伊宁县第三中学校2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
伊宁县第三中学校2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 设函数f (x )的定义域为A ,若存在非零实数l 使得对于任意x ∈I (I ⊆A ),有x+l ∈A ,且f (x+l )≥f (x ),
则称f (x )为I 上的l 高调函数,如果定义域为R 的函数f (x )是奇函数,当x ≥0时,f (x )=|x ﹣a 2|﹣a 2
,且
函数f (x )为R 上的1高调函数,那么实数a 的取值范围为( )
A .0<a <1
B .﹣≤a ≤
C .﹣1≤a ≤1
D .﹣2≤a ≤2
2. 如图,正方体ABCD ﹣A 1B 1C 1D 1的棱线长为1,线段B 1D 1上有两个动点E ,F ,且EF=,则下列结论
中错误的是( )
A .AC ⊥BE
B .EF ∥平面ABCD
C .三棱锥A ﹣BEF 的体积为定值
D .异面直线A
E ,B
F 所成的角为定值
3. 函数f (x )=
,则f (﹣1)的值为( )
A .1
B .2
C .3
D .4
4. 满足条件{0,1}∪A={0,1}的所有集合A 的个数是( )
A .1个
B .2个
C .3个
D .4个
5. 设a ,b ∈R ,i 为虚数单位,若2+a i
1+i =3+b i ,则a -b 为( )
A .3
B .2
C .1
D .0
6. 实数x ,y
满足不等式组,则下列点中不能使u=2x+y 取得最大值的是( )
A .(1,1)
B .(0,3) C
.(,2) D
.(,0)
7. 某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信 息,可确定被抽测的人数及分数在[]90,100内的人数分别为( )
A .20,2
B .24,4
C .25,2
D .25,4 8. 已知a
为常数,则使得成立的一个充分而不必要条件是( )
A .a >0
B .a <0
C .a >e
D .a <e
9. 在二项式(x 3
﹣)n (n ∈N *)的展开式中,常数项为28,则n 的值为( ) A .12 B .8 C .6 D .4
10.某三棱椎的三视图如图所示,该三棱锥的四个面的面积中,最大的是( )
A .
B .8
C .
D .
11.设n S 是等差数列{}n a 的前项和,若5359a a =,则95
S
S =( ) A .1 B .2 C .3 D .4
12.已知集合 M={x||x|≤2,x ∈R},N={﹣1,0,2,3},则M ∩N=( ) A .{﹣1,0,2} B .{﹣1,0,1,2}
C .{﹣1,0,2,3}
D .{0,1,2,3}
二、填空题
13.如果实数,x y 满足等式()2
2
23x y -+=,那么
y
x
的最大值是 . 14.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()211{
5
2128
lnx x x
f x m x mx x +>=-++≤,,
,,
若()()g x f x m =-有三个零点,则实数m 的取值范围是________.
15.【启东中学2018届高三上学期第一次月考(10月)】已知函数()f x xlnx ax =-+在()0e ,上是增函
数,函数()22
x
a g x e a =-+,当[]03x ln ∈,时,函数g (x )的最大值M 与最小值m 的差为3
2,则a 的值
为______.
16.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市;
乙说:我没去过C 城市; 丙说:我们三人去过同一城市;
由此可判断乙去过的城市为 .
17.为了近似估计π的值,用计算机分别产生90个在[﹣1,1]的均匀随机数x 1,x 2,…,x 90和y 1,y 2,…,y 90,
在90组数对(x i ,y i )(1≤i ≤90,i ∈N *
)中,
经统计有25
组数对满足,则以此估计的π值为 .
18.递增数列{a n }满足2a n =a n ﹣1+a n+1,(n ∈N *,n >1),其前n 项和为S n ,a 2+a 8=6,a 4a 6=8,则S 10= .
三、解答题
19
f x =sin ωx+φω00φ2π
(2)求函数g (x )=f (x )+sin2x 的单调递增区间.
20.(本小题满分14分)
设函数2
()1cos f x ax bx x =++-,0,2
x π⎡⎤∈⎢⎥⎣⎦
(其中a ,b R ∈).
