8.2.1用代入法解二元一次方程组

合集下载

8.2.1代入消元法解二元一次方程组

8.2.1代入消元法解二元一次方程组
8.2.1代入法解二元一次方程组
y=ax+b或x=my+n
1、用含x的代数式表示y: x + y = 22 y = 22-x 2、用含y的代数式表示x: 2x - 7y = 8 2x = 8+7y
8 7y x 2
篮球联赛中每场比赛都要分出胜负,每队胜 一场得2分,负一场得1分.如果某队为了争取较 好名次,想在全部22场比赛中得40分,那么这个 队胜、负场数应分别是多少? 解:设胜x场,负y场. x y 22 ① 2 x y 40 ② 解:设胜x场. 2 x (22 x) 40 ③
解:设这些消毒液应该分装x大瓶、y小瓶. ① 5 x 2 y 由题意得 ② 500 x 250 y 22500000
由①,得
5 y x 2

5 500 x 250 x 22500000 2
把③代入②,得 解得 x=20000 把x=20000代入③,得
x 20000 y 50000
x=13 – 4y

把③代入① ,得 2(13 – 4y)+ 3y=16 26 –8y +3y =16 13-4y+4y=13 把y=2代入① 或②可以吗? – 5y= – 10 0y=0 y=2 把求出的解 把y=2代入③ ,得 x=5
x 5 ∴原方程组的解是 y 2
代入原方程 组,可以知 道你解得对 不对。
① ②
4 x 5 y 460 2 x 3 y 240


由②, 得 2x=240-3y

把③代入①,得 2(240-3y)+5y=460 480-6y+5y=460 -y=-20 y=20. 把y=20代入③,得 2x+3×20=240 x=90.

第8套人教初中数学七下 8.2.1 消元-代入法解二元一次方程组复习课件

第8套人教初中数学七下  8.2.1 消元-代入法解二元一次方程组复习课件
由①得:y = 2 – 3x ③ 把③代入②得:
5x + 2(2 – 3x)- 2 = 0
5x + 4 – 6x – 2 = 0 5x – 6x = 2 - 4
把x = 2 代入③,得: y = 2 – 3x = 2 - 3×2 = -4
∴ x=2 y = -4
答:x 的值是2,y 的值是 -4.
-x = -2 x=2

16 8
的解相同,求a b的值。
例题精练
1.若关于x,y的方程组
ax 2x

5y

3与 11
有相同的解,求a,b的值。
ax by 15 2x 3y 7
x 2
2.若关于x.y的方程3x-2ny=m-n有一个解是 已知m比n的一半大1,求常数m,的值。
把x = 2 代入③,得:
bx + 3y = a 2a + b = 1 ④ 2b + 3 = a ⑤
y = 2x - 3 = 2×2 - 3 =1 ∴ x=2
y=1
解得: a = 1 b = -1
变式:
已知关于x、y的方程组a2xx
5y by

46和3bxx

5y ay
3.解方程组:
4x-5y=22 (1)
2x+3y=10
(2) 7x-12y=67 12x-7y=47
y (3) 3
2(
x x
1 3 6 y ) (3 x 2

y) 18
(4)

x x
1 3 3 4

y y
2 4 3 3

0
1 12
用代入法解二元一次 方程组的一般步骤

人教版七年级下册8.2.1用代入消元法法解二元一次方程组(教案)

