【必考题】高二数学上期末模拟试题带答案(2)

合集下载

最新高二数学上学期期末考试试卷含答案 (2)

最新高二数学上学期期末考试试卷含答案 (2)

一、选择题(本大题共12小题,共60.0分)1.“∀x>0,2x>sinx”的否定是()A. ∀x>0,2x<sinxB. ∀x>0,2x≤sinxC. ∃x0≤0,2x0≤sinx0D. ∃x0>0,2x0≤sinx0【答案】D【解析】解:因为全称命题的否定是特称命题,所以,“∀x>0,2x>sinx”的否定是∃x0>0,2x0≤sinx0,故选:D.利用全称命题的否定是特称命题写出结果即可.本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.2.抛物线x=4y2的焦点坐标是()A. (0,1)B. (0,−1)C. (−116,0)D. (116,0)【答案】D【解析】解:根据题意,抛物线的方程为x=4y2,则其标准方程为y2=14x,分析可得:其焦点在x轴上,且p=14,故其焦点坐标为(116,0);故选:D.根据题意,将抛物线的方程变形可得其标准方程,分析可得其焦点在x轴上,且p=14,由焦点坐标公式计算可得答案.本题考查抛物线的几何性质,注意要先将抛物线的方程变形为标准方程.3.已知圆C1:x2+y2−2x−4y−4=0与圆C2:x2+y2+ 4x−10y+4=0相交于A、B两点,则线段AB的垂直平分线的方程为()A. x+y−3=0B. x+y+3=0C. 3x−3y+4=0D.7x+y−9=0【答案】A【解析】解:圆C1:x2+y2−2x−4y−4=0圆心坐标(1,2)与圆C2:x2+y2+4x−10y+4=0圆心坐标(−2,5),圆C1:x2+y2−2x−4y−4=0与圆C2:x2+y2+4x−10y+4= 0相交于A、B两点,线段AB的中垂线方程就是两个圆的圆心连线方程,∵直线C1C2的斜率为:k=5−2−2−1=−1,∴线段AB 的垂直平分线的方程为:y−2=−(x−1),即x+y−3= 0.故选:A.由题意可知所求线段AB的中垂线方程就是两个圆的圆心连线方程,求出两个圆的圆心坐标,由此能求解直线方程.本题考查两个圆的位置关系的应用,正确判断所求直线方程与圆的位置关系是解题的关键,是中档题.4.“m=1”是“双曲线x2m −y23=1的离心率为2”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D.既不充分也不必要条件【答案】C【解析】解:由双曲线x2m −y23=1的方程得a2=m,(m>0),b2=3,则c2=3+m,∵双曲线的离心率e=2,∴e2=c2a2= 3+mm=4,即3+m=4m,即3m=3,m=1,则“m=1”是“双曲线x2m −y23=1的离心率为2”的充要条件,故选:C.根据双曲线离心率的定义求出m的值,结合充分条件和必要条件的定义进行判断即可.本题主要考查充分条件和必要条件的判断,结合双曲线的离心率公式是解决本题的关键.5.将35个数据制成茎叶图如图所示.若将数据由大到小编号为1~35号,再用系统抽样方法从中抽取7个数据,则其中数据值落在区间[139,151]的个数为()A. 4B. 5C. 6D. 7【答案】A【解析】解:根据茎叶图中的数据,得;成绩在区间[139,151]上的运动员人数是20,用系统抽样方法从35人中抽取7人,成绩在区间[139,151]上的运动员应抽取7×20=4(人).故选:35A.根据茎叶图中的数据,结合系统抽样方法的特征,即可求出正确的结论.本题考查了茎叶图和系统抽样的应用问题,是基础题.6.把38化为二进制数为()A. 100110(2)B. 101010(2)C. 110010(2)D. 110100(2)【答案】A【解析】解:38÷2=19…019÷2=9…19÷2=4…14÷2=2…02÷2=1…01÷2=0…1故38(10)=100110(2)故选:A.利用“除k取余法”是将十进制数除以2,然后将商继续除以2,直到商为0,然后将依次所得的余数倒序排列即可得到答案.本题考查的知识点是十进制与其它进制之间的转化,其中熟练掌握“除k取余法”的方法步骤是解答本题的关键,属于基础题.7.已知直线l:y=√3x+m与圆C:x2+(y−3)2=6相交于A、B两点,若|AB|=2√2,则实数m的值等于()A. −7或−1B. 1或7C. −1或7D. −7或1【答案】C【解析】解:圆心(0,3)到直线l的距离是:d=√3+1=|m−3|2,故(m−3)24+2=6,解得:m=−1或m=7,故选:C.根据点到直线的距离公式以及勾股定理得到关于m的方程,解出即可.本题考查了直线和圆的位置关系,考查勾股定理,是一道基础题.8.从1,2,3,4中任取两个不同的数,则取出的两数之和为5的概率是()A. 16B. 14C. 13D. 12【答案】C【解析】解:从1,2,3,4中任取2个不同的数,基本事件总数n=C42=6,取出的2个数之和为5包含的基本事件有:(1,4),(2,3),∴取出的2个数之和为5的概率是p=26= 13.故选:C.基本事件总数n=C42=6,取出的2个数之和为5包含的基本事件有2个,由此能求出取出的2个数之和为5的概率.本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.9.由直线y=x+2上的点向圆(x−4)2+(y+2)2=1引切线,则切线长的最小值为()A. 4√2B. √31C. √33D. 4√2−1【答案】B【解析】解:要使切线长最小,必须直线y=x+2上的点到圆心的距离最小,此最小值即为圆心(4,−2)到直线的距离m,由点到直线的距离公式得m=√2=4√2,由勾股定理求得切线长的最小值为√32−1=√31.故选:B.要使切线长最小,必须直线y=x+2上的点到圆心的距离最小,此最小值即为圆心(4,−2)到直线的距离m,求出m,由勾股定理可求切线长的最小值.本题考查直线和圆的位置关系,点到直线的距离公式、勾股定理得应用.解题的关键是理解要使切线长最小,必须直线y=x+2上的点到圆心的距离最小.10.若在区间[−3,3]内任取一个实数m,则使直线x−y+m=0与圆(x−1)2+(y+2)2=4有公共点的概率为()A. 13B. 35C. √23D. 2√23【答案】C【解析】解:∵直线x−y+m=0与圆(x−1)2+(y+2)2=4有公共点,∴√2≤2,解得−1≤m≤3,∴在区间[−3,3]内任取一个实数m,使直线x−y+m=0与圆(x−1)2+(y+2)2=4有公共点的概率为−3+2√2−(−3)6=√23.故选:C.利用圆心到直线的距离小于等于半径可得到直线与圆有公共点,可求出满足条件的m,最后根据几何概型的概率公式可求出所求.本题主要考查了几何概型的概率,以及直线与圆相交的性质,解题的关键弄清概率类型,同时考查了计算能力,属于基础题.11.已知直线l过点P(3,−2)且与椭圆C:x220+y216=1相交于A,B两点,则使得点P为弦AB中点的直线斜率为()A. −35B. −65C. 65D. 35【答案】C【解析】解:设A(x1,y1),B(x2,y2),则则x1220+y1216=1,x2220+y2216=1,两式相减(x1−x2)(x1+x2)20+(y1−y2)(y1+y2)16=0,∵点P(3,−2)为弦AB中点,∴x1+x2=6,y1+y2=−2,∴k AB=y1−y2x1−x2=6 5.故选:C.设A(x1,y1),B(x2,y2),则x1220+y1216=1,x2220+y2216=1,两式相减,再利用中点坐标公式、斜率计算公式即可得出.本题考查了椭圆的标准方程及其性质、“点差法”、中点坐标公式、斜率计算公式,属于中档题.12.已知双曲线C:x22−y2=1上任意一点为G,则G到双曲线C的两条渐近线距离之积为()A. 13B. 23C. 1D. 43【答案】B【解析】解:设G(x0,y0),双曲线C:x22−y2=1的两条渐近线方程分别为x−√2y=0,x+√2y=0,所以G到双曲线C的两条渐近线的距离分别为d1=0√2y0√3,d2=0√2y0√3,所以d1⋅d2=0√2y0√3⋅0√2y0√3=|x02−2y02|3又因为点G在双曲线C:x22−y2=1上,所以x022−y02=1,即x02−2y02=2,代入上式,可得d1⋅d2=|x02−2y02|3=23.故选:B.求出渐近线方程,利用点到直线的距离转化求解即可.本题考查双曲线的简单性质的应用,点到直线的距离公式的应用,考查计算能力.二、填空题(本大题共4小题,共20.0分)13.已知甲、乙两名篮球运动员进行罚球训练,每人练习10组,每组罚球40个,每组命中个数的茎叶图如图所示,则命中率较高的为______.【答案】甲【解析】解:甲命中的数据主要集中在20~30之间,有6个数据,且成单峰分布;乙命中的数据主要集中在10~20之间,有5个数据,且成单峰分布;所以甲的命中率比乙高.故答案为:甲.根据茎叶图中的数据分布情况,结合题意得出命中率高的是甲.本题利用茎叶图考查了数据的分布特点与应用问题,是基础题.14.如果数据x1,x2,…,x n的平均数为x,方差为82,则5x1+2,5x2+2,…,5x n+2的方差为______.【答案】1600【解析】解:数据x1,x2,…,x n的平均数为x,方差为s2=82,则5x1+2,5x2+2,…,5x n+2的平均数是5x+2,方差为52×s2=25×64=1600.故答案为:1600.根据一组数据的平均数和方差的定义与性质,可以写出对应数据的平均数与方差.本题考查了一组数据的平均数与方差的应用问题,是基础题.15.我国元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经三处,没有壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的x=0,问一开始输入的x=______斗.遇店添一倍,逢友饮一斗,意思是碰到酒店就把壶里的酒加1倍,碰到朋友就把壶里的酒喝一斗,店友经三处,意思是每次都是遇到店后又遇到朋友,一共是3次.【答案】78【解析】解:第一次输入x=x,i=1执行循环体,x=2x−1,i=2,执行循环体,x=2(2x−1)−1=4x−3,i=3,执行循环体,x=2(4x−3)−1=8x−7,i=4>3,输出8x−7的值为0,解得:x=78,故答案为:78.求出对应的函数关系,由题输出的结果的值为0,由此关系建立方程求出自变量的值即可.解答本题,关键是根据所给的框图,得出函数关系,然后通过解方程求得输入的值.本题是算法框图考试常见的题型,其作题步骤是识图得出函数关系,由此函数关系解题,得出答案.16.双曲线x2b −y2a=1的两条渐近线互相垂直,那么该双曲线的离心率为______.【答案】√2【解析】解:由双曲线x2b −y2a=1可得渐近线方程为y=±ab x.∵两条渐近线互相垂直,∴−ab×ab=−1,解得a=b.该双曲线的离心率e=√1+a2b=√2.故答案为:√2.由双曲线x2b −y2a=1可得渐近线方程为y=±abx.由于两条渐近线互相垂直,可得−ab ×ab=−1,解得a=b.即可得到该双曲线的离心率e=√1+a2b.本题考查了双曲线的标准方程及其性质,属于基础题.三、解答题(本大题共6小题,共70.0分)17.求焦点在直线x−y+2=0的抛物线的标准方程.【答案】解:因为是标准方程,所以其焦点应该在坐标轴上,所以其焦点坐标即为直线x−y+2=0与坐标轴的交点所以其焦点坐标为(−2,0)和(0,2)当焦点为(−2,0)时可知其方程中的P=4,所以其方程为y2=−8x,当焦点为(0,2)时可知其方程中的P=4,所以其方程为x2=8y,焦点在直线x−y+2= 0的抛物线的标准方程:y2=−8x或x2=8y.【解析】先根据抛物线是标准方程可确定焦点的位置,再由直线x−y+2=0与坐标轴的交点可得到焦点坐标,根据抛物线的焦点坐标和抛物线的标准形式可得到标准方程.本题主要考查抛物线的标准方程.抛物线的标准方程的焦点一定在坐标轴上且定点一定在原点.18.某校为了解高一实验班的数学成绩,采用抽样调查的方式,获取了n位学生在第一学期末的数学成绩数据,样本统计结果如表:(1)求n的值和实验班数学平均分的估计值;(2)如果用分层抽样的方法从数学成绩小于120分的学生中抽取5名学生,再从这5名学生中选2人,求至少有一个学生的数学成绩是在[110,120)的概率.=200.x=【答案】解:(1)由题意得:n=20+301−(0.1+0.3+0.2+0.15)95×0.1+105×0.1+115×0.3+125×0.2+135×0.15+145×0.15=121.5.(2)设“至少有一个学生的数学成绩在[110,120)”为事件A,分层抽样从[90,100)中抽1人,记为A1,从[100,110)中抽1人,记为A2,从[110,120)中抽3人,记为B1,B2,B3,从这5人中选2人,共有10种不同选法,分别为:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3),其中,B1,B2,B3中至少有一个抽中的情况有9种,∴至少有一个学生的.数学成绩是在[110,120)的概率P(A)=910【解析】(1)由频率分布表能求出n的值和实验班数学平均分的估计值.(2)设“至少有一个学生的数学成绩在[110,120)”为事件A,分层抽样从[90,100)中抽1人,记为A1,从[100,110)中抽1人,记为A2,从[110,120)中抽3人,记为B1,B2,B3,从这5人中选2人,利用列举法能求出至少有一个学生的数学成绩是在[110,120)的概率.本题考查频率分布表的应用,考查概率的求法,考查列举法、古典概型等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.19.已知圆C的圆心为(1,1),直线x+y−4=0与圆C相切.(1)求圆C的标准方程;(2)若直线l过点(2,3),且被圆C所截得弦长为2,求直线l的方程.【答案】解:(1)圆心C(1,1)到直线x+y−4=0的距离d==√2.∵直线x+y−4=0与圆C相切,∴r=d=√2√2.∴圆的标准方程为:(x−1)2+(y−1)2=2.(3)①当直线l的斜率存在时,设直线l的方程:y−3=k(x−2),即:,又d2+1=2,∴d=1.解kx−y+3−2k=0,d=2.∴直线l的方程为:3x−4y+6=0.②当l的斜得:k=34率不存在时,x=2,代入圆的方程可得:(y−1)2=1,解得y =1±1,可得弦长=2,满足条件.故l 的方程为:3x −4y +6=0或x =2.【解析】(1)利用点到直线的距离可得:圆心C(1,1)到直线x +y −4=0的距离d.根据直线x +y −4=0与圆C 相切,可得r =d.即可得出圆的标准方程.(3)①当直线l 的斜率存在时,设直线l 的方程:y −3=k(x −2),即:kx −y +3−2k =0,可得圆心到直线l 的距离d ,又d 2+1=2,可得:k.即可得出直线l 的方程.②当l 的斜率不存在时,x =2,代入圆的方程可得:(y −1)2=1,解得y 可得弦长,即可验证是否满足条件.本题考查了直线与圆的相切的性质、点到直线的距离公式、弦长公式、分类讨论方法,考查了推理能力与计算能力,属于中档题.20. 某公司为研究某产品的广告投入与销售收入之间的关系,对近五个月的广告投入x(万元)与销售收入y(万元)进行了统计,得到相应数据如表:(1)求销售收入y 关于广告投入x 的线性回归方程y =b ^x +a ^.(2)若想要销售收入达到36万元,则广告投入应至少为多少.参考公式:b ̂=∑(n i=1x i −x)(y i −y)∑(n i=1x i −x)2,a ̂=y −b ̂⋅x 【答案】解:(1)x =9+10+8+11+125=10,y =21+23+21+20+255=22,b ̂=∑(5i=1x i −x)(y i −y)∑(5i=1x i −x)2=710,a ̂=y −b ̂x =22−710×10=15,∴销售收入y 关于广告投入x 的线性回归方程为y ̂=710x +15;(2)在y ̂=710x +15中,取y =36,可得36=710x +15,即x =30.∴若想要销售收入达到36万元,则广告投入应至少为30万元.【解析】(1)由已知求得b ̂,a ̂的值,则线性回归方程可求;(2)在线性回归方程中,取y =36求得x 值,则答案可求.本题考查线性回归方程的求法,考查计算能力,是基础题.21. 阅读如图所示的程序框图,解答下列问题:(Ⅰ)求输入的x 的值分别为−1,2时,输出的f(x)的值.(Ⅱ)根据程序框图,写出函数f(x)(x ∈R)的解析式,并求当关于x 的方程f(x)−k =0有三个互不相等的实数解时,实数k 的取值范围.【答案】解:(Ⅰ)当输入的x 的值分别为−1时,输出的f(x)=2−1=12;…2分当输入的x 的值分别为2时,输出的f(x)=22−2×2+1=1;…4分(Ⅱ)根据程序框图,可得f(x)={22x x =0x<0x 2−2x +1x >0,…6分当x <0时,f(x)=2x ,此时,f(x)单调递增,且0<f(x)<1;…8分当x =0时,f(x)=2,当x >0时,f(x)=x 2−2x +1=(x −1)2在(0,1)上单调递减,在(1,+∞)上单调递增,且f(x)≥0…10分结合图象,可知关于x 的方程f(x)−k =0由三个不同的实数解时,实数k 的取值范围为(0,1)…12分【解析】(Ⅰ)代入输入的x 的值分别求解即可.(Ⅱ)根据程序框图,可得f(x)={22x x =0x<0x 2−2x +1x >0,分类讨论即可得解.本题主要考查了程序框图的应用,考查了分类讨论思想的应用,属于中档题.22. 已知椭圆C :x 2a +y 2b =1(a >b >0)的离心率为12,且椭圆经过点(1,32).(1)求椭圆C 的方程;(2)设P 是圆x 2+y 2=7上任一点,由P 引椭圆两条切线PA ,PB 当切线斜率存在时,求证两条切线斜率的积为定值.【答案】解:(1)椭圆离心率为12,且经过点(1,32),可得{c a =121a +94b =1,解得a =2,b =√3,即椭圆C 的方程为:x 24+y 23=1证明.(2)设P(x 0,y 0),过点P 的切线方程为y −y 0=k(x −x 0),代入椭圆方程,可得(3+4k 2)x 2+8k(y 0−kx 0)x +4(kx 0−y 0)2−12=0,∵直线与椭圆相切,∴△=[8k(y 0−kx 0)]2−4(3+4k 2)[4(kx 0−y 0)2−12]=0,∴(4−x02)k2+6x0y0k+3−y02=0∴k1k2=3−y024−x02,∵点P在圆O上,∴x02+y02=7,即y02=7−x02,∴k1×k2=3−(7−x02)4−x02=−1.∴两条切线斜率的积为定值−1.【解析】(1)利用椭圆离心率为12,且经过点(1,32),建立方程组,求出a,b,即可求椭圆C的方程;(2)设P(x0,y0),过点P的切线方程为y−y0=k(x−x0),代入椭圆方程,直线与椭圆相切,利用△=0,结合韦达定理,即可得出结论.本题考查椭圆方程与性质,考查直线与椭圆的位置关系,考查韦达定理的运用,考查学生的计算能力,属于中档题.。

