的坐标为(−4,0),代入y=kx+4求出k 的值,再结合函数图象即可得出结果;(2)⊙T的圆心为T(t,3),半径为1,当d(⊙T)=6时,CM=CN=6,OH=3,得出T1C=TC=5,CH=OC+OH=4,由勾股定理求出T1H=√T1C2−CH2=3,TH=√TC2−CH2=3,即可得出结果.本题是圆的综合题目,考查了正方形的性质、勾股定理、新定义、一次函数解析式的求法以及圆的有关知识;本题综合性强,理解新定义是解题的关键.。
2019-2020北京第八中学数学中考模拟试卷含答案
2019-2020北京第八中学数学中考模拟试卷含答案一、选择题1.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =--2.如图抛物线y =ax 2+bx +c 的对称轴为直线x =1,且过点(3,0),下列结论:①abc >0;②a ﹣b +c <0;③2a +b >0;④b 2﹣4ac >0;正确的有( )个.A .1B .2C .3D .4 3.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( ) A .108° B .90°C .72°D .60° 4.定义一种新运算:1a n n n bn xdx a b -⋅=-⎰,例如:222khxdx k h ⋅=-⎰,若m 252m x dx --=-⎰,则m =( )A .-2B .25-C .2D .255.如图,在平面直角坐标系中,菱形ABCD 的顶点A ,B 在反比例函数k y x=(0k >,0x >)的图象上,横坐标分别为1,4,对角线BD x ∥轴.若菱形ABCD 的面积为452,则k 的值为( )A .54B .154C .4D .56.已知直线y =kx ﹣2经过点(3,1),则这条直线还经过下面哪个点( )A.(2,0)B.(0,2)C.(1,3)D.(3,﹣1)7.现定义一种变换:对于一个由有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,例如序列S0:(4,2,3,4,2),通过变换可生成新序列S1:(2,2,1,2,2),若S0可以为任意序列,则下面的序列可作为S1的是()A.(1,2,1,2,2)B.(2,2,2,3,3)C.(1,1,2,2,3)D.(1,2,1,1,2)8.若关于x的一元二次方程kx2﹣4x+3=0有实数根,则k的非负整数值是()A.1B.0,1C.1,2D.1,2,39.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折10.如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD的度数等于()A.60°B.50°C.45°D.40°11.下列各式化简后的结果为32的是()A.6B.12C.18D.3612.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10B.12C.16D.18二、填空题13.如图,⊙O是△ABC的外接圆,∠A=45°,则cos∠OCB的值是________.14.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.15.在函数3yx=-的图象上有三个点(﹣2,y1),(﹣1,y2),(12,y3),则y1,y2,y3的大小关系为_____.16.已知反比例函数的图象经过点(m,6)和(﹣2,3),则m的值为________.17.分式方程32xx2--+22x-=1的解为________.18.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快40千米,提速后从北京到上海运行时间缩短了30分钟,已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x千米/时,依题意,可列方程为_____.19.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2,a a次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物乙车共运270吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________元.(按每吨运费20元计算)20.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点处,当△为直角三角形时,BE的长为 .三、解答题21.两个全等的直角三角形 ABC 和 DEF 重叠在一起,其中∠A=60°,AC=1.固定△ABC 不动,将△DEF 进行如下操作:(1)如图,△DEF 沿线段 AB 向右平移(即 D 点在线段 AB 内移动),连接 DC、CF、FB,四边形 CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积.(2)如图,当 D 点移到 AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.(3)如图,△DEF 的 D 点固定在 AB 的中点,然后绕 D 点按顺时针方向旋转△DEF,使DF 落在 AB 边上,此时 F 点恰好与 B 点重合,连接 AE ,请你求出 sinα的值.22.甲乙两人做某种机械零件,已知甲每小时比乙多做4个,甲做120个所用的时间与乙做100个所用的时间相等,求甲乙两人每小时各做几个零件?23.某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?24.将A B C D ,,,四人随机分成甲、乙两组参加羽毛球比赛,每组两人.(1)A 在甲组的概率是多少?(2)A B ,都在甲组的概率是多少?25.如图1,菱形ABCD 中,120ABC ∠=︒,P 是对角线BD 上的一点,点E 在AD 的延长线上,且PA PE =,PE 交CD 于F ,连接CE .(1)证明:ADP CDP △≌△;(2)判断CEP △的形状,并说明理由.(3)如图2,把菱形ABCD 改为正方形ABCD ,其他条件不变,直接..写出线段AP 与线段CE 的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A . 2.B解析:B【解析】【分析】由图像可知a >0,对称轴x=-2b a=1,即2a +b =0,c <0,根据抛物线的对称性得x=-1时y=0,抛物线与x 轴有2个交点,故△=b 2﹣4ac >0,由此即可判断.【详解】 解:∵抛物线开口向上,∴a >0,∵抛物线的对称轴为直线x =﹣2b a=1, ∴b =﹣2a <0,∵抛物线与y 轴的交点在x 轴下方,∴c <0,∴abc >0,所以①正确;∵抛物线与x 轴的一个交点为(3,0),而抛物线的对称轴为直线x =1,∴抛物线与x 轴的另一个交点为(﹣1,0),∵x =﹣1时,y =0,∴a ﹣b +c =0,所以②错误;∵b =﹣2a ,∴2a +b =0,所以③错误;∵抛物线与x 轴有2个交点,∴△=b 2﹣4ac >0,所以④正确.故选B .【点睛】此题主要考查二次函数的图像,解题的关键是熟知各系数所代表的含义. 3.C解析:C【解析】【分析】首先设此多边形为n 边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n 边形,根据题意得:180(n-2)=540,解得:n=5, ∴这个正多边形的每一个外角等于:3605︒=72°. 故选C .【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°. 4.B解析:B【解析】【分析】根据新定义运算得到一个分式方程,求解即可.【详解】根据题意得,5211m 11(5)25mx dx m m m m---⎰-=-=-=-, 则25m =-, 经检验,25m =-是方程的解, 故选B.【点睛】此题考查了解分式方程,弄清题中的新定义是解本题的关键.5.D解析:D【解析】【分析】设A(1,m),B(4,n),连接AC 交BD 于点M ,BM=4-1=3,AM=m-n ,由菱形的面积可推得m-n=154,再根据反比例函数系数的特性可知m=4n ,从而可求出n 的值,即可得到k 的值.【详解】设A(1,m),B(4,n),连接AC 交BD 于点M ,则有BM=4-1=3,AM=m-n ,∴S 菱形ABCD =4×12BM•AM ,∵S菱形ABCD=452,∴4×12×3(m-n)=452,∴m-n=154,又∵点A,B在反比例函数kyx ,∴k=m=4n,∴n=54,∴k=4n=5,故选D.【点睛】本题考查了反比例函数k的几何意义、菱形的性质、菱形的面积等,熟记菱形的对角线互相垂直平分是解题的关键.6.A解析:A【解析】【分析】把点(3,1)代入直线y=kx﹣2,得出k值,然后逐个点代入,找出满足条件的答案.【详解】把点(3,1)代入直线y=kx﹣2,得1=3k﹣2,解得k=1,∴y=x﹣2,把(2,0),(0,2),(1,3),(3,﹣1)代入y=x﹣2中,只有(2,0)满足条件.故选A.【点睛】本题考查了一次函数图象上点的坐标特点,熟悉一次函数图象上点的特点是解此题的关键.7.D解析:D【解析】【分析】根据已知中有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,可得S1中2的个数应为偶数个,由此可排除A,B答案,而3的个数应为3个,由此可排除C,进而得到答案.【详解】解:由已知中序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,A、2有三个,即序列S0:该位置的三个数相等,按照变换规则,应为三个3,故A不满足条件;B、2有三个,即序列S0:该位置的三个数相等,按照变换规则,应为三个3,故B不满足条件;C、3有一个,即序列S0:该位置的数出现了三次,按照变换规则,应为三个3,故C不满足条件;D、2有两个,即序列S0:该位置的两个数相等,1有三个,即这三个位置的数互不相等,满足条件,故选D.【点睛】本题考查规律型:数字的变化类.8.A解析:A【解析】【分析】【详解】由题意得,根的判别式为△=(-4)2-4×3k,由方程有实数根,得(-4)2-4×3k≥0,解得k≤43,由于一元二次方程的二次项系数不为零,所以k≠0,所以k的取值范围为k≤43且k≠0,即k的非负整数值为1,故选A.9.B解析:B【解析】【详解】设可打x 折,则有1200×10x -800≥800×5%, 解得x≥7.即最多打7折.故选B .【点睛】 本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.10.D解析:D【解析】【分析】【详解】∵∠C=80°,∠CAD=60°,∴∠D=180°﹣80°﹣60°=40°,∵AB ∥CD ,∴∠BAD=∠D=40°.故选D .11.C解析:C【解析】A 、6不能化简;B 、12=23,故错误;C 、18=32,故正确;D 、36=6,故错误;故选C .点睛:本题主要考查二次根式,熟练掌握二次根式的性质是解题的关键.12.C解析:C【解析】【分析】首先根据矩形的特点,可以得到S △ADC =S △ABC ,S △AMP =S △AEP ,S △PFC =S △PCN ,最终得到S 矩形EBNP = S 矩形MPFD ,即可得S △PEB =S △PFD ,从而得到阴影的面积.【详解】作PM ⊥AD 于M ,交BC 于N .则有四边形AEPM ,四边形DFPM ,四边形CFPN ,四边形BEPN 都是矩形, ∴S △ADC =S △ABC ,S △AMP =S △AEP ,S △PFC =S △PCN∴S 矩形EBNP = S 矩形MPFD ,又∵S △PBE = 12S 矩形EBNP ,S △PFD =12S 矩形MPFD , ∴S △DFP =S △PBE =12×2×8=8, ∴S 阴=8+8=16,故选C .【点睛】 本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S △PEB =S △PFD .二、填空题13.【解析】【分析】根据圆周角定理可得∠BOC=90°易求BC=OC 从而可得cos ∠OCB 的值【详解】∵∠A=45°∴∠BOC=90°∵OB=OC 由勾股定理得BC=OC ∴cos ∠OCB=故答案为【点睛】解析:2【解析】【分析】根据圆周角定理可得∠BOC=90°,易求OC ,从而可得cos ∠OCB 的值.【详解】∵∠A =45°,∴∠BOC=90°∵OB=OC ,由勾股定理得,OC ,∴cos ∠OCB =2OC BC ==.. 【点睛】 本题考查的是圆周角定理、等腰直角三角形的判定及锐角三角函数的定义,属较简单题目题目.14.【解析】根据弧长公式可得:=故答案为 解析:2π3【解析】根据弧长公式可得:602180π⨯⨯=23π,故答案为23π.15.y2>y1>y3【解析】【分析】根据图象上的点(xy)的横纵坐标的积是定值k可得xy=k据此解答即可【详解】解:∵函数y=-的图象上有三个点(-2y1)(-1y2)(y3)∴-2y1=-y2=y3=解析:y2>y1>y3.【解析】【分析】根据图象上的点(x,y)的横纵坐标的积是定值k,可得xy=k,据此解答即可.【详解】解:∵函数y=-3x的图象上有三个点(-2,y1),(-1,y2),(12,y3),∴-2y1=-y2=12y3=-3,∴y1=1.5,y2=3,y3=-6,∴y2>y1>y3.故答案为y2>y1>y3.【点睛】本题考查了反比例函数的图象上点的坐标特征.解题时注意:图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.16.-1【解析】试题分析:根据待定系数法可由(-23)代入y=可得k=-6然后可得反比例函数的解析式为y=-代入点(m6)可得m=-1故答案为:-1解析:-1【解析】试题分析:根据待定系数法可由(-2,3)代入y=kx,可得k=-6,然后可得反比例函数的解析式为y=-6x,代入点(m,6)可得m=-1.故答案为:-1.17.【解析】【分析】根据解分式方程的步骤即可解答【详解】方程两边都乘以得:解得:检验:当时所以分式方程的解为故答案为【点睛】考查了解分式方程解分式方程的基本思想是转化思想把分式方程转化为整式方程求解解分解析:x1=【解析】【分析】根据解分式方程的步骤,即可解答.【详解】方程两边都乘以x 2-,得:32x 2x 2--=-,解得:x 1=,检验:当x 1=时,x 21210-=-=-≠,所以分式方程的解为x 1=,故答案为x 1=.【点睛】考查了解分式方程,()1解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解().2解分式方程一定注意要验根.18.【解析】【分析】设复兴号的速度为x 千米/时则原来列车的速度为(x-40)千米/时根据提速后从北京到上海运行时间缩短了30分钟列出方程即可【详解】设复兴号的速度为x 千米/时则原来列车的速度为(x ﹣40 解析:13201320304060x x -=-. 【解析】【分析】 设“复兴号”的速度为x 千米/时,则原来列车的速度为(x-40)千米/时,根据提速后从北京到上海运行时间缩短了30分钟列出方程即可.