乾县二中2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

乾县二中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. sin45°sin105°+sin45°sin15°=( )
A .0
B .
C .
D .1
2. 已知直线l ∥平面α,P ∈α,那么过点P 且平行于l 的直线( )
A .只有一条,不在平面α内
B .只有一条,在平面α内
C .有两条,不一定都在平面α内
D .有无数条,不一定都在平面α内
3. 点P 是棱长为1的正方体ABCD ﹣A 1B 1C 1D 1的底面A 1B 1C 1D 1上一点,则的取值范围是( )
A .[﹣1,﹣]
B .[﹣,﹣]
C .[﹣1,0]
D .[﹣,0]
4. 已知x >0,y >0, +=1,不等式x+y ≥2m ﹣1恒成立,则m 的取值范围( )
A .(﹣∞,]
B .(﹣∞,]
C .(﹣∞,
] D .(﹣∞,
]
5. 设集合(){,|,,1A x y x y x y =
--是三角形的三边长},则A 所表示的平面区域是( )
A .
B .
C .
D .
6. 若函数f (x )是奇函数,且在(0,+∞)上是增函数,又f (﹣3)=0,则(x ﹣2)f (x )<0的解集是( ) A .(﹣3,0)∪(2,3) B .(﹣∞,﹣3)∪(0,3) C .(﹣∞,﹣3)∪(3,+∞) D .(﹣3,0)∪(2,+∞)
7. 已知正方体的不在同一表面的两个顶点A (﹣1,2,﹣1),B (3,﹣2,3),则正方体的棱长等于( )
A .4
B .2
C .
D .2
8.过抛物线22(0)
y px p
=>焦点F的直线与双曲线
2
21
8
-=
y
x的一条渐近线平行,并交其抛物线于A、B两点,若>
AF BF,且||3
AF=,则抛物线方程为()
A.2y x
=B.22
y x
=C.24
y x
=D.23
y x
=
【命题意图】本题考查抛物线方程、抛物线定义、双曲线标准方程和简单几何性质等基础知识,意在考查方程思想和运算能力.
9.已知直线mx﹣y+1=0交抛物线y=x2于A、B两点,则△AOB()
A.为直角三角形B.为锐角三角形
C.为钝角三角形D.前三种形状都有可能
10.已知的终边过点()
2,3,则
7
tan
4
π
θ
⎛⎫
+

⎝⎭
等于()
A.
1
5
-B.
1
5
C.-5 D.5 11.已知f(x)是定义在R上的奇函数,且f(x﹣2)=f(x+2),当0<x<2时,f(x)=1﹣log2(x+1),则当0<x<4时,不等式(x﹣2)f(x)>0的解集是()
A.(0,1)∪(2,3)B.(0,1)∪(3,4)C.(1,2)∪(3,4)D.(1,2)∪(2,3)12.若方程C:x2+=1(a是常数)则下列结论正确的是()
A.∀a∈R+,方程C表示椭圆B.∀a∈R﹣,方程C表示双曲线
C.∃a∈R﹣,方程C表示椭圆D.∃a∈R,方程C表示抛物线
二、填空题
13.若x,y满足约束条件
⎩⎪