【必考题】高二数学上期末模拟试卷带答案

【必考题】高二数学上期末模拟试卷带答案

【必考题】高二数学上期末模拟试卷带答案一、选择题1.如图,ABC ∆和DEF ∆都是圆内接正三角形,且//BC EF ,将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在ABC ∆内”,B 表示事件“豆子落在DEF ∆内”,则(|)P B A =( )A .33B .3 C .13D .232.某校为了解高二年级学生某次数学考试成绩的分布情况,从该年级的1120名学生中随机抽取了100 名学生的数学成绩,发现都在[80,150]内现将这100名学生的成绩按照 [80,90),[90,100),[100,110),[110,120),[120,130),[130,140),[140,150]分组后,得到的频率 分布直方图如图所示则下列说法正确的是( )A .频率分布直方图中a 的值为 0.040B .样本数据低于130分的频率为 0.3C .总体的中位数(保留1位小数)估计为123.3分D .总体分布在[90,100)的频数一定与总体分布在[100,110)的频数不相等3.把五个标号为1到5的小球全部放入标号为1到4的四个盒子中,并且不许有空盒,那么任意一个小球都不能放入标有相同标号的盒子中的概率是( ) A .320B .720C .316D .254.如图是把二进制的数11111化成十进制数的一个程序框图,则判断框内应填入的条件是( )A .4i >?B .5i >?C .4i ≤?D .5i ≤?5.2018年12月12日,某地食品公司对某副食品店某半月内每天的顾客人数进行统计得到样本数据的茎叶图如图所示,则该样本的中位数是( )A .45B .47C .48D .636.若执行如图所示的程序框图,则输出S 的值为( )A .10072015B .10082017C .10092019D .101020217.如果数据12,,,n x x x L 的平均数为x ,方差为28,则152x +,252x +,…,52n x +的平均数和方差分别为( ) A .x ,28B .52x +,28C .52x +,2258⨯D .x ,2258⨯8.执行如图的程序框图,如果输出a 的值大于100,那么判断框内的条件为( )A .5k <?B .5k ≥?C .6k <?D .6k ≥?9.执行如图的程序框图,如果输出的是a=341,那么判断框( )A .4k <B .5k <C .6k <D .7k <10.设数据123,,,,n x x x x L 是郑州市普通职工*(3,)n n n N ≥∈个人的年收入,若这n 个数据的中位数为x ,平均数为y ,方差为z ,如果再加上世界首富的年收入1n x +,则这1n +个数据中,下列说法正确的是( )A .年收入平均数大大增大,中位数一定变大,方差可能不变B .年收入平均数大大增大,中位数可能不变,方差变大C .年收入平均数大大增大,中位数可能不变,方差也不变D .年收入平均数可能不变,中位数可能不变,方差可能不变11.根据表中提供的全部数据,用最小二乘法得出y 关于x 的线性回归方程是9944y x =+$,则表中m 的值为( ) x 8 10 1112 14 y2125m2835A .26B .27C .28D .2912.已知某班级部分同学一次测验的成绩统计如图,则其中位数和众数分别为( )A .92,94B .92,86C .99,86D .95,91二、填空题13.我国传统的房屋建筑中,常会出现一些形状不同的窗棂,窗棂上雕刻有各种花纹,构成种类繁多的图案.如图所示的窗棂图案,是将半径为R 的圆六等分,分别以各等分点为圆心,以R 为半径画圆弧,在圆的内部构成的平面图形.现在向该圆形区域内的随机地投掷一枚飞镖,飞镖落在黑色部分(忽略图中的白线)的概率是__________.14.执行如图所示的程序框图若输人x 的值为3,则输出y 的值为______.15.若(9)85a =,(5)301b =,(2)1001c =,则这三个数字中最大的是___ 16.为调查某校学生每天用于课外阅读的时间,现从该校名学生中随机抽取名学生进行问卷调查,所得数据均在区间上,其频率分布直方图如图所示,则估计该校学生中每天用于阅读的时间在(单位:分钟)内的学生人数为____.17.下图是华师一附中数学讲故事大赛7位评委给某位学生的表演打出的分数的茎叶图.记分员在去掉一个最高分和一个最低分后,算得平均分为91分,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清,若记分员计算无误,则数字x 应该是____________.18.如图所示的程序框图,输出的S 的值为( )A .12 B .2 C .1- D .12- 19.一组样本数据按从小到大的顺序排列为:1-,0,4,x ,y ,14,已知这组数据的平均数与中位数均为5,则其方差为__________.20.在区间[,]-ππ内随机取出两个数分别记为a 、b ,则函数222()2f x x ax b π=+-+有零点的概率为__________.三、解答题21.已知一个口袋有3个白球,1个黑球,这些球除颜色外全部相同,现将口袋中的球随机逐个取出,并依次放入编号为1,2,3,4的抽屉内. (1)求编号为2的抽屉内放黑球的概率;(2)口袋中的球放入抽屉后,随机取出两个抽屉中的球,求取出的两个球是一黑一白的概率.22.2018年中秋节到来之际,某超市为了解中秋节期间月饼的销售量,对其所在销售范围内的1000名消费者在中秋节期间的月饼购买量(单位:g)进行了问卷调查,得到如下频率分布直方图:()1求频率分布直方图中a的值;()2以频率作为概率,试求消费者月饼购买量在600g1400g~的概率;()3已知该超市所在销售范围内有20万人,并且该超市每年的销售份额约占该市场总量的5%,请根据这1000名消费者的人均月饼购买量估计该超市应准备多少吨月饼恰好能满足市场需求(频率分布直方图中同一组的数据用该组区间的中点值作代表)?23.甲,乙两人玩摸球游戏,每两局为一轮,每局游戏的规则如下:甲,乙两人均从装有4只红球、1只黑球的袋中轮流不放回摸取1只球,摸到黑球的人获胜,并结束该局.(1)若在一局中甲先摸,求甲在该局获胜的概率;(2)若在一轮游戏中约定:第一局甲先摸,第二局乙先摸,每一局先摸并获胜的人得1分,后摸井获胜的人得2分,未获胜的人得0分,求此轮游戏中甲得分X的概率分布及数学期望.24.某公司为研究某产品的广告投入与销售收入之间的关系,对近五个月的广告投入x (万元)与销售收入y(万元)进行了统计,得到相应数据如下表:广告投入x(万元)91081112销售收入y(万元)2123212025(1)求销售收入y关于广告投入x的线性回归方程y bx a=+$$$.(2)若想要销售收入达到36万元,则广告投入应至少为多少.参考公式:()()()121ni iiniix x y ybx x∧==--=-∑∑,ˆˆ•a yb x=-25.如下图是某校高三(1)班的一次数学知识竞赛成绩的茎叶图(图中仅列出[50,60),[90,100)的数据)和频率分布直方图.(1)求分数在[50,60)的频率及全班人数; (2)求频率分布直方图中的,x y ;(3)若要从分数在[80,100)之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在[90,100)之间的概率.26.甲乙两人同时生产内径为25.41mm 的一种零件,为了对两人的生产质量进行评比,从他们生产的零件中各抽出 5 件(单位:mm ) , 甲:25.44,25.43, 25.41,25.39,25.38 乙:25.41,25.42, 25.41,25.39,25.42. 从生产的零件内径的尺寸看、谁生产的零件质量较高.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】如图所示,作三条辅助线,根据已知条件,这些小三角形全等,ABC ∆包含9 个小三角形,同时又在DEF ∆内的小三角形共有6 个,所以(|)P B A =6293= ,故选D. 2.C解析:C 【解析】 【分析】由频率分布直方图得的性质求出0.030a =;样本数据低于130分的频率为:0.7;[)80,120的频率为0.4,[)120,130的频率为0.3.由此求出总体的中位数(保留1位小数)估计为:0.50.41203123.30.3-+⨯≈分;样本分布在[)90,100的频数一定与样本分布在[)100,110的频数相等,总体分布在[)90,100的频数不一定与总体分布在[)100,110的频数相等. 【详解】由频率分布直方图得:()0.0050.0100.0100.0150.0250.005101a ++++++⨯=,解得0.030a =,故A 错误;样本数据低于130分的频率为:()10.0250.005100.7-+⨯=,故B 错误;[)80,120的频率为:()0.0050.0100.0100.015100.4+++⨯=, [)120,130的频率为:0.030100.3⨯=.∴总体的中位数(保留1位小数)估计为:0.50.412010123.30.3-+⨯≈分,故C 正确; 样本分布在[)90,100的频数一定与样本分布在[)100,110的频数相等, 总体分布在[)90,100的频数不一定与总体分布在[)100,110的频数相等,故D 错误.故选C . 【点睛】本题考查命题真假的判断,考查频率分布直方图的性质等基础知识,考查运算求解能力,考查数形结合思想,是基础题.因为条形分布直方图的面积表示的是概率值,中位数是位于最中间的数,故直接找概率为0.5的即可;平均数是每个长方条的中点乘以间距再乘以长方条的高,将每一个数值相加得到.3.B解析:B 【解析】 【分析】由题意可以分两类,第一类第5球独占一盒,第二类,第5球不独占一盒,根据分类计数原理得到答案. 【详解】解:第一类,第5球独占一盒,则有4种选择;如第5球独占第一盒,则剩下的三盒,先把第1球放旁边,就是2,3,4球放入2,3,4盒的错位排列,有2种选择,再把第1球分别放入2,3,4盒,有3种可能选择,于是此时有236⨯=种选择; 如第1球独占一盒,有3种选择,剩下的2,3,4球放入两盒有2种选择,此时有236⨯=种选择,得到第5球独占一盒的选择有4(66)48⨯+=种,第二类,第5球不独占一盒,先放14-号球,4个球的全不对应排列数是9;第二步放5号球:有4种选择;9436⨯=,根据分类计数原理得,不同的方法有364884+=种.而将五球放到4盒共有2454240C A ⨯=种不同的办法,故任意一个小球都不能放入标有相同标号的盒子中的概率84724020P == 故选:B . 【点睛】本题主要考查了分类计数原理,关键是如何分步,属于中档题.4.C解析:C 【解析】 【分析】根据程序框图依次计算得到答案. 【详解】根据程序框图:1,1S i ==;3,2S i ==;7,3S i ==;15,4S i ==;31,5S i ==,结束. 故选:C . 【点睛】本题考查了程序框图,意在考查学生的计算能力和理解能力.5.A解析:A 【解析】 【分析】由茎叶图确定所给的所有数据,然后确定中位数即可. 【详解】各数据为:12 20 31 32 34 45 45 45 47 47 48 50 50 61 63, 最中间的数为:45,所以,中位数为45. 本题选择A 选项. 【点睛】本题主要考查茎叶图的阅读,中位数的定义与计算等知识,意在考查学生的转化能力和计算求解能力.6.C解析:C【解析】 【分析】首先确定流程图的功能为计数111113355720172019S =++++⨯⨯⨯⨯L 的值,然后利用裂项求和的方法即可求得最终结果. 【详解】由题意结合流程图可知流程图输出结果为111113355720172019S =++++⨯⨯⨯⨯L , 11(2)111(2)2(2)22n n n n n n n n +-⎛⎫=⨯=- ⎪+++⎝⎭Q,111113355720172019S ∴=++++⨯⨯⨯⨯L 11111111123355720172019⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦L 1110091220192019⎛⎫=-=⎪⎝⎭. 本题选择C 选项. 【点睛】识别、运行程序框图和完善程序框图的思路: (1)要明确程序框图的顺序结构、条件结构和循环结构. (2)要识别、运行程序框图,理解框图所解决的实际问题. (3)按照题目的要求完成解答并验证.7.C解析:C 【解析】根据平均数的概念,其平均数为52x +,方差为2258⨯,故选C.8.C解析:C 【解析】 【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量a 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【详解】由题意,模拟程序的运算,可得k 1=,a 1=满足判断框内的条件,执行循环体,a 6=,k 3= 满足判断框内的条件,执行循环体,a 33=,k 5= 满足判断框内的条件,执行循环体,a 170=,k 7=此时,不满足判断框内的条件,退出循环,输出a的值为170.则分析各个选项可得程序中判断框内的“条件”应为k6<?故选:C.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.9.C解析:C【解析】由程序框图可知a=4a+1=1,k=k+1=2;a=4a+1=5,k=k+1=3;a=4a+1=21,k=k+1=4;a=4a+1=85,k=k+1=5;a=4a+1=341;k=k+1=6.要使得输出的结果是a=341,判断框中应是“k<6?”.10.B解析:B【解析】∵数据x1,x2,x3,…,x n是郑州普通职工n(n⩾3,n∈N∗)个人的年收入,而x n+1为世界首富的年收入则x n+1会远大于x1,x2,x3,…,x n,故这n+1个数据中,年收入平均数大大增大,但中位数可能不变,也可能稍微变大,但由于数据的集中程序也受到x n+1比较大的影响,而更加离散,则方差变大.故选B11.A解析:A【解析】【分析】首先求得x的平均值,然后利用线性回归方程过样本中心点求解m的值即可.【详解】由题意可得:810111214115x++++==,由线性回归方程的性质可知:99112744y=⨯+=,故21252835275m++++=,26m∴=.故选:A.【点睛】本题考查回归分析,考查线性回归直线过样本中心点,在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x 与y 之间的关系,这条直线过样本中心点.12.B解析:B【解析】由茎叶图可知,中位数为92,众数为86. 故选B.二、填空题13.【解析】∵阴影部分面积为∴飞镖落在黑色部分的概率为故答案为点睛:(1)当试验的结果构成的区域为长度面积体积等时应考虑使用几何概型求解;(2)利用几何概型求概率时关键是试验的全部结果构成的区域和事件发解析:2【解析】∵阴影部分面积为221141262222R R R ππ⎛⎫-⨯-⨯⨯= ⎪ ⎪⎝⎭∴飞镖落在黑色部分的概率为22222R R ππ=-故答案为22π- 点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解;(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域;(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.14.63【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量y 的值模拟程序的运行过程分析循环中各变量值的变化情况可得答案【详解】解:模拟程序的运行可得x=3y=7不满足条件|解析:63【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量y 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】解:模拟程序的运行,可得x=3y=7不满足条件|x-y|>31,执行循环体,x=7,y=15不满足条件|x-y|>31,执行循环体,x=15,y=31不满足条件|x-y|>31,执行循环体,x=31,y=63此时,满足条件|x-y|>31,退出循环,输出y 的值为63.故答案为63.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.15.【解析】【分析】将三个数都转化为10进制的数然后比较大小即可【详解】故最大【点睛】本题考查了不同进制间的转化考查了学生的计算能力属于基础题解析:a【解析】【分析】将三个数都转化为10进制的数,然后比较大小即可。

高二数学上学期期末考试试卷 理含解析 试题 2(共17页)

高二数学上学期期末考试试卷 理含解析 试题 2(共17页)