【详解】设“复兴号”的速度为x 千米/时,则原来列车的速度为(x ﹣40)千米/时, 根据题意得:13201320304060x x -=-. 故答案为:13201320304060x x -=-. 【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是理解题意,找到题目蕴含的相等关系. 19.【解析】【分析】根据甲乙两车单独运这批货物分别用2a 次a 次能运完甲的效率应该为乙的效率应该为那么可知乙车每次货运量是甲车的2倍根据若甲丙两车合运相同次数运完这批货物时甲车共运了180吨;若乙丙两车合 解析:2160【解析】【分析】根据“甲、乙两车单独运这批货物分别用2a 次、a 次能运完”甲的效率应该为12a ,乙的效率应该为1a ,那么可知乙车每次货运量是甲车的2倍根据“若甲、丙两车合运相同次数运完这批货物时,甲车共运了180吨;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨.”这两个等量关系来列方程.【详解】设这批货物共有T吨,甲车每次运t甲吨,乙车每次运t乙吨,∵2a⋅t甲=T,a⋅t乙=T,∴t甲:t乙=1:2,由题意列方程:180270 180270T Tt t--=甲乙,t乙=2t甲,∴180270180135T T--=,解得T=540.∵甲车运180吨,丙车运540−180=360吨,∴丙车每次运货量也是甲车的2倍,∴甲车车主应得运费15402021605⨯⨯= (元),故答案为:2160.【点睛】考查分式方程的应用,读懂题目,找出题目中的等量关系是解题的关键.20.3或32【解析】【分析】当△CEB′为直角三角形时有两种情况:①当点B′落在矩形内部时如答图1所示连结AC先利用勾股定理计算出AC=5根据折叠的性质得∠AB′E=∠B=90°而当△CEB′为直角三角解析:3或.【解析】【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2,设BE=x,则EB′=x,CE=4-x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4-x)2,解得,∴BE=;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为或3.故答案为:或3.三、解答题21.(1)过点C作CG⊥AB于G在Rt△ACG中∵∠A=60°∴sin60°=∴……………1分在Rt△ABC中∠ACB=90°∠ABC=30°∴AB=2 …………………………………………2分∴………3分(2)菱形………………………………………4分∵D是AB的中点∴AD=DB=CF=1在Rt△ABC中,CD是斜边中线∴CD=1……5分同理 BF=1 ∴CD=DB=BF=CF∴四边形CDBF是菱形…………………………6分(3)在Rt△ABE中∴……………………………7分过点D作DH⊥AE 垂足为H则△ADH∽△AEB ∴即∴ DH=……8分在Rt△DHE中sinα==…=…………………9分【解析】(1)根据平移的性质得到AD=BE,再结合两条平行线间的距离相等,则三角形ACD的面积等于三角形BEF的面积,所以要求的梯形的面积等于三角形ABC的面积.根据60度的直角三角形ABC中AC=1,即可求得BC的长,从而求得其面积;(2)根据直角三角形斜边上的中线等于斜边的一半和平移的性质,即可得到该四边形的四条边都相等,则它是一个菱形;(3)过D点作DH⊥AE于H,可以把要求的角构造到直角三角形中,根据三角形ADE的面积的不同计算方法,可以求得DH的长,进而求解.22.甲每小时做24个零件,乙每小时做20个零件.【解析】【分析】设甲每小时做x个零件,则乙每小时做(x-4)个零件,根据工作时间=工作总量÷工作效率结合甲做120个所用的时间与乙做100个所用的时间相等,即可得出关于x的分式方程,解之经检验后即可得出结论.【详解】解:设甲每小时做x个零件,则乙每小时做(x﹣4)个零件,根据题意得:1201004x x=-,解得:x=24,经检验,x=24是分式方程的解,∴x﹣4=20.答:甲每小时做24个零件,乙每小时做20个零件.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.23.银杏树的单价为120元,则玉兰树的单价为180元.【解析】试题分析:根据题意可以列出相应的分式方程,从而可以解答本题.试题解析:解:设银杏树的单价为x 元,则玉兰树的单价为1.5x 元,根据题意得:1200090001501.5x x+= 解得:x =120,经检验x =120是原分式方程的解,∴1.5x =180.答:银杏树的单价为120元,则玉兰树的单价为180元.24.(1)12(2)16【解析】解:所有可能出现的结果如下:(1)所有的结果中,满足A 在甲组的结果有3种,所以A 在甲组的概率是12,··· 2分 (2)所有的结果中,满足A B ,都在甲组的结果有1种,所以A B ,都在甲组的概率是16. 利用表格表示出所有可能的结果,根据A 在甲组的概率=3162=,A B ,都在甲组的概率=16 25.(1)证明见解析;(2)CEP ∆是等边三角形,理由见解析;(3)2CE AP =. 【解析】【分析】(1)由菱形ABCD 性质可知,AD CD =,ADP CDP ∠=∠,即可证明; (2)由△PDA ≌△PDC ,推出PA=PC ,由PA=PE ,推出DCP DEP ∠=∠,可知60CPF EDF ∠=∠=︒,由PA═PE=PC ,即可证明△PEC 是等边三角形;(3)由△PDA ≌△PDC ,推出PA=PC ,∠3=∠1,由PA=PE ,推出∠2=∠3,推出∠1=∠2,由∠EDF=90°,∠DFE=∠PFC ,推出∠FPC=EDF=90°,推出△PEC 是等腰直角三角形即可解答;【详解】(1)证明:在菱形ABCD 中,AD CD =,ADP CDP ∠=∠,在ADP ∆和CDP ∆AD CD ADP CDP DP DP =⎧⎪∠=∠⎨⎪=⎩,∴()ADP CDP SAS ∆≅∆.(2)CEP ∆是等边三角形,由(1)知,ADP CDP ∆≅∆,∴DAP DCP ∠=∠,AP CP =,∵PA PE =,∴DAP DEP ∠=∠,∴DCP DEP ∠=∠,∵CFP EFD ∠=∠(对顶角相等),∴180180PFC PCF DFE DEP ︒-∠-∠=︒-∠-∠,即60CPF EDF ∠=∠=︒,又∵PA PE =,AP CP =;∴PE PC =,∴CEP ∆是等边三角形.(3)2CE AP =.过程如下:证明:如图1中,∵四边形ABCD 是正方形,∴AD=DC ,∠ADB=∠CDB=45°,∠ADC=90°,在△PDA 和△PDC 中,PD PD PDA PDC DA DC ⎧⎪∠∠⎨⎪⎩===,,∴△PDA ≌△PDC ,∴PA=PC ,∠3=∠1,∵PA=PE ,∴∠2=∠3,∴∠1=∠2,∵∠EDF=90°,∠DFE=∠PFC ,∴∠FPC=EDF=90°,∴△PEC 是等腰直角三角形.∴.【点睛】本题考查正方形的性质、菱形的性质、全等三角形的判定和性质、等边三角形判定、等腰直角三角形性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.。
北京市2020年中考数学模拟试卷八含答案
北京市2020年中考数学模拟试卷八一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有..一个. 1.27-的立方根是A .3-B .3C .3±D .33-2.如图,M 是正六边形ABCDEF 的边CD 延长线上一点, 则∠ADM 的度数是(A )135° (B )120° (C )108° (D )60°3.2019年4月10日,天文学家召开全球新闻发布会,发布首次直接拍摄到的黑洞照片.这颗黑洞位于代号为M87的星系当中,距离地球5500万光年,质量相当于65亿颗太阳.太阳质量大约是2.0×1030 千克,那么这颗黑洞的质量约是(A )130×1030 千克 (B )1.3×1038千克 (C )1.3×1040千克 (D )1.3×1041千克 4.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是A .0bc >B .0a d +<C .a c <D .2b <- 5. 图1是矗立千年而不倒的应县木塔一角,它使用了六十多种形态各异的斗栱(dǒugǒng ).斗栱是中国古代匠师们为减少立柱与横梁交接处的剪力而创造的一种独特的结 构,位于柱与梁之间,斗栱是由斗、升、栱、翘、昂组成,图2是其中一个组成部件的 三视图,则这个部件是d c ba12345–1–2–3–4–50A .B .C .D .6.如果,那么代数式的值是 (A )(B ) (C ) (D ) 7.北京故宫博物院成立于1925年10月10日,是在明朝、清朝两代皇宫及其宫廷收藏的基础上建立起来的中国综合性博物馆,每年吸引着大批游客参观游览.下图是从2012年 到2017年每年参观总人次的折线图.根据图中信息,下列结论中正确的是A. 2012年以来,每年参观总人次逐年递增B. 2014年比2013年增加的参观人次不超过...50万C. 2012年到2017年这六年间,2017年参观总人次最多D. 2012年到2017年这六年间,平均每年参观总人次超过1600万8. 如图,小宇计划在甲、乙、丙、丁四个小区中挑选一个小区租住,附近有东西向的交通主干道a 和南北向的交通主干道b ,若他希望租住的小区到主干道a 和主干道b 的直线距离之和最小,则下图中符合他要求的小区是 A .甲B .乙C .丙D .丁2+2=0m m -23211(1)m m m m +++÷2222+12+2图1 图2二、填空题(本题共16分,每小题2分) 9.若分式的值为0,则x 的值是__________. 10.如图所示的网格是正方形网格, △ABC 的面积 △DEF 的面积. (填“>”,“=”或“<”)11.如图 , 在⊙O 中,,50OA BC AOB ⊥∠=°,则ADC ∠= °.12.若1x -在实数范围内有意义,那么实数x 的取值范围是 .13.如图,矩形ABCD 中,DE ⊥AC 于点F ,交BC 边于点E .已知AB =6,AD =8,则CE 的长为___________.(第13题图) (第14题图)14.如图是一个可以自由转动的转盘,转盘分成6个大小相同的扇形,颜色分为红、绿、黄21x x -+CAOBD黄红红绿黄红三种颜色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指 的位置(指针指向两个扇形的交线时,当作指向右边的扇形). 转动一次转盘后,指针 指向 颜色的可能性大.15.学校向同学们征集校园便道地砖铺设的图形设计.琳琳用学校提供的完全相同的小长方形模具(如图1)拼出了一个大长方形和一个正方形(如图2,图3),其中所拼正方形中间留下了一个小正方形的空白.如果所拼图形中空白的小正方形边长等于3cm ,依据题意,列出关于a ,b 的方程组为: .16.按《航空障碍灯(MH/T6012-1999)》的要求,为保障飞机夜间飞行的安全,在高度为45米至105米的建筑上必须安装中光强航空障碍灯(Aviation Obstruction light).中光强航空障碍灯是以规律性的固定模式闪光.在下图中你可以看到某一种中光强航空障碍灯的闪光模式,灯的亮暗呈规律性交替变化,那么在一个连续的10秒内,该航空障碍灯处于亮的状态的时间总和最长可达___________秒.三、解答题(本题共68分,第17-22题,每小题5分;第23-26题,每小题6分;第27-28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.112cos 4513-⎛⎫-︒+ ⎪⎝⎭18.解分式方程:14222=---x x x .19.下面是小宇设计的“作已知直角三角形的中位线”的尺规作图过程.已知:在△ABC 中,∠C =90°./秒求作:△ABC 的中位线DE ,使点D 在AB 上,点E 在AC 上. 作法:如图,① 分别以A ,C 为圆心,大于12AC 长为半径画弧,两弧交于P ,Q ② 作直线PQ ,与AB 交于点D ,与AC 交于点E . 所以线段DE 就是所求作的中位线. 根据小宇设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明.证明:连接P A ,PC ,QA ,QC , DC ,∵ P A =PC ,QA =_________,∴ PQ 是AC 的垂直平分线(________)(填推理的依据). ∴ E 为AC 中点,AD =DC . ∴ ∠DAC =∠DCA ,又在Rt △ABC 中,有∠BAC +∠ABC =90°,∠DCA +∠DCB =90°. ∴ ∠ABC =∠DCB (________)(填推理的依据). ∴ DB =DC . ∴ AD =BD =DC . ∴ D 为AB 中点.∴ DE 是△ABC 的中位线.20.已知关于x 的一元二次方程mx 2+nx -2=0.(1)当n =m -2时,利用根的判别式判断方程根的情况;(2)若方程有两个不相等的实数根,写出一组满足条件的m ,n 的值,并求出此时方 程的根.21. 如图,在△ABC 中, D ,F 分别是BC ,AC 边的中点,连接DA ,DF ,且AD =2DF .过点B 作AD 的平行线交FD 的延长线于点E . (1) 求证:四边形ABED 为菱形;(2) 若BD =6,∠E =60°,求四边形ABEF 的面积.22.如图,△ABC 是⊙O 的内接三角形,∠ACB =45°,∠AOC =150°,过点C 作⊙O 的切线交AB 的延长线于点D. (1)求证:CD =CB ;(2)如果⊙O,求AC 的长.23.如图,在平面直角坐标系xOy 中,直线y x b =+与轴、y 轴分别交于点A ,B ,与双曲线2y x=的交点为M ,N . (1)当点M 的横坐标为1时,求b 的值;(2)若3MN AB ≤,结合函数图象,直接写出b 的取值范围.24.有这样一个问题:探究函数2118y x x=-的图象与性质.小宇从课本上研究函数的活动中获得启发,对函数2118y x x=-的图象与性质进行了探究.下面是小宇的探究过程,请补充完整:(1)函数2118y x x=-的自变量x 的取值范围是 ;(2)如图,在平面直角坐标系xOy 中,完成以下作图步骤:①画出函数214y x =和2y x=-的图象;②在x 轴上取一点P ,过点P 作轴的垂线l ,分别交函数214y x =和2y x=-的图象于点M ,N ,记线段MN 的中点为G ;③在x 轴正半轴上多次改变点P 的位置,用②的方法得到相应的点G ,把这些点用平滑的曲线连接起来,得到函数2118y x x=-在y 轴右侧的图象.继续在x 轴负半轴上多次改变点P 的位置,重复上述操作得到该函数在y 轴左侧的图象.(3)结合函数2118y x x=-的图象, 发现:①该函数图象在第二象限内存在最低点,该点的横坐标约为 (保留小数点后一位);②该函数还具有的性质为:_________________(一条即可).25. 某学校在A、B两个校区各有九年级学生200人,为了解这两个校区九年级学生的数学学业水平的情况,进行了抽样调查,过程如下,请补充完整.