人教版七年级下册8.2.1用代入消元法法解二元一次方程组(教案)
-难点三:对比代入消元法和换元消元法,通过具体的例子让学生明白两者适用的场景,如代入消元法适用于方程组中某个方程已经解出一个变量时,而换元消元法则适用于系数较复杂的情况。
-难点四:针对实际问题,如“小明和小华一起去书店,小明比小华多走了一段路,已知小明的速度是小华的两倍,两人一共用了30分钟,问小明和小华各走了多少时间?”需要指导学生如何建立方程组模型,并应用代入消元法求解。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了代入消元法的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对二元一次方程组的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
二、核心素养目标
1.培养学生逻辑推理能力,通过代入消元法解二元一次方程组的实践,让学生理解数学问题的解决过程,提高他们分析问题和解决问题的能力;
2.增强学生数学运算能力,熟练掌握代入消元法的运算步骤,培养学生的运算准确性和效率;
3.激发学生数学建模思维,将现实生活中的问题转化为数学模型,通过代入消元法求解,使学生体会数学的应用价值;
2.教学难点
-难点一:选择适当的方程进行代入,特别是当方程组中方程的系数较复杂时,如何选择简化的方程;
-难点二:在代入过程中,正确处理变量间的替换关系,避免计算错误;
-难点三:理解代入消元法与换元消元法的区别和联系,以及在不同问题中如何选择合适的方法;
-难点四:将实际问题转化为方程组模型,并应用代入消元法求解。
此外,我也在思考如何更好地处理教学难点。在今后的教学中,我可能会引入更多的实际案例,让学生在不同的情境中应用代入消元法,通过反复的实践,加深对难点知识的理解。

8.2.1代入消元法

8.2.1代入消元法
x y 3 3x ห้องสมุดไป่ตู้ 8 y 14
y 3x 1 2 x 4 y 24
四、课堂检测 课本第93页练习1,2.
四、课堂小结 用代入消元法解二元一次方程组的一 般步骤?
五、作业 正式:1.解下列二元一次方程组.
3s t 5 1 5s 2t 15
1.对于二元一次方程x-y=6,该方程有何特点?并思 考如何用x表示y?如何用y表示x?方程11x-9y=6呢? 2.认真阅读课本91页内容,看课本是如何解二元一次 x y 10 方程组 的?并说明什么是消元思想和代入消 2 x y 16 元法? 3.尝试用代入消元法解下列二元一次方程组.
一、复习引入
1.什么是一元一次方程?解一元一次方程的 一般步骤有哪些? 2.解下列一元一次方程.
12x 32 x 2x 6
x2 x2 2 1 2 4
二、呈现目标
1.学会用代入消元法解二元一次方程组.
2.初步体会解二元一次方程组的基本思想—消元.
三、新课探究
y x3 2 7 x 5 y 9
2.课本93页练习3,4. 家庭:练习册练习三

8.2.1 代入法解二元一次方程组 教学设计(同课异构) (2)

8.2.1 代入法解二元一次方程组 教学设计(同课异构) (2)

人教版七年级下册第八章第二节第1课时教学设计8.2消元---解二元一次方程组8.2.1用代入法解二元一次方程组【学习目标】1.会用代入法解简单的二元一次方程组2.理解解二元一次方程组的思路是消元3、经历从未知向已知转化的过程,体会化归思想【学习重难点】重点:用代入法解二元一次方程组。

难点:代入消元的思想。

【学习流程】一、复习引入,温故知新1、什么叫二元一次方程组?2、什么叫二元一次方程组的解?3.已知4x-y=-1,用关于x的代数式表示y:___________;用关于y的代数式表示x :_________【设计意图】通过复习旧知,链接新旧知识,形成数学知识体系,符合学生认知规律;二、情景导入,探究新知引言问题1对比方程组和方程,你能发现它们结构之间的关系吗?将未知数的个数由多化少逐一解决的思想【设计意图】通过中学生比较熟悉的篮球比赛等体育运动,从这样的实例导入,使学生感到即将学习的内容与身边的事物有密切联系,引起兴趣,增强求知欲。

探究新知:二元一次方程组中有两个未知数,消去其中一个未知数,将二元一次方程组转化为我们熟悉的一元一次方程,就可先解出一个未知数,再设法求另一未知数.这种将未知数的个数由多化少、逐一解决的思想,叫做消元思想。

问题探究:问题2对于二元一次方程组x+y=10,2x+y=16.你能写出求x、y的过程吗?知识归纳:上面解法,是由二元一次方程组中一个方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫代入消元法,简称代入法小组讨论:解二元一次方程组的基本想法是什么?消去一个未知数,得到一个一元一次方程【设计意图】通过环节的层层引导,让学生自己得出解决二元一次方程组的基本想法,关注学生的独立思考能力,合作学习能力;三、典例精析,达标掌握课例分析:方程中那个未知数的系数最简单?用含——的式子表示——比较简捷。