一中2021-2021高二年级第一学期(xuéqī)期末试题高二数学〔理科〕一选择题:在每个小题给出的四个选项里面,只有一项是哪一项符合题目要求的。

1.假设命题:, ,那么命题的否认是〔〕A. ,B. ,C. ,D. ,【答案】C【解析】根据特称命题的否认,换量词否结论,不变条件;故得到命题的否认是,.故答案为:C.2.与向量垂直的一个向量的坐标是( )A. B. C. D.【答案】D【解析】【分析】用与四个选项里面的向量求数量积,数量积为零的即是所求.【详解】对于A选项,不符合题意.对于B选项,不符合题意.对于C选项,不符合题意.对于D选项,符合题意,应选D.【点睛】本小题主要考察两个空间向量互相垂直的坐标表示,考察运算求解才能,属于根底题.3.双曲线的渐近线方程(fāngchéng)为( )A. B. C. D.【答案】A【解析】双曲线实轴在轴上时,渐近线方程为,此题中,得渐近线方程为,应选A.4.抛物线的焦点坐标是( )A. B. C. D.【答案】A【解析】【分析】利用抛物线的HY方程,转化求解即可.【详解】抛物线y=-x2的开口向下,,所以抛物线的焦点坐标.应选:A.【点睛】此题考察抛物线的简单性质的应用,考察计算才能.5.等比数列中,,,( )A. 32B. 64C. 128D. 256【答案】C【解析】【分析】将转化为的形式,求得的值,由此求得的值.【详解(xiánɡ jiě)】由于数列为等比数列,故,故,应选C.【点睛】本小题主要考察利用根本元的思想求等比数列的根本量个根本量,利用等比数列的通项公式或者前项和公式,结合条件列出方程组,通过解方程组即可求得数列,进而求得数列其它的一些量的值.6.设变量想x、y满足约束条件为那么目的函数的最大值为( )A. 0B. -3C. 18D. 21【答案】C【解析】【详解】画出可行域如以下图所示,由图可知,目的函数在点处获得最大值,且最大值为.应选C.【点睛】本小题主要考察利用线性规划求线性目的函数的最大值.这种类型题目的主要思路是:首先根据题目所给的约束条件,画图可行域;其次是求得线性目的函数的基准函数;接着画出基准函数对应的基准直线;然后通过平移基准直线到可行域边界的位置;最后求出所求的最值.属于根底题.7.假设命题“〞为真命题,那么( )A. 为假命题(mìng tí)B. 为假命题C. 为真命题D. 为真命题【答案】B【解析】【分析】命题“p∧(¬q)〞为真命题,根据且命题的真假判断得到p为真命题,¬q也为真命题,进而得到结果.【详解】命题“p∧(¬q)〞为真命题,根据且命题的真假判断得到p为真命题,¬q也为真命题,那么q为假命题,故B正确;p∨q为真命题;¬p为假命题,¬q为真命题,故得到(¬p)∧(¬q)为假命题.故答案为:B.【点睛】〔1〕由简单命题和逻辑连接词构成的复合命题的真假可以用真值表来判断,反之根据复合命题的真假也可以判断简单命题的真假.假假设p且q真,那么p 真,q也真;假设p或者q真,那么p,q至少有一个真;假设p且q假,那么p,q至少有一个假.〔2〕可把“p或者q〞为真命题转化为并集的运算;把“p且q〞为真命题转化为交集的运算.8.在中,,,分别是三个内角、、的对边,,,,那么〔〕A. B. 或者 C. D. 或者【答案】D【解析】【分析】利用正弦(zhèngxián)定理列方程,解方程求得的值,根据特殊角的三角函数值求得的大小.【详解】由正弦定理得,解得,故或者,所以选D.【点睛】本小题主要考察利用正弦定理解三角形,考察特殊角的三角函数值,属于根底题.9.在中,分别为角的对边,假设,那么此三角形一定是( )A. 等腰三角形B. 直角三角形C. 等腰直角三角形D. 等腰三角形或者直角三角形【答案】A【解析】由正弦定理得sinA=2sinBcosC,即sin(B+C)=sinBcosC+cosBsinC=2sinBcosC,整理得sinBcosC−cosBsinC=sin(B−C)=0,即B=C,那么三角形为等腰三角形,此题选择A选项.10.均为正数,,那么的最小值( ).A. 13B.C. 4D.【答案】D【解析】【分析】通过化简后利用根本不等式求得表达式的最小值.【详解】依题意.应选D.【点睛(diǎn jīnɡ)】本小题主要考察利用“〞的代换的方法,结合根本不等式求表达式的最小值.属于根底题.11.设双曲线的渐近线方程为,那么的值是( )A. 1B. 2C. 3D. 4【答案】B【解析】双曲线的渐近线方程为,所以,应选B.12.有以下三个命题:①“假设,那么互为相反数〞的逆命题;②“假设,那么〞的逆否命题;③“假设,那么〞的否命题. 其中真命题的个数是( )A. 0B. 1C. 2D. 3【答案】B【解析】【分析】①写出命题的逆命题,可以进展判断为真命题;②原命题和逆否命题真假性一样,而通过举例得到原命题为假,故逆否命题也为假;③写出命题的否命题,通过举出反例得到否命题为假。

【必考题】高二数学上期末一模试题(及答案)(2)

【必考题】高二数学上期末一模试题(及答案)(2)