⎪⎧x+y-5≤0
2x-y-1≥0
x-2y+1≤0
,若z=2x+by(b>0)的最小值为3,则b=________.
14.【南通中学2018届高三10月月考】定义在上的函数满足,为的导函数,且
对恒成立,则的取值范围是__________________.
15.已知函数f(x)是定义在R上的单调函数,且满足对任意的实数x都有f[f(x)﹣2x]=6,则f(x)+f(﹣x)的最小值等于.
16.抛物线y2=8x上一点P到焦点的距离为10,则P点的横坐标为.
17.已知数列{}n a 中,11a =,函数32
12()3432
n n a f x x x a x -=-
+-+在1x =处取得极值,则 n a =_________.
18.对于|q|<1(q 为公比)的无穷等比数列{a n }(即项数是无穷项),我们定义S n (其中S n 是数列{a n }
的前n 项的和)为它的各项的和,记为S ,即S=S n =
,则循环小数0. 的分数形式是 .
三、解答题
19.已知函数f (x )=4x ﹣a •2x+1+a+1,a ∈R . (1)当a=1时,解方程f (x )﹣1=0;
(2)当0<x <1时,f (x )<0恒成立,求a 的取值范围; (3)若函数f (x )有零点,求实数a 的取值范围.
20.【淮安市淮海中学2018届高三上第一次调研】已知函数()133x x a
f x b
+-+=+.
(1)当1a b ==时,求满足()3x
f x =的x 的取值;
(2)若函数()f x 是定义在R 上的奇函数
①存在t R ∈,不等式()()
22
22f t t f t k -<-有解,求k 的取值范围;
②若函数()g x 满足()()()
12333
x
x f x g x -⎡⎤⋅+=-⎣⎦,若对任意x R ∈,不等式()()211g x m g x ≥⋅-恒成立,求实数m 的最大值.
21.已知函数f(x)=x3+2bx2+cx﹣2的图象在与x轴交点处的切线方程是y=5x﹣10.
(1)求函数f(x)的解析式;
(2)设函数g(x)=f(x)+mx,若g(x)的极值存在,求实数m的取值范围以及函数g(x)取得极值时对应的自变量x的值.
22.为了培养学生的安全意识,某中学举行了一次安全自救的知识竞赛活动,共有800 名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100 分)进行统计,得到如下的频率分布表,请你根据频率分布表解答下列问题:
(1)求出频率分布表中①、②、③、④、⑤的值;
(2)为鼓励更多的学生了解“安全自救”知识,成绩不低于85分的学生能获奖,请估计在参加的800名学生中大约有多少名学生获奖?
(3)在上述统计数据的分析中,有一项指标计算的程序框图如图所示,则该程序的功能是什么?求输出的S
23.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积.
24.如图,在Rt△ABC中,∠ACB=,AC=3,BC=2,P是△ABC内一点.
(1)若P是等腰三角形PBC的直角顶角,求PA的长;
(2)若∠BPC=,设∠PCB=θ,求△PBC的面积S(θ)的解析式,并求S(θ)的最大值.
乾县二中2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】C
【解析】解:sin45°sin105°+sin45°sin15°
=cos45°cos15°+sin45°sin15°
=cos(45°﹣15°)
=cos30°
=.
故选:C.
【点评】本题主要考查了诱导公式,两角差的余弦函数公式,特殊角的三角函数值在三角函数化简求值中的应用,考查了转化思想,属于基础题.
2.【答案】B
【解析】解:假设过点P且平行于l的直线有两条m与n
∴m∥l且n∥l
由平行公理4得m∥n
这与两条直线m与n相交与点P相矛盾
又因为点P在平面内
所以点P且平行于l的直线有一条且在平面内
所以假设错误.
故选B.
【点评】反证法一般用于问题的已知比较简单或命题不易证明的命题的证明,此类题目属于难度较高的题型.3.【答案】D
【解析】解:如图所示:以点D为原点,以DA所在的直线为x轴,以DC所在的直线为y轴,以DD1所在的直线为z轴,
建立空间直角坐标系.
则点A(1,0,0),C1(0,1,1),设点P的坐标为(x,y,z),则由题意可得0≤x≤1,0≤y≤1,z=1.
∴=(1﹣x,﹣y,﹣1),=(﹣x,1﹣y,0),
∴=﹣x(1﹣x)﹣y(1﹣y)+0=x2﹣x+y2﹣y=+﹣,
由二次函数的性质可得,当x=y=时,取得最小值为﹣;
故当x=0或1,且y=0或1时,取得最大值为0,
则的取值范围是[﹣,0],
故选D.
【点评】本题主要考查向量在几何中的应用,两个向量的数量积公式,两个向量坐标形式的运算,属于中档题.4.【答案】D
【解析】解:x>0,y>0,+=1,不等式x+y≥2m﹣1恒成立,
所以(x+y)(+)=10+≥10=16,
当且仅当时等号成立,所以2m﹣1≤16,解得m;
故m的取值范围是(﹣];
故选D.
5.【答案】A
【解析】