解:由①,得x= …③把③代入②,得3(___)-__= ___解这个方程,得y=___.把y=_代入③,得x= __上面节方程组的过程可以用下面的框图表示:【设计意图】通过框图展示代入法步骤及作用(代入法一般步骤典型),让学生更了解解方程组的一般流程,对方法步骤有更明确的掌握。

8.2.1代入消元法

8.2.1代入消元法

1.消元实质
消元 二元一次方程组 一元一次方程 代入法
2.代入法的一般步骤

即: 变形

代替

回代

写解

回代
3.能灵活运用适当方法解二元一次方程组
1、在方程2x+y=5中,用含x的 代数式表示y是 y=5-2x .
2、已知方程2x-3y-4=0,用含x的 2x-4 代数式表示y= . 3y+4 3 用含y的代数式表示x= . 2 3、若方程y=1-x的解也是方程3x+2y=5 3 , y=____. -2 的解,则x=____
x=4 y=3,
2 x +5 y = 26 2、已知方程 的解和方程 ax-by=-4 3x-5y=36 2019的值。 的解相同,求 (a+b) bx+ay=-8
x y 3 - 4 =5 (1) x y + =- 1 2 3
1、你会解下列各方程组吗?

4(x-1)=5+y ① (2) 5(y-1)=4(x-1)+18 ② ②
解之得y= – 1
求 把y=-1代入③,得
x=2 ∴方程组的解是 x =2
y =- 1
3、把这个未知数的 值代入上面的式子, 求得另一个未知数 的值;

4、写出方程组的解。

用代入法解二元一次方程组的一般步骤:





例2、解下列方程组: (1)
x +1=y 3 2(x+1)-y=6
① ②
提示:对于方程组1,可直接将(1)代入(2) 解(1)把①代入②,得: x 2(x+1)-( 3 +1)=6 解方程③得: x=3 把x=3代入①, 解得:y=2 ∴原方程组的解是:

8.2.1用代入消元法解二元一次方程组(1)

8.2.1用代入消元法解二元一次方程组(1)

8.2.1 消元——二元一次方程组的解(一)编写:衡帅杰 审核:衡帅杰 复审:蔡俊豪 审批:刘俊华一、学习目标:会运用代入消元法解二元一次方程组.二、学习重难点:1、会用代入法解二元一次方程组。

2、灵活运用代入法的技巧.三、学习过程:(一)探索新知:①独立探索1、二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程。

我们可以先求出一个未知数,然后再求另一个未知数,。

这种将未知数的个数由多化少、逐一解决的思想,叫做____________。

2、把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做________,简称_____。

3、代入消元法的步骤:代入消元法的第一步是:将其中一个方程中的某个未知数用____的式子表示出来;第二步是:用这个式子代入____,从而消去一个未知数,化二元一次方程组为一元一次方程.4.将下列方程写成用含x 的式子表示y 的形式.(1) 22=+y x (2) 013=-+y x5、用代人法解方程组,把____代人____,可以消去未知数______,方程变为:6、参照课本97页例1的格式 试着用代入法解下列方程。

⑴⎩⎨⎧=+=5x y 3x ⑵⎩⎨⎧==+y 3x 2y 32x②合作探究1.思考:课本97页例1中的③能不能代入①?如果不能,为什么?x =y+3 ① 3x -8y =14 ②2、若⎩⎨⎧-=-=+⎩⎨⎧-==1by ax 7by ax 2y 1x 是方程组的解,则a=______,b=_______。

(三)学以致用1.用代入法解下列方程组⑴⎩⎨⎧=++=.83,23y x y x ⑵ ⎩⎨⎧=+=+1737y x y x2、已知方程组⎩⎨⎧=-=-1y 7x 45y x 3的解也是方程组⎩⎨⎧==-5by -x 34y 2ax 的解,求a,b 的值。