【必考题】高二数学上期末一模试题(及答案)(2)一、选择题1.如图,一个边长为2的正方形里有一个月牙形的图案,为了估算这个月牙形图案的面积,向这个正方形里随机投入500粒芝麻,经过统计,落在月牙形图案内的芝麻有150粒,则这个月牙图案的面积约为()A.35B.45C.1D.652.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.小华同学利用刘徽的“割圆术”思想在半径为1的圆内作正n边形求其面积,如图是其设计的一个程序框图,则框图中应填入、输出n的值分别为()(参考数据:20sin200.3420,sin()0.11613≈≈)A.1180sin,242S nn=⨯⨯B.1180sin,182S nn=⨯⨯C.1360sin,542S nn=⨯⨯D.1360sin,182S nn=⨯⨯3.如图所给的程序运行结果为41S=,那么判断框中应填入的关于k的条件是( )A .7k ≥?B .6k ≥?C .5k ≥?D .6k >?4.随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,下图是某城市1月至8月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量合格天气,下面四种说法正确的是( ).①1月至8月空气合格天数超过20天的月份有5个 ②第二季度与第一季度相比,空气合格天数的比重下降了 ③8月是空气质量最好的一个月 ④6月的空气质量最差 A .①②③B .①②④C .①③④D .②③④5.执行如图所示的程序框图,若输出的结果为63,则判断框中应填入的条件为( )A .4i ≤B .5i ≤C .6i ≤D .7i ≤6.我国古代数学著作《九章算术》中,有这样一道题目:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升.问:米几何?”下图是源于其思想的一个程序框图,若输出的3S =(单位:升),则输入的k =( )A .9B .10C .11D .127.太极图是以黑白两个鱼形纹组成的图案,它形象化地表达了阴阳轮转、相反相成是万物生成变化根源的哲理,展现了一种相互转化、相对统一的形式美.按照太极图的构图方法,在平面直角坐标系中,圆O 被3sin6y x π=的图象分割为两个对称的鱼形图案,其中小圆的半径均为1,现在大圆内随机取一点,则此点取自阴影部分的概率为( )A .136B .118C .112D .198.定义运算a b ⊗为执行如图所示的程序框图输出的S 值,则式子π2πtan cos 43⎛⎫⎛⎫⊗ ⎪ ⎪⎝⎭⎝⎭的值是A .-1B .12C.1D.3 29.袋中装有红球3个、白球2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是()A.至少有一个白球;都是白球B.至少有一个白球;至少有一个红球C.至少有一个白球;红、黑球各一个D.恰有一个白球;一个白球一个黑球10.执行如图所示的程序框图,若输入x=9,则循环体执行的次数为()A.1次B.2次C.3次D.4次11.执行如图的程序框图,若输出的4n ,则输入的整数p的最小值是()A.4B.5C.6D.1512.有一个容量为200的样本,样本数据分组为[50,70),[70,90),[90,110),[110,130),[130,150),其频率分布直方图如图所示.根据样本的频率分布直方图估计样本数据落在区间[90,110)内的频数为()A .48B .60C .64D .72二、填空题13.若正方体1111ABCD A B C D -的棱长为3,E 为正方体内任意一点,则AE 的长度大于3的概率等于_________.14.我国传统的房屋建筑中,常会出现一些形状不同的窗棂,窗棂上雕刻有各种花纹,构成种类繁多的图案.如图所示的窗棂图案,是将半径为R 的圆六等分,分别以各等分点为圆心,以R 为半径画圆弧,在圆的内部构成的平面图形.现在向该圆形区域内的随机地投掷一枚飞镖,飞镖落在黑色部分(忽略图中的白线)的概率是__________.15.利用计算机产生0~1之间的均匀随机数a ,则使关于x 的一元二次方程20x x a -+=无实根的概率为______.16.设{}{}1,3,5,7,2,4,6a b ∈∈,则函数()log a bf x x =是增函数的概率为__________.17.已知某产品连续4个月的广告费i x (千元)与销售额i y (万元)(1,2,3,4i =)满足4115ii x==∑,4112i i y ==∑,若广告费用x 和销售额y 之间具有线性相关关系,且回归直线方程为^y bx a =+,0.6b =,那么广告费用为5千元时,可预测的销售额为___万元. 18.甲、乙二人约定某日早上在某处会面,甲在7:00~7:20内某一时刻随机到达,乙在7:05~7:20内某一时刻随机到达,则甲至少需等待乙5分钟的概率是________.19.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率是________20.已知AOB ∆中,60AOB ∠=o ,2OA =,5OB =,在线段OB 上任取一点C ,则AOC ∆为锐角三角形的概率_________.三、解答题21.现有8名马拉松比赛志愿者,其中志愿者1A ,2A ,3A 通晓日语,1B ,2B ,3B 通晓俄语,1C ,2C 通晓英语,从中选出通晓日语、俄语和英语的志愿者各1名,组成一个小组.()1列出基本事件;()2求1A 被选中的概率;()3求1B 和1C 不全被选中的概率.22.某电子科技公司由于产品采用最新技术,销售额不断增长,最近5个季度的销售额数据统计如下表(其中20181Q 表示2018年第一季度,以此类推): 季度 20181Q 20182Q 20183Q 20184Q 20191Q季度编号x 1 2345销售额y (百万元)4656 67 86 96(1)公司市场部从中任选2个季度的数据进行对比分析,求这2个季度的销售额都超过6千万元的概率;(2)求y 关于x 的线性回归方程,并预测该公司20193Q 的销售额.附:线性回归方程:y bx a =+$$$其中()()()1122211n niii ii i nniii i x x y y x y nx yb x x xnx====---⋅==--∑∑∑∑$,$$a y bx=-$ 参考数据:511183i ii x y==∑.23.某蔬果经销商销售某种蔬果,售价为每公斤25元,成本为每公斤15元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价以每公斤10元处理完.根据以往的销售情况,得到如图所示的频率分布直方图:(1)根据频率分布直方图计算该种蔬果日需求量的平均数x (同一组中的数据用该组区间中点值代表);(2)该经销商某天购进了250公斤这种蔬果,假设当天的需求量为x 公斤(0500)x ≤≤,利润为y 元.求y 关于x 的函数关系式,并结合频率分布直方图估计利润y 不小于1750元的概率.24.用秦九韶算法求()543383f x x x x =+-25126x x ++-,当2x =时的值.25.今年4月的“西安奔驰女车主哭诉维权事件”引起了社会的广泛关注,某汽车4S 店为了调研公司的售后服务态度,对5月份到店维修保养的100位客户进行了回访调查,每位客户用10分制对该店的售后服务进行打分.现将打分的情况分成以下几组:第一组[0,2),第二组[2,4),第三组[4,6),第四组[6,8),第五组[8,10],得到频率分布直方图如图所示.已知第二组的频数为10.(1)求图中实数a ,b 的值;(2)求所打分值在[6,10]的客户人数;(3)总公司规定,若4S 店的客户回访平均得分低于7分,则将勒令其停业整顿.试用频率分布直方图的组中值对总体平均数进行估计,判断该4S 店是否需要停业整顿. 26.某高校在2017年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如表: 组号 分组频率第1组 [)160,165 0.05第2组 [)165,1700.35 第3组 [)170,175 ①第4组 [)175,1800.20 第5组[]180,1850.10()1求出频率分布表中①处应填写的数据,并完成如图所示的频率分布直方图;()2根据直方图估计这次自主招生考试笔试成绩的平均数和中位数(结果都保留两位小数).【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】利用与面积有关的几何概型概率计算公式求解即可. 【详解】由题可知,正方形的面积为=22=4S ⨯正,设这个月牙图案的面积为S , 由与面积有关的几何概型概率计算公式可得,向这个正方形里随机投入芝麻,落在月牙形图案内的概率为150=4500S S P S ==正,解得65S =. 故选:D 【点睛】本题考查与面积有关的几何概型概率计算公式;属于基础题、常考题型.2.C解析:C 【解析】分析:在半径为1的圆内作出正n 边形,分成n 个小的等腰三角形,可得正n 边形面积是13602S n sinn=⨯⨯o,按照程序框图规定的运算方法逐次计算,直到达到输出条件即可的结果.详解:在半径为1的圆内作出正n 边形,分成n 个小的等腰三角形,每一个等腰三角形两腰是1,顶角是360n ⎛⎫ ⎪⎝⎭o,所以正n 边形面积是13602S n sin n=⨯⨯o,当6n =时, 2.6S =≈; 当18n =时, 3.08S ≈;当54n =时, 3.13S ≈;符合 3.11S ≥,输出54n =,故选C.点睛:本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.3.B解析:B 【解析】 【分析】程序运行结果为41S =,执行程序,当6k =时,判断条件成立,当5k =时,判断条件不成立,输出41S =,即可选出答案. 【详解】根据程序框图,运行如下: 初始10,1k S ==,判断条件成立,得到11011S =+=,1019k =-=; 判断条件成立,得到11920S =+=,918k =-=; 判断条件成立,得到20828S =+=,817k =-=; 判断条件成立,得到28735S =+=,716k =-=; 判断条件成立,得到35641S =+=,615k =-=; 判断条件不成立,输出41S =,退出循环,即6k ≥符合题意. 故选:B. 【点睛】本题考查了程序框图的识别与判断,弄清进入循环体和跳出循环体的条件是解决本题的关键,考查了学生的推理能力,属于基础题.4.A解析:A【解析】在A 中,1月至8月空气合格天数超过20谈的月份有:1月,2月,6月,7月,8月, 共5个,故A 正确;在B 中,第一季度合格天数的比重为2226190.8462312931++≈++;第二季度合格天气的比重为1913250.6263303130++≈++,所以第二季度与第一季度相比,空气达标天数的比重下降了,所以B 是正确的;在C 中,8月空气质量合格天气达到30天,是空气质量最好的一个月,所以是正确的; 在D 中,5月空气质量合格天气只有13天,5月份的空气质量最差,所以是错误的, 综上,故选A .5.B解析:B 【解析】 【分析】模拟执行程序框图,依次写出每次循环得到的,i S 的值,当输出的63S =时,退出循环,对应的条件为5i ≤,从而得到结果. 【详解】当=11S i =,时,不满足输出条件,故进行循环,执行循环体; 当1123,2S i =+==,不满足输出条件,故进行循环,执行循环体; 当2327,3S i =+==,不满足输出条件,故进行循环,执行循环体; 当37215,4S i =+==,不满足输出条件,故进行循环,执行循环体; 当415231,5S i =+==,不满足输出条件,故进行循环,执行循环体; 当313263,6S i =+==,满足输出条件,故判断框中应填入的条件为5i ≤, 故选B. 【点睛】该题考查的是有关程序框图的问题,根据题意写出判断框中需要填入的条件,属于简单题目.6.D解析:D 【解析】 【分析】计算出每次循环时各变量的值并与3S =比较后可得对应的k 的值. 【详解】1n =,S k =; 2n =,22k kS k =-=;3n =,263k k k S =-=; 4n =,33124k k kS =-==,所以12k =. 故选:D. 【点睛】本题以数学文化为背景考虑流程图,此类问题应该根据流程图计算每次循环时各变量的值,从而可得程序终止的条件、输出的结果等,本题属于中档题.7.B解析:B 【解析】设大圆的半径为R ,则:126226T R ππ==⨯=, 则大圆面积为:2136S R ππ==,小圆面积为:22122S ππ=⨯⨯=,则满足题意的概率值为:213618p ππ==. 本题选择B 选项.点睛:数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A 满足的不等式,在图形中画出事件A 发生的区域,据此求解几何概型即可.8.D解析:D 【解析】 【分析】由已知的程序框图可知,本程序的功能是:计算并输出分段函数()(),1,a a b a b S b a a b ⎧-≥⎪=⎨+<⎪⎩的值,由此计算可得结论. 【详解】由已知的程序框图可知:本程序的功能是:计算并输出分段函数()(),1,a a b a bS b a a b ⎧-≥⎪=⎨+<⎪⎩的值,可得2tan cos 43ππ⎛⎫⎛⎫⊗ ⎪ ⎪⎝⎭⎝⎭112⎛⎫=⊗- ⎪⎝⎭, 因为112>-, 所以,113111222⎛⎫⎛⎫⊗-=⨯+= ⎪ ⎪⎝⎭⎝⎭,【点睛】本题主要考查条件语句以及算法的应用,属于中档题 .算法是新课标高考的一大热点,其中算法的交汇性问题已成为高考的一大亮,这类问题常常与函数、数列、不等式等交汇自然,很好地考查考生的信息处理能力及综合运用知识解决问題的能力,解决算法的交汇性问题的方:(1)读懂程序框图、明确交汇知识,(2)根据给出问题与程序框图处理问题即可.9.C解析:C 【解析】 【分析】由题意逐一考查所给的事件是否互斥、对立即可求得最终结果. 【详解】袋中装有红球3个、白球2个、黑球1个,从中任取2个,逐一分析所给的选项: 在A 中,至少有一个白球和都是白球两个事件能同时发生,不是互斥事件,故A 不成立. 在B 中,至少有一个白球和至少有一个红球两个事件能同时发生,不是互斥事件,故B 不成立;在C 中,至少有一个白球和红、黑球各一个两个事件不能同时发生但能同时不发生, 是互斥而不对立的两个事件,故C 成立;在D 中,恰有一个白球和一个白球一个黑球两个事件能同时发生,不是互斥事件,故D 不成立; 本题选择C 选项. 【点睛】“互斥事件”与“对立事件”的区别:对立事件是互斥事件,是互斥中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.10.C解析:C 【解析】 【分析】根据程序框图依次计算得到答案. 【详解】9,5x y ==,41y x -=>;115,3x y ==,413y x -=>; 1129,39x y ==,419y x -=<;结束. 故选:C . 【点睛】本题考查了程序框图的循环次数,意在考查学生的理解能力和计算能力.11.A【解析】 【分析】列举出算法的每一步循环,根据算法输出结果计算出实数p 的取值范围,于此可得出整数p 的最小值. 【详解】0S p =<满足条件,执行第一次循环,0021S =+=,112n =+=; 1S p =<满足条件,执行第二次循环,1123S =+=,213n =+=;3S p =<满足条件,执行第二次循环,2327S =+=,314n =+=. 7S p =<满足条件,调出循环体,输出n 的值为4.由上可知,37p <≤,因此,输入的整数p 的最小值是4,故选A. 【点睛】本题考查算法框图的应用,解这类问题,通常列出每一次循环,找出其规律,进而对问题进行解答,考查分析问题和解决问题的能力,属于中等题.12.B解析:B 【解析】 【分析】由(0.00500.00750.01000.0125)201a ++++⨯=,求出a ,计算出数据落在区间[90,110)内的频率,即可求解.【详解】由(0.00500.00750.01000.0125)201a ++++⨯=, 解得0.015a =,所以数据落在区间[90,110)内的频率为0.015200.3⨯=, 所以数据落在区间[90,110)内的频数2000.360⨯=, 故选B. 【点睛】本题主要考查了频率分布直方图,频率、频数,属于中档题.二、填空题13.【解析】【分析】先求出满足题意的体积运用几何概型求出结果【详解】由题意可知总的基本事件为正方体内的点可用其体积满足的基本事件为为球心3为半径的求内部在正方体中的部分其体积为故则的长度大于3的概率【点 解析:16π-【解析】 【分析】先求出满足题意的体积,运用几何概型求出结果 【详解】由题意可知总的基本事件为正方体内的点,可用其体积3327=, 满足||3AE …的基本事件为A 为球心3为半径的求内部在正方体中的部分, 其体积为31493832V ππ=⨯⨯=,故则AE 的长度大于3的概率9211276P ππ=-=-.【点睛】本题考查了几何概型,读懂题意并计算出结果,较为基础14.【解析】∵阴影部分面积为∴飞镖落在黑色部分的概率为故答案为点睛:(1)当试验的结果构成的区域为长度面积体积等时应考虑使用几何概型求解;(2)利用几何概型求概率时关键是试验的全部结果构成的区域和事件发解析:2【解析】∵阴影部分面积为221141262222R R R ππ⎛⎫-⨯-⨯⨯= ⎪ ⎪⎝⎭∴飞镖落在黑色部分的概率为22222RR ππ=-故答案为22π-点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解;(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域;(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.15.【解析】∵方程无实根∴Δ=1-4a<0∴即所求概率为故填:解析:34【解析】∵方程无实根,∴Δ=1-4a <0,∴14a >,即所求概率为34.故填:3416.【解析】【分析】列举出所有的结果选出的所有的结果根据古典概型概率公式可求出函数是增函数的概率【详解】所有取值有:共12个值当时为增函数有共有6个所以函数是增函数的概率为故答案为【点睛】本题主要考查古 解析:12【解析】 【分析】 列举出ab所有的结果,选出1a b >的所有的结果,根据古典概型概率公式可求出函数()log a bf x x =是增函数的概率.【详解】a b 所有取值有:135713571157,,,,,,,,,,,222244446266共12个值, 当1a b >时,()f x 为增函数,有357577,,,,,222446共有6个, 所以函数()log a bf x x =是增函数的概率为61122=,故答案为12. 【点睛】本题主要考查古典概型概率公式的应用以及对数函数的性质,属于中档题. 在求解有关古典概型概率的问题时,首先求出样本空间中基本事件的总数n ,其次求出概率事件中含有多少个基本事件m ,然后根据公式mP n=求得概率. 17.75【解析】【分析】计算然后将代入回归直线得从而得回归方程然后令x =5解得y 即为所求【详解】∵∴∵∴∴样本中心点为(3)又回归直线过(3)即3=06×+解得=所以回归直线方程为y =06x+令x =5时 解析:75 【解析】 【分析】计算x ,y ,然后将x ,y 代入回归直线得a ,从而得回归方程,然后令x =5解得y 即为所求. 【详解】 ∵4115ii x==∑,∴154x =, ∵4112i i y ==∑,∴1234y ==, ∴样本中心点为(154,3), 又回归直线0.6ˆyx a =+过(154,3),即3=0.6×154+a ,解得a =34, 所以回归直线方程为y =0.6x +34, 令x =5时,y =0.6×5+34=3.75万元故答案为:3.75.【点睛】本题考查线性回归方程的应用,以及利用线性回归方程进行预测,要注意回归直线必过样本中心点.18.【解析】【分析】由题意知本题是一个几何概型试验包含的所有事件是Ω={(xy)|0≤x≤205≤y≤20}作出事件对应的集合表示的面积写出满足条件的事件是A={(xy)|0≤x≤205≤y≤20y﹣x解析:38【解析】【分析】由题意知本题是一个几何概型,试验包含的所有事件是Ω={(x,y)|0≤x≤20,5≤y≤20},作出事件对应的集合表示的面积,写出满足条件的事件是A={(x,y)|0≤x≤20,5≤y≤20,y﹣x≥5 },算出事件对应的集合表示的面积,根据几何概型概率公式得答案.【详解】由题意知本题是一个几何概型,设甲和乙到达的分别为7时x分、7时y分,则10≤x≤20,5≤y≤20,甲至少需等待乙5分钟,即y﹣x≥5,则试验包含的所有区域是Ω={(x,y)|0≤x≤20,5≤y≤20},甲至少需等待乙5分钟所表示的区域为A={(x,y)|0≤x≤20,5≤y≤20,y﹣x≥5},如图:正方形的面积为20×15=300,阴影部分的面积为12⨯15×152252=,∴甲至少需等待乙5分钟的概率是225323008=,故答案为3 8【点睛】本题主要考查“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.19.78【解析】【分析】求得4位同学各自在周六周日两天中任选一天参加公益活动周六周日都有同学参加公益活动的情况利用古典概型概率公式求解即可【详解】4位同学各自在周六周日两天中任选一天参加公益活动共有24 解析:【解析】 【分析】求得4位同学各自在周六、周日两天中任选一天参加公益活动、周六、周日都有同学参加公益活动的情况,利用古典概型概率公式求解即可. 【详解】4位同学各自在周六、周日两天中任选一天参加公益活动,共有24=16种情况, 周六、周日都有同学参加公益活动,共有24﹣2=16﹣2=14种情况, ∴所求概率为=.故答案为:. 【点睛】有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数:1.基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举;2.注意区分排列与组合,以及计数原理的正确使用.20.6【解析】如图过点作垂线垂足为在中故;过点作垂线与因则结合图形可知:当点位于线段上时为锐角三角形所以由几何概型的计算公式可得其概率应填答案点睛:本题的涉及到的知识点是几何概型的计算问题解答时充分借助解析:6 【解析】如图,过点A 作OB 垂线,垂足为H ,在AOB ∆中,60AOB ∠=o ,2OA =,故1OH =;过点A 作OA 垂线,与OB 交于点D ,因60AOB ∠=o ,则4,3OD DH ==,结合图形可知:当点C 位于线段DH 上时,AOC ∆为锐角三角形,所以3,5d HD D OB ====,由几何概型的计算公式可得其概率30.65d P D ===,应填答案0.6.点睛:本题的涉及到的知识点是几何概型的计算问题.解答时充分借助题设条件,运用解直角三角形的有关知识,分别算出几何概型中的3,5d HD D OB ====,然后运用几何概型的计算公式求出其概率为30.65d P D ===. 三、解答题21.(1)见解析;(2)13;(3)56【解析】 【分析】()1利用列举法能求出基本事件;()2用M 表示“1A 被选中”,利用列举法求出M 中含有6个基本事件,由此能求出1A 被选中的概率;()3用N 表示“1B 和1C 不全被选中”,则N 表示“1B 和1C 全被选中”,利用对立事件概率计算公式能求出1B 和1C 不全被选中的概率. 【详解】()1现有8名马拉松比赛志愿者,其中志愿者1A ,2A ,3A 通晓日语,1B ,2B ,3B 通晓俄语,1C ,2C 通晓英语,从中选出通晓日语、俄语和英语的志愿者各1名,组成一个小组. 基本事件空间()111{,,A B C Ω=,()112,,A B C ,()121,,A B C ,()122,,A B C ,()131,,A B C ,()132,,A B C ,()211,,A B C , ()212,,A B C ,()221,,A B C ,()222,,A B C ,()231,,A B C , ()232,,A B C ,()311,,A B C ,()312,,A B C ,()321,,A B C ,()322,,A B C ,()331,,A B C ,()332,,}A B C ,共18个基本事件. ()2由于每个基本事件被选中的机会相等,∴这些基本事件是等可能发生的,用M 表示“1A 被选中”,则()111{,,M A B C =,()112,,A B C ,()121,,A B C ,()122,,A B C ,()131,,A B C ,()132,,}A B C ,含有6个基本事件,1A ∴被选中的概率()61183P M ==. ()3用N 表示“1B 和1C 不全被选中”,则N 表示“1B 和1C 全被选中”,()111{,,N A B C Q =,()211,,A B C ,()311,,}A B C ,含有3个基本事件,1B ∴和1C 不全被选中的概率()351186P N =-=. 【点睛】本题考查基本事件、古典概型概率的求法,考查列举法、对立事件概率计算公式等基础知识,考查运算求解能力,是基础题.对于古典概型,要求事件总数是可数的,满足条件的事件个数可数,使得满足条件的事件个数除以总的事件个数即可. 22.(1)310;(2)y 关于x 的线性回归方程为$13312.x y =+,预测该公司20193Q 的销售额为122.2百万元. 【解析】 【分析】(1)列举出所有的基本事件,并确定事件“这2个季度的销售额都超过6千万元”然后利用古典概型的概率公式可计算出所求事件的概率;(2)计算出x 和y 的值,然后将表格中的数据代入最小二乘法公式,计算出b$和$a 的值,可得出y 关于x 的线性回归方程,然后将7x =代入回归直线方程即可得出该公司20193Q 的销售额的估计值.【详解】(1)从5个季度的数据中任选2个季度,这2个季度的销售额有10种情况:()4656,、()4667,、()4686,、()4696,、()5667,、()5686,、()5696,、()6786,、()6796,、()8696,设“这2个季度的销售额都超过6千万元”为事件A ,事件A 包含()6786,、()6796,、()8696,,3种情况,所以()310P A =; (2)1234535x ++++==,()1465667869670.25y =++++=,2222221462563674865965370.213013123455312b⨯+⨯+⨯+⨯+⨯-⨯⨯===++++-⨯$,$$31.2a y bx∴=-=$. 所以y 关于x 的线性回归方程为$13312.x y =+, 令7x =,得$137312122.2.y =⨯+=(百万元) 所以预测该公司20193Q 的销售额为122.2百万元. 【点睛】本题考查利用古典概型的概率公式计算事件的概率,同时也考查了利用最小二乘法求回归直线方程,同时也考查了回归直线方程的应用,考查计算能力,属于中等题. 23.(1)265公斤 (2)0.7【解析】 【分析】(1)用频率分布直方图的每一个矩形的面积乘以矩形的中点坐标求和即为平均值; (2)讨论日需求量与250公斤的关系,写出分段函数再利用频率分布直方图求概率即可. 【详解】 (1)500.00101001500.00201002500.00301003500.0025100x =⨯⨯+⨯⨯+⨯⨯+⨯⨯ 4500.0015100+⨯⨯ 265=故该种蔬果日需求量的平均数为265公斤.(2)当日需求量不低于250公斤时,利润()=2515250=2500y ⨯-元, 当日需求量低于250公斤时,利润()()=25152505=151250y x x x ---⨯-元所以151250,0250,2500,250500.x x y x -≤<⎧=⎨≤≤⎩由1750y ≥得,200500x ≤≤, 所以()1750P y ≥=()200500P x ≤≤=0.0030100+0.0025100+0.0015100=0.7⨯⨯⨯故估计利润y 不小于1750元的概率为0.7 . 【点睛】本题主要考查了频率分布直方图的应用,做此类题的关键是理解题意,属于中档题. 24.238 【解析】 【分析】5432()3835126((((38)3)5)12)6f x x x x x x x x x x x =+-++-=+-++-,当2x =时,代入计算即可得出. 【详解】根据秦九韶算法,把多项式改写成如下形式:()()()()()3835126x x x f x x x =+-++-,当2x =时.03v =,103814v v =+=,2123v v =⨯-142325=⨯-=, 3225v v =⨯+252555=⨯+=, 43212v v =⨯+55212122=⨯+=, 5426v v =⨯-12226238=⨯-=,所以当2x =时,多项式()f x 的值为238. 【点睛】本题考查了秦九韶算法,考查了推理能力与计算能力,属于基础题.25.(1)a=0.05,b=0.15;(2)65;(3)4S店需要停业整顿【解析】【分析】(1)由频数10得频率,频率除以组距可得a,由所有频率和为1可求得b;(2)求得分值在[6,10]的频率,然后可得频数;(3)由频率分布直方图计算均值可得.【详解】(1)由题意得:()0.0250.10.17521101002a ba⎧++++⨯=⎪⎨=⎪⨯⎩,解得a=0.05,b=0.15.(2)所打分值在[6,10]的频率为(0.175+0.15)×2=0.65,∴所打分值在[6,10]的客户人数为:0.65×100=65.(3)由题意得该4S店平均分为:1×0.025×2+3×0.05×2+5×0.1×2+7×0.175×2+9×0.15×2=6.5,∵6.5<7,∴该4S店需要停业整顿.【点睛】本题考查频率分布直方图,考查数列期望,属于基础题.26.(1)0.30, 频率分布直方图见解析,(2) 平均数为172.25,中位数为170.10【解析】【分析】(1)由表中所有频率和为1可求得①处频率,由频率分布图的作法作出频率分布直方图;(2)由频率分布直方图,取各小矩形中点处值作为此组的估计值进行计算可得平均值,中位数是把所有小矩形面积等分的那点的值.【详解】(1)由频率分布表的性质得:①处应填写的数据为:()10.050.350.200.100.30-+++=.完成频率分布直方图如下:。

高二数学上学期期末模拟试题二试题(共21页)

高二数学上学期期末模拟试题二试题(共21页)