收集数据从A、B两个校区各随机抽取20名学生,进行了数学学业水平测试,测试成绩(百分制)如下:A校区8674788176758670759075798170748087698377 B校区8073708271828393778081938173887981704083整理、描述数据按如下分数段整理、描述这两组样本数据:(说明:成绩80分及以上为学业水平优秀,70~79分为学业水平良好,60~69分为学业水平合格,60分以下为学业水平不合格)分析数据两组样本数据的平均数、中位数、众数如下表所示:其中m = ____;得出结论a.估计B校区九年级数学学业水平在优秀以上的学生人数为____;b.可以推断出____校区的九年级学生的数学学业水平较高,理由为_________________________________________________________.(至少从两个不同的角度说明推断的合理性)26.在平面直角坐标系xOy 中,已知点A (0,2),B (2,2),抛物线F :2222y x mx m =-+-.(1)求抛物线F 的顶点坐标(用含m 的式子表示);(2)当抛物线F 与线段AB 有公共点时,直接写出m 的取值范围.27.如图,在正方形ABCD 中, E 为BC 边上一动点(不与点B ,C 重合 ),延长AE 到 点F ,连接BF ,且∠AFB =45°. G 为DC 边上一点,且DG =BE ,连接DF .点F 关于 直线AB 的对称点为M ,连接AM ,BM . (1)依据题意,补全图形; (2)求证:∠DAG =∠MAB ;(3)用等式表示线段BM ,DF 与AD 的数量关系,并证明.28.对于平面直角坐标系xOy 中的两个图形M 和N ,给出如下定义:若在图形M 上存在一点A ,图形N 上存在两点B ,C ,使得△ABC 是以BC 为斜边且BC =2的等腰直角三角形,则称图形M 与图形N 具有关系()M N ,φ.(1)若图形X 为一个点,图形Y 为直线y x =,图形X 与图形Y 具有关系()X Y ,φ,则点1(0P ,2(11)P ,,3(22)P -,中可以是图形X 的是_____; (2)已知点()20P ,,点()02Q ,,记线段PQ 为图形X . ①当图形Y 为直线y x =时,判断图形X 与图形Y 是否既具有关系()X Y ,φ又具有关系()Y X ,φ,如果是,请分别求出图形X 与图形Y 中所有点A 的坐标;如果不是,请说明理由;②当图形Y 为以(0)T t ,T 时,若图形X 与图形X 具有关系()X Y ,φ,求t 的取值范围.答案一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)9.2 ; 10.= ;11.25;12.X≤1 ;13.92;14.红;15.{3a=5b2b+a=2a+3,答案不唯一,合理即可;16.7 ;三、解答题(本题共68分,第17-22题,每小题5分;第23-26题,每小题6分;第27-28题,每小题7分)17.(本小题满分5分)原式=2⨯……………………………………………4分=3√2+2 ………………………………………………5分18.(本小题满分5分)解:2(2)24x x x+-=-.22224x x x+-=-.22x=-.1x=-. ..............…........3分经检验:1x=-是原方程的解. ..............…........4分∴原方程的解是1x=-. ..............…........5分19.(本小题满分5分)(1)补全的图形如图所示:(作等弧交于两点P ,Q 点1分,直线PQ 1分) (2)QC到线段两端点距离相等的点在线段的垂直平分线上 等角的余角相等20.(本小题满分5分)(1)∵∆=n 2+8m ………………………………………………1分当n =m -2时,∆=(m +2)2 ≥0 ……………………………………………2分∴方程有两个实根 ……………………………………………3分 (2)略 ………………………………………………5分21.(本小题满分5分)解:(1)证明:在△ABC 中,D,F 分别是BC,AC 边的中点, ∴FD ∥AB , FD=12AB . ......…..........1分∵BE ∥AD ,∴四边形ABED 是平行四边形.∵AD=2DF , ∴AD=AB .∴四边形ABED 为菱形. ......…..........3分(2)过点B 作BG ⊥EF 于G ,由题意,得BG=33.∴四边形ABEF 的面积为(69)334532+⨯=. ...................5分22.(本小题满分5分) (1)证明:连结OB .D PEQDCAOB∵AB ⌒ = AB ⌒,∠ACB =45°,∴290AOB ACB ∠=∠=︒, ………………… 1分∵OA =OB ,∴45OAB OBA ∠=∠=︒ ∵∠AOC =150°,∴60COB ∠=︒ ∵OC =OB ,∴△OCB 是等边三角形, ………………… 2分 ∴60OCB OBC ∠=∠=︒, ∴75CBD ∠=︒, ∵CD 是⊙O 的切线,∴90OCD OCB BCD ∠=∠+∠=︒, ∴30BCD ∠=︒, ∴75D CBD ∠=∠=︒,∴CD =CB . ………………… 3分(2)解:过点B 作BE ⊥AC 于点E ,∵△OCB 是等边三角形,∴BC OC ==∵∠ACB =45°,∴1CE BE ==, ………………… 4分∵»»BCBC =,∠BOC =60°, ∴1302EAB BOC ∠=∠=︒, ∴tan BEEAB AE∠=,1AE=,∴AE =∴1AC AE CE =+=, ………………… 5分23.(本小题满分6分)解:(1)∵点M 是双曲线2y x=上的点,且点M 的横坐标为1,∴点M 的坐标为(1,2). ∵点M 是直线y x b =+上的点,∴1b =.(2)当1b =?时,满足3MN AB =,结合函数图像可得,b 的取值范围是1b ≤-或1b ≥.24.(本小题满分6分) (1)0x ≠; (2)(3)① 1.6-;(在 1.9 1.3至--之间即可)②该函数的其它性质:当0x >时,y 随的增大而增大.(写出一条即可)25.(本小题满分6分)解:40≤x<5050≤x<6060≤x<7070≤x<8080≤x<90 90≤x ≤100B1710277.5m =; ..................................3分a .120; ..................................4分b .略; ..................................6分26.(本小题满分6分)解:(1)(m , -2) …………………………………………………2分(2)-22m m ≤≤0, ≤≤4 ……………………………………6分27.(本小题满分7分)解:(1)略; .........................1分(2)∵四边形ABCD 是正方形,∴AB=AD , ∠ABC =∠BAD=∠ADG =90°. ∵BE =DG , ∴△ABE ≌△ADG . ∴∠BAE =∠DAG .∵点F 关于直线AB 的对称点为M ,∴∠BAE =∠MAB .∴∠DAG =∠MAB . ......................3分(3)2222BM DF AD +=. ......................4分证明: 连接BD.延长MB 交AG 的延长线于点N .∵∠BAD =90°, ∠DAG =∠MAB , ∴∠MAN =90°.由对称性可知∠M =∠AFB =45°, ∴∠N =45°. ∴∠M=∠N . ∴AM =AN . ∵AF =AM , ∴AF =AN .∵∠BAN=∠DAF , ∴△BAN ≌△DAF . ∴∠N =∠AFD =45°. ∴∠BFD =90°. ∴ 222BF DF BD +=. ∵2BD AD =, BM =BF ,x人数 成绩校区∴ 2222BM DF AD +=. .........................7分28.(本小题满分7分) (1)1P ; (2)① 是, 图1如图1,在直线y x =上取点B ,C ,且BC =2,则满足△ABC 是以BC 为斜边的等腰直角三角形的点A ,在到直线y x =距离为1的两条平行直线上. 这两条平行直线与PQ 分别交于1A ,2A 两点. 故图形X 与图形Y 满足(),X Y ϕ.直线y x =与线段PQ 交于点M (1,1),过点M 作MH ⊥y 轴于H ,与1A B交于点N ,则11MA =,2MN =1A(12-,12+). 同理可求得2A (12+,12-). 如图2,在线段PQ 上取点B ,C ,且BC =2,则满足△ABC 是以BC为斜边的等腰直角三角形的点A 在图中的两条线段上,这两条线段与直线y x =交于3A ,4A 两点. 故图形X 与图形Y 满足(),Y Xϕ.同上可求得3A(12-,12-),4A (12+,12+).② 1t ≤≤-或25t ≤≤.。
2020年北京市中考数学模拟试卷(8)
2020年北京市中考数学模拟试卷(8)一.选择题(共6小题,满分18分,每小题3分)1.(3分)随着我国金融科技的不断发展,网络消费、网上购物已成为人们生活不可或缺的一部分,今年“双十一”天猫成交额高达2135亿元.将数据“2135亿”用科学记数法表示为()A.2.135×1011 B.2.135×107C.2.135×1012 D.2.135×103 2.(3分)如图所示的立体图形,它的主视图是()A.B.C.D.3.(3分)如图,将矩形ABCD沿GH折叠,点C路在点Q处,点D落在AB边上的点E 处,若∠AGE=34°.则∠BHQ等于()A.73°B.34°C.45°D.30°4.(3分)如图,AB是⊙O的直径,AC,CD是⊙O的两条弦,CD⊥AB,连接OD,若∠CAB=20°,则∠BOD的度数是()A.10°B.20°C.30°D.40°5.(3分)某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试,因此计算其他39人的平均分为90分,方差s2=39.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大B.平均分不变,方差变小C.平均分和方差都不变D.平均分和方差都改变6.(3分)下列关于二次函数y=﹣x2﹣2x+3说法正确的是()A.当x=﹣1时,函数最大值4B.当x=﹣1时,函数最大值2C.将其图象向上平移3个单位后,图象经过原点D.将其图象向左平移3个单位后,图象经过原点二.填空题(共6小题,满分24分,每小题4分)7.(4分)因式分解:﹣5a3+10a2﹣15a=.8.(4分)若2√2−x在实数范围内有意义,则实数x的取值范围是.9.(4分)数轴上有两个实数a,b,且a>0,b<0,a+b<0,则四个数a,b,﹣a,﹣b的大小关系为(用“<”号连接).10.(4分)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为.11.(4分)如图,在▱ABCD中,E为DC边的中点,AE交BD于点O,如果S△AOB=8,那么S△DOE为,S△AOD为.12.(4分)把一根9m长的钢管截成1m长和2m长两种规格均有的短钢管,且没有余料,设某种截法中1m长的钢管有a根,则a的值可能有种.三.解答题(共8小题,满分58分)13.(7分)计算:4cos30°+(π﹣1)0−√12+|√3−2|.14.(7分)先化简,再求值:a−2a+1÷(a ﹣1−3a+1),其中a =√3−2. 15.(7分)已知:如图,四边形ABCD 中,AD ∥BC ,对角线BD 平分∠ABC ,且BD ⊥DC ,E 为BC 中点,AB =DE .(1)求证:四边形ABED 是菱形;(2)若∠C =60°,CD =4,求四边形ABCD 的面积.16.(7分)已知关于x 的一元二次方程k 2x 2+(2k +1)x +1=0有两个实数根.(1)求k 的取值范围;(2)若此方程至少有一个有理数根,写出一个k 的值,并求此时方程的根.17.(7分)如图,C ,D 是以AB 为直径的⊙O 上的点,AĈ=BC ̂,弦CD 交AB 于点E . (1)当PB 是⊙O 的切线时,求证:∠PBD =∠DCB ;(2)已知OA =4,E 是半径OA 的中点,求线段DE 的长.18.(7分)在平面直角坐标系xOy 中,二次函数y =ax 2﹣2kx +k 2+k 图象的对称轴为直线x=k ,且k ≠0,顶点为P .(1)求a 的值;(2)求点P 的坐标(用含k 的式子表示);(3)已知点A (0,1),B (2,1),若函数y =ax 2﹣2kx +k 2+k (k ﹣1≤x ≤k +1)的图象与线段AB 恰有一个公共点,直接写出k 的取值范围.19.(8分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4);(1)请在图中作出△ABC关于原点对称的图形△A1B1C1.(2)请在图中作出△ABC绕点O顺时针方向旋转90°后得到的图形△A2B2C2.20.(8分)如图将正方形ABCD绕点A顺时针旋转角度α(0°<α<90°)得到正方形AB′C′D′.(1)如图1,B′C′与AC交于点M,C′D′与AD所在直线交于点N,若MN∥B′D′,求α;(2)如图2,C′B′与CD交于点Q,延长C′B′与BC交于点P,当α=30°时.①求∠DAQ的度数;②若AB=6,求PQ的长度.2020年北京市中考数学模拟试卷(8)参考答案与试题解析一.选择题(共6小题,满分18分,每小题3分)1.(3分)随着我国金融科技的不断发展,网络消费、网上购物已成为人们生活不可或缺的一部分,今年“双十一”天猫成交额高达2135亿元.将数据“2135亿”用科学记数法表示为()A.2.135×1011 B.2.135×107C.2.135×1012 D.2.135×103【解答】解:2135亿=213500000000=2.135×1011,故选:A.2.(3分)如图所示的立体图形,它的主视图是()A.B.C.D.【解答】解:此立体图形从正面看所得到的图形为矩形.故选:A.3.(3分)如图,将矩形ABCD沿GH折叠,点C路在点Q处,点D落在AB边上的点E 处,若∠AGE=34°.则∠BHQ等于()A.73°B.34°C.45°D.30°【解答】解:∵∠AGE=34°,∴∠DGE=146°,由折叠可得,∠DGH=∠EGH=12∠DGE=73°,∵AD∥BC,∴∠BHG=∠DGH=73°,∵EG∥QH,∴∠QHG=180°﹣∠EGH=107°,∴∠BHQ=∠QHG﹣∠BHG=107°﹣73°=34°.故选:B.4.(3分)如图,AB是⊙O的直径,AC,CD是⊙O的两条弦,CD⊥AB,连接OD,若∠CAB=20°,则∠BOD的度数是()A.10°B.20°C.30°D.40°【解答】解:连接AD,如图所示:∵AB是⊙O的直径,CD⊥AB,∴BĈ=BD̂,∴∠BAD=∠BAC=20°.∴∠BOD=2∠BAD=40°,故选:D.5.(3分)某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试,因此计算其他39人的平均分为90分,方差s2=39.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大B.平均分不变,方差变小C.平均分和方差都不变D.平均分和方差都改变【解答】解:∵小亮的成绩和其他39人的平均数相同,都是90分,∴该班40人的测试成绩的平均分为90分,方差变小,故选:B.6.