8.2 代入消元法解二元一次方程组

8.2 代入消元法解二元一次方程组

8.2.1 代入消元法-----二元一次方程组的解法1. 会用代入消元法解二元一次方程组.2. 尝试运用代入消元法解二元一次方程组,并借此体会消元思想.3. 理解消元思想、敢于面对数学活动中的困难,积累独立解决问题的经验..一.情景创设 引出课题问题:在篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负1场得1分,某队为了争取较好的名次,想在全部20场比赛中得到38分,那么这个队胜负场数分别是多少? 方法1:解:设这个队胜了x 场,则该队负了(22-x)场,可列出方程 .方法2:解:设这个队胜了x 场,负了y 场,可列出方程组20________x y ì+=ïïíïïîx+y=20可以写成y= ,此时把第二个方程 中的y 换成 ,这个方程就化为一元一次方程 .解这个方程,得x= .从而可以求出y= .上面的解法,是把二元一次方程组中一个方程的一个未知数用含 的式子表示出来,再代入另一个方程,实现 ,进而求得二元一次方程组的解,这种方法叫做 ,简称 . 二.解决新知:1.你能把下列方程写成用含x 的式子表示y 的形式吗?(1)2x-y=3 ____________Þ (2)3x+y-1=0 ____________Þ (3)4x+5y=8 ____________Þ 2.用代入法解方程组33814x y x y ì-=ïïíï-=ïî 解:由①,得:③把③代入②,得:解这个方程,得: y= . 把y= 代入③,得: x= . 所以这个方程组的解是______x y ì=ïïíï=ïî1.把下列方程改写成用含x 的式子表示y 的形式: (1)2x-y=3 (2)3x+y-1=0(3)4x+0.5y=3 (4)13324x y -=2.用代入法解下列方程组:(1)23328y x x y ì=-ïïíï+=ïî (2)25342x y x y ì-=ïïíï+=ïî三.课后作业:1.由132x y-=,可以得到用x 表示y 的式子( )A. 223x y -=B. 2133x y =-C. 223x y =-D. 223xy =- 2.把方程2x-y-5=0化成用含y 的代数式表示x 的形式:x= . 3.在3x+4y=9中,如果2y=6,那么x= .4.已知18x y ì=ïïíï=-ïî是方程3mx-y= -1的解,则m= . 5.若方程mx+ny=6的两个解是11x y ì=ïïíï=ïî;21x y ì=ïïíï=-ïî,则m= ,n= .6.若方程组431(1)3x y ax a y ì+=ïïíï+-=ïî的解x 和y 相等,则a 的值等于 7.方程组31x y x y ì+=ïïíï-=ïî的解为 . 8.当x= -1时,方程2x-y=3与mx+2y= -1的解相同,则m= . 9.用代入法解下列方程组:(1)23842x y x y ì+=ïïíï-=ïî (2)21437x y x y ì+=ïïíï-=ïî(3)2524x y x y ì+=ïïíï+=ïî(4)7317x y x y ì+=ïïíï+=ïî(5)223210x y x y ì+=ïïíï-=ïî (6)2143321x y x y ì++ïï=ïíïï-=ïî。

第九套最新人教版七年级数学下册 8.2.1 代入法解二元一次方程组教学课件

第九套最新人教版七年级数学下册  8.2.1 代入法解二元一次方程组教学课件

列方程组:
2m + n = 1 ① 3m – 2n = 1 ②
由①得:n = 1 –2m ③
把③代入②得: 3m – 2(1 – 2m)= 1 3m – 2 + 4m = 1
把m 3 代入③,得: 7
n 12 3
n1
7
7
7m = 3
m 3 7
m的值为 3,n的值为 1
7
7
1、解二元一次方程组的基本思路是什么?
试看
把③代入① ,得 2(13 - 4y)+3y=16
26 –8y +3y =16
把y=2代入① 或②可以吗?
-5y= -10
y=2 把y=2代入③ ,得 x=5 ∴原方程组的解是 x=5
y=2
把求出的解 代入原方程 组,可以知 道你解得对
不对。
练一练
用代入法解方程组 x-y=3 3x-8y=14
中小学精品教学资源 中小学精品教学资源
中小学精品教学资源 中小学精品教学资源
中小学精品教学资源 中小学精品教学资源
8.2消元—二元一次方程组的解法 (第1课时)
态度决定一切!
知之者不如好之者, 好之者不如乐之者。
本节学习目标 :
1、会用代入法解二元一次方程组。
2、初步体会解二元一次方程组的 基本思 想——“消元”。
归 纳:
上面的解法,是由二元一次方程组 中一个方程,将一个未知数用含另一 个未知数的式子表示出来,再代入另 一个方程,实现消元,进而求得这个 二元一次方程组的解,这种方法叫代 入消元法,简称代入法
例题分析
试一试: 用代入法解方程组
y=x-3