(1)若0a =,1
2
b =-
,求()f x 的单调区间; (2)若0b =,讨论函数()f x 在0,2π⎡⎤
⎢⎥⎣⎦
上零点的个数.
【命题意图】本题主要考查利用导数研究函数的单调性,最值、通过研究函数图象与性质,讨论函数的零点个数,考查考生运算求解能力、转化能力和综合应用能力,是难题.
21.(本小题满分12分)
两个人在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中 放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设,,x y z 分别表示甲,乙,丙3个 盒中的球数.
(1)求0x =,1y =,2z =的概率;
(2)记x y ξ=+,求随机变量ξ的概率分布列和数学期望.
【命题意图】本题考查频离散型随机变量及其分布列等基础知识,意在考查学生的统计思想和基本的运算能力.
22.已知命题p:不等式|x﹣1|>m﹣1的解集为R,命题q:f(x)=﹣(5﹣2m)x是减函数,若p或q为真命题,p且q为假命题,求实数m的取值范围.
23.为了培养学生的安全意识,某中学举行了一次安全自救的知识竞赛活动,共有800 名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100 分)进行统计,得到如下的频率分布表,请你根据频率分布表解答下列问题:
(1)求出频率分布表中①、②、③、④、⑤的值;
(2)为鼓励更多的学生了解“安全自救”知识,成绩不低于85分的学生能获奖,请估计在参加的800名学生中大约有多少名学生获奖?
(3)在上述统计数据的分析中,有一项指标计算的程序框图如图所示,则该程序的功能是什么?求输出的S
24.已知等差数列{a n},满足a3=7,a5+a7=26.
(Ⅰ)求数列{a n}的通项a n;
(Ⅱ)令b n=(n∈N*),求数列{b n}的前n项和S n.
伊宁县第三中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题
1.【答案】B
【解析】解:定义域为R的函数f(x)是奇函数,
当x≥0时,
f(x)=|x﹣a2|﹣a2=图象如图,
∵f(x)为R上的1高调函数,当x<0时,函数的最大值为a2,要满足f(x+l)≥f(x),
1大于等于区间长度3a2﹣(﹣a2),
∴1≥3a2﹣(﹣a2),
∴﹣≤a≤
故选B
【点评】考查学生的阅读能力,应用知识分析解决问题的能力,考查数形结合的能力,用图解决问题的能力,属中档题.
2.【答案】D
【解析】解:∵在正方体中,AC⊥BD,∴AC⊥平面B1D1DB,BE⊂平面B1D1DB,∴AC⊥BE,故A正确;∵平面ABCD∥平面A1B1C1D1,EF⊂平面A1B1C1D1,∴EF∥平面ABCD,故B正确;
∵EF=,∴△BEF的面积为定值×EF×1=,又AC⊥平面BDD1B1,∴AO为棱锥A﹣BEF的高,∴三棱锥A﹣BEF的体积为定值,故C正确;
∵利用图形设异面直线所成的角为α,当E 与D 1重合时sin α=,α=30°;当F 与B 1重合时tan α=,∴异面
直线AE 、BF 所成的角不是定值,故D 错误; 故选D .
3. 【答案】A
【解析】解:由题意可得f (﹣1)=f (﹣1+3)=f (2)=log 22=1 故选:A
【点评】本题考查分度函数求值,涉及对数的运算,属基础题.
4. 【答案】D
【解析】解:由{0,1}∪A={0,1}易知: 集合A ⊆{0,1} 而集合{0,1}的子集个数为22
=4
故选D
【点评】本题考查两个集合并集时的包含关系,以及求n 个元素的集合的子集个数为2n
个这个知识点,为基
础题.
5. 【答案】
【解析】选A.由2+a i
1+i
=3+b i 得,
2+a i =(1+i )(3+b i )=3-b +(3+b )i , ∵a ,b ∈R ,
∴⎩⎪⎨⎪⎧2=3-b a =3+b
,即a =4,b =1,∴a -b =3(或者由a =3+b 直接得出a -b =3),选A. 6. 【答案】 D
【解析】解:由题意作出其平面区域,
将u=2x+y 化为y=﹣2x+u ,u 相当于直线y=﹣2x+u 的纵截距, 故由图象可知,
使u=2x+y 取得最大值的点在直线y=3﹣2x 上且在阴影区域内,
故(1,1),(0,3),(,2)成立,
而点(,0)在直线y=3﹣2x 上但不在阴影区域内,
故不成立;
故选D .