凉山州2021-2021学年高二数学上学期期末模拟(mónǐ)试题〔二〕一、选择题〔本大题一一共12小题,一共分〕1.以点为圆心,且与y轴相切的圆的HY方程为A. B.C. D.【答案】C【解析】【分析】此题主要考察求圆的HY方程的方法,直线和圆相切的性质,求出圆的半径,是解题的关键,属于根底题.由条件求得圆的半径,即可求得圆的HY方程.【解答】解:以点为圆心且与y轴相切的圆的半径为3,故圆的HY方程是,应选C.2.直线和直线的间隔是A. B. C. D.【答案】B【解析】【分析】此题考察了两平行直线间的间隔,属于根底题.直线和直线,代入两平行线间的间隔公式,即可得到答案.先把两平行直线的对应变量的系数化为一样的,再利用两平行线间的间隔公式求出两平行线间的间隔.【解答】解:由题意可得:和直线,即直线和直线,结合两平行线间的间隔公式得:两条直线的间隔是,应选:B.3.命题(mìng tí)p:,;命题q:,,以下选项真命题的是A. B. C. D.【答案】A【解析】【分析】此题考察命题的真假的判断与复合命题的真假,是根底题.判断命题p,q的真假,然后求解结果即可.【解答】解:因为时不成立,故命题p:,是假命题;命题q:,,当时,命题成立,所以是真命题.所以是真命题;是假命题;是假命题;是假命题;应选A.4.有两个(liǎnɡ ɡè)问题:有1000个乒乓球分别装在3个箱子内,其中红色箱子内有500个,蓝色箱子内有200个,黄色箱子内有300个,现从中抽取一个容量为100的样本;从20名学生中选出3人参加座谈会.那么以下说法中正确的选项是A. 随机抽样法系统抽样法B. 分层抽样法随机抽样法C. 系统抽样法分层抽样法D. 分层抽样法系统抽样法【答案】B【解析】解:1000个乒乓球分别装在3个箱子内,其中红色箱子内有500个,蓝色箱子内有200个,黄色箱子内有300个,总体的个体差异较大,可采用分层抽样;从20名学生中选出3名参加座谈会,总体个数较少,可采用抽签法.应选B.简单随机抽样是从总体中逐个抽取;系统抽样是事先按照一定规那么分成几局部;分层抽样是将总体分成几层,再抽取.抽样选用哪一种抽样形式,要根据题目所给的总体情况来决定,假设总体个数较少,可采用抽签法,假设总体个数较多且个体各局部差异不大,可采用系统抽样,假设总体的个体差异较大,可采用分层抽样.5.“假设或者,那么〞的否命题为A. 假设或者,那么B. 假设,那么或者C. 假设或者,那么D. 假设且,那么【答案】D【解析】【分析】此题考察否命题(mìng tí)与原命题的关系,是根底题.利用原命题与否命题的定义写出结果即可.【解答】解:“假设或者,那么〞的否命题为:假设且,那么.应选D.6.以下说法中正确的选项是A. 表示过点,且斜率为k的直线方程B. 直线与y轴交于一点,其中截距C. 在x轴和y轴上的截距分别为a与b的直线方程是D. 方程表示过点,的直线【答案】D【解析】【分析】此题考察命题的真假判断与应用,考察了直线方程的几种形式,关键是对直线方程形式的理解,属于根底题.分别由直线的点斜式方程、直线在y轴上的截距、直线的截距式方程、两点式方程的变形式逐一核对四个选项进展分析判断,即可得答案.【解答】解:对于A,点不在直线上,故A不正确;对于B,截距不是间隔,是B点的纵坐标,其值可正可负.故B不正确;对于C,经过原点的直线在两坐标轴上的截距都是0,不能表示为,故C不正确;对于D,此方程即直线的两点式方程变形,即,故D正确.应选:D.7.命题(mìng tí)p:假设为钝角三角形,那么;命题q:,,假设,那么或者,那么以下命题为真命题的是A. B. C. D.【答案】B【解析】【分析】此题考察命题的逆否命题,及复合命题的真假判断,考察三角形内角的函数值大小比拟、考察了推理才能与计算才能,属于中档题.命题p:由为钝角三角形,当B为钝角时,可得,,即可判断出真假;命题q:判断其逆否命题的真假即可得出结论.【解答】解:命题p:假设为钝角三角形,当B为钝角时,可得,,,可知命题p是假命题;命题q的逆否命题为:假设且,那么,是真命题,因此命题q是真命题,那么选项里面命题为真命题的是.应选B.某城为理解游客人数的变化规律,进步旅游效劳质量,搜集并整理了2021年1月至2021年12月期间月接待游客量单位:万人的数据,绘制了下面的折线图.8.9.根据该折线图,以下(yǐxià)结论错误的选项是A. 月接待游客逐月增加B. 年接待游客量逐年增加C. 各年的月接待游客量顶峰期大致在7,8月D. 各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比拟平稳【答案】A【解析】【分析】此题考察的知识点是数据的分析,难度不大,属于根底题.根据中2021年1月至2021年12月期间月接待游客量的数据,逐一分析给定四个结论的正误,可得答案.【解答】解:由中2021年1月至2021年12月期间月接待游客量单位:万人的数据可得:月接待游客量逐月有增有减,故A错误;年接待游客量逐年增加,故B正确;各年的月接待游客量顶峰期大致在7,8月,故C正确;各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比拟平稳,故D正确;应选A.10.过双曲线的右顶点(dǐngdiǎn)A作斜率为的直线,该直线与双曲线的两条渐近线的交点分别为B、假设,那么双曲线的离心率是A. B. C. D.【答案】C【解析】【分析】此题主要考察了直线与圆锥曲线的综合问题.要求学生有较高地转化数学思想的运用才能,能将条件转化到根本知识的运用.分别表示出直线l和两个渐近线的交点,进而表示出和,进而根据求得a和b 的关系,进而根据,求得a和c的关系,那么离心率可得.【解答】解:直线l:与渐近线:交于,l与渐近线:交于,又,,,,,,,,,应选:C.11.执行(zhíxíng)如下图的程序框图,输出的S值为12.A. 1B.C.D.【答案】D【解析】解:由于,那么,;,;,;,;,,此时不再循环,那么输出.应选:D.分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算S值并输出,模拟程序的运行过程,即可得到答案.此题考察的知识点是程序框图,在写程序的运行结果时,模拟程序的运行过程是解答此类问题最常用的方法.13.点A,B是抛物线上的两点,点是线段AB的中点,那么的值是A. 4B.C. 8D.【答案(dá àn)】C【解析】【分析】此题考察直线与抛物线的位置关系,考察韦达定理,弦长公式,中点坐标公式,考察计算才能,属于中档题.利用中点坐标公式及作差法,求得直线AB的斜率公式,求得直线直线AB的方程,代入抛物线方程,利用弦长公式及韦达定理,即可求得的值.【解答】解:设,,那么,,由中点坐标公式可知:,两式相减可得,,那么直线AB的斜率k,,直线AB的方程为即,联立方程消去y,得,,,,.应选C.14.假设x、y满足,那么的最小值是A. B. C. D. 无法确定【答案(dá àn)】C【解析】【分析】此题考察圆的一般方程与圆的HY方程,考察了数形结合的数学思想,属于中档题.把圆的方程化为HY方程后,找出圆心坐标和圆的半径r,设圆上一点的坐标为,原点坐标为,那么表示圆上一点和原点之间的间隔的平方,根据图象可知此间隔的最小值为圆的半径r减去圆心到原点的间隔,利用两点间的间隔公式求出圆心到原点的间隔,利用半径减去求出的间隔,然后平方即为的最小值.【解答】解:把圆的方程化为HY方程得:,设圆心为点A,那么圆心坐标为,圆的半径,设圆上一点的坐标为,原点O坐标为,如下图:那么(nà me),,所以,那么的最小值为,应选C.二、填空题〔本大题一一共4小题,一共分〕15.双曲线的渐近线方程为,且过点,那么此双曲线的方程为______.【答案】【解析】【分析】此题考察双曲线的简单性质的应用,双曲线方程的求法,设出双曲线的方程是解题的关键,属于中档题.设出双曲线方程,利用双曲线经过的点,求解即可.【解答】解:双曲线的渐近线方程为,可设双曲线方程为:,双曲线经过点,可得:,解得,所求双曲线方程为:.故答案为.16.98与63的最大公约数为a,二进制数110011化为十进制数为b,那么(nàme)____________.【答案】58【解析】【分析】利用辗转相除法,用较大的数字除以较小的数字,得到商和余数,然后再用上一式中的除数和得到的余数中较大的除以较小的,以此类推,当整除时,就得到要求的最大公约数,可求a;根据二进制转化为十进制的方法,我们分别用每位数字乘以权重,累加后即可得到b的值,求和即可得解.【解答】解:由题意,,,,,与63的最大公约数为7,可得:;又,可得:,.故答案为58.17.某班有学生52人,现将所有学生随机编号,用系统抽样方法,抽取一个容量为4的样本,5号、31号、44号学生在样本中,那么样本中还有一个学生的编号是______.【答案】18【解析(jiě xī)】解:某班有学生52人,现将所有学生随机编号,用系统抽样方法,抽取一个容量为4的样本,那么抽样间隔为,号、31号、44号学生在样本中,样本中还有一个学生的编号是:.故答案为:18.用系统抽样方法,抽取一个容量为4的样本,那么抽样间隔为,由此能求出样本中还有一个学生的编号.此题考察样本编号的求法,考察系统抽样的性质等根底知识,意在考察学生的转化才能和计算求解才能.18.椭圆的左、右焦点分别为,,过且与x轴垂直的直线交椭圆于A、B两点,直线与椭圆的另一个交点为C,假设,那么椭圆的离心率为______.【答案】【解析】【分析】此题考察直线和椭圆的位置关系,离心率的求法,属于中档题.由题意画出图形,求出A的坐标,结合向量加法的坐标运算,求得C的坐标,代入椭圆方程可解e的值.【解答】解:不妨设点A在x轴下方,如图,由题意,,,,,,,,,代入椭圆,得,由,整理得:,解得,椭圆的离心率.故答案为.三、解答(jiědá)题〔本大题一一共6小题,一共分〕19.p:,q:.20.假设p是q的充分条件,务实数m的取值范围;21.假设“〞是“〞的充分条件,务实数m的取值范围.【答案】解::,q:.故p:,q:,假设p是q的充分条件,那么,故解得:;假设“〞是“〞的充分条件,即q是p的充分条件,那么,,解得:.【解析】此题主要考察了一元(yī yuán)二次不等式的解法,以及充分而不必要条件的应用,同时考察了运算求解的才能,属于根底题.解出关于p,q的不等式,根据假设p是q的充分条件,得到,求出m 的范围即可;根据q是p的充分条件,得到,求出m的范围即可.22.圆C经过,两点,且圆心C在直线上求圆C的方程;动直线l:过定点M,斜率为1的直线m过点M,直线m 和圆C相交于P,Q两点,求PQ的长度.【答案】解:设圆C的方程为,那么,解得,,,圆C的方程:,即为:动直线l的方程为.那么,得,动直线l过定点,直线(zhíxiàn)m:,圆心到m的间隔为,的长为.【解析】此题考察圆的方程、线段长的求法,考察直线、圆、弦长公式等根底知识,考察推理论证才能、运算求解才能,考察化归与转化思想、函数与方程思想,是中档题.设圆C的方程为,利用待定系数法能求出圆C的方程;动直线l的方程为,列出方程组求出动直线l过定点,从而求出直线m:,由此能求出圆心到m的间隔.23.随着我国经济的开展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款年底余额如下表:年份2021 2021 2021 2021 2021时间是代号t 1 2 3 4 5 储蓄存款千亿元567810Ⅰ求y 关于t 的回归方程.Ⅱ用所求回归方程预测该地区2021年的人民币储蓄存款. 附:回归方程中:.【答案(dá àn)】解:Ⅰ由题中数据可计算得到下表:i1 2 3 4 51 2 3 4 55 6 7 8 10 1 4 9 16 255 12 21 32 5015 36 55 120 ,,,,,, 关于t 的回归方程.Ⅱ时,千亿元,所以该地区2021年的人民币储蓄存款为千亿元.【解析】此题考察线性回归方程,考察学生的计算才能,属于中档题.Ⅰ利用公式求出,,即得到y关于t的回归方程;Ⅱ,代入回归方程,即可预测该地区2021年的人民币储蓄存款.24.对甲、乙两名自行车赛手在一样条件下进展了6次测试,测得他们的最大速度单位:的数据如下表:甲27 38 30 37 35 31乙33 29 38 34 28 36画出茎叶图;分别求出甲、乙两名自行车赛手最大速度单位:数据的平均数、方差,并判断选谁参加比赛更适宜?【答案(dá àn)】解:画茎叶图如下图,中间数为数据的十位数.由茎叶图把甲、乙两名选手的6次成绩按从小到大的顺序依次排列为甲:27,30,31,35,37,38;乙:28,29,33,34,36,38.所以甲组数据的平均值为:乙组数据的平均值为:甲组数据的方差为:乙组数据的方差为:因为平均值相等,乙的方差更小,所以乙的成绩更稳定,故乙参加比赛更适宜.【解析】以十位数为茎,个位数为叶,能画出茎叶图.由茎叶图把甲、乙两名选手的6次成绩按从小到大的顺序依次排列,能求出甲、乙两名自行车赛手最大速度单位:数据的平均数、方差,因为平均值相等,乙的方差更小,所以乙的成绩更稳定,故乙参加比赛更适宜此题考察茎叶图、平均数、方差等根底知识,考察数据处理才能、运算求解才能,是根底题.25.椭圆的左焦点为,且椭圆上的点到点F的间隔最小值为1.26.求椭圆的方程;27.经过点F的直线l与椭圆交于不同的两点A、B,且,求直线l的方程.【答案(dá àn)】解:由题意可得,椭圆上的点到点F的间隔最小值为1,即为,解得,,即有椭圆方程为;当直线的斜率不存在时,可得方程为,代入椭圆方程,解得,那么不成立;设直线AB的方程为,代入椭圆方程,可得,,设,,即有,,那么,即为,解得,带入验证可得都有成立.那么直线l的方程为.【解析】此题考察椭圆方程的求法,注意运用椭圆上的点与焦点的间隔的最值,考察直线和椭圆方程联立,运用韦达定理和弦长公式,考察化简整理的运算才能,属于中档题.由题意可得,,由a,c,b的关系,可得b,进而得到椭圆方程;讨论直线l的斜率不存在和存在,设直线的方程,代入椭圆方程,运用韦达定理和弦长公式,解方程可得斜率k,进而得到直线l的方程.28.椭圆(tuǒyuán),斜率为的动直线l与椭圆C交于不同的两点A、B.设M为弦AB的中点,求动点M的轨迹方程;设、为椭圆C在左、右焦点,P是椭圆在第一象限上一点,满足,求面积的最大值.【答案】解:设,,,那么,;得:,即,即.又由中点在椭圆内部得,所以M点的轨迹方程为,.由,得P点坐标为,设直线l的方程为,代入椭圆方程中整理得:,由得,那么(nà me),,,,所以.,当时,.即面积的最大值为1.【解析】此题考察了椭圆的性质及几何意义,曲线的轨迹方程及最值问题,属于中档题.设,,,代入椭圆方程作差,利用点差法求得轨迹方程又由中点在椭圆内部得,从而可得M点的轨迹方程.由,得P点坐标为,设直线l的方程为,与椭圆方程联立,利用韦达定理结合弦长公式将三角形的面积表示出,再利用根本不等式求面积的最大值.内容总结(1)分别求出甲、乙两名自行车赛手最大速度单位:数据的平均数、方差,并判断选谁参加比赛更适宜。

高二数学上学期期末模拟试题二 试题(共17页)

高二数学上学期期末模拟试题二 试题(共17页)

萧山区第八高级中学(gāojízhōngxué)2021-2021学年高二数学上学期期末模拟试题〔二〕考试时间是是:100分钟满分是:120分考前须知:1.在答题之前填写上好本人的姓名、班级、考号等信息2.请将答案正确填写上在答题卡上一、单项选择题〔本大题一一共10小题,每一小题4分,一共40分,在每一小题给出的四个选项里面只有一个符合题目要求〕1.双曲线的渐近线方程是〔〕A. B. C. D.2.一个平行四边形的直观图是一个边长为的正方形,那么此平行四边形的面积为〔〕A. B. C. D.3.正方体,那么与所成的角为A. B. C. D.4.直线l:在轴和轴上的截距相等,那么的值是〔〕A. 1 B.-1 C. 2或者1 D.-2或者15.设P是圆上的动点,那么点P到直线的间隔的最大值为A. B. C. D.6.表示(biǎoshì)两条不同的直线,表示两个不同的平面,,,那么有下面四个命题:①假设,那么;②假设,那么;③假设,那么;④假设,那么.其中所有正确的命题是〔〕A.①③ B.①④ C.②③ D.①②③④7.三棱锥的四个顶点都在球的外表上,平面,且,那么球O的外表积为〔〕A. B. C. D.8.动点在椭圆上,假设点坐标为,,且那么的最小值是〔〕A. B. C. D.9.如图,抛物线的顶点在坐标原点,焦点在x轴上,且过点(2,4),圆,过圆心的直线l与抛物线和圆分别交于P,Q,M,N,那么的最小值为〔〕A. 36 B. 42 C. 49 D. 5010.是由具有公一共直角边的两块直角三角板〔与〕组成的三角形,如下图.其中,.现将沿斜边进展翻折成〔不在平面上〕.假设分别为和的中点,那么在翻折过程中,以下命题不正确的选项是〔〕A.在线段(xiànduàn)上存在一定点,使得的长度是定值B.点在某个球面上运动C.存在某个位置,使得直线与所成角为D.对于任意位置,二面角始终大于二面角二、填空题〔此题有6小题,多空题每一小题6分,单空题每一小题4分,一共28分〕11.抛物线的准线方程为12.直线,那么直线过定点_____,当变动时,原点到直线的间隔的最大值为_____.13.假设直线与曲线有公一共点,那么b的取值范围是__________.14.某几何体的三视图如下图,假设俯视图是边长为2的等边三角形,那么这个几何体的体积等于_____;外表积等于_____.15.是圆上一点,且不在坐标轴上,,,直线与轴交于点,直线与轴交于点,那么的最小值为__________.16.双曲线的左、右焦点分别为,,点,分别在双曲线的左右两支上,且,,线段交双曲线于点,,那么该双曲线的离心率是 ____.三、解答(jiědá)题〔此题一共有4小题,一共52分〕17.〔此题满分是12分〕如图,在四棱锥中,底面是正方形,,,分别为的中点.〔Ⅰ〕证明:直线;〔Ⅱ〕求三棱锥的体积.18.〔此题满分是12分〕一动圆与圆相外切,与圆相内切.(1〕求动圆圆心的轨迹曲线E的方程,并说明它是什么曲线。

【典型题】高二数学上期末模拟试题(带答案)

【典型题】高二数学上期末模拟试题(带答案)