3x-8y=14

人教初中数学七下 8.2.1 代入法解二元一次方程组课件 【经典初中数学课件】

人教初中数学七下 8.2.1 代入法解二元一次方程组课件 【经典初中数学课件】
1
02


知一

识不

点式

的 解

三、研读课文
(2) 2 x ≥ 2 x 1
2
3
解:去分母,得: 3(2+x)≥2(2x-1) .
去括号,得: 6+3x≥ 4x - 2 .
3x-4x≥ -2 - 6
移项,得:
.
-x≥ - 8
合并同类项,得:
.
系数化为1,得:
x≤ 8
.
这个不等式的解集在数轴上的表示:
三、研读课文
练一练 用加减法解下列方程组:
2x +5y = 8 ①
(2)

3x +2y=5 ②


三、研读课文
练一练 用加减法解下列方程组:
(2) 2x +5y = 8 ①

3x +2y=5 ②

解: ① ×3 得6X+15y=24 ③

② ×2 得6x+4y=10 ④ ③ —④ 得 11y=14
这个不等式的解集在数轴上的表示 :
-16 0


元 一

次 不

点式 的

解 法



三、研读课文
(2 2(x5)3 (x5)
解:)去括号,得:2x+10<3x-15 移项, 得:2x-3x<-15-10
合并同类项,得: -x < -25 系数化为1,得: x > 25
这个不等式的解集在数轴上的表示:

7

解得 y=

8.2.1 二元一次方程组的解法-代入消元法(第一课时)(课件)七年级数学下册(人教版)

8.2.1 二元一次方程组的解法-代入消元法(第一课时)(课件)七年级数学下册(人教版)
【1-3】将4y+8=2x+3写成用y表示x的形式为_____________.
2
考点解析
重点
例2.用代入法解下列方程组:
= 3 + 1 ①
3 − = 7

(1)
(2)
2 − 3 = 4 ②
2 + 3 = −5 ②
解:(1)把①代入②,得
解这个方程,得
2x-3(3x+1)=4.
到菜市场售卖,黄瓜和茄子当天的批发价与零售价如下表所示.当天他卖完
这些黄瓜和茄子共赚了90元.这天老李批发的黄瓜和茄子分别有多少千克?
考点解析
重点
例3. 某天,蔬菜经营户老李用145元从蔬菜批发市场批发了一些黄瓜和茄子
到菜市场售卖,黄瓜和茄子当天的批发价与零售价如下表所示.当天他卖完
这些黄瓜和茄子共赚了90元.这天老李批发的黄瓜和茄子分别有多少千克?
1.掌握代入消元法的意义;
2.会用代入法解二元一次方程组. (重点、难点)
复习回顾
1.把下列方程写成用含x的式子表示y的形式.
(1) 2x+y=6
y=6-2x
(2) y-3x-1=0
y=3x+1
2.你能把上面两个方程写成用含y的式子表示x的形式.
y 1
6 y
(1) x
(2) x
3
2
3.如何解这样的方程组 .
C. x+x-1=7
D. x+2x+2=7
3 + 4 = 2 ①
【2-2】用代入消元法解二元一次方程组
使得代入后化简比
2 − = 5 ②
较容易的变形是( D )
2−4

