IRF3007SPBF;中文规格书,Datasheet资料
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
HEXFET ® Power MOSFET
This design of HEXFET ® Power MOSFETs utilizes the lastest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this HEXFET power MOSFET are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These combine to make this design an extremely efficient and reliable
device for use in a wide variety of applications.
Description
07/23/10
1
IRF3007SPbF IRF3007LPbF
TO-262IRF3007LPbF
D 2Pak IRF3007SPbF ** This is applied to D 2Pak, when mounted on 1" square PCB ( FR-4 or G-10 Material ). For recommended footprint and soldering techniques refer to application note #AN-994.
Parameter
Max.
Units
I D @ T C = 25°C Continuous Drain Current, V GS @ 10V 62I D @ T C = 100°C Continuous Drain Current, V GS @ 10V 44A I DM
Pulsed Drain Current 320P D @T C = 25°C Power Dissipation 120W Linear Derating Factor 0.8W/°C V GS Gate-to-Source Voltage
± 20V E AS
Single Pulse Avalanche Energy
290mJ E AS (6 sigma)Single Pulse Avalanche Energy Tested Value 946
I AR Avalanche Current
See Fig.12a, 12b, 15, 16
A E AR Repetitive Avalanche Energy mJ T J Operating Junction and
-55 to + 175T STG
Storage Temperature Range
Soldering Temperature, for 10 seconds
300 (1.6mm from case )
°C
Absolute Maximum Ratings
Parameter
Typ.
Max.
Units
R θJC Junction-to-Case
––– 1.25°C/W
R θJA
Junction-to-Ambient (PCB Mounted,steady state)**
–––
62
Thermal Resistance
Typical Applications
l
Industrial Motor Drive
Features
l Ultra Low On-Resistance
l 175°C Operating Temperature l Fast Switching
l Repetitive Avalanche Allowed up to Tjmax l
Lead-Free
PD - 95494A
IRF3007S/LPbF
Electrical Characteristics @ T = 25°C (unless otherwise specified)
Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11).
Starting T J = 25°C, L = 0.24mH R G = 25Ω, I AS = 48A, V GS =10V (See Figure 12). I SD ≤ 48A, di/dt ≤ 330A/µs, V DD ≤ V (BR)DSS , T J ≤ 175°C Pulse width ≤ 400µs; duty cycle ≤ 2%.
Notes:
C oss eff. is a fixed capacitance that gives the same charging time
as C oss while V DS is rising from 0 to 80% V DSS . Limited by T Jmax , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance. This value determined from sample failure population. 100% tested to this value in production.
IRF3007S/LPbF
3
Fig 4. Typical Forward Transconductance
Vs. Drain Current
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics Fig 3. Typical Transfer Characteristics
V DS , Drain-to-Source Voltage (V)I D , D r a i n -t o -S o u r c e C u r r e n t (A )
0.1
1
10
100
V DS , Drain-to-Source Voltage (V)
110
100
1000
I D , D r a i n -t o -S o u r c e C u r r e n t (A )
4.0
5.0
6.0
7.0
8.0
9.0
V GS , Gate-to-Source Voltage (V)
110
100
1000
I D , D r a i n -t o -S o u r c e C u r r e n t ( A )
40
80
120
160
I D, Drain-to-Source Current (A)
20
40
60
80
100
G f s , F o r w a r d T r a n s c o n d u c t a n c e (S )
IRF3007S/LPbF
40
80
120
160
Q G Total Gate Charge (nC)
04
8
12
16
20
V G S , G a t e -t o -S o u r c e V o l t a g e (V )
1
10
1001000
V DS , Drain-toSource Voltage (V)
0.1
1
10
100
1000
10000
I D , D r a i n -t o -S o u r c e C u r r e n t (A )
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage Fig 7. Typical Source-Drain Diode
Forward Voltage
1
10
100
V DS , Drain-to-Source Voltage (V)
01000
2000
3000
4000
5000
6000
C , C a p a c i t a n c e (p F )
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
V SD , Source-toDrain Voltage (V)
0.1
1.0
10.0
100.0
1000.0
I S D , R e v e r s e D r a i n C u r r e n t (A )
IRF3007S/LPbF
5
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current Vs.
Case Temperature
Vs. Temperature
25
50
75
100
125
150
175
T C , Case Temperature (°C)
0102030405060
70I D , D r a i n C u r r e n t (A )
IRF3007S/LPbF
6
V
DS
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
Fig 13a. Basic Gate Charge Waveform
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12a. Unclamped Inductive Test Circuit
I Fig 14. Threshold Voltage Vs. Temperature
V DD
T J , Temperature ( °C )
-V G S (t h ) G a t e t h r e s h o l d V o l t a g e (V )
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
0100200300400500600700E A S , S i n g l e P u l s e A v a l a n c h e E n e r g y (m J )
IRF3007S/LPbF
7
Fig 15. Typical Avalanche Current Vs.Pulsewidth
Fig 16. Maximum Avalanche Energy
Vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at )
1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax . This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asT jmax is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 12a, 12b.
4. P D (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
6. I av = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed T jmax (assumed as 25°C in Figure 15, 16). t av = Average time in avalanche.
D = Duty cycle in avalanche = t av ·f
Z thJC (D, t av ) = Transient thermal resistance, see figure 11)P D (ave) = 1/2 ( 1.3·BV·I av ) = D T/ Z thJC
I av = 2D T/ [1.3·BV·Z th ]E AS (AR) = P D (ave)·t av
25
5075100125150175Starting T J , Junction Temperature (°C)
0100
200
300
E A R , A v a l a n c h e E n e r g y (m J
)
tav (sec)
IRF3007S/LPbF
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET ® Power MOSFETs
* V GS = 5V for Logic Level Devices
V V d(on)
r
d(off)
f
V DD
Fig 18a. Switching Time Test Circuit
Fig 18b. Switching Time Waveforms
D2Pak (TO-263AB) Package Outline
Dimensions are
For the most current drawing please refer to IR website at /package/
9
分销商库存信息: IR
IRF3007SPBF。