【点评】本题考查了简单线性规划,作图要细致认真,注意点在阴影区域内;属于中档题.
7.【答案】C
【解析】
考点:茎叶图,频率分布直方图.
8.【答案】C
【解析】解:由积分运算法则,得
=lnx=lne﹣ln1=1
因此,不等式即即a>1,对应的集合是(1,+∞)
将此范围与各个选项加以比较,只有C项对应集合(e,+∞)是(1,+∞)的子集
∴原不等式成立的一个充分而不必要条件是a>e
故选:C
【点评】本题给出关于定积分的一个不等式,求使之成立的一个充分而不必要条件,着重考查了定积分计算公式和充要条件的判断等知识,属于基础题.
9.【答案】B
【解析】解:展开式通项公式为T r+1=•(﹣1)r•x3n﹣4r,
则∵二项式(x3﹣)n(n∈N*)的展开式中,常数项为28,
∴,
∴n=8,r=6.
故选:B.
【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.
10.【答案】C
【解析】
【分析】通过三视图分析出几何体的图形,利用三视图中的数据求出四个面的面积中的最大值.
【解答】解:由题意可知,几何体的底面是边长为4的正三角形,棱锥的高为4,并且高为侧棱
垂直底面三角形的一个顶点的三棱锥,
两个垂直底面的侧面面积相等为:8,
底面面积为:=4,
另一个侧面的面积为:=4,
四个面中面积的最大值为4;
故选C.
11.【答案】A
【解析】1111]
试题分析:
19
95
15
53
9()
9
21
5()5
2
a a
S a
a a
S a
+
===
+
.故选A.111]
考点:等差数列的前项和.
12.【答案】A
【解析】解:由M中不等式解得:﹣2≤x≤2,即M=[﹣2,2],
∵N={﹣1,0,2,3},
∴M∩N={﹣1,0,2},
故选:A.
【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
二、填空题
13.
【解析】
考点:直线与圆的位置关系的应用. 1
【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、直线与圆
相切的判定与应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和转化与化归的思想方法,本题的解答中把y
x
的最值转化为直线与圆相切是解答的关键,属于中档试题. 14.【答案】714⎛⎤ ⎥⎝⎦
,
【解析】
15.【答案】
52
【解析】()1ln f x x a =--+',因为()f x 在()0e ,上是增函数,即()0f x '≥在()0e ,上恒成立,
ln 1a x ∴≥+,则()max ln 1a x ≥+,当x e =时,2a ≥,
又()22x
a g x e a =-+,令x
t e =,则()[]2,1,32
a g t t a t =-+
∈, (1)当23a ≤≤时,()()2max 112a g t g a ==-+,()()2
min 2
a g t g a ==,
则()()max min 312g t g t a -=-=,则5
2
a =,
(2)当3a >时,()()2max 112a g t g a ==-+,()()2
min 332
a g t g a ==-+,
则()()max min 2g t g t -=,舍。
52
a ∴=。
16.【答案】 A .
【解析】解:由乙说:我没去过C 城市,则乙可能去过A 城市或B 城市,
但甲说:我去过的城市比乙多,但没去过B 城市,则乙只能是去过A ,B 中的任一个,
再由丙说:我们三人去过同一城市,
则由此可判断乙去过的城市为A.
故答案为:A.
【点评】本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.
17.【答案】.
【解析】设A(1,1),B(﹣1,﹣1),则直线AB过原点,且阴影面积等于直线AB与圆弧所
围成的弓形面积S1,由图知,,又,所以
【点评】本题考查了随机数的应用及弓形面积公式,属于中档题.
18.【答案】35.