点:二元一次不等式所表示的平面区域. 6. 【答案】A
【解析】解:∵f (x )是R 上的奇函数,且在(0,+∞)内是增函数, ∴在(﹣∞,0)内f (x )也是增函数, 又∵f (﹣3)=0, ∴f (3)=0
∴当x ∈(﹣∞,﹣3)∪(0,3)时,f (x )<0;当x ∈(﹣3,0)∪(3,+∞)时,f (x )>0; ∴(x ﹣2)•f (x )<0的解集是(﹣3,0)∪(2,3) 故选:A .
7. 【答案】A
【解析】解:∵正方体中不在同一表面上两顶点A (﹣1,2,﹣1),B (3,﹣2,3),
∴AB 是正方体的体对角线,
AB=,
设正方体的棱长为x ,
则,解得x=4.
∴正方体的棱长为4,
故选:A .
【点评】本题主要考查了空间两点的距离公式,以及正方体的体积的有关知识,属于基础题.
8. 【答案】C
【解析】
由已知得双曲线的一条渐近线方程为=y ,设00(,)A x y ,则02>p x
,所以0
002
002322ì=ï
ï-ïïïï
+=íï
ï=ïïïïî
y p x p x y px ,
解得2=p 或4=p ,因为322
->p p
,故03p <<,故2=p ,所以抛物线方程为24y x . 9. 【答案】A
【解析】解:设A (x 1,x 12),B (x 2,x 22
),
将直线与抛物线方程联立得
, 消去y 得:x 2
﹣mx ﹣1=0,
根据韦达定理得:x 1x 2=﹣1,
由=(x 1,x 12),
=(x 2,x 22),
得到=x 1x 2+(x 1x 2)2=﹣1+1=0,



∴△AOB 为直角三角形. 故选A
【点评】此题考查了三角形形状的判断,涉及的知识有韦达定理,平面向量的数量积运算,以及两向量垂直时满足的条件,曲线与直线的交点问题,常常联立曲线与直线的方程,消去一个变量得到关于另外一个变量的一元二次方程,利用韦达定理来解决问题,本题证明垂直的方法为:根据平面向量的数量积为0,两向量互相垂直.
10.【答案】B 【



考点:三角恒等变换.
11.【答案】D
【解析】解:∵f (x )是定义在R 上的奇函数,且f (x ﹣2)=f (x+2), ∴f (0)=0,且f (2+x )=﹣f (2﹣x ), ∴f (x )的图象关于点(2,0)中心对称, 又0<x <2时,f (x )=1﹣log 2(x+1), 故可作出fx (x )在0<x <4时的图象,
由图象可知当x ∈(1,2)时,x ﹣2<0,f (x )<0, ∴(x ﹣2)f (x )>0;
当x ∈(2,3)时,x ﹣2>0,f (x )>0,
∴(x﹣2)f(x)>0;
∴不等式(x﹣2)f(x)>0的解集是(1,2)∪(2,3)
故选:D
【点评】本题考查不等式的解法,涉及函数的性质和图象,属中档题.
12.【答案】B
【解析】解:∵当a=1时,方程C:即x2+y2=1,表示单位圆
∴∃a∈R+,使方程C不表示椭圆.故A项不正确;
∵当a<0时,方程C:表示焦点在x轴上的双曲线
∴∀a∈R﹣,方程C表示双曲线,得B项正确;∀a∈R﹣,方程C不表示椭圆,得C项不正确
∵不论a取何值,方程C:中没有一次项
∴∀a∈R,方程C不能表示抛物线,故D项不正确
综上所述,可得B为正确答案
故选:B
二、填空题
13.【答案】
【解析】
约束条件表示的区域如图,
当直线l:z=2x+by(b>0)经过直线2x-y-1=0与x-2y+1=0的交点A(1,1)时,z min=2+b,∴2+b =3,∴b=1.
答案:1
14.【答案】
【解析】点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中。