【典型题】高二数学上期末模拟试题(带答案)一、选择题1.在区间[]0,1上随机取两个数x ,y ,记P 为事件“23x y +≤”的概率,则(P = ) A .23B .12C .49 D .292.某校为了解高二年级学生某次数学考试成绩的分布情况,从该年级的1120名学生中随机抽取了100 名学生的数学成绩,发现都在[80,150]内现将这100名学生的成绩按照 [80,90),[90,100),[100,110),[110,120),[120,130),[130,140),[140,150]分组后,得到的频率 分布直方图如图所示则下列说法正确的是( )A .频率分布直方图中a 的值为 0.040B .样本数据低于130分的频率为 0.3C .总体的中位数(保留1位小数)估计为123.3分D .总体分布在[90,100)的频数一定与总体分布在[100,110)的频数不相等3.已知回归方程$21y x =+,而试验得到一组数据是(2,5.1),(3,6.9),(4,9.1),则残差平方和是( ) A .0.01B .0.02C .0.03D .0.044.我国古代数学著作《九章算术》中,其意是:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升.问:米几何?右图是源于其思想的一个程序框图,若输出的2S =(单位:升),则输入k 的值为A .6B .7C .8D .95.如图所给的程序运行结果为41S =,那么判断框中应填入的关于k 的条件是( )A .7k ≥?B .6k ≥?C .5k ≥?D .6k >?6.己知某产品的销售额y 与广告费用x 之间的关系如下表:若求得其线性回归方程为 6.5ˆˆyx a =+,其中ˆˆa y bx =-,则预计当广告费用为6万元时的销售额是( ) A .42万元B .45万元C .48万元D .51万元7.某市委积极响应十九大报告提出的“到2020年全面建成小康社会”的目标,鼓励各县积极脱贫,计划表彰在农村脱贫攻坚战中的杰出村代表,已知A ,B 两个贫困县各有15名村代表,最终A 县有5人表现突出,B 县有3人表现突出,现分别从A ,B 两个县的15人中各选1人,已知有人表现突出,则B 县选取的人表现不突出的概率是( ) A .13B .47C .23D .568.执行如图所示的程序框图,若输入的a ,b ,c 依次为()sin sin αα,()cos sin αα,()sin cos αα,其中,42ππα⎛⎫∈⎪⎝⎭,则输出的x 为( )A .()cos cos ααB .()sin sin ααC .()cos sin ααD .()sin cos αα9.“微信抢红包”自2015年以来异常火爆,在某个微信群某次进行的抢红包活动中,若所发红包的总金额为8元,被随机分配为1.72元,1.83元,2.28元,1.55元,0.62元, 5份供甲、乙等5人抢,每人只能抢一次,则甲、乙二人抢到的金额之和不低于3元的概率是 ( ) A .310B .25C .12D .3510.太极图是以黑白两个鱼形纹组成的图案,它形象化地表达了阴阳轮转、相反相成是万物生成变化根源的哲理,展现了一种相互转化、相对统一的形式美.按照太极图的构图方法,在平面直角坐标系中,圆O 被3sin6y x π=的图象分割为两个对称的鱼形图案,其中小圆的半径均为1,现在大圆内随机取一点,则此点取自阴影部分的概率为( )A .136B .118C .112D .1911.设数据123,,,,n x x x x L 是郑州市普通职工*(3,)n n n N ≥∈个人的年收入,若这n 个数据的中位数为x ,平均数为y ,方差为z ,如果再加上世界首富的年收入1n x +,则这1n +个数据中,下列说法正确的是( )A .年收入平均数大大增大,中位数一定变大,方差可能不变B .年收入平均数大大增大,中位数可能不变,方差变大C .年收入平均数大大增大,中位数可能不变,方差也不变D .年收入平均数可能不变,中位数可能不变,方差可能不变12.2路公共汽车每5分钟发车一次,小明到乘车点的时刻是随机的,则他候车时间不超过两分钟的概率是( ) A .25B .35C .23D .15二、填空题13.将函数sin 23cos 2y x x =-的图象向左平移6π个单位长度,得到函数()y g x =的图象,则5()6g π__________.14.如图,在半径为1的圆上随机地取两点,B E ,连成一条弦BE ,则弦长超过圆内接正BCD ∆边长的概率是__________.15.小明通过做游戏的方式来确定接下来两小时的活动,他随机地往边长为1的正方形内扔一颗豆子,若豆子到各边的距离都大于14,则去看电影;若豆子到正方形中心的距离大于12,则去打篮球;否则,就在家写作业则小明接下来两小时不在家写作业的概率为______.(豆子大小可忽略不计)16.如图是某算法流程图,则程序运行后输出S的值为____.17.根据如图所示算法流程图,则输出S的值是__.18.如图是一个算法流程图,则输出的S的值为______.19.在区间[,]-ππ内随机取出两个数分别记为a 、b ,则函数222()2f x x ax b π=+-+有零点的概率为__________.20.某学校高一年级男生人数占该年级学生人数的45%,在一次考试中,男、女生平均分数依次为72、74,则这次考试该年级学生的平均分数为__________.三、解答题21.某电子科技公司由于产品采用最新技术,销售额不断增长,最近5个季度的销售额数据统计如下表(其中20181Q 表示2018年第一季度,以此类推): 季度 20181Q 20182Q 20183Q 20184Q 20191Q季度编号x 1 2345销售额y (百万元)4656 67 86 96(1)公司市场部从中任选2个季度的数据进行对比分析,求这2个季度的销售额都超过6千万元的概率;(2)求y 关于x 的线性回归方程,并预测该公司20193Q 的销售额.附:线性回归方程:y bx a =+$$$其中()()()1122211n niii ii i nniii i x x y y x y nx yb x x xnx====---⋅==--∑∑∑∑$,$$a y bx=-$ 参考数据:511183i ii x y==∑.22.在甲、乙两个盒子中分别装有标号为1,2,3,4的四个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等. (1)求取出的两个球上标号为相同数字的概率;(2)若两人分别从甲、乙两个盒子中各摸出一球,规定:两人谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),这样规定公平吗?请说明理由.23.A B 两个班共有65名学生,为调查他们的引体向上锻炼情况,通过分层抽样获得了部分学生引体向上的测试数据(单位:个),用茎叶图记录如下:(1)试估计B 班的学生人数;(2)从A 班和B 班抽出的学生中,各随机选取一人,A 班选出的人记为甲,B 班选出的人记为乙,假设所有学生的测试相对独立,比较甲、乙两人的测试数据得到随机变量X .规定:当甲的测试数据比乙的测试数据低时,记1X =-;当甲的测试数据与乙的测试数据相等时,记X 0=;当甲的测试数据比乙的测试数据高时,记1X =.求随机变量X 的分布列及数学期望.(3)再从A 、B 两个班中各随机抽取一名学生,他们引体向上的测试数据分别是10,8(单位:个),这2个新数据与表格中的数据构成的新样本的平均数记1μ,表格中数据的平均数记为0μ,试判断0μ和1μ的大小.(结论不要求证明)24.某单位为了解其后勤部门的服务情况,随机访问了40名其他部门的员工,根据这40名员工对后勤部门的评分情况,绘制了频率分布直方图如图所示,其中样本数据分组区间为[)40,50,[)50,60,[)60,70,[)70,80,[)80,90,[]90,100.(1)求a 的值;(2)估计该单位其他部门的员工对后勤部门的评分的中位数;(3)以评分在[)40,60的受访者中,随机抽取2人,求此2人中至少有1人对后勤部门评分在[)40,50内的概率.25.读书可以使人保持思想活力,让人得到智慧启发,让人滋养浩然正气书籍是文化的重要载体,读书是承继文化的重要方式某地区为了解学生课余时间的读书情况,随机抽取了n 名学生进行调查,根据调查得到的学生日均课余读书时间绘制成如图所示的频率分布直方图,将日均课余读书时间不低于40分钟的学生称为“读书之星”,日均课余读书时间低于40分钟的学生称为“非读书之星”:已知抽取的样本中日均课余读书时间低于10分钟的有10人(1)求,n p 的值;(2)根据已知条件完成下面的22⨯列联表,并判断是否有95%以上的把握认为“读书之星”与性别有关?非读书之星 读书之星 总计男女 10 55 总计(3)将上述调查所得到的频率视为概率,现从该地区大量学生中,随机抽取3名学生,每次抽取1名,已知每个人是否被抽到互不影响,记被抽取的“读书之星”人数为随机变量X ,求X 的分布列和期望()E X附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()20P K k ≥ 0.10 0.05 0.025 0.010 0.005 0.001 0k2.7063.8415.0246.6357.87910.82826.某高校在2017年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如表: 组号 分组频率第1组 [)160,1650.05 第2组[)165,1700.35第3组 [)170,175①第4组 [)175,180 0.20 第5组[]180,1850.10()1求出频率分布表中①处应填写的数据,并完成如图所示的频率分布直方图;()2根据直方图估计这次自主招生考试笔试成绩的平均数和中位数(结果都保留两位小数).【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】由题意结合几何概型计算公式求解满足题意的概率值即可. 【详解】如图所示,01,01x y ≤≤≤≤表示的平面区域为ABCD , 平面区域内满足23x y +≤的部分为阴影部分的区域APQ ,其中2,03P ⎛⎫ ⎪⎝⎭,20,3Q ⎛⎫ ⎪⎝⎭, 结合几何概型计算公式可得满足题意的概率值为1222233119p ⨯⨯==⨯. 本题选择D 选项.【点睛】数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A 满足的不等式,在图形中画出事件A 发生的区域,据此求解几何概型即可.2.C解析:C 【解析】 【分析】由频率分布直方图得的性质求出0.030a =;样本数据低于130分的频率为:0.7;[)80,120的频率为0.4,[)120,130的频率为0.3.由此求出总体的中位数(保留1位小数)估计为:0.50.41203123.30.3-+⨯≈分;样本分布在[)90,100的频数一定与样本分布在[)100,110的频数相等,总体分布在[)90,100的频数不一定与总体分布在[)100,110的频数相等. 【详解】由频率分布直方图得:()0.0050.0100.0100.0150.0250.005101a ++++++⨯=,解得0.030a =,故A 错误;样本数据低于130分的频率为:()10.0250.005100.7-+⨯=,故B 错误;[)80,120的频率为:()0.0050.0100.0100.015100.4+++⨯=, [)120,130的频率为:0.030100.3⨯=.∴总体的中位数(保留1位小数)估计为:0.50.412010123.30.3-+⨯≈分,故C 正确; 样本分布在[)90,100的频数一定与样本分布在[)100,110的频数相等, 总体分布在[)90,100的频数不一定与总体分布在[)100,110的频数相等,故D 错误.故选C . 【点睛】本题考查命题真假的判断,考查频率分布直方图的性质等基础知识,考查运算求解能力,考查数形结合思想,是基础题.因为条形分布直方图的面积表示的是概率值,中位数是位于最中间的数,故直接找概率为0.5的即可;平均数是每个长方条的中点乘以间距再乘以长方条的高,将每一个数值相加得到.3.C解析:C 【解析】 【分析】 【详解】 因为残差,所以残差的平方和为(5.1-5)2+(6.9-7)2+(9.1-9)2=0.03.故选C.考点:残差的有关计算.4.C解析:C 【解析】分析:执行程序框图,得到输出值4k S =,令24k=,可得8k =. 详解:阅读程序框图,初始化数值1,n S k ==,循环结果执行如下:第一次:14n =<成立,2,22k k n S k ==-=; 第二次:24n =<成立,3,263k k k n S ==-=; 第三次:34n =<成立,4,3124k k k n S ==-=; 第四次:44n =<不成立,输出24kS ==,解得8k =. 故选C.点睛:解决循环结构程序框图问题的核心在于:第一,要确定是利用当型还是直到型循环结构;第二,要准确表示累计变量;第三,要注意从哪一步开始循环,弄清进入或终止的循环条件、循环次数.5.B解析:B 【解析】 【分析】程序运行结果为41S =,执行程序,当6k =时,判断条件成立,当5k =时,判断条件不成立,输出41S =,即可选出答案. 【详解】根据程序框图,运行如下: 初始10,1k S ==,判断条件成立,得到11011S =+=,1019k =-=; 判断条件成立,得到11920S =+=,918k =-=; 判断条件成立,得到20828S =+=,817k =-=; 判断条件成立,得到28735S =+=,716k =-=; 判断条件成立,得到35641S =+=,615k =-=; 判断条件不成立,输出41S =,退出循环,即6k ≥符合题意. 故选:B. 【点睛】本题考查了程序框图的识别与判断,弄清进入循环体和跳出循环体的条件是解决本题的关键,考查了学生的推理能力,属于基础题.6.C解析:C 【解析】 【分析】由已知求得样本点的中心的坐标,代入线性回归方程求得ˆa,则线性回归方程可求,取6x =求得y 值即可.【详解】()10123425x =++++=,()11015203035225y =++++=,样本点的中心的坐标为()2,22,代入ˆˆa yb x =-,得22 6.529a =-⨯=.y ∴关于x 得线性回归方程为 6.59y x =+.取6x =,可得6.56948(y =⨯+=万元). 故选:C . 【点睛】本题考查线性回归方程的求法,考查计算能力,是基础题.7.B解析:B 【解析】 【分析】由古典概型及其概率计算公式得:有人表现突出,则B 县选取的人表现不突出的概率是6041057=,得解. 【详解】由已知有分别从A ,B 两个县的15人中各选1人,已知有人表现突出,则共有111115*********C C C C ⋅-⋅=种不同的选法,又已知有人表现突出,且B 县选取的人表现不突出,则共有1151260C C ⋅=种不同的选法,已知有人表现突出,则B 县选取的人表现不突出的概率是6041057=. 故选:B . 【点睛】本题考查条件概率的计算,考查运算求解能力,求解时注意与古典概率模型的联系.8.C解析:C 【解析】 【分析】由框图可知程序的功能是输出三者中的最大者,比较大小即可. 【详解】由程序框图可知a 、b 、c 中的最大数用变量x 表示并输出, ∵,42ππα⎛⎫∈⎪⎝⎭∴0cos α12sin α<<<<, 又()y xsin α=在R 上为减函数,y sin x α=在()0∞+,上为增函数, ∴()sin sin αα<()cos sin αα,()sin cos αα<()sin sin αα故最大值为()cos sin αα,输出的x 为()cos sin αα故选:C 【点睛】本题主要考查了选择结构.算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.9.D解析:D 【解析】 【分析】甲、乙二人抢到的金额之和包含的基本事件的总数2510n C ==,甲、乙二人抢到的金额之和不低于3元包含基本事件有6个,由此能求出甲、乙二人抢到的金额之和不低于3元的概率. 【详解】由题意,所发红包的总金额为8元,被随机分配为1.72元、1.83元、2.28元、1.55元、0.62元、5分,供甲、乙等5人抢,每人只能抢一次, 甲乙二人抢到的金额之和包含的基本事件的总数为2510n C ==,甲乙二人抢到的金额之和不低于3元包含的基本事件有6个,分别为(1.72,1.83),(1.72,2.28),(1.72,1.55),(1.83,2.28),(1.83,1.55),(2.28,1.55)所以甲乙二人抢到的金额之和不低于3元的概率为63105p ==,故选D. 【点睛】本题主要考查了古典概型及其概率的计算问题,其中解答中正确理解题意,找出基本事件的总数和不低于3元的事件中所包含的基本事件的个数是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.10.B解析:B 【解析】设大圆的半径为R ,则:126226T R ππ==⨯=, 则大圆面积为:2136S R ππ==,小圆面积为:22122S ππ=⨯⨯=,则满足题意的概率值为:213618p ππ==. 本题选择B 选项.点睛:数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A 满足的不等式,在图形中画出事件A 发生的区域,据此求解几何概型即可.11.B解析:B 【解析】∵数据x 1,x 2,x 3,…,x n 是郑州普通职工n (n ⩾3,n ∈N ∗)个人的年收入, 而x n +1为世界首富的年收入 则x n +1会远大于x 1,x 2,x 3,…,x n , 故这n +1个数据中,年收入平均数大大增大, 但中位数可能不变,也可能稍微变大,但由于数据的集中程序也受到x n +1比较大的影响,而更加离散,则方差变大. 故选B12.A解析:A 【解析】分析:根据已知中某公共汽车站每隔5分钟有一辆车通过,我们可以计算出两辆车间隔的时间对应的几何量长度为5,然后再计算出乘客候车时间不超过2分钟的几何量的长度,然后代入几何概型公式,即可得到答案 详解::∵公共汽车站每隔5分钟有一辆车通过当乘客在上一辆车开走后3分钟内到达候车时间会超过2分钟∴乘客候车时间不超过2分钟的概率为53255P -== . 故选A .点睛:本题考查的知识点是几何概型,其中计算出所有事件和满足条件的事件对应的几何量的值是解答此类问题的关键二、填空题13.【解析】【分析】先利用辅助角公式将函数的解析式化简根据三角函数的变化规律求出函数的解析式即可计算出的值【详解】由题意可得因此故答案为【点睛】本题考查辅助角公式化简三角函数图象变换在三角图象相位变换的解析:【解析】 【分析】先利用辅助角公式将函数sin 22y x x =-的解析式化简,根据三角函数的变化规律求出函数()y g x =的解析式,即可计算出56g π⎛⎫ ⎪⎝⎭的值. 【详解】sin 222sin 23y x x x π⎛⎫==- ⎪⎝⎭Q ,由题意可得()2sin 22sin 263g x x x ππ⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦,因此,5552sin 22sin 2sin 22sin 66333g ππππππ⎛⎫⎛⎫⎛⎫=⨯==-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故答案为【点睛】本题考查辅助角公式化简、三角函数图象变换,在三角图象相位变换的问题中,首先应该将三角函数的解析式化为()()sin 0y A x b ωϕω=++≠(或()()cos 0y A x b ωϕω=++≠)的形式,其次要注意左加右减指的是在自变量x 上进行加减,考查计算能力,属于中等题.14.【解析】【分析】取圆内接等边三角形的顶点为弦的一个端点当另一端点在劣弧上时求出劣弧的长度运用几何概型的计算公式即可得结果【详解】记事件{弦长超过圆内接等边三角形的边长}如图取圆内接等边三角形的顶点为解析:13【解析】 【分析】取圆内接等边三角形BCD的顶点B为弦的一个端点,当另一端点在劣弧CD上时,BE BC>,求出劣弧CD的长度,运用几何概型的计算公式,即可得结果.【详解】记事件A={弦长超过圆内接等边三角形的边长},如图,取圆内接等边三角形BCD的顶点B为弦的一个端点,当另一端点在劣弧CD上时,BE BC>,设圆的半径为r,劣弧CD的长度是23rπ,圆的周长为2rπ,所以()21323rP Arππ==,故答案为13.【点睛】本题主要考查“长度型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与长度有关的几何概型问题关鍵是计算问题的总长度以及事件的长度;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误. 15.【解析】【分析】根据题意画出图形求出写作业所对应的区域面积利用得到结果【详解】由题意可知当豆子落在下图中的空白部分时小明在家写作业大正方形面积;阴影正方形面积空白区域面积:根据几何概型可知小明不在家解析:5π4-【解析】【分析】根据题意画出图形,求出写作业所对应的区域面积,利用()()1P A P A=-得到结果.【详解】由题意可知,当豆子落在下图中的空白部分时,小明在家写作业∴大正方形面积111S =⨯=;阴影正方形面积1111224S =⨯= 空白区域面积:22111244S ππ-⎛⎫=⨯-= ⎪⎝⎭根据几何概型可知,小明不在家写作业的概率为:2514S P S π-=-= 本题正确结果:54π- 【点睛】本题考查几何概型中的面积型,属于基础题.16.41【解析】【分析】根据给定的程序框图计算逐次循环的结果即可得到输出的值得到答案【详解】由题意运行程序框图可得第一次循环不满足判断框的条件;第二次循环不满足判断框的条件;第三次循环不满足判断框的条件解析:41 【解析】 【分析】根据给定的程序框图,计算逐次循环的结果,即可得到输出的值,得到答案。