8.2.1用代入消元法解二元一次方程组

8.2.1用代入消元法解二元一次方程组
问题2:对于二元一次方程组
你能写出求出x的过程吗?
问题3:怎样求出y?
解:把①代入②,得
把 代入①,得
所以这个方程组的解是
问题:将 代入②可不可以?哪种运算更简便?
归纳:用代入法解二元一次方程组的一般步骤:
1、用这个式子代替另一个方程中相应的未知数,得到一个一元一次方程,求得一个未知数的值;
2、把这个未知数的值代入上面的式子,求得另
97页复习巩固2(1)
教师提问,学生回答
教师提问,学生思考回答
留一些时间给学生思考。
老师强调检验,学生动手检
测。
教师提问,学生巩固练习。
教师引导,学生观察,思考,
老师提问,方程组中有几个
未知数?方程中有几个未
知数?学生回答比较。
问题引入,层层递进
根据题目解题过程,归纳对
应的解题步骤。
练习巩固
归纳总结
公开课教学设计
§8.2.1用代入消元法解二元一次方程组
学习内容分析
《用代入消元法解二元一次方程组》这节教学内容选自义务教育课程标准实验教科书人教版《数学》七年级下册第八章二元一次方程组,本章主要内容是二元一次方程组及其相关概念,利用二元一次方程组分析、解决实际问题,消元思想和代入法、加减法解二元一次方程组。本节课主要是通过代入消元法解决简单的二元一次方程组。根据学生的实际情况,本节课是在课本基础上的简化,降低学习难度,循序渐进,以便于学生掌握代入消元法,体会代入消元法的基本思想—“消元”。
引出代入消元法,归纳代入消元法步骤。
设置两个问题,一步一步引导
学生写出解过程,理解解题
思路。为下面归纳总结用代入
法解二元一次方程组的一般
步骤做准备。
归纳总结一般步骤,使学生在解题的过程中有一个清晰的思路。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初 一 年级 数学 科 探究新知 学案 主备: 张许平 时间 : 4 月 18 日
学习内容:消元—代入法解二元一次方程组
教学设计 (收获)
三、展示反馈(将你精彩的一幕展现给别人吧!) 1、完成课本98页练习2.
2、用代入法解下列方程组:
⎩⎨⎧=-=-510333y x y x
四、拓展提升(超越的感觉那是相当地舒畅!)
1、若⎩⎨
⎧-=-=+⎩⎨⎧-==1by ax 7
by ax 2y 1x 是方程组的解,则a=______,b=_______。

2、若2a y+5b 3x 与-4a 2x b 2-4y 是同类项,则x=______,y=_______。

3、如果(5a-7b+3)2+53+-b a =0,求a 与b 的值。

学习目标:1、会运用代入消元法解二元一次方程组
2、体会解二元一次方程组中“消元”和“化未知数为已知”的
化归思想 重 点 :熟练运用代入法解二元一次方程组 难 点 :探索如何用代入法将“二元”转化为“一元”的消元过程 一、自主学习(魅力是靠自身的能力展现出来的) (一)自主学习(阅读课本96页,完成下列内容)
1、二元一次方程组中有 个未知数,消去其中的一个未知数,就把二元一次方程组转化成了我们熟悉的 ,我们可以先求出 ,然后再求出 ,这种将未知数个数由 化 ,逐一解决的思想叫做消元思想。

(二)课前准备
1、把下列方程写成用含x 的式子表示y 的形式:如,x+y=2,则y=2-x (1)2x -y =3 (2)3x +y -1=0 (3)3y-2x = -1
2、把下列方程写成用含y 的式子表示x 的形式:如,x+y=2,则x=2-y (1)2x -5y =3 (2)3x +8y -1=0 (3)3y-2x = -1
(三)自学探究(先阅读课本96页思考以下的内容,后完成以下内容)
1、写出解二元一次方程组⎩

⎧=+=+ ②y ① 402x 22y x 的过程
解:由①得y = ③ 把③代入②得 解这个方程,得x=
把x= 代入③得 所以这个方程组的解是
2、总结:把二元一次方程组中一个方程的一个未知数用含另一个未知数的 表示出来,再代入 ,实现 ,进而求得这个二元一次方程组的解,这种消元方法叫_______________,简称______________。

二、小组讨论(集思广益方可步步提高!)
自主学习课本97页例1,思考例题旁边的问题,并将解答过程给你的搭档讲解; 教学反思 (疑惑)
381625
x y x y -=⎧⎨-=⎩。

相关文档
最新文档