(3分)下列关于二次函数y=﹣x2﹣2x+3说法正确的是()A.当x=﹣1时,函数最大值4B.当x=﹣1时,函数最大值2C.将其图象向上平移3个单位后,图象经过原点D.将其图象向左平移3个单位后,图象经过原点【解答】解:y=﹣x2﹣2x+3=﹣(x+1)2+4.A、抛物线顶点坐标是(﹣1,4),且开口方向向下,则当x=﹣1时,函数最大值4,故本选项正确.B、抛物线顶点坐标是(﹣1,4),且开口方向向下,则当x=﹣1时,函数最大值4,故本选项错误.C、将其图象向上平移3个单位后得到y=﹣(x+1)2+7,则当x=0时,y=6,即该函数图象不经过原点,故本选项错误.D、将其图象向左平移3个单位后得到y=﹣(x+4)2+4,则当x=0时,y=﹣18,即该函数图象不经过原点,故本选项错误.故选:A.二.填空题(共6小题,满分24分,每小题4分)7.(4分)因式分解:﹣5a3+10a2﹣15a=﹣5a(a2﹣2a+3).【解答】解:原式=﹣5a(a2﹣2a+3).故答案是:﹣5a(a2﹣2a+3).8.(4分)若2√2−x在实数范围内有意义,则实数x的取值范围是x≤2.【解答】解:若2√2−x在实数范围内有意义,则2﹣x≥0,解得:x≤2.故答案为:x≤2.9.(4分)数轴上有两个实数a,b,且a>0,b<0,a+b<0,则四个数a,b,﹣a,﹣b的大小关系为b<﹣a<a<﹣b(用“<”号连接).【解答】解:∵a >0,b <0,a +b <0,∴|b |>a ,∴﹣b >a ,b <﹣a ,∴四个数a ,b ,﹣a ,﹣b 的大小关系为b <﹣a <a <﹣b .故答案为:b <﹣a <a <﹣b10.(4分)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为 {4x +6y =483x +5y =38. 【解答】解:设马每匹x 两,牛每头y 两,根据题意可列方程组为:{4x +6y =483x +5y =38. 故答案是:{4x +6y =483x +5y =38. 11.(4分)如图,在▱ABCD 中,E 为DC 边的中点,AE 交BD 于点O ,如果S △AOB =8,那么S △DOE 为 2 ,S △AOD 为 4 .【解答】解:在▭ABCD 中,∵AB ∥CD ,∴△ABO ∽△EDO ,∴AB :DE =OB :OD =2:1,∴△ABO 与△EDO 的面积的比是4:1,△ABO 与△ADO 的面积的比是2:1.∵S △AOB =8,∴S △EOD =2,S △AOD =4.故答案为:2,4.12.(4分)把一根9m 长的钢管截成1m 长和2m 长两种规格均有的短钢管,且没有余料,设某种截法中1m 长的钢管有a 根,则a 的值可能有 4 种.【解答】解:设某种截法中1m 长的钢管有a 根,2m 长的钢管有b 根,依题意,得:a +2b =9,∴a =9﹣2b .∵a ,b 均为正整数,∴当b =1时,a =7;当b =2时,a =5;当b =3时,a =3;当b =4时,a =1,∴a 的值可能有4种.故答案为:4.三.解答题(共8小题,满分58分)13.(7分)计算:4cos30°+(π﹣1)0−√12+|√3−2|.【解答】解:4cos30°+(π﹣1)0−√12+|√3−2|=4×√32+1﹣2√3+2−√3=2√3+3﹣3√3=3−√314.(7分)先化简,再求值:a−2a+1÷(a ﹣1−3a+1),其中a =√3−2. 【解答】解:原式=a−2a+1÷(a+1)(a−1)−3a+1=a−2a+1÷a 2−4a+1 =a−2a+1•a+1(a+2)(a−2)=1a+2,当a =√3−2时,原式=1a+2 =1√3−2+2 =√33.15.(7分)已知:如图,四边形ABCD 中,AD ∥BC ,对角线BD 平分∠ABC ,且BD ⊥DC ,E 为BC 中点,AB =DE .(1)求证:四边形ABED 是菱形;(2)若∠C =60°,CD =4,求四边形ABCD 的面积.【解答】证明:(1)∵BD ⊥DC ,E 为BC 中点,∴BE =ED =EC ,∴∠DBE =∠BDE ;又AD ∥BC ,∴∠ADB =∠DBE ,∴∠ADB =∠BDE ,∵AB =AD ,∴∠ABD =∠ADB∴∠BDE =∠ABD∴DE ∥AB又∵AD ∥BC ,即AD ∥BE ,∴四边形ABCD 为平行四边形又AB =AD ,∴平行四边形ABCD 为菱形.(2)由(1)得,BE =EC =AD =DE ,∵∠C =60°,∴△DEC 为等边三角形.作DF ⊥BC 于F ,则DF =√32DC =2√3,BC =2BE =2AD =8,∴S 梯形ABCD =12(AD +BC )×DF =12×(4+8)×2√3=12√3. 16.(7分)已知关于x 的一元二次方程k 2x 2+(2k +1)x +1=0有两个实数根.(1)求k 的取值范围;(2)若此方程至少有一个有理数根,写出一个k 的值,并求此时方程的根.【解答】解:(1)∵关于x 的一元二次方程(k 2x 2+(2k +1)x +1=0有实数根,∴{k 2≠0△=(2k +1)2−4k 2≥0, 解得:k ≥−14且k ≠0.(2)关于x 的一元二次方程k 2x 2+(2k +1)x +1=0的解为x =−(2k+1)±√4k+12k 2,∵此方程至少有一个有理数根,∴4k +1是完全平方数,当k =2(不唯一)时,方程的根为x =−5±38, ∴x 1=﹣1,x 2=−14.17.(7分)如图,C ,D 是以AB 为直径的⊙O 上的点,AĈ=BC ̂,弦CD 交AB 于点E . (1)当PB 是⊙O 的切线时,求证:∠PBD =∠DCB ;(2)已知OA =4,E 是半径OA 的中点,求线段DE 的长.【解答】(1)证明:∵AB 是⊙O 的直径,∴∠ADB =90°,即∠BAD +∠ABD =90°,∵PB 是⊙O 的切线,∴∠ABP =90°,即∠PBD +∠ABD =90°,∴∠BAD =∠PBD ,又∵∠BAD =∠DCB ,∴∠PBD =∠DCB ;(2)解:连接OC ,如图:∵AĈ=BC ̂,AB 是直径, ∴∠AOC =∠BOC =90°,∵OA =4,E 是半径OA 的中点,∴AE =OE =12OA =2,∴CE =√OC 2+OE 2=√42+22=2√5,BE =OB +OE =6,∵∠A =∠C 、∠AED =∠CEB ,∴△ADE ∽△CBE ,∴DE BE =AE CE ,∴AE •BE =CE •DE .即2×6=2√5×DE ,解得:DE=6√5 5.18.(7分)在平面直角坐标系xOy中,二次函数y=ax2﹣2kx+k2+k图象的对称轴为直线x =k,且k≠0,顶点为P.(1)求a的值;(2)求点P的坐标(用含k的式子表示);(3)已知点A(0,1),B(2,1),若函数y=ax2﹣2kx+k2+k(k﹣1≤x≤k+1)的图象与线段AB恰有一个公共点,直接写出k的取值范围.【解答】解:(1)∵二次函数y=ax2﹣2kx+k2+k图象的对称轴为直线x=k,∴−−2k2a=k,∴a=1;(2)把a=1代入y=ax2﹣2kx+k2+k得,y=x2﹣2kx+k2+k,当x=k时,y=k2﹣2k2+k2+k=k,∴顶点P(k,k);(3)∵函数y=ax2﹣2kx+k2+k=x2﹣2kx+k2+k=(x﹣k)2+k,∴抛物线的开口向上,抛物线的对称轴为x=k,顶点为(k,k),∵点A(0,1),B(2,1),∴①当k >1时,抛物线的顶点在直线AB 的上方,抛物线与直线AB 没有公共点,则函数y =ax 2﹣2kx +k 2+k (k ﹣1≤x ≤k +1)的图象与线段AB 没有公共点;②当k =1时,顶点(1,1)在线段AB 上,即函数y =ax 2﹣2kx +k 2+k (k ﹣1≤x ≤k +1)的图象与线段AB 恰有一个公共点;③当k <0时,则x =k +1或k ﹣1时,y =1+k <1,函数y =ax 2﹣2kx +k 2+k (k ﹣1≤x ≤k +1)的图象在线段AB 下方,没有公共点;④当k =0时,函数y =ax 2﹣2kx +k 2+k =x 2,与线段AB 恰有一个公共点(1,1); ⑤当0<k <1时,若函数图象过A (0,1)时,k 2+k =1,解得k =−1−√52<0(舍去),或k =−1+√52, ∵0<−1+√52<1, ∴根据抛物线的对称性知,当−1+√52≤k <1时,函数y =ax 2﹣2kx +k 2+k (k ﹣1≤x ≤k +1)的图象与线段AB 有两个公共点,当0<k <−1+√52时,函数y =ax 2﹣2kx +k 2+k (k ﹣1≤x ≤k +1)的图象与线段AB 恰有一个公共点;综上所述:若函数y =ax 2﹣2kx +k 2+k (k ﹣1≤x ≤k +1)的图象与线段AB 恰有一个公共点,则0≤k <−1+√52或k =1; 19.(8分)如图,△ABC 三个顶点的坐标分别为A (1,1),B (4,2),C (3,4);(1)请在图中作出△ABC 关于原点对称的图形△A 1B 1C 1.(2)请在图中作出△ABC 绕点O 顺时针方向旋转90°后得到的图形△A 2B 2C 2.【解答】解:(1)如图所示,△A 1B 1C 1即为所求;(2)如图所示,△A2B2C2即为所求.20.(8分)如图将正方形ABCD绕点A顺时针旋转角度α(0°<α<90°)得到正方形AB′C′D′.(1)如图1,B′C′与AC交于点M,C′D′与AD所在直线交于点N,若MN∥B′D′,求α;(2)如图2,C′B′与CD交于点Q,延长C′B′与BC交于点P,当α=30°时.①求∠DAQ的度数;②若AB=6,求PQ的长度.【解答】解:(1)如图1中,∵MN∥B′D′,∴∠C′MN=∠C′B′D′=45°,∠C′NM=∠C′D′B′=45°,∴∠C′MN=∠C′NM,∴C′M=C′N,∵C′B′=C′D′,∴MB′=ND′,∵AB′=AD′,∠AB′M=∠AD′N=90°,∴△AB′M≌△AD′N(SAS),∴∠B′AM=∠D′AN,∵∠B′AD′=90°,∠MAN=45°,∴∠B′AM=∠D′AN=22.5°,∵∠BAC=45°,∴∠BAB′=22.5°,∴α=22.5°.(2)①如图2中,∵∠AB′Q=∠ADQ=90°,AQ=AQ,AB′=AD,∴Rt△AQB′≌Rt△AQD(HL),∴∠QAB′=∠QAD,∵∠BAB′=30°,∠BAD=90°,∴∠B′AD=30°,∴∠QAD=12∠B′AD=30°.②如图2中,连接AP,在AB上取一点E,使得AE=EP,连接EP.设PB=a.∵∠ABP=∠AB′P=90°,AP=AP,AB=AB′,∴Rt△APB≌Rt△APB′(HL),∴∠BAP=∠P AB′=15°,∵EA=EP,∴∠EAP=∠EP A=15°,∴∠BEP=∠EAP+∠EP A=30°,∴PE=AE=2a,BE=√3a,∵AB=6,∴2a+√3a=6,∴a=6(2−√3).∴PB=6(2−√3),∴PC=BC﹣PB=6﹣6(2−√3)=6√3−6,∵∠CPQ+∠BPB′=180°,∠BAB′+∠BPB′=180°,∴∠CPQ=∠BAB′=30°,∴PQ=PCcos30°=6√3−632=12﹣4√3.。
2020年北京八中中考数学模拟试卷(含答案解析)
2020年北京八中中考数学模拟试卷一、选择题(本大题共6小题,共30.0分)1.2020年6月23日,北斗三号最后一颗全球组网卫星从西昌卫星发射中心发射升空,6月30日成功定点于距离地球36000公里的地球同步轨道.将36000用科学记数法表示应为()A. 0.36×105B. 3.6×105C. 3.6×104D. 36×1032.下列运算中正确的是()A. 3a+2a2=5a3B. 6a3÷2a2=3aC. (3ab)2=6a2b2D. 3a3×2a2=5a53.若√(a−b)2=b−a,则()A. a>bB. a<bC. a≥bD. a≤b4.下图是某市一天的温度随时间变化的图象,通过观察可知下列说法错误的是()A. 这天15点时温度最高B. 这天3点时温度最低C. 这天最高温度与最低温度的差是13℃D. 这天21点时温度是30℃5.不论a,b取何实数,代数式a2+b2−4a−6b+13的值一定是()A. 负数B. 非负数C. 正数D. 非正数6.已知点A(m−1,m+4)在y轴上,则点A的坐标是()A. (0,3)B. (0,5)C. (5,0)D. (3,0)二、填空题(本大题共6小题,共30.0分)7.二次根式√a−2中字母a的取值范围是______.8.将2x2−8分解因式的结果是______ .9.如图,直线y=kx+b与x轴交于点(2,0),若y<0时,则x的取值范围是_________10.如果直线y=kx+b经过第一、三、四象限,那么直线y=−bx+k经过第__________象限.11.小明同学将(图)中的阴影部分(边长为m的大正方形中有一个边长为n的小正方形),拼成了一个长方形(如图),比较两图阴影部分的面积,可以得到的结论是______ (用含m,n的式子表示)12.抛物线y=2x2−4x+3的顶点坐标是______.三、计算题(本大题共3小题,共18.0分)|−(π−√2)0−tan30°.13.计算:(√3)2+|−1314.先化简,再求值(x−1)2+x(3−x),其中x=1.215.已知关于x的一元二次方程mx2+2x−1=0有两个不相等的实数根,求m的取值范围.四、解答题(本大题共3小题,共24.0分)16.(1)解分式方程:x−2x+2−16x2−4=1(2)先化简,再求值:x2+2x+1x2−1−xx−1,其中x满足不等式组{x−1⩾0x−3<0,且x为整数.17.在平面直角坐标系xOy中,直线y=2x−6与双曲线y=kx(k≠0)的一个交点为A(m,2),与x 轴交于点B,与y轴交于点C.(1)求点B的坐标及k的值;(2)若点P在x轴上,且ΔAPC的面积为16,求点P的坐标.18.如图所示,已知抛物线y=−2x2−4x的图象E,将其向右平移两个单位后得到图象F.求图象F所表示的抛物线的解析式.【答案与解析】1.答案:C解析:解:36000=3.6×104,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.2.答案:B解析:解:A、原式不能合并,不符合题意;B、原式=3a,符合题意;C、原式=9a2b2,不符合题意;D、原式=6a5,不符合题意,故选:B.各项计算得到结果,即可作出判断.此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.3.答案:D解析:直接利用二次根式的性质√a2=|a|,进而分析得出答案即可.解:∵√(a2=b−a,∴b−a≥0,∴a≤b.故选D.4.答案:C解析:根据所给条件找到对应的图象的信息,逐一判断即可.解:横轴表示时间,纵轴表示温度.温度最高应找到图象的最高点所对应的值:为15时,36℃,故A选项正确;温度最低应找到图象的最低点所对应的值:为3时,22℃,故B选项正确;这天最高温度与最低温度的差为36−22=14℃,故C选项错误;从图象看出,这天21时的温度是30℃,故D选项正确.故选C.5.答案:B解析:【试题解析】此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.原式利用完全平方公式变形,根据完全平方式恒大于等于0,判断即可得到结果.