高二数学上学期期末考试试题理含解析试题_2(共18页)

高二数学上学期期末考试试题理含解析试题_2(共18页)

2021-2021学年高二数学上学期期末考试(qī mò kǎo shì)试题理〔含解析〕考前须知:1.答卷前,所有考生必须将本人的姓名、考生号、考场号和座位号填写上在答题卡上.2.答题选择题时,选出每一小题答案后,用铅笔把答题卡上对应题目之答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答复非选择题时,将答案写在答题卡上,写在套本套试卷上无效.3.在在考试完毕之后以后,将答题卡交回.一、选择题:此题一共12小题,每一小题5分,一共60分.在每一小题给出的四个选项里面只有一项是哪一项符合题目要求的.,那么为〔〕A. B.C. D.【答案】C【解析】【详解】特称命题的否认为全称命题,所以命题的否命题应该为,即此题的正确选项为C.中,假设那么等于〔〕A. B. C. D.【答案】D【解析】【分析(fēnxī)】由正弦定理,求得,再由,且,即可求解,得到答案. 【详解】由题意,在中,由正弦定理可得,即,又由,且,所以或者,应选D.【点睛】此题主要考察了正弦定理的应用,其中解答中熟记三角形的正弦定理,准确运算是解答的关键,着重考察了推理与运算才能,属于根底题.的焦点坐标是〔〕A. B. C. D.【答案】C【解析】【分析】先将抛物线方程化HY方程,进而可得出焦点坐标.【详解】因为可化为,所以,且焦点在轴负半轴,因此焦点坐标为应选C【点睛】此题主要考察由抛物线的方程求焦点问题,熟记抛物线的HY方程即可,属于根底题型.4.,且,那么以下不等式一定成立的是〔〕A. B.C. D.【答案(dá àn)】D【解析】【分析】举出反例即可判断A、B、C选项;由可得,再根据函数的单调性即可判断D选项,即可得解.【详解】当,时,,故A错误;当,时,,故B错误;当,时,,故C错误;由可得,再根据函数的单调性可得即,故D正确. 应选:D.【点睛】此题考察了不等式和不等关系,属于根底题.公差为d,前n项和为,那么“d>0〞是A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】C【解析】由,可知当时,有,即,反之,假设,那么,所以“d>0〞是“S4 + S6>2S5〞的充要条件,选C.【名师点睛】此题考察等差数列的前项和公式,通过套入公式与简单运算,可知,结合充分必要性的判断,假设,那么是的充分条件,假设,那么是的必要条件,该题“〞“〞,故互为充要条件.6.假设(jiǎshè)x,y满足约束条件的取值范围是A. [06]B. [0,4]C. [6,D. [4,【答案】D【解析】解:x、y满足约束条件,表示的可行域如图:目的函数z=x+2y经过C点时,函数获得最小值,由解得C〔2,1〕,目的函数的最小值为:4目的函数的范围是[4,+∞〕.应选D.的前n项和为,,那么A. B. C. D.【答案】A【解析】设公比为q,那么,选A.中,为的中点(zhōnɡ diǎn),设,,,那么〔〕A. B. C. D.【答案】A【解析】【分析】由空间向量的线性运算法那么可得,再根据平行六面体的性质即可得解.【详解】由题意结合平行六面体的性质可得.应选:A.【点睛】此题考察了空间向量的线性运算,属于根底题.中,分别是角的对边,假设,且,那么的值是( )A. 2B.C.D. 4【答案】A【解析】【分析】由正弦定理,化简求得,解得,再由余弦定理,求得,即可求解,得到答案.【详解(xiánɡ jiě)】在中,因为,且,由正弦定理得,因为,那么,所以,即,解得,由余弦定理得,即,解得,应选A.【点睛】此题主要考察了正弦定理、余弦定理的应用,其中利用正弦、余弦定理可以很好地解决三角形的边角关系,纯熟掌握定理、合理运用是解此题的关键.通常当涉及两边及其中一边的对角或者两角及其中一角对边时,运用正弦定理求解;当涉及三边或者两边及其夹角时,运用余弦定理求解.,直线与其相交于,两点,假设中点的横坐标为,那么此双曲线的方程是A. B.C. D.【答案】D【解析】【分析】根据点差法得,再根据焦点坐标得,解方程组得,,即得结果.【详解】设双曲线的方程为,由题意可得,设,,那么的中点为,由且,得,,即,联立,解得,,故所求双曲线的方程为.应选D.【点睛】此题主要考察(kǎochá)利用点差法求双曲线HY方程,考察根本求解才能,属于中档题.11.:数列满足,,那么的最小值为A. 8B. 7C. 6D. 5【答案】B【解析】的左、右焦点分别为,假设椭圆上恰有6个不同的点使得为等腰三角形,那么椭圆的离心率的取值范围是( )A. B. C. D.【答案】D【解析】①当点与短轴的顶点重合时,构成以为底边的等腰三角形,此种情况有2个满足条件的等腰②当构成(gòuchéng)以为一腰的等腰三角形时,根据椭圆的对称性,只要在第一象限内的椭圆上恰好有一点满足为等腰三角形即可,那么或者当时,那么有(是椭圆在短轴上的上边的顶点),那么,因此,即,那么当时,那么有(是椭圆在长轴上的右边的顶点),即,那么综上所述,椭圆的离心率取值范围是应选D点睛:解决椭圆的离心率的求值及范围问题其关键就是确立一个关于,,的方程或者不等式,再根据,,的关系消掉得到,的关系式,建立关于,,的方程或者不等式,要充分利用椭圆的几何性质、点的坐标的范围等.二、填空题:此题一共4小题,每一小题5分,一共20分.中,,,且的面积为,那么__________.【答案】【解析】【分析】根据三角形面积公式得到再由余弦定理得到AC长. 【详解】在中,,,且的面积为,由正弦定理的面积公式得到:再由余弦定理得到故得到.故答案(dá àn)为.【点睛】此题主要考察余弦定理的应用以及三角形面积公式;在解与三角形有关的问题时,正弦定理、余弦定理是两个主要根据. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现及、时,往往用余弦定理,而题设中假如边和正弦、余弦函数穿插出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进展解答.,,且与的夹角为钝角,那么实数的取值范围为________. 【答案】且【解析】【分析】由题意得且与不一共线,即可得,即可得解.【详解】由与的夹角为钝角可得且与不一共线,那么即且.故答案为:且.【点睛】此题考察了利用空间向量数量积解决向量夹角的问题,属于根底题.15.,,是与的等比中项,那么的最小值为__________.【答案】【解析】【分析】先由得到x+2y=1,再对化简变形,再利用根本不等式求其最小值.【详解(xiánɡ jiě)】由题得.所以=.当且仅当时取等.所以的最小值为.故答案为【点睛】此题主要考察根本不等式求最值,意在考察学生对这些知识的理解掌握程度和分析推理才能.的三边长,8,成等差数列,那么该等差数列的公差的取值范围是________. 【答案】【解析】【分析】由题意结合余弦定理可得,再根据三角形三边关系可得,即可得解. 【详解】由题意得且,三角形为钝角三角形,即,即,,又由三角形三边关系可得,即,.故答案为:.【点睛】此题考察了余弦定理的应用和等差数列性质的应用,属于中档题.三、解答题:一共70分.解容许写出文字说明、证明过程(guòchéng)或者演算步骤.p:函数f〔x〕=lg〔ax2-x+16a〕的定义域为R;命题q:不等式3x-9x<a对任意x∈R恒成立.〔1〕假如p是真命题,务实数a的取值范围;〔2〕假如命题“p或者q〞为真命题且“p且q〞为假命题,务实数a的取值范围.【答案】(1).(2).【解析】【分析】(1)命题p是真命题,有a>0,△<0,即求解即可.(2)命题q是真命题,不等式3x-9x<a对一切x∈R均成立,设y=3x-9x,令t=3x>0,那么y=t-t2,t>0,通过函数的最值求解a的范围,利用复合命题的真假关系求解即可.【详解】解:(1)命题p是真命题,那么ax2-x+16a>0恒成立,得到a>0,△=1-64a2<0,即a >,或者a〔舍去〕,所以a的取值范围为.〔2〕命题q是真命题,不等式3x-9x<a对一切x∈R均成立,设y=3x-9x,令t=3x>0,那么y=t-t2,t>0,当时,,所以.命题“p∨q〞为真命题,“p∧q〞为假命题,那么p,q一真一假.即有或者,综上,实数a的取值范围.【点睛】此题考察命题的真假的判断与应用,换元法以及二次函数的性质的应用,是根本知识的考察.满足.〔1〕求的通项公式;〔2〕求数列(shùliè)的前项和.【答案】(1) ;(2).【解析】【分析】〔1〕利用递推公式,作差后即可求得的通项公式.〔2〕将的通项公式代入,可得数列项和.【详解】〔1〕数列满足时,∴∴当时,,上式也成立∴〔2〕∴数列的前n项和【点睛】此题考察了利用递推公式求通项公式,裂项法求和的简单应用,属于根底题.,〔1〕解关于的不等式;〔2〕假设对任意的,不等式恒成立,求的取值范围;【答案】〔1〕见解析〔2〕【解析】试题(shìtí)分析:〔1〕利用分类讨论思想分和三种情况,并结合二次函数的图像进展求解,即可求得时,解集为或者,时,解集为时,解集为或者;〔2〕由题意得:恒成立恒成立试题解析:〔1〕时,不等式的解集为或者时,不等式的解集为时,不等式的解集为或者〔2〕由题意得:恒成立,恒成立.易知,的取值范围为:20.的内角的对边分别为,.〔1〕求;〔2〕假设为锐角三角形,且,求面积的取值范围.【答案】(1) ;(2).【解析】【分析】(1)利用正弦定理化简题中等式,得到关于B的三角方程,最后根据A,B,C均为三角形内角解得.(2)根据三角形面积公式,又根据正弦定理和得到关于的函数,由于是锐角三角形,所以利用三个内角都小于来计算的定义域,最后求解的值域.【详解(xiánɡ jiě)】(1)根据题意,由正弦定理得,因为,故,消去得.,因为故或者者,而根据题意,故不成立,所以,又因为,代入得,所以.(2)因为是锐角三角形,由〔1〕知,得到,故,解得.又应用正弦定理,,由三角形面积公式有:.又因,故,故.故的取值范围是【点睛】这道题考察了三角函数的根底知识,和正弦定理或者者余弦定理的使用〔此题也可以用余弦定理求解〕,最后考察是锐角三角形这个条件的利用.考察的很全面,是一道很好的考题.21.如图,在长方体中,,,点在棱上挪动.〔1〕证明(zhèngmíng):;〔2〕当为的中点时,求异面直线与所成角的余弦值;〔3〕等于何值时,二面角为.【答案】〔1〕证明见解析;〔2〕;〔3〕.【解析】【分析】〔1〕以点D为原点,如图建立空间直角坐标系,设,求出各点的坐标后,利用即可得证;〔2〕由为的中点可得,表示出两直线的方向向量后利用即可得解;〔3〕表示出平面和平面的法向量后,利用解方程即可得解. 【详解】是长方体,以点D为原点,如图建立空间直角坐标系,设,那么,,,,,,〔1〕,,,.〔2〕当为的中点时,,,,,设直线与所成角为,那么(nà me).〔3〕平面为平面,平面的一个法向量为,设平面的一个法向量为,,,那么令得.由题意,解得或者〔舍去〕.当时,二面角为.【点睛】此题考察了空间向量的应用,考察了运算才能,属于中档题.的左右焦点分别为,离心率为;圆过椭圆且斜率不为0的直线与椭圆交于两点.〔Ⅰ〕求椭圆的HY方程;〔Ⅱ〕证明:在轴上存在定点,使得为定值;并求出该定点的坐标.【答案】〔1〕〔2〕【解析】试题分析:〔Ⅰ〕设圆过椭圆的上、下、右三个顶点,可求得,再根据椭圆的离心率求得,可得椭圆的方程;〔Ⅱ〕设直线的方程为,将方程与椭圆方程联立求得两点的坐标,计算得.设x 轴上的定点为,可得,由定值可得需满足,解得可得定点坐标.试题(shìtí)解析:〔Ⅰ〕依题意,不妨设圆过椭圆的上、下、右三个顶点,令,解得,故,又,∴,∴,解得.∴椭圆的HY方程为.〔Ⅱ〕证明:由题意设直线的方程为,由消去y整理得,设,,那么,,假设x轴上的定点为,那么.要使其为定值,需满足(mǎnzú),解得.故定点的坐标为.点睛:解析几何中定点问题的常见解法(1)假设定点坐标,根据题意选择参数,建立一个直线系或者曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点;(2)从特殊位置入手,找出定点,再证明该点符合题意.内容总结(1)2021-2021学年高二数学上学期期末考试试题理〔含解析〕考前须知:1.答卷前,所有考生必须将本人的姓名、考生号、考场号和座位号填写上在答题卡上.2.答题选择题时,选出每一小题答案后,用铅笔把答题卡上对应题目之答案标号涂黑(2)命题q:不等式3x-9x<a对任意x∈R恒成立.〔1〕假如p是真命题,务实数a的取值范围。

高二数学上学期期末模拟考试试题 2(共22页)

高二数学上学期期末模拟考试试题 2(共22页)