【解析】解:∵2a n=a n﹣1+a n+1,(n∈N*,n>1),
∴数列{a n}为等差数列,
又a2+a8=6,∴2a5=6,解得:a5=3,
又a4a6=(a5﹣d)(a5+d)=9﹣d2=8,
∴d2=1,解得:d=1或d=﹣1(舍去)
∴a n=a5+(n﹣5)×1=3+(n﹣5)=n﹣2.
∴a1=﹣1,
∴S10=10a1+=35.
故答案为:35.
【点评】本题考查数列的求和,判断出数列{a n}为等差数列,并求得a n=2n﹣1是关键,考查理解与运算能力,属于中档题.
三、解答题
19.【答案】
【解析】(本题满分12分)
解:(1)由表格给出的信息知,函数f (x )的周期为T=2(﹣0)=π.
所以ω=
=2,由sin (2×0+φ)=1,且0<φ<2π,所以φ=
.
所以函数的解析式为f (x )=sin (2x+)=cos2x …6分
(2)g (x )=f (x )+sin2x=
sin2x+cos2x=2sin (2x+
),
令2k
≤2x+
≤2k
,k ∈Z 则得k π﹣≤x ≤k π+,k ∈Z
故函数g (x )=f (x )+sin2x 的单调递增区间是:,k ∈Z …12分
【点评】本题主要考查了由y=Asin (ωx+φ)的部分图象确定其解析式,正弦函数的单调性,周期公式的应
用,属于基本知识的考查.
20.【答案】
【解析】(1)∵0a =,12
b =-, ∴1()1cos 2f x x x =-
+-,1()sin 2f x x '=-+,0,2x π⎡⎤∈⎢⎥⎣⎦
. (2分) 令()0f x '=,得6
x π
=.
当06x π<<时,()0f x '<,当62
x ππ
<<时,()0f x '>,
所以()f x 的单调增区间是,62ππ⎡⎤⎢⎥⎣⎦,单调减区间是0,6π⎡⎤
⎢⎥⎣⎦
. (5分)
若
112a -
<<-π,则()102f a π'=π+<,又()(0)0f f θ''>=,由零点存在定理,00,2θπ⎛⎫∃∈ ⎪⎝⎭
,使0()0f θ'=,所以()f x 在0(0,)θ上单调增,在0,2θπ⎛⎫
⎪⎝⎭上单调减.
又(0)0f =,2
()124
f a ππ=
+. 故当2142a -<≤-π时,2()1024f a ππ=
+≤,此时()f x 在0,2π⎡⎤
⎢⎥⎣⎦上有两个零点; 当241a -<<-ππ时,2()1024f a ππ=
+>,此时()f x 在0,2π⎡⎤
⎢⎥⎣⎦
上只有一个零点.
21.【答案】
【解析】(1)由0x =,1y =,2z =知,甲、乙、丙3个盒中的球数分别为0,1,2,
此时的概率2
13111324
P C ⎛⎫=⨯⨯= ⎪⎝⎭.
(4分)
22.【答案】
【解析】解:不等式|x﹣1|>m﹣1的解集为R,须m﹣1<0,即p是真命题,m<1
f(x)=﹣(5﹣2m)x是减函数,须5﹣2m>1即q是真命题,m<2,
由于p或q为真命题,p且q为假命题,故p、q中一个真,另一个为假命题
因此,1≤m<2.
【点评】本题考查在数轴上理解绝对值的几何意义,指数函数的单调性与特殊点,分类讨论思想,化简这两个命题是解题的关键.属中档题.
23.【答案】
【解析】解:(1)由分布表可得频数为50,故①的数值为50×0.1=5,
②中的值为=0.40,③中的值为50×0.2=10,
④中的值为50﹣(5+20+10)=15,⑤中的值为=0.30;
(2)不低于85的概率P=×0.20+0.30=0.40,
∴获奖的人数大约为800×0.40=320;
(3)该程序的功能是求平均数,
S=65×0.10+75×0.40+85×0.20+95×0.30=82,
∴800名学生的平均分为82分
24.【答案】
【解析】解:(Ⅰ)设{a n}的首项为a1,公差为d,
∵a5+a7=26
∴a6=13,,
∴a n=a3+(n﹣3)d=2n+1;
(Ⅱ)由(1)可知,
∴.。