解:原式=a2−4a+4+b2−6b+9=(a−2)2+(b−3)2,∵(a−2)2≥0,(b−3)2≥0,∴(a−2)2+(b−3)2≥0,则不论a、b取何有理数,代数式a2+b2−4a−6b+13的值总是非负数.故选B.6.答案:B解析:本题考查了坐标轴上的点的坐标的特征,解决本题的关键是记住y轴上点的特点为横坐标为0.在y轴上,根据横坐标为0,就能求得m的值,求得m的值后即可求得点A的坐标.解:∵点A(m−1,m+4)在y轴上,∴点的横坐标是0,∴m−1=0,解得m=1,∴m+4=5,点的纵坐标为5,∴点A的坐标是(0,5).故选B.7.答案:a≥2.解析:[分析]根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.[详解]解:由二次根式的被开方数大于等于0得:a−2≥0,解得:a≥2.故答案为:a≥2.[点睛]本题考查的是二次根式有意义的条件,熟知二次根式具有非负性是解答此题的关键.8.答案:2(x+2)(x−2)解析:解:原式=2(x2−4)=2(x+2)(x−2),故答案为:2(x+2)(x−2)原式提取2,再利用平方差公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.9.答案:x>2解析:此题考查了一次函数与不等式,利用数形结合是解题的关键.根据函数的图象直接解答即可.解:由直线y=kx+b的图象可知,当x>2时函数的图象在x轴的下方.故答案为x>2.10.答案:一、二、三解析:本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b 所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.根据直线y=kx+b经过第一、三、四象限可以确定k、b的符号,则易求−b的符号,由−b,k的符号来求直线y=−bx+k所经过的象限.解:∵直线y=kx+b经过第一、三、四象限,∴k>0,b<0,∴−b>0,∴直线y=−bx+k经过第一、二、三象限.故答案是:一、二、三.11.答案:m2−n2=(m−n)(m+n)解析:解:根据题意得:(1)中阴影部分的面积为:m2−n2;(2)中阴影部分的面积为:(m+n)(m−n).∵两图形阴影面积相等,∴可以得到的结论是:m2−n2=(m−n)(m+n).故答案为:m2−n2=(m−n)(m+n).根据题意分别求得(1)与(2)中阴影部分的面积,由两图形阴影面积相等,即可求得答案.本题主要考查了平方差公式的几何表示,表示出图形阴影部分面积是解题的关键.12.答案:(1,1)解析:解:解法1:利用公式法y=ax2+bx+c的顶点坐标公式为(−b2a ,4ac−b24a),代入数值求得顶点坐标为(1,1).解法2:利用配方法y=2x2−4x+3=2(x2−2x+1)+1=2(x−1)2+1,故顶点的坐标是(1,1).已知抛物线解析式为一般式,利用公式法可求顶点坐标,也可以用配方法求解.求抛物线的顶点坐标、对称轴及最值通常有两种方法:(1)公式法;(2)配方法.13.答案:解:(√3)2+|−13|−(π−√2)0−tan30°=3+13−1−√33=7−√33解析:首先计算乘方,然后从左向右依次计算,求出算式(√3)2+|−13|−(π−√2)0−tan30°的值是多少即可.此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.14.答案:解:原式=x2−2x+1+3x−x2=x+1,当x=12时,原式=12+1=32.解析:根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.15.答案:解:∵关于x的一元二次方程mx2+2x−1=0有两个不相等的实数根,∴m≠0且△>0,即22−4⋅m⋅(−1)>0,解得m>−1,∴m的取值范围为m>−1且m≠0.∴当m>−1且m≠0时,关于x的一元二次方程mx2+2x−1=0有两个不相等的实数根.解析:由关于x的一元二次方程mx2+2x−1=0有两个不相等的实数根,根据一元二次方程的定义和根的判别式的意义可得m≠0且△>0,即22−4⋅m⋅(−1)>0,两个不等式的公共解即为m的取值范围.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根;也考查了一元二次方程的定义.16.答案:解:(1)∵x−2x+2−16x2−4=1,∴x2−4x+4−16=x2−4,整理得:4x=−8,解得:x=−2,当x=−2时,x+2=0,∴x=−2是该方程的增根,∴该方程无解;(2)解不等式组{x−1⩾0x−3<0,得:1≤x<3,∵x为整数,∴x=1或2,原式=x2+2x+1−x2−xx2−1=1x−1,∵x−1≠0,∴x≠1,∴x=2,∴原式=12−1=1.解析:本题主要考查的是解分式方程,分式的化简求值,一元一次不等式组的解法的有关知识.(1)先将分式方程转化为整式方程,然后再求解即可;(2)先解不等式组得到不等式组的解集,然后求出x,最后将给出的分式进行化简,最后代入求值即可.17.答案:解:(1)令y=0,则2x−6=0,可得x=3,∴直线y=2x−6与x轴交点B的坐标为(3,0),将A(m,2),代入y=2x−6,得m=4,将A(4,2),代入y=kx,得k=8,(2)过点A作AM⊥x轴于点M,∵A(4,2),C(0,−6),∴OC=6,AM=2,∵S△APC=S△APB+S△CPB═12×PB×2+12×PB×6=4PB,∵S△APC=16,∴PB=4,∴P1(−1,0),P2(7,0)解析:本题主要考查了一次函数和反比例函数图象上点的特点,熟悉一次函数和反比例函数性质是解答此题的关键.(1)把A(m,2)代入y=2x−6,即可求出m,然后把A代入线y=k,即可求出k;通过一次函数y=x2x−6,令y=0,即可求出B点;(2)过点A作AM⊥x轴于点M,通过三角形的面积计算,即可求出PB,最后算出P点坐标.18.答案:解:图象E所表示的抛物线的解析式为y=−2x2−4x=−2(x+1)2+2,根据平移的性质可得出图象F所表示的抛物线的解析式为y=−2[(x−2)+1]2+2=−2x2+4x.解析:将原抛物线的解析式变形为顶点式,再根据平移的性质即可得出平移后的抛物线的解析式.本题考查了二次函数图象与几何变换,熟练掌握图象平移是x、y值的变化是解题的关键.。
2020-2021北京第八中学初三数学下期中模拟试卷含答案
2020-2021北京第八中学初三数学下期中模拟试卷含答案一、选择题1.有一块直角边AB=3cm,BC=4cm的Rt△ABC的铁片,现要把它加工成一个正方形(加工中的损耗忽略不计),则正方形的边长为()A.67B.3037C.127D.60372.下列说法正确的是( )A.小红小学毕业时的照片和初中毕业时的照片相似B.商店新买来的一副三角板是相似的C.所有的课本都是相似的D.国旗的五角星都是相似的3.已知一次函数y1=x-1和反比例函数y2=2x的图象在平面直角坐标系中交于A、B两点,当y1>y2时,x的取值范围是( )A.x>2B.-1<x<0C.x>2,-1<x<0D.x<2,x>04.如果反比例函数y=kx(k≠0)的图象经过点(﹣3,2),则它一定还经过()A.(﹣12,8)B.(﹣3,﹣2)C.(12,12)D.(1,﹣6)5.如图,河坝横断面迎水坡AB的坡比是1:3(坡比是坡面的铅直高度BC与水平宽度AC之比),坝高3mBC ,则坡面AB的长度是().A.9m B.6m C.63m D.33m6.如图,线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,则端点C的坐标分别为()A .(4,4)B .(3,3)C .(3,1)D .(4,1)7.已知2x =3y ,则下列比例式成立的是( )A .B .C .D .8.如图所示,在平行四边形ABCD 中,AC 与BD 相交于点O ,E 为OD 的中点,连接AE 并延长交DC 于点F ,则DF :FC=( )A .1:3B .1:4C .2:3D .1:2 9.如图,AB 是⊙O 的直径,弦CD 交AB 于点P ,AP=2,BP=6,∠APC=30°,则CD 的长为( )A .15B .25C .215D .810.图(1)所示矩形ABCD 中,BC x =,CD y =,y 与x 满足的反比例函数关系如图(2)所示,等腰直角三角形AEF 的斜边EF 过点C ,M 为EF 的中点,则下列结论正确的是( )A .当3x =时,EC EM <B .当9y =时,EC EM <C .当x 增大时,EC CF ⋅的值增大D .当x 增大时,BE DF ⋅的值不变11.在△ABC中,若|sinA-32|+(1-tanB)2=0,则∠C的度数是( )A.45°B.60°C.75°D.105°12.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A.12B.24C.14D.13二、填空题13.如图是由棱长相等的小立方体摆成的几何体的主视图与俯视图,根据视图可以判断组成这个几何体至少要________个小立方体.14.如图,四边形ABCD与四边形EFGH位似,其位似中心为点O,且43OEEA=,则FGBC=______.15.如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(3a,a)是反比例函数kyx=(k>0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为▲.16.如图,在平面直角坐标系中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,点A,B,E在x轴上,若正方形BEFG的边长为6,则点C的坐标为________.17.如图,比例规是一种画图工具,它由长度相等的两脚AD和BC交叉构成.利用它可以把线段按一定的比例伸长或缩短,如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OD,OB=3OC),然后张开两脚,这时CD=2,则AB=_____.18.如果a c eb d f===k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=_____.19.如图所示,将一副三角板摆放在一起,组成四边形ABCD,∠ABC=∠ACD=90°,∠ADC=60°,∠ACB=45°,连接BD,则tan∠CBD的值为_____.20.已知CD是Rt△ABC斜边上的高线,且AB=10,若BC=8,则cos∠ACD= ______.三、解答题21.如图,在Rt ABC V 中,90BAC ∠=o ,AD BC ⊥于点D ,求证:2AD CD BD =⋅.22.计算:cos 45tan 45sin 60cot 60cot 452sin 30︒⋅︒-︒⋅︒︒+︒. 23.如图,已知反比例函数11k y x =(k 1>0)与一次函数2221(0)y k x k =+≠相交于A 、B 两点,AC ⊥x 轴于点C . 若△OAC 的面积为1,且tan ∠AOC =2 .(1)求出反比例函数与一次函数的解析式;(2)请直接写出B 点的坐标,并指出当x 为何值时,反比例函数y 1的值大于一次函数y 2的值.24.如图,某市郊外景区内一条笔直的公路l 经过A 、B 两个景点,景区管委会又开发了风景优美的景点C .经测量,C 位于A 的北偏东60︒的方向上,B 的北偏东30°的方向上,且10AB km =.(1)求景点B 与C 的距离.(2)求景点A 与C 的距离.(结果保留根号)25.如图,四边形ABCD 中,AC 平分DAB ∠,2AC AB AD =⋅;90ADC ∠=o ,E 为AB 的中点,()1求证:ADC ACB △∽△;(2)CE 与AD 有怎样的位置关系?试说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】试题解析:如图,过点B 作BP ⊥AC ,垂足为P ,BP 交DE 于Q .∵S △ABC =12AB•BC=12AC•BP , ∴BP=·341255AB BC AC ⨯==. ∵DE ∥AC ,∴∠BDE=∠A ,∠BED=∠C ,∴△BDE ∽△BAC , ∴DE BQ AC BP =. 设DE=x ,则有:1251255x x -=,解得x=6037, 故选D . 2.D解析:D【解析】【分析】观察图形,看它们的形状是否相同,形状相同的两个图形是相似图形.【详解】A .小明上幼儿园时的照片和初中毕业时的照片,形状不相同,不相似;B .商店新买来的一副三角板,形状不相同,不相似;C .所有的课本都是相似的,形状不相同,不相似;D .国旗的五角星都是相似的,形状相同,相似.故选D .【点睛】本题考查了相似图形,相似图形是指形状相同的图形,仔细观察看每组图形是否相同,如果相同就相似,否则就不相似.3.C解析:C【解析】【分析】因为一次函数和反比例函数交于A 、B 两点,可知x-1=2x,解得x=-1或x=2,进而可得A 、B 两点的坐标,据此,再结合函数解析式画图,据图可知当x>2时,以及当-1<x<0时,y 1>y 2.【详解】解方程x −1=2x,得 x =−1或x =2,那么A 点坐标是(−1,−2),B 点坐标是(2,1),如右图,当x >2时, 12y y >,以及当−1<x <0时, 12y y >.故选C.【点睛】本题考查了反比例函数与一次函数交点问题,解题的关键是能根据解析式画出函数的图象,并能根据图象解決问题4.D解析:D【解析】【分析】分别计算各点的横纵坐标之积,然后根据反比例函数图象上点的坐标特征进行判断.【详解】∵反比例函数y=k x(k≠0)的图象经过点(−3,2), ∴k=−3×2=−6, ∵−12×8=−4≠−6, −3×(−2)=6≠−6, 12×12=6≠−6, 1×(−6)=−6,则它一定还经过(1,−6).故答案选D.【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是熟练的掌握反比例函数图象上点的坐标特征.5.B解析:B【解析】由图可知,:BC AC =tan BAC ∠=, ∴30BAC ∠=︒, ∴36m 1sin 302BC AB ===︒. 故选B . 6.A解析:A【解析】【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出C 点坐标.【详解】∵以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,∴A点与C点是对应点,∵C点的对应点A的坐标为(2,2),位似比为1:2,∴点C的坐标为:(4,4)故选A.【点睛】本题考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.7.C解析:C【解析】【分析】把各个选项依据比例的基本性质,两内项之积等于两外项之积,已知的比例式可以转化为等积式2x=3y,即可判断.【详解】A.变成等积式是:xy=6,故错误;B.变成等积式是:3x+3y=4y,即3x=y,故错误;C.变成等积式是:2x=3y,故正确;D.变成等积式是:5x+5y=3x,即2x+5y=0,故错误.故选C.【点睛】本题考查了判断两个比例式是否能够互化的方法,即转化为等积式,判断是否相同即可.8.D解析:D【解析】解:在平行四边形ABCD中,AB∥DC,则△DFE∽△BAE,∴DF:AB=DE:EB.∵O为对角线的交点,∴DO=BO.