某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用。

因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的。

根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧。

许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效。

15.【答案】6.
【解析】解:根据题意可知:f(x)﹣2x是一个固定的数,记为a,则f(a)=6,
∴f (x )﹣2x =a ,即f (x )=a+2x

∴当x=a 时,
又∵a+2a
=6,∴a=2,
∴f (x )=2+2x

∴f (x )+f (﹣x )=2+2x +2+2﹣x =2x +2﹣x
+4
≥2+4=6,当且仅当x=0时成立,
∴f (x )+f (﹣x )的最小值等于6,
故答案为:6.
【点评】本题考查函数的最值,考查运算求解能力,注意解题方法的积累,属于中档题.
16.【答案】 8 .
【解析】解:∵抛物线y 2
=8x=2px , ∴p=4,
由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,
∴|MF|=x+=x+2=10, ∴x=8, 故答案为:8.
【点评】活用抛物线的定义是解决抛物线问题最基本的方法.抛物线上的点到焦点的距离,叫焦半径.到焦点的距离常转化为到准线的距离求解.
17.【答案】1
231n -- 【解析】

点:1、利用导数求函数极值;2、根据数列的递推公式求通项公式.
【方法点晴】本题主要考查等比数列的定义以及已知数列的递推公式求通项,属于中档题.由数列的递推公式求通项常用的方法有:累加法、累乘法、构造法,形如1(0,1)n n a qa p p q -=+≠≠的递推数列求通项往往用构造法,利用待定系数法构造成1()n n a m q a m -+=+的形式,再根据等比数例求出{}n a m +的通项,进而得出{}n a 的通项公式.
18.【答案】.
【解析】解:0.=++…+==,
故答案为:.
【点评】本题考查数列的极限,考查学生的计算能力,比较基础.
三、解答题
19.【答案】
【解析】解:(1)a=1时,f(x)=4x﹣22x+2,
f(x)﹣1=(2x)2﹣2•(2x)+1=(2x﹣1)2=0,
∴2x=1,解得:x=0;
(2)4x﹣a•(2x+1﹣1)+1>0在(0,1)恒成立,
a•(2•2x﹣1)<4x+1,
∵2x+1>1,
∴a>,
令2x=t∈(1,2),g(t)=,
则g′(t)===0,
t=t0,∴g(t)在(1,t0)递减,在(t0,2)递增,
而g(1)=2,g(2)=,
∴a≥2;
(3)若函数f(x)有零点,
则a=有交点,
由(2)令g(t)=0,解得:t=,
故a≥.
【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及函数零点问题,是一道中档题.
20.【答案】(1)1x =-(2)①()1,-+∞,②6
【解析】
试题
解析:(1)由题意,1
31331x x
x +-+=+,化简得()2332310x x ⋅+⋅-= 解得()13133
x x
=-=舍或,
所以1x =-
(2)因为()f x 是奇函数,所以()()0f x f x -+=,所以1
133033x x x x a a
b b
-++-+-++=++ 化简并变形得:()()333260x x
a b ab --++-=
要使上式对任意的x 成立,则30260a b ab -=-=且 解得:11{
{ 33a a b b ==-==-或,因为()f x 的定义域是R ,所以1
{ 3
a b =-=-舍去 所以1,3a b ==,所以()131
33
x x f x +-+=+
①()131********x x x f x +-+⎛⎫
==-+ ⎪++⎝⎭
对任意1212,,x x R x x ∈<有:
()()()()
21
12
12121222333313133131
x x x x x x f x f x ⎛⎫-⎛⎫
⎪-=-= ⎪ ⎪++++⎝⎭⎝