又∵E为OD的中点,∴DE=14DB,则DE:EB=1:3,∴DF:AB=1:3.∵DC=AB,∴DF:DC=1:3,∴DF:FC=1:2.故选D.9.C解析:C【解析】【分析】作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA-AP=2,接着在Rt△OPH中根据含30°的直角三角形的性质计算出OH=12OP=1,然后在Rt△OHC中利用勾股定理计算出【详解】作OH⊥CD于H,连结OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=30°,∴OH=12OP=1,在Rt△OHC中,∵OC=4,OH=1,∴22=15OC OH∴15故选C.【点睛】本题主要考查圆中的计算问题,熟练掌握垂径定理、含30°的直角三角形的性质以及勾股定理等知识点,掌握数形结合的思想是解答的关键10.D解析:D【解析】【分析】由于等腰直角三角形AEF的斜边EF过C点,则△BEC和△DCF都是直角三角形;观察反比例函数图像得出反比例函数解析式为y=9x;当x=3时,y=3,即BC=CD=3,根据等腰直角三角形的性质得2,CF=32,则C点与M点重合;当y=9时,根据反比例函数的解析式得x=1,即BC=1,CD=9,所以2,而2;利用等腰直角三角形的性质BE•DF=BC•CD=xy,然后再根据反比例函数的性质得BE•DF=9,其值为定值;由于2x×2=2xy,其值为定值.【详解】解:因为等腰直角三角形AEF的斜边EF过C点,M为EF的中点,所以△BEC和△DCF都是直角三角形;观察反比例函数图像得x=3,y=3,则反比例解析式为y=9x.A、当x=3时,y=3,即BC=CD=3,所以22,22,C点与M点重合,则EC=EM,所以A选项错误;B、当y=9时,x=1,即BC=1,CD=9,所以EC=2,EF=102,EM=52,所以B选项错误;C、因为EC•CF=2x•2y=2×xy=18,所以,EC•CF为定值,所以C选项错误;D、因为BE•DF=BC•CD=xy=9,即BE•DF的值不变,所以D选项正确.故选:D.【点睛】本题考查了动点问题的函数图像:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图像,注意自变量的取值范围.11.C解析:C【解析】【分析】先根据非负数的性质求出sinA及tanB的值,再根据特殊角的三角函数值求出∠A及∠B的值,由三角形内角和定理即可得出结论.【详解】∵|sin A−3|+(1−tan B)2=0,∴sinA=3,tanB=1,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=180°-60°-45°=75°.故选C.【点睛】(1)非负数的性质:几个非负数的和等0,这几个非负数都为0;(2)三角形内角和等于180°.12.D解析:D【解析】【分析】过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB.【详解】过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB=13 CDBD=,∴tanB′=tanB=13.故选D.【点睛】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.二、填空题13.8【解析】由俯视图可以看出组成这个几何体的底面小正方体有5个由主视图可知第二层最少有2个第三层最少有1个所以组成这个几何体的小正方体的个数最少为5+2+1=8个点睛:本题主要考查学生由三视图判断几何解析:8【解析】由俯视图可以看出组成这个几何体的底面小正方体有5个,由主视图可知第二层最少有2个,第三层最少有1个,所以组成这个几何体的小正方体的个数最少为5+2+1=8个.点睛:本题主要考查学生由三视图判断几何体,同时也体现了对空间想象能力方面的考查.做题要掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”.14.【解析】【分析】利用位似图形的性质结合位似比等于相似比得出答案【详解】四边形ABCD与四边形EFGH位似其位似中心为点O且则故答案为:【点睛】本题考查了位似的性质熟练掌握位似的性质是解题的关键解析:4 7【解析】【分析】利用位似图形的性质结合位似比等于相似比得出答案.【详解】Q四边形ABCD与四边形EFGH位似,其位似中心为点O,且OE4 EA3=,OE4 OA7∴=,则FG OE4 BC OA7==,故答案为:47.【点睛】本题考查了位似的性质,熟练掌握位似的性质是解题的关键.15.【解析】待定系数法曲线上点的坐标与方程的关系反比例函数图象的对称性正方形的性质【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的设小正方形的边长为b 图中阴影部分的面积等于9可求出b 解析:3y x=. 【解析】待定系数法,曲线上点的坐标与方程的关系,反比例函数图象的对称性,正方形的性质.【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的,设小正方形的边长为b ,图中阴影部分的面积等于9可求出b 的值,从而可得出直线AB 的表达式,再根据点P (3a ,a )在直线AB 上可求出a 的值,从而得出反比例函数的解析式: ∵反比例函数的图象关于原点对称,∴阴影部分的面积和正好为小正方形的面积. 设正方形的边长为b ,则b 2=9,解得b=6.∵正方形的中心在原点O ,∴直线AB 的解析式为:x=3.∵点P (3a ,a )在直线AB 上,∴3a=3,解得a=1.∴P (3,1).∵点P 在反比例函数3y x=(k >0)的图象上,∴k=3×1=3. ∴此反比例函数的解析式为:. 16.【解析】【分析】直接利用位似图形的性质结合相似比得出AB 的长进而得出△OAD ∽△OBG 进而得出AO 的长即可得出答案【详解】∵正方形BEFG 的边长是6∴∵两个正方形的相似比为∴∴∵AD ∥BG ∴△OAD解析:(3,2)【解析】【分析】直接利用位似图形的性质结合相似比得出AB 的长,进而得出△OAD ∽△OBG ,进而得出AO 的长,即可得出答案.【详解】.∵正方形BEFG 的边长是6,∴6BE EF ==.∵两个正方形的相似比为13,∴163CB CB EF ==. ∴2AB BC ==,.∵AD ∥BG ,∴△OAD ∽△OBG ,∴13OA OB =,即213OB OB -=. ∴3OB =.∴点C 的坐标为(3,2). 【点睛】本题主要考查了位似变换以及相似三角形的判定与性质,正确得出AO 的长是解题关键. 17.6【解析】【分析】首先根据题意利用两组对边的比相等且夹角相等的三角形是相似三角形判定相似然后利用相似三角形的性质求解【详解】∵OA =3OD OB =3CO ∴OA :OD =BO :CO =3:1∠AOB =∠DO解析:6【解析】【分析】首先根据题意利用两组对边的比相等且夹角相等的三角形是相似三角形判定相似,然后利用相似三角形的性质求解.【详解】∵OA =3OD ,OB =3CO ,∴OA :OD =BO :CO =3:1,∠AOB =∠DOC ,∴△AOB ∽△DOC ,∴31AO AB OD CD ==, ∴AB =3CD ,∵CD =2,∴AB =6,故答案为:6.【点睛】本题考查相似三角形的应用,解题的关键是熟练掌握相似三角形的判定方法,学会利用相似三角形的性质解决问题.18.3【解析】∵=k∴a=bkc=dke=fk∴a+c+e=bk+dk+fk=k(a+b+c)∵a+c+e=3(b+d+f)∴k=3故答案为:3解析:3【解析】∵a c eb d f===k,∴a=bk,c=dk,e=fk,∴a+c+e=bk+dk+fk=k(a+b+c),∵a+c+e=3(b+d+f),∴k=3,故答案为:3.19.【解析】【分析】如图所示连接BD过点D作DE垂直于BC的延长线于点E 构造直角三角形将∠CBD置于直角三角形中设CE为x根据特殊直角三角形分别求得线段CDACBC从而按正切函数的定义可解【详解】解:如解析:31 -【解析】【分析】如图所示,连接BD,过点D作DE垂直于BC的延长线于点E,构造直角三角形,将∠CBD置于直角三角形中,设CE为x,根据特殊直角三角形分别求得线段CD、AC、BC,从而按正切函数的定义可解.【详解】解:如图所示,连接BD,过点D作DE垂直于BC的延长线于点E,∵在Rt△ABC中,∠ACB=45°,在Rt△ACD中,∠ACD=90°∴∠DCE=45°,∵DE⊥CE∴∠CEB=90°,∠CDE=45°∴设DE=CE=x,则CD2x,在Rt△ACD中,∵∠CAD=30°,∴tan∠CAD=33=CDAC,则AC6x,在Rt △ABC 中,∠BAC =∠BCA =45°∴BC ,∴在Rt △BED 中,tan ∠CBD =DEBE故答案为:12. 【点睛】 本题考查了用定义求三角函数,同时考查了特殊角的三角函数值,如何作辅助线,是解题的关键.20.【解析】试题分析:根据同角的余角相等得:∠ACD=∠B 利用同角的余弦得结论解:∵CD 是Rt△ABC 斜边上的高线∴CD⊥AB∴∠A+∠ACD=90°∵∠ACB=90°∴∠B+∠A=90°∴∠ACD=∠ 解析:45【解析】试题分析:根据同角的余角相等得:∠ACD =∠B ,利用同角的余弦得结论.解:∵CD 是Rt △ABC 斜边上的高线,∴CD ⊥AB ,∴∠A +∠ACD =90°,∵∠ACB =90°,∴∠B +∠A =90°,∴∠ACD =∠B ,∴cos ∠ACD =cos ∠B =BC AB =810=45, 故答案为:45. 三、解答题21.见解析【解析】【分析】根据相似三角形的判定方法证明Rt △ABD ∽Rt △ADC ,即可得到BD :AD=AD :CD , 再利用比例性质可得.【详解】∵BD AC ⊥,∴ADB CDB 90∠∠==o ,∴BAD 90∠∠+=o B∵90BAC ∠=o∴90B C ∠+∠=o∴BAD ∠∠=C∴Rt ABD Rt CAD ∽V V ,∴BD :AD=AD :CD ,∴2AD CD BD =⋅.【点睛】考查了直角三角形性质的应用,判定三角形相似是解题的关键.22.14- . 【解析】试题分析:把特殊角的三角函数值代入运算即可.试题解析:原式112232212122=⋅--==+⨯ 23.(1)12y x=;21y x =+;(2)B 点的坐标为(-2,-1);当0<x <1和x <-2时,y 1>y 2.【解析】【分析】 (1)根据tan ∠AOC =AC OC=2,△OAC 的面积为1,确定点A 的坐标,把点A 的坐标分别代入两个解析式即可求解;(2)根据两个解析式求得交点B 的坐标,观察图象,得到当x 为何值时,反比例函数y 1的值大于一次函数y 2的值.【详解】解:(1)在Rt △OAC 中,设OC =m .∵tan ∠AOC =AC OC =2,∴AC =2×OC =2m . ∵S △OAC =12×OC×AC =12×m×2m =1,∴m 2=1.∴m =1(负值舍去). ∴A 点的坐标为(1,2).把A 点的坐标代入11k y x=中,得k 1=2. ∴反比例函数的表达式为12y x =. 把A 点的坐标代入221y k x =+中,得k 2+1=2,∴k 2=1.∴一次函数的表达式21y x =+.(2)B 点的坐标为(-2,-1).当0<x <1和x <-2时,y 1>y 2.【点睛】本题考查反比例及一次函数的的应用;待定系数法求解析式;图象的交点等,掌握反比例及一次函数的性质是本题的解题关键.24.(1)BC=10km ;(2)AC=103km. 【解析】 【分析】(1)由题意可求得∠C =30°,进一步根据等角对等边即可求得结果;(2)分别在Rt BCD ∆和Rt ACD ∆中利用锐角三角函数的知识解直角三角形即可求得结果.【详解】解:(1)过点C 作CD ⊥直线l ,垂足为D ,如图所示.根据题意,得:30CAD ∠=︒,60CBD ∠=︒,∴∠C =∠CBD -∠CAD =30°,∴∠CAD =∠C ,∴BC =AB =10km .(2) 在Rt BCD ∆中,sin CD CBD BC ∠=,∴sin 6053CD BC km ==o g , 在Rt ACD ∆中,1sin 2CD CAD AC ∠==,∴2103AC CD km ==.【点睛】本题考查了解直角三角形的应用,属于基本题型,熟练掌握锐角三角函数的知识是解题的关键.25.(1)详见解析;(2)CE ∥AD ,理由见解析.【解析】【分析】(1)证明∠DAC=∠CAB ,∠ADC=∠ACB=90°,即可解决问题;(2)根据直角三角形的性质,可得CE 与AE 的关系,根据等腰三角形的性质,可得∠EAC=∠ECA ,根据角平分线的定义,可得∠CAD=∠CAB ,根据平行线的判定,可得答案.【详解】证明:()1∵AC 平分DAB ∠,∴DAC CAB ∠=∠,∵90ADC ACB ∠=∠=o ,∴ADC ACB △∽△.(2)//CE AD;∵E是AB的中点,∴12CE AB AE==,∴EAC ECA∠=∠.∵AC平分DAB∠,∴CAD CAB∠=∠,∴CAD ECA=∠,∴//CE AD.【点睛】本题考查了相似三角形的判定与性质,解题的关键是熟练的掌握相似三角形的判定与性质.。
2020年北京八十中中考数学模拟试卷(3月份)(含答案解析)
2020年北京八十中中考数学模拟试卷(3月份)一、选择题(本大题共8小题,共24.0分)1.下列计算正确的是()A. (a3)2=a6B. a6÷a3=a2C. 2a−3a=aD. √−2a=√−2×√a2.数轴上A点表示的数的倒数是()A. 2B. −2C. 12D. −123.在3,√8,−4,√10这四个数中,最大的是()A. 3B. √8C. −4D. √104.如果方程2x+1=3与2−m−x3=0的解相同,那么m的值为()A. 7B. 0C. 3D. 55.如图是某几何体的三视图,其侧面积为()A. 6B. 4πC. 6πD. 12π6.如果m+n=1,那么代数式(2m+nm2−mn +1m)⋅(m2−n2)的值为()A. −3B. −1C. 1D. 37.ab22cd ÷−3ax4cd等于()A. 2b23x B. 32b2x C. −2b23xD. −3a2b2x8c2d28.如图,三个大小相同的正方形拼成六边形,一动点P从点A出发沿着A→B→C→D→E方向匀速运动,最后到达点E,运动过程中△PEF的面积(S)随时间(t)变化的图像大致是()A. B.C. D.二、填空题(本大题共8小题,共24.0分)9.函数y=√x+1+1x中自变量x的取值范围是______10.4a2−12a+9分解因式得______.11.如图,⊙O的直径BD=4,∠A=60°,则CD的长度为_______.12.关于x的一元二次方程x2−2x−m=0有两个不相等的实数根,则m的最小整数值是______.13.一组数据3,4,6,8,x的平均数是6,则这组数据的中位数是______ .14.要使关于x的方程x+1x+2−xx−1=mx2+x−2的解为负数,则m的取值范围是______.15.一箱苹果共80个,分给若干个教师和小朋友,小朋友每人分4个,教师每人分6个,刚好将这箱苹果分完,设小朋友有x人,教师有y人.(1)列出关于x,y的二元一次方程:__________;(2)若x=11,则y=__________;(3)若教师有4人,则小朋友有__________人.16.抛物线y=ax2+bx+c经过A(−2,4),B(6,4)两点,且顶点在x轴上,则该抛物线解析式为______.三、计算题(本大题共4小题,共26.0分)17.解不等式组:{3x−1>2(x+2) x+92<5x.18.解方程:2x2x−1+51−2x=3.19.如图,AB是⊙O的直径,DF⊥AB于点D,交弦AC于点E,FC=FE.(1)求证:FC是⊙O的切线;(2)若⊙O的半径为5,cos∠ECF=25,求弦AC的长.20.如图,在△ABC中,AB=BC,∠ABC=45°,点D是AC的中点,连接BD,作AE⊥BC于E,交BD于点F,点G是BC的中点,连接FG,过点B作BH⊥AB交FG的延长线于H.(1)若AB=3√2,求AF的长;(2)求证;BH+2CE=AB.四、解答题(本大题共4小题,共26.0分))−2−|−1+√3|+2sin60°+(−1−√3)0.21.计算:(1222.某数学兴趣小组对函数y=4x2+1的图象和性质进行探究,他们用描点法画此函数图象时,先列表如下(1)请补全此表;(2)根据表中数据,在如图坐标系中画出该函数的图象;(3)请写出此函数图象不同方面的三个性质;(4)若点(m,y1),(2,y2)都在此函数图象上,且y1≤y2,求m的取值范围.x……______ ______ ______ ______ 01234……y……______ ______ ______ ______ 42452541723.在平面直角坐标系xOy中,抛物线y=mx2−2mx+n(m≠0)与x轴交于点A,B,点A的坐标为(−2,0).(1)写出抛物线的对称轴;x−4m−n过点B,且与抛物线的另一个交点为C.(2)直线y=12①分别求直线和抛物线所对应的函数表达式;②点P为抛物线对称轴上的动点,过点P的两条直线l1:y=x+a和l2 :y=−x+b组成图形G.当图形G与线段BC有公共点时,直接写出点P的纵坐标t的取值范围.24.如图所示,在平面直角坐标系中,O为坐标原点,直线y=kx+b经过点A(−2,−1),交y轴负半轴于点B,且∠ABO=30°,过点A作直线AC⊥x轴于点C,点P在直线AC上.(1)k=______;b=______;(2)设△ABP的面积为S,点P的纵坐标为m.①当m>0时,求S与m之间的函数关系式;②当S=2时,求m的值;③当m>0且S=4时,以BP为边作等边△BPQ,请直接写出符合条件的所有点Q的坐标.【答案与解析】1.答案:A解析:解:A、(a3)2=a6,故原题计算正确;B、a6÷a3=a3,故原题计算错误;C、2a−3a=−a,故原题计算错误;D、√−2无意义,故原题计算错误;故选:A.根据幂的乘方法则:底数不变,指数相乘;同底数幂的除法法则:底数不变,指数相减;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;二次根式的被开方数为非负数进行分析计算即可.此题主要考查了合并同类项,二次根式的乘法、同底数幂的除法和幂的乘方,关键是熟练掌握各计算法则.2.答案:D,解析:解:数轴上点A表示的数是−2,1÷(−2)=−12故选:D.根据乘积是1的两数互为倒数,即可解答.主要考查数轴及倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.3.答案:D解析:本题考查的是实数的大小比较及估算无理数的大小,熟知实数比较大小的法则是解答此题的关键.先估算出√8和√10的值,再根据实数比较大小的法则进行比较即可.解:∵2<√8<3,又∵3<√10<4,∴−4<√8<3<√10,∴最大的数是√10.故选D.4.答案:A解析:本题的关键是正确解一元一次方程.理解方程的解的定义,就是能够使方程左右两边相等的未知数=0的解,根据方程的解的的值.先解方程2x+1=3,求得x的值,因为这个解也是方程2−m−x3=0求出m的值.定义,把x=1代入2−m−13解:解方程2x+1=3,得:x=1,=0,把x=1代入方程2−m−13=0,得2−m−13解得:m=7.故选:A.5.答案:C解析:本题考查由三视图判定几何体,根据三视图判断出几何体的形状是本题的关键.由主视图、俯视图和左视图确定是圆柱,圆柱的底面直径为2,高为3,由此求得侧面积即可.解:根据三视图判断出是圆柱.侧面积=2π×3=6π,故选:C.6.答案:D解析:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.原式化简后,约分得到最简结果,把已知等式代入计算即可求出值.⋅(m+n)(m−n)解:原式=2m+n+m−nm(m−n)=3mm(m−n)⋅(m+n)(m−n)=3(m+n),当m+n=1时,原式=3.故选D.7.答案:C解析:本题主要考查的是分式的除法的有关知识,由题意利用分式的除法法则进行计算即可.解:原式=ab22cd ·4cd −3ax=−2b23x.故选C.8.答案:B解析:本题考查的是动点问题的函数图象,要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.根据几何图形的面积确定函数的图象,根据函数的图象即可判断.解:根据题意和几何图象可知:动点P从点A出发沿着A→B→C→D→E方向匀速运动,最后到达点E.运动过程中△PEF的面积(S)随时间(t)变化的规律是:点P在AB上时,面积不变最大;在BC上时,高变小,底边不变,面积变小;在DC上时,面积不变;在DE上时逐渐变小.根据变化规律图象应为:故选B.9.答案:x≥−1且x≠0解析:根据二次根式有意义的条件就是被开方数大于或等于0,分式有意义的条件是分母不为0;分析原函数式可得关系式x+1≥0且x≠0;解可得答案.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.解:根据题意得:x+1≥0且x≠0,解得x≥−1且x≠0.故答案为x≥−1且x≠0.10.答案:(2a−3)2解析:解:4a2−12a+9=(2a−3)2,故答案为:(2a−3)2.直接利用完全平方公式进行分解即可.此题主要考查了公因式分解因式,关键是掌握完全平方公式a2±2ab+b2=(a±b)2.11.答案:2解析:本题考查的是圆周角定理、锐角三角函数的定义,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半、直径所对的圆周角是直是解题的关键.根据圆周角定理得到∠BCD=90°,∠BDC=∠A=60°,在直角△BCD中根据余弦函数的定义解答即可.解:∵BD为⊙O的直径,∴∠BCD=90°,由圆周角定理得,∠BDC=∠A=60°,=2.则CD=BD×cos∠BDC=4×12故答案为2.12.答案:0解析:解:一元二次方程x2−2x−m=0有两个不相等的实数根,∴△=4+4m>0,∴m>−1;故答案为0;根据一元二次方程根的存在性,利用判别式△>0求解即可;本题考查一元二次方程的根的存在性;熟练掌握利用判别式△确定一元二次方程的根的存在性是解题的关键.13.答案:6解析:解:由题意得:3+4+6+8+x=6,5解得:x=9,这组数据按照从小到大的顺序排列为:3,4,6,8,9,则中位数为:6.故答案为:6.首先根据平均数为6求出x的值,然后根据中位数的概念求解.本题考查了中位数和平均数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.14.答案:m>−1且m≠3解析:解:去分母得:x2−1−x2−2x=m 即−2x−1=m解得x=m+1−2根据题意得:m+1−2<0解得:m>−1∵x+2≠0,x−1≠0∴x≠−2,x≠1,即m+1−2≠−2,m+1−2≠1∴m≠±3,故答案是:m>−1且m≠3.首先解方程求得方程的解,根据方程的解是负数,即可得到一个关于m的不等式,从而求得m的范围.本题主要考查了分式方程的解的符号的确定,正确求解分式方程是解题的关键.15.答案:(1)4x+6y=80(2)6(3)14解析:此题主要考查二元一次方程的应用.对于此类题目,可仔细审题,找出数量之间的等量关系,然后以此为据来解答问题即可.本题中,以“教师所分苹果个数小朋友所分苹果个数=总共的苹果个数”为等量关系,可以得到关于x、y的二元一次方程4x+6y=80,此时解答下面的问题就简单多了.1.仔细审题,从题目信息中可得这样的等量关系:“小朋友所分苹果个数教师所分苹果个数=总共的苹果个数”,据此相信你可以得到关于x、y的二元一次方程了;2.对于(2)、(3)只需将x=11和y=4分别代入(1)中得到的方程中就不难得到相应的y、x的值了.解:(1)根据“小朋友所分苹果个数教师所分苹果个数=总共的苹果个数”,可得4x+6y=80,(2)根据(1)可知,将x=11代入4x+6y=80,可得y=6,(3)根据(1)可知,将y =4代入4x +6y =80,可得x =14. 故答案为(1)4x +6y =80 ;(2)6 ;(3)14;16.答案:y =14x 2−x +1解析:解:∵抛物线y =ax 2+bx +c 经过A(−2,4),B(6,4)两点, ∴抛物线的对称轴是直线x =6+(−2)2=2,即顶点坐标为(2,0),设y =ax 2+bx +c =a(x −2)2+0, 把(−2,4)代入得:4=a(−2−2)2+0, 解得:a =14,即y =14(x −2)2+0=14x 2−x +1, 故答案为:y =14x 2−x +1.先根据点A 、B 的坐标求出对称轴,求出顶点坐标,设顶点式,把A 点的坐标代入求出a ,即可得出函数解析式.本题考查了二次函数图象上点的坐标特征和二次函数的性质、用待定系数法求二次函数的解析式等知识点,能求出顶点坐标是解此题的关键.17.答案:解:{3x −1>2(x +2)①x+92<5x②解不等式①得,x >5; 解不等式②得,x >1; ∴不等式组的解集为x >5.解析:分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.答案:解:方程的两边都乘(2x −1),得2x −5=3(2x −1)解这个整式方程,x=−1,2经检验,x=−1是原方程的根,2.原方程的根是x=−12解析:观察可得最简公分母是(2x−1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.19.答案:(1)证明:连接OC.∵FC=FE(已知),∴∠FCE=∠FEC(等边对等角);又∵∠AED=∠FEC(对顶角相等),∴∠FCE=∠AED(等量代换);∵OA=OC,∴∠OAC=∠OCA(等边对等角);∴∠FCE+∠OCA=∠AED+∠OAC;∵DF⊥AB,∴∠ADE=90°,∴∠FCE+∠OCA=90°,即FC⊥OC,∴FC是⊙O的切线;(2)解:连接BC.∵AB是⊙O的直径,⊙O的半径为5,∴∠ACB=90°(直径所对的圆周角是直角),AB=2OA=10,∴∠A+∠ABC=90°.∵DF⊥AB,∴∠A+∠AED=90°,∴∠A+∠ABC=∠A+∠AED,即∠ABC=∠AED;由(1)知,∠AED=∠FEC=∠ECF,∴BC=AB⋅cos∠ABC=AB⋅cos∠ECF=10×2=4,5∴AC=√AB2−BC2=√102−42=2√21.解析:(1)连接OC.欲证FC是⊙O的切线,只需证明FC⊥OC即可;(2)连接BC.利用(1)中的∠AED=∠FEC=∠ECF、圆周角定理求得BC=AB⋅cos∠ABC=AB⋅cos∠ECF=10×2=4;然后在直角三角形ABC中利用勾股定理求得AC的长度即可.5本题考查了切线的判定与性质、勾股定理、圆周角定理以及解直角三角形.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.20.答案:(1)解:连接CF,∵AE⊥BC,∠ABC=45°,AB=3√2,∴AE=BE,AE=3,∵AB=BC,点D是AC的中点,∴∠ADB=∠BDC=90°,∴AF=CF,∠CAE=∠DBC在△AEC和△BEF中,∴△AEC≌△BEF(ASA).∴CE=EF,设AF=x,EF=3−x,在Rt△EFC中,CE2+EF2=CF2,∴(3−x)2+(3−x)2=x2,解得,x=6−3√2=AF,(2)证明:∵BH⊥AB,∠ABC=45°,∴∠HBG=45°,由(1)知∠FCE=45°,∴∠FCE =∠HBG , ∵点G 是BC 的中点, ∴BG =CG ,在△BGH 和△CGF 中,{∠HBG =∠FCGBG =CG ∠BGH =∠CGF ,∴△BGH≌△CGF(ASA), ∴BH =CF =AF ,∴AB =BE +CE =AE +CE =AF +EF +CE , ∴AB =BH +CE +CE =BH +2CE .解析:本题考查了三角形全等三角形的判定与性质、勾股定理以及等腰三角形的性质.解题的关键是准确作出辅助线,注意转化思想的应用.(1)由条件得△ABE 是等腰直角三角形,AE =3,可证△AEC≌△BEF ,有EF =CE ,根据等腰三角形的性质可知BD 是AC 的中垂线,连接CF ,则AF =CF ,设AF =x ,EF =3−x ,在Rt △EFC 中,(3−x)2+(3−x)2=x 2,解此方程即可;(2)可先证△BGH≌△CGF ,可得BH =CF =AF ,由AE =BE =AF +EF ,BE +CE =BC =AB ,即可得证.21.答案:解:(12)−2−|−1+√3|+2sin60°+(−1−√3)0=4+1−√3+2×√32+1=4+1−√3+√3+1 =6.解析:本题涉及负整数指数幂、绝对值、特殊角的三角函数值、零指数幂、二次根式化简5个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、绝对值、特殊角的三角函数值、零指数幂、二次根式等考点的运算.22.答案:(1)(1)如下表:x……−4−3−2−101234……y (4)1725452424525417(2)如图所示:(3)①函数值y>0,②当x>0时,y随x的增大而减小;当x<0时,y随x的增大而增大;③图象的对称轴是y轴;(4)由图象可知,若点(m,y1),(2,y2)都在此函数图象上,且y1≤y2,m的取值范围是x≤−2或x≥2.解析:(1)把x=−1、−2、−3、−4分别代入y=4x2+1中计算即可得到对应的函数值;(2)利用描点法画出函数图象;(3)结合图象写出三个性质即可;(4)根据图象即可求得.本题考查反比例函数的图象与性质、反比例函数图象上点的坐标特征,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.23.答案:解:(1)依题意,可得抛物线的对称轴为:x=−−2m2m=1;(2)①∵抛物线与x轴交于A、B两点,点A的坐标为(−2,0),∴点B的坐标为(4,0);∵点B在直线y=12x−4m−n上,∴0=2−4m −n①.∵点A 在二次函数y =mx 2−2mx +n 的图象上, ∴0=4m +4m +n②. 由①、②可得m =−12,n =4.∴抛物线的解析式为y =−12x 2+x +4,直线的解析式为y =12x −2; ②−152≤t ≤3.解析:本题主要考查一次函数与二次函数的综合试题,考查了二次函数与坐标轴的交点坐标的运用,轴对称的性质的运用,解答时根据函数之间的关系建立方程是解答本题的关键.