因为12x x <,所以21330x x
->,所以()()12f x f x >,
因此()f x 在R 上递减.
因为()()
2222f t t f t k -<-,所以22
22t t t k ->-,
即2
20t t k +-<在
时有解
所以440t ∆=+>,解得:1t >-, 所以的取值范围为()1,-+∞
②因为()()()
12333x x
f x
g x -⎡⎤⋅+=-⎣⎦,所以()()
3323x x g x f x --=-
即()33x
x
g x -=+
所以()()
2
22233332x x x x
g x --=+=+-
不等式()()211g x m g x ≥⋅-恒成立, 即(
)
()
2
33
23311x
x
x x m --+-≥⋅+-,
即:9
3333x x
x x
m --≤++
+恒成立
令33,2x x t t -=+≥,则9
m t t
≤+在2t ≥时恒成立
令()9h t t t =+,()29
'1h t t
=-,
()2,3t ∈时,()'0h t <,所以()h t 在()2,3上单调递减
()3,t ∈+∞时,()'0h t >,所以()h t 在()3,+∞上单调递增
所以()()min 36h t h ==,所以6m ≤ 所以,实数m 的最大值为6
考点:利用函数性质解不等式,不等式恒成立问题
【思路点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题。

21.【答案】
【解析】解:(1)由已知,切点为(2,0),故有f (2)=0, 即4b+c+3=0.①
f ′(x )=3x 2+4bx+c ,由已知,f ′(2)=12+8b+c=5. 得8b+c+7=0.②
联立①、②,解得c=1,b=﹣1,
于是函数解析式为f (x )=x 3﹣2x 2
+x ﹣2.
(2)g (x )=x 3﹣2x 2
+x ﹣2+mx ,
g ′(x )=3x 2﹣4x+1+,令g ′(x )=0.
当函数有极值时,△≥0,方程3x2﹣4x+1+=0有实根,
由△=4(1﹣m)≥0,得m≤1.
①当m=1时,g′(x)=0有实根x=,在x=左右两侧均有g′(x)>0,故函数g(x)无极值.
②当m<1时,g′(x)=0有两个实根,
x1=(2﹣),x2=(2+),
x g′x g x
极大值
当x=(2﹣)时g(x)有极大值;
当x=(2+)时g(x)有极小值.
【点评】本题考查利用导函数来研究函数的极值.在利用导函数来研究函数的极值时,分三步①求导函数,②求导函数为0的根,③判断根左右两侧的符号,若左正右负,原函数取极大值;若左负右正,原函数取极小值.
22.【答案】
【解析】解:(1)由分布表可得频数为50,故①的数值为50×0.1=5,
②中的值为=0.40,③中的值为50×0.2=10,
④中的值为50﹣(5+20+10)=15,⑤中的值为=0.30;
(2)不低于85的概率P=×0.20+0.30=0.40,
∴获奖的人数大约为800×0.40=320;
(3)该程序的功能是求平均数,
S=65×0.10+75×0.40+85×0.20+95×0.30=82,
∴800名学生的平均分为82分
23.【答案】
【解析】解:四边形ABCD绕AD旋转一周所成的
几何体,如右图:
S表面=S圆台下底面+S圆台侧面+S圆锥侧面=
πr22+π(r1+r2)l2+πr1l1===
24.【答案】
【解析】解:(1)∵P为等腰直角三角形PBC的直角顶点,且BC=2,
∴∠PCB=,PC=,
∵∠ACB=,∴∠ACP=,
在△PAC中,由余弦定理得:PA2=AC2+PC2﹣2AC•PC•cos=5,
整理得:PA=;
(2)在△PBC中,∠BPC=,∠PCB=θ,
∴∠PBC=﹣θ,
由正弦定理得:==,
∴PB=sinθ,PC=sin(﹣θ),
∴△PBC的面积S(θ)=PB•PCsin=sin(﹣θ)sinθ=sin(2θ+)﹣,θ∈(0,),
则当θ=时,△PBC面积的最大值为.
【点评】此题考查了正弦、余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键.。

相关文档
最新文档