(1)先根据对称轴公式求得抛物线的对称轴为:x =−−2m 2m=1;(2)①将B 点坐标分别代入抛物线y =mx 2−2mx +n 和直线y =12x −4m −n ,得到关于m ,n 的方程组,求得m ,n 的值,从而得到直线和抛物线的解析式;②根据直线与抛物线的另一个交点为C ,联立方程组,求出点C 的坐标,根据点P 的x 轴的上方,求出t 的最大值,点P 的x 轴的下方,求出t 的最小值,即可得t 的取值范围. 解:(1)见答案; (2)①见答案;②根据题意,得{y =−12x 2+x +4y =12x −2, 解得{x 1=4y 1=0,{x 2=−3y 2=−72, ∴点C 的坐标为(−3,−72),∵点P为抛物线对称轴上的动点,设点P的坐标(1,t),①当点P在x轴上方时,∵图形G与线段BC有公共点,∴把点B(4,0)代入y=−x+b,得b=4,∴l2:y=−x+4,∵直线l2过点P(1,t),∴t=−1+4=3,②当点P在x轴下方时,∵图形G与线段BC有公共点,把点C(−3,−72)代入y=−x+b,解得b=−132,∴l2:y=−x−132,∵直线l2过点P(1,t),∴t=−1−132=−152,综上,点P的纵坐标t的取值范围为−152≤t≤3.24.答案:−√3−1−2√3解析:解:(1)设直线y=kx+b与x轴交于点D,如图所示:∵点A(−2,−1),∴OC=2,AC=1,∵AC⊥x轴,OB⊥x轴,∴AC//OB,∴∠CAD=∠ABO=30°,∴CD=√33AC=√33,∴AD=2CD=2√33,OD=CD+OC=√33+2,∴BD=2OD=2√33+4,OB=√3OD=1+2√3,∴B(0,−1−2√3),把点B和A(−2,−1)代入y=kx+b得:并解得:∴y=−√3x−1−2√3,故答案为:−√3;(2)①当m>0,如图1所示:则PC=m,AP=AC+PC=1+m,(1+m)×2=1+m,即S=1+m;∴△ABP的面积为S=12②−1<m≤0时,如图2所示:则AP=1+m,(1+m)×2=1+m,即S=1+m;∴△ABP的面积为S=12当m<−1时,如图3所示:则AP=−1−m,(−1−m)×2=−1−m,即S=−1−m;∴△ABP的面积为S=12把S=2代入S=1+m得:2=1+m,解得:m=1;把S=2代入S=−1−m得:2=−1−m,解得:m=−3;综上所述,当S=2时,m的值为1或−3;③以BP为边作等边△BPQ和等边△BPQ′,作QE⊥y轴于E,PF⊥y轴于F,如图4所示:则PF=2,OF=3,BF=OF+OB=4+2√3,当m>0且S=4时,4=1+m,解得:m=3,∴P(−2,3),∴PC=3,AP=1+3=4,∵AB=BD−AD=4,∴AP=AB,∠CAD=15°,∴∠ABP=∠APB=12∵AC//OB,∴∠PBF=∠APB=15°,∵△BPQ是等边三角形,∴BQ=BP,∠PBQ=60°,∴∠QBE=75°,∴∠BQE=90°−75°=15°=∠PBF,在△BQE和△PBF中,∠QEB=∠BFP=90°,∠BQE=∠PBF,BQ=PB,∴△BQE≌△PBF(AAS),∴QE=BF=4+2√3,BE=PF=2,∴OE=OB−BE=2√3−1,∴点Q的坐标为(−4−2√3,1−2√3);作Q′G⊥PC于G,交y轴于E′,同理:△PQ′G≌△PBF(AAS),∴Q′G=BF=4+2√3,PG=PF=2,∴OE′=Q′G−OC=2+2√3,CG=PC−PG=1,∴点Q′的坐标为(2+2√3,1);综上所述,点Q的坐标为(−4−2√3,1−2√3)或(2+2√3,1).(1)CD=√33AC=√33,AD=2CD=2√33,则B(0,−1−2√3),把点B和A(−2,−1)代入y=kx+b,即可求解;(2)①当m>0,△ABP的面积为S=12(1+m)×2=1+m,即S=1+m;②−1<m≤0时,△ABP的面积为S=12(1+m)×2=1+m,即S=1+m;当m<−1时,△ABP的面积为S=12(−1−m)×2=−1−m,即S=−1−m;即可求解;③以证明△BPQ是等边三角形、△BQE≌△PBF(AAS),、△PQ′G≌△PBF(AAS),即可求解.本题考查的是一次函数综合运用,涉及到直角三角形的性质、三角形全等、面积的计算等,其中(2)②,要注意分类求解,避免遗漏.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学模拟试卷题号一二三四总分得分一、选择题(本大题共6小题,共30.0分)1.2019年2月,美国宇航局(NASA)的卫星监测数据显示地球正在变绿,分析发现是中国和印度的行为主导了地球变绿,尽管中国和印度的土地面积加起来只占全球的9%,但过去20年间地球三分之一的新增植被两国贡献的,面积相当于一个亚马逊雨林,已知亚马逊雨林的面积为6560000m2,则过去20年间地球新增植被的面积约为( )A. 6.56×106m2B. 6.56×107m2C. 2×107m2D. 2×108m22.下列运算正确的是( )A. 2a+3b=5abB. a1•a4=a6C. (a2b)3=a6b3D. (a+2)2=a2+43.若-1<x<0,则-=( )A. 2x+1B. 1C. -2x-1D. -2x+14.一个试验室在0:00-4:00的温度T(单位:℃)与时间t(单位:h)的函数关系的图象如图所示,在0:00-2:00保持恒温,在2:00-4:00匀速升温,则开始升温后试验室每小时升高的温度为( )A. 5℃B. 10℃C. 20℃D. 40℃5.代数式x2-4x+5的最小值是( )A. -1B. 1C. 2D. 56.以方程组的解为坐标,点(x,y)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限二、填空题(本大题共6小题,共30.0分)7.如果二次根式有意义,那么x的取值范围是______.8.分解因式:2x2-18=______.9.当a取______时,一次函数y=3x+a+6与y轴的交点在x轴下方.(在横线上填上一个你认为恰当的数即可)10.一次函数y=kx+b的图象经过第一、二、三象限且经过(0,2)点.任写一个满足上述条件的一次函数的表达式是______.11.如图1,将边长为a的大正方形剪去一个边长为b的小正方形并沿图中的虚线剪开,拼接后得到图2,这种变化可以用含字母a,b的等式表示为______.12.抛物线y=x2-6x+5的顶点坐标为______.三、计算题(本大题共3小题,共18.0分)13.计算:()-2+|-2|-(3-π)0-3tan30°.14.已知x2-2x-1=0.求代数式(x-1)2+x(x-4)+(x-2)(x+2)的值.15.关于x的一元二次方程mx2-(2m-3)x+(m-1)=0有两个实数根.(1)求m的取值范围;(2)若m为正整数,求此方程的根.四、解答题(本大题共3小题,共24.0分)16.解下列方程(组)或不等式组:(1)解方程组(2)解分式方程+1=:(3)求不等式组的整数解.17.在平面直角坐标系xOy中,直线y=x+b与双曲线y=的一个交点为A(m,2),与y轴分别交于点B.(1)求m和b的值;(2)若点C在y轴上,且△ABC的面积是2,请直接写出点C的坐标.18.抛物线C1:y=+bx+c与y轴交于点C(0,3),其对称轴与x轴交于点A(2,0).(1)求抛物线C1的解析式;(2)将抛物线C1适当平移,使平移后的抛物线C2的顶点为D(0,k).已知点B(2,2),若抛物线C2与△OAB的边界总有两个公共点,请结合函数图象,求k的取值范围.答案和解析1.【答案】C【解析】解:过去20年间地球新增植被的面积=6560000×3=19680000m2≈2×107m2故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.【答案】C【解析】解:A、原式不能合并,不符合题意;B、原式=a5,不符合题意;C、原式=a6b3,符合题意;D、原式=a2+4a+4,不符合题意,故选C各项计算得到结果,即可作出判断.此题考查了整式的混合运算,幂的乘方与积的乘方,以及完全平方公式,熟练掌握公式及法则是解本题的关键.3.【答案】C【解析】解:∵-1<x<0,∴-=-x-(x+1)=-x-x-1=-2x-1.故选:C.直接利用二次根式的性质化简进而得出答案.此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.4.【答案】B【解析】解:由函数图象知t=2时,温度T=20℃,当t=4时,温度T=40℃,∴开始升温后试验室每小时升高的温度为=10(℃),故选:B.根据函数图象,用2时至4时升高的温度除以时间即可得.本题考查了函数图象的性质,解决本题的关键是能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.5.【答案】B【解析】解:∵x2-4x+5=x2-4x+4-4+5=(x-2)2+1∵(x-2)2≥0,∴(x-2)2+1≥1,∴当x=2时,代数式x2-4x+5的最小值为1.此题考查了配方法,若二次项系数为1,则常数项是一次项系数的一半的平方,若二次项系数不为1,则可先提取二次项系数,将其化为1后再计算.此题考查了学生的应用能力,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.6.【答案】A【解析】解:,①+②得,2y=1,解得,y=.把y=代入①得,=-x+2,解得x=.∵>0,>0,根据各象限内点的坐标特点可知,点(x,y)在平面直角坐标系中的第一象限.故选:A.此题可解出的x、y的值,然后根据x、y的值可以判断出该点在何象限内.此题考查二元一次方程组的解法及象限的符号特征:利用代入消元或加减消元求得方程组的解为x=,y=,第一象限横纵坐标都为正;第二象限横坐标为负;纵坐标为正;第三象限横纵坐标都为负;第四象限横坐标为正,纵坐标为负.7.【答案】x≥3【解析】解:∵二次根式有意义,∴x-3≥0,∴x≥3.故答案为:x≥3.二次根式的值为非负数,被开方数也为非负数.此题考查了二次根式有意义的条件,要明确,当函数表达式是二次根式时,被开方数非负.8.【答案】2(x+3)(x-3)【解析】解:原式=2(x2-9)=2(x+3)(x-3),故答案为:2(x+3)(x-3)原式提取2,再利用平方差公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.9.【答案】-7【解析】解:一次函数y=3x+a+6中令x=0,解得y=a+6,由于交点在x轴下方,得到a+6<0,因而横线上填上一个小于-6的数就可以.故本题答案为:-7.一次函数y=3x+a+6与y轴的交点坐标即为x=0时y的值,要使一次函数y=3x+a+6与y 轴的交点在x轴下方,只要此时y<0即可.本题答案不唯一,在横线上填上一个小于-6的数就可以.10.【答案】y=x+2【解析】解:∵一次函数y=kx+b的图象经过第一、二、三象限,∴k>0,b>0,∵经过(0,2),∴一次函数可以是y=x+2故答案是:y=x+2.由一次函数的图象经过的象限判断出k,b的取值范围,然后根据其经过的点即可确定最后的答案.本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.11.【答案】a2-b2=(a+b)(a-b)【解析】解:图1的面积a2-b2,图2的面积(a+b)(a-b)由图形得面积相等,得a2-b2=(a+b)(a-b),故答案为:a2-b2=(a+b)(a-b).根据图形的面积相等,可得答案.本题考查了平方差公式,利用面积相等是解题关键.12.【答案】(3,-4)【解析】解:∵y=x2-6x+5=(x-3)2-4,∴抛物线顶点坐标为(3,-4).故答案为(3,-4).用配方法将抛物线的一般式转化为顶点式,可求顶点坐标.本题考查了二次函数的性质,抛物线的顶点式为y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h.也考查了配方法.13.【答案】解:()-2+|-2|-(3-π)0-3tan30°=4+2--1-3×=5-2【解析】首先计算乘方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.14.【答案】解:原式=x2-2x+1+x2-4x+x2-4∵x2-2x-1=0∴原式=3(x2-2x-1)=0.【解析】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.根据整式的运算法则即可求出答案.15.【答案】解:(1)根据题意得m≠0且△=[-(2m-3)]2-4m(m-1)≥0,解得m≤且m≠0;(2)由(1)可知m≤且m≠0,又∵m为正整数,∴m=1,∴原方程变形为x2+x=0,解得x1=0,x2=-1.【解析】(1)根据一元二次方程的定义和根的判别式得到:m≠0且△=(2m-3)2-4(m-1)≥0,然后求出两个不等式解集的公共部分即可;(2)利用m的范围可确定m=1,则原方程化为x2+x=0,然后利用因式分解法解方程.本题考查了根的判别式和解一元二次方程,解题的关键是理解方程有两个实数根即.16.【答案】解:(1),①×3-②得:2x=8,解得:x=4,把x=4代入①得:y=-3,则方程组的解为;(2)去分母得:x-3+x-2=-3,移项合并得:2x=2,解得:x=1,经检验x=1是分式方程的解;(3),由①得:x<-1,由②得:x≥-3,∴不等式组的解集为-3≤x<-1,则不等式组的整数解为-3,-2.【解析】(1)方程组利用加减消元法求出解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(3)分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,即可确定出整数解.此题考查了解分式方程,解二元一次方程组,以及解一元一次不等式组,熟练掌握运算各自的解法是解本题的关键.∴2=,得m=2,∵点A(2,2)直线y=x+b上,∴2=,得b=1,由上可得,m的值是2,b的值是1;(2)∵直线y=x+1与y轴交于点B,∴当x=0时,y=1,即点B的坐标为(0,1),又∵点C在y轴上,且△ABC的面积是2,点A(2,2),∴,得BC=2,∴点C的纵坐标为:1+2=3或1-2=-1,∴点C的坐标为(0,3)或(0,-1).【解析】(1)根据点A(m,2)在双曲线y=上可以求得m的值,再将点A的坐标代入y=x+b,即可求得b的值;(2)根据题意可以求点B的坐标,然后根据点C在y轴上,且△ABC的面积是2,即可求得点C的坐标.本题考查反比例函数与一次函数的交点问题,解答本题的关键是明确题意,找出所求问题需要的条件,此种题型最好是动手画一下,再进行解答比较好.18.【答案】解:(1)∵抛物线与y轴交于点C(0,3),∴c=3.∵抛物线的对称轴为x=2,∴,解得b=-2,∴抛物线C1的解析式为.(2)由题意,抛物线C2的解析式为.当抛物线经过点A(2,0)时,,解得k=-2.∵O(0,0),B(2,2),∴直线OB的解析式为y=x.由,当△=(-2)2-4×1×2k=0,即时,抛物线C2与直线OB只有一个公共点,此时方程①化为x2-2x+1=0,解得x=1,即公共点P的横坐标为1,点P在线段OB上.∴k的取值范围是.【解析】(1)根据抛物线与y轴的交点坐标求得c=3;根据对称轴为x=2来求b;(2)抛物线C2与△OAB的边界总有两个公共点,即抛物线与线段OB有2个交点时,k 的取值范围.本题考查了二次函数图象与几何变换.解答(2)时,利用了“数形结合”的数学思想,使比较抽象的问题变得直观化,降低了解题的难度.。