江北中学(zhōngxué)2021-2021学年高二数学上学期期末模拟考试试题(时间是:120分钟分值:150分)一、选择题(本大题一一共12个小题,每一小题5分,一共60分)1.偶函数在区间单调递增,那么满足的x取值范围是A. B. C. D.2.函数在的图象大致为A. B.C. D.3.假设将函数的图象向左平移个单位长度,那么平移后的图象的对称轴为A. B.C. D.4.函数的单调递增区间是A. B. C. D.5.假设函数单调递增,那么实数a的取值范围是A. B. C. D.6.等差数列的前n项和为,且,,那么使得取最小值时的n为A. 1B. 6C. 7D. 6或者(huòzhě)77.是奇函数,当时,当时,等于A. B. C. D.8.函数的最小正周期为,假设其图象向左平移个单位后得到的函数为奇函数,那么函数的图象A. 关于点对称B. 关于点对称C. 关于直线对称D. 关于直线对称9.定义在R上的奇函数满足,且在上,那么A. B. C. D.10.不等式成立的一个必要不充分条件是A. B. 或者C. D. 或者11.假设函数在区间内存在单调递增区间,那么实数a的取值范围是A. B. C. D.12.一动圆P过定点,且与圆N:相切,那么动圆圆心P的轨迹方程是A. B.C. D.二、填空题(本大题一一共4个小题,每一小题5分,一共20分)13.的内角A,B,C的对边分别为a,b,c,假设,,,那么________.14.设等比数列(děnɡ bǐ shù liè)满足,,那么的最大值为______.15.设向量,,且,那么______.16.三棱锥的三条侧棱两两互相垂直,且,,,那么此三棱锥外接球的外表积为______.三、解答题(本大题一一共6个小题,一共70分)17.的内角A,B,C的对边分别为a,b,c,.〔1〕求角C的大小;〔2〕假设c=,的面积为,求的周长..〔1〕当a=-2时,求函数的单调区间和极值;〔2〕假设g(x)=f(x)+在上是单调增函数,务实数a的取值范围.,x∈R.〔1〕求函数f(x)的单调区间;〔2〕假设把f(x)向右平移个单位得到函数g(x),求在区间上的最小值和最大值.20.数列{an}是公比为2的等比数列,且a2,a3+1,a4成等差数列.〔 I〕求数列{an}的通项公式;〔 II〕记bn=an+log2an+1,求数列{bn}的前n项和Tn.是奇函数.〔Ⅰ〕求a,b的值;〔Ⅱ〕假设对任意的t∈R,不等式f〔t 2 ﹣2t〕+f〔2t 2 ﹣k〕<0恒成立,求k的取值范围.22.如图,四棱锥(léngzhuī)P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M 为线段AD上一点,AM=2MD,N为PC的中点.〔Ⅰ〕证明MN∥平面PAB;〔Ⅱ〕求四面体N-BCM的体积.江北中学高2022级高二〔上〕期末模拟考试高二数学(shùxué) 答案1.【答案】A【解析】【分析】此题考察函数的奇偶性及单调性,同时考察不等式的求解,属于简单题.根据函数奇偶性和单调性的性质,将不等式进展转化求解即可.【解答】解:是偶函数,,不等式等价为,在区间单调递增,,解得.应选A.2.【答案】D【解析】【分析】此题考察的知识点是函数的图象,属于根底题.根据函数的解析式,分析函数的奇偶性,最大值及单调性,利用排除法,可得答案.【解答】解:,,故函数为偶函数,当时,,故排除A,B;当时,,那么有解为,当时,时, 0,'/>故函数在不是单调的,故排除C,应选D3.【答案】B【解析】【分析】此题考察(kǎochá)函数图象的变换规律的应用及正弦函数的图象性质,属于根底题.由函数图象变换法那么得出平移后的函数的解析式,然后利用正弦函数的性质求解即可.【解答】解:将函数的图象向左平移个单位长度,得到的图象,令,得:,即平移后的图象的对称轴方程为.应选B.4.【答案】D【解析】【分析】此题主要考察复合函数的单调性及对数函数的图象和性质,同时考察二次函数的图象和性质及二次不等式的求解,属于简单题.由得:或者,令,结合复合函数单调性“同增异减〞的原那么,可得答案.【解答】解:由得:或者,即的定义域为或者,令,在内单调递增,而时,为减函数,时,为增函数,故函数的单调递增区间是.应选D.5.【答案】B【解析】【分析】此题考察分段函数的单调性,指数函数的性质,考察学生的计算才能,属于中档题.利用函数的单调性,判断指数函数以及一次函数的单调性,列出不等式求解即可,注意(zhùyì)两段函数在衔接点处的函数值大小的比拟.【解答】解:函数单调递增,所以指数函数、一次函数均单调递增,由指数函数以及一次函数的单调性的性质,可得且,但应当注意两段函数在衔接点处的函数值大小的比拟,即,解得,综上,实数a的取值范围是.应选B.6.【答案】B【解析(jiě xī)】【分析】此题考察等差数列的前n项和,研究等差数列的前n项和的最小值,常用的方法是找出所有的负项,即可得到前n项和的最小值,属于中档题.由题意,可根据,,解出数列的首项和公差,从而求得数列的通项公式,求出所有负数项的个数,即可得出取最小值时n所取的值.【解答】解:设等差数列的公差是d,,,,即,,即,联立得到:,,故有,令,可解得,由此知,数列的前6项为负项,第7项为正项,故取最小值时,n等于6.应选B.7.【答案】A【解析】【分析】此题考察函数解析式的求解及奇函数的性质,属较易题.当时,,由表达式可求得,由奇函数的性质可得与的关系,从而可求出.【解答】解:当时,,那么,又是奇函数,所以当时,.应选A.8.【答案(dáàn)】C【解析】【分析】此题主要考察函数的图象变换规律,正弦函数的图象的对称性,属于中档题.利用函数的图象变换规律,正弦函数的图象的对称性,得出结论.【解答】解:函数的最小正周期为,解得,其图象向左平移个单位后得到的函数为,再根据为奇函数,,,即,又因为,可取,故,当时,,且不是最值,故的图象不关于点对称,也不关于直线对称,故排除A、D,当时,,是函数的最小值点,故的图象不关于点对称,但关于直线对称.应选C.9.【答案】C【解析】【分析】此题考察函数值的求法,指数函数、对数函数的运算与性质,函数的周期性及奇函数性质的综合应用,利用条件求出函数的周期以及利用函数的性质逐步转化自变量是解题的关键(guānjiàn).由条件和函数周期性的定义求出函数的周期,利用函数的周期性、奇函数的性质和函数的解析式,逐步转化由运算性质求出的值.【解答】解:由得,,所以函数的周期是4,因为是定义在R上的奇函数,且,那么,且在上,,所以.应选C.10.【答案】B【解析(jiě xī)】【分析】此题主要考察充分必要条件,考察不等式解法,属于根底题.解题时,先求出不等式的解集,再根据集合的包含关系判断即可.【解答】解:解不等式得:或者,不等式成立的一个必要不充分条件可以是:或者,应选B.11.【答案】D【解析】【分析】此题考察了函数的单调性、最值问题,考察导数的应用,属于中档题.求出函数的导数,问题转化为 0'/>在有解,转化为,而在单调递增,求出的范围,从而求出a的范围即可.【解答】解:根据题意得,,在区间内存在单调递增区间,那么 0'/>在内有解,故,令,那么在单调递增,所以,那么,故.应选D.12.【答案】C【解析】【分析】此题考察圆与圆的位置(wèi zhi)关系,考察双曲线的定义,属于中档题.动圆圆心为P,半径为r,圆圆心为N,半径为4,由题意知,动点P到两定点的间隔之差的绝对值为常数4,P在以M、N为焦点的双曲线上,且,,从而可得动圆圆心P 的轨迹方程.【解答】解:动圆圆心为P,半径为r,圆圆心为N,半径为4,由题意知:当动圆与圆N外切时,,,所以当动圆与圆N内切时,,,所以即动点P到两定点的间隔之差的绝对值为常数4,故P在以M、N为焦点的双曲线上,且,,.动圆圆心P的轨迹方程为.应选C.13.【答案】【解析】【分析】此题考察正弦定理的运用,同时考察两角和的正弦公式,以及同角的平方关系的运用,考察运算才能,属于中档题.运用同角的平方关系可得sin A,sin C,再由两角和的正弦公式,可得sin B,运用正弦定理可得,代入计算即可得到所求值.【解答】解:由,,且A,B,,可得:,,,由正弦(zhèngxián)定理可得.故答案为.14.【答案】64【解析】【分析】此题考察数列的通项,数列与函数相结合,属于中档题.求出数列的公比与首项,化简,然后求解最值.【解答】解:等比数列满足,,设公比为q,可得,解得,,解得,那么,当或者时,获得最大值:,故答案为64.15.【答案】【解析】【分析】此题考察向量的数量积的应用,向量的垂直条件的应用,考察计算才能.利用条件,通过数量积判断(pànduàn)两个向量垂直,然后列出方程求解即可.【解答】解:,可得.向量,,可得,解得.故答案为.16.【答案】【解析】【分析】此题考察三棱锥的外接球的外表积的求法,解题时要认真审题,注意构造法的合理运用,属于中档题.以PA,PB,PC为棱构造一个长方体,这个长方体的外接球就是三棱锥的外接球,由此能求出三棱锥的外接球的外表积.【解答】解:如图,PA,PB,PC两两垂直,设,那么,,,,解得,三棱锥,PA,PB,PC两两垂直,且,,,以PA,PB,PC为棱构造一个长方体,那么这个长方体的外接球就是三棱锥的外接球,由题意可知,这个长方体的中心是三棱锥的外接球的球心,三棱锥的外接球的半径为,所以外接球的外表积为.故答案为.17.【答案】解:等式利用正弦定理化简得:,整理得:,,,,又,;由余弦定理得,,,,,,的周长为.【解析】此题考察了正弦(zhèngxián)、余弦定理,三角形的面积公式,以及三角函数的恒等变形,纯熟掌握定理及公式是解此题的关键.等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式化简,根据sin C不为0求出cos C的值,即可确定出C的度数;利用余弦定理列出关系式,利用三角形面积公式列出关系式,求出的值,即可求的周长.18.【答案】解:Ⅰ函数,函数的定义域为,当时,,,当x变化时,和的值的变化情况如下表:x 1递减极小值递增由上表可知(kě zhī),函数的单调递减区间是,单调递增区间是,极小值是.Ⅱ由,得,因为函数为上的单调增函数,那么在上恒成立,即不等式在上恒成立,也即在上恒成立.令,那么,当时,,在上单调递减,..的取值范围为.【解析】此题考察函数的单调区间和极值的求法,考察导数中的恒成立问题,属于中档题.Ⅰ函数的定义域为,当时,,由此利用导数性质能求出函数的单调区间和极值;Ⅱ由,得,函数为上的单调增函数,那么在上恒成立,即在上恒成立,令,那么,由此利用导数性质即可求出a的取值范围.19.【答案】解:,,令,,得,,可得函数的单调增区间为,;令,,得,,可得函数的单调减区间为,;假设把函数的图像向右平移个单位,得到函数的图像,,,.故在区间上的最小值为,最大值为1.【解析】此题主要(zhǔyào)考察三角函数的化简及函数的图象性质和最值,考察了学生的计算才能,培养了学生分析问题与解决问题的才能,属于中档题.利用二倍角公式和辅助角公式,化简函数的解析式,再利用正弦函数的单调性,求得函数的单调区间;利用函数的图象变换规律求得的解析式,由x的范围求出的范围,即可利用正弦函数的性质求出的范围.20.【答案】解:由题意可得,即,解得:,数列的通项公式为;,.【解析】此题考察等差数列(děnɡ chā shù liè)的性质和等比数列的通项公式,考察了等比数列的前n项和,属于较易题.由题意可得,由公比为2,把、、用表示,求得,可得数列的通项公式;利用条件转化求出数列的通项公式,然后用分组求和法求解数列的和即可.21.【答案】解:Ⅰ因为是奇函数,所以,即,,又由知,所以,,经检验,时,是奇函数.Ⅱ由Ⅰ知,易知在上为减函数,又因为是奇函数,所以等价于,因为为减函数,由上式可得:,即对一切有:,从而判别式,所以k的取值范围是.【解析】此题主要考察函数奇偶性与单调性的综合应用(yìngyòng),同时考察一元二次不等式恒成立问题的解决策略,属于中档题.Ⅰ利用奇函数的定义,在中运用特殊值求a,b的值.Ⅱ首先确定函数的单调性,然后结合奇函数的性质把不等式转化为关于t的一元二次不等式,最后由一元二次不等式知识求出k的取值范围.22.【答案】证明:法一,如图,取PB中点G,连接AG,NG,为PC的中点,,且,又,,且,,且,那么,且,四边形AMNG为平行四边形,那么,平面PAB,平面PAB,平面PAB;法二,在中,过N作,垂足为E,连接ME,在中,由,,得,,,那么,在中,,,由余弦定理得:,,而在中,,,即,,那么平面PAB.由底面ABCD,得,又,,那么平面PAB.,平面平面PAB,那么平面PAB;解:在中,由,,,得.,那么,底面ABCD,平面PAD,平面平面PAD,且平面平面,平面PAD,那么平面平面PAD.在平面PAD内,过A作,交PM于F,连接NF,那么为直线AN与平面PMN所成角.在中,由N是PC的中点,得,在中,由,得,.直线AN与平面PMN所成角的正弦值为.【解析】此题考察直线(zhíxiàn)与平面平行的断定,考察直线与平面所成角的求法,考察数学转化思想方法,考察了空间想象才能和计算才能,是中档题.法一,取PB中点G,连接AG,NG,由三角形的中位线定理可得,且,再由得,且,得到,且,说明四边形AMNG为平行四边形,可得,由线面平行的断定得到平面PAB;法二,证明平面PAB,转化为证明平面平面PAB,在中,过N作,垂足为E,连接ME,由底面ABCD,可得,通过求解直角三角形得到,由面面平行的断定可得平面平面PAB,那么结论得证;由勾股定理得,进一步得到平面平面PAD,在平面PAD内,过A作,交PM于F,连接NF,那么为直线AN与平面PMN所成角.然后求解直角三角形可得直线AN与平面PMN所成角的正弦值.内容总结。

【必考题】高二数学上期末模拟试题含答案

【必考题】高二数学上期末模拟试题含答案

【必考题】高二数学上期末模拟试题含答案一、选择题1.执行如图的程序框图,如果输入72m =,输出的6n =,则输入的n 是( )A .30B .20C .12D .82.己知某产品的销售额y 与广告费用x 之间的关系如下表:若求得其线性回归方程为 6.5ˆˆyx a =+,其中ˆˆa y bx =-,则预计当广告费用为6万元时的销售额是( ) A .42万元B .45万元C .48万元D .51万元3.从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为 A .4nmB .2n mC .4mnD .2mn4.执行如图所示的程序框图,若输出的结果为63,则判断框中应填入的条件为( )A .4i ≤B .5i ≤C .6i ≤D .7i ≤5.某校从高一(1)班和(2)班的某次数学考试(试卷满分为100分)的成绩中各随机抽取了6份数学成绩组成一个样本,如茎叶图所示.若分别从(1)班、(2)班的样本中各取一份,则(2)班成绩更好的概率为( )A .1636B .1736C .12D .19366.在R 上定义运算:A()1B A B =-,若不等式()x a -()1x a +<对任意的实数x ∈R 恒成立,则实数a 的取值范围是( ) A .11a -<<B .02a <<C .1322a -<< D .3122a -<< 7.“微信抢红包”自2015年以来异常火爆,在某个微信群某次进行的抢红包活动中,若所发红包的总金额为8元,被随机分配为1.72元,1.83元,2.28元,1.55元,0.62元, 5份供甲、乙等5人抢,每人只能抢一次,则甲、乙二人抢到的金额之和不低于3元的概率是 ( ) A .310B .25C .12D .358.在区间,22ππ⎡⎤-⎢⎥⎣⎦上随机取一个数x ,cos x 的值介于0到12之间的概率为( )A .13 B .2πC .12D .239.定义运算a b ⊗为执行如图所示的程序框图输出的S 值,则式子π2πtan cos 43⎛⎫⎛⎫⊗ ⎪ ⎪⎝⎭⎝⎭的值是A .-1B .12C .1D .3210.甲、乙两人约定晚6点到晚7点之间在某处见面,并约定甲若早到应等乙半小时,而乙还有其他安排,若他早到则不需等待,则甲、乙两人能见面的概率( ) A .38B .34C .35D .4511.执行如图所示的程序框图,若输入2x =-,则输出的y =( )A .8-B .4-C .4D .812.甲、乙两位同学在高一年级的5次考试中,数学成绩统计如茎叶图所示,若甲、乙两人的平均成绩分别是12,x x ,则下列叙述正确的是( )A .12x x >,乙比甲成绩稳定B .12x x >,甲比乙成绩稳定C .12x x <,乙比甲成绩稳定D .12x x <,甲比乙成绩稳定二、填空题13.袋中装有大小相同的总数为5个的黑球、白球若从袋中任意摸出2个球,至少得到1个白球的概率是910,则从中任意摸出2个球,得到的都是白球的概率为______.14.某篮球运动员在赛场上罚球命中率为23,那么这名运动员在赛场上的2次罚球中,至少有一次命中的概率为______.15.某单位有职工900人,其中青年职工450人,中年职工270人,老年职工180人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为10人,则样本容量为________.16.某校为了解1000名高一新生的身体生长状况,用系统抽样法(按等距的规则)抽取40名同学进行检查,将学生从1~1000进行编号,现已知第18组抽取的号码为443,则第一组用简单随机抽样抽取的号码为_________17.已知某产品连续4个月的广告费i x(千元)与销售额i y(万元)(1,2,3,4i=)满足4115 iix ==∑,4112 iiy ==∑,若广告费用x和销售额y之间具有线性相关关系,且回归直线方程为^y bx a=+,0.6b=,那么广告费用为5千元时,可预测的销售额为___万元. 18.袋中有2个白球,1个红球,这些球除颜色外完全相同.现从袋中往外取球,每次任取1个记下颜色后放回,直到红球出现2次时停止,设停止时共取了X次球,则(4)P X==_______.19.一组样本数据按从小到大的顺序排列为:1-,0,4,x,y,14,已知这组数据的平均数与中位数均为5,则其方差为__________.20.执行如图所示的程序框图,若1ln2a=,22be=,ln22c=(其中e是自然对数的底),则输出的结果是__________.三、解答题21.随着经济的发展,轿车已成为人们上班代步的一种重要工具.现将某人三年以来每周开车从家到公司的时间之和统计如图所示.6.5,7.5(时)内的频率;(1)求此人这三年以来每周开车从家到公司的时间之和在[)(2)求此人这三年以来每周开车从家到公司的时间之和的平均数(每组取该组的中间值作代表);(3)以频率估计概率,记此人在接下来的四周内每周开车从家到公司的时间之和在[)4.5,6.5(时)内的周数为X ,求X 的分布列以及数学期望.22.为了解贵州省某州2020届高三理科生的化学成绩的情况,该州教育局组织高三理科生进行了摸底考试,现从参加考试的学生中随机抽取了100名理科生,,将他们的化学成绩(满分为100分)分为[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]6组,得到如图所示的频率分布直方图.(1)求a 的值;(2)记A 表示事件“从参加考试的所有理科生中随机抽取一名学生,该学生的化学成绩不低于70分”,试估计事件A 发生的概率;(3)在抽取的100名理科生中,采用分层抽样的方法从成绩在[60,80)内的学生中抽取10名,再从这10名学生中随机抽取4名,记这4名理科生成绩在[60,70)内的人数为X ,求X 的分布列与数学期望.23.某新上市的电子产品举行为期一个星期(7天)的促销活动,规定购买该电子产品可免费赠送礼品一份,随着促销活动的有效开展,第五天工作人员对前五天中参加活动的人数进行统计,y 表示第x 天参加该活动的人数,得到统计表格如下:x1 2 3 4 5 y 46102322(1)若y 与x 具有线性相关关系,请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y bx a =+$$$;(2)预测该星期最后一天参加该活动的人数(按四舍五入取到整数).参考公式:()()()1122211nniii ii i nniii i x x y y x y nx ybx x xn x====---⋅==--⋅∑∑∑∑$,$ay bx =- 24.某单位为了解其后勤部门的服务情况,随机访问了40名其他部门的员工,根据这40名员工对后勤部门的评分情况,绘制了频率分布直方图如图所示,其中样本数据分组区间为[)40,50,[)50,60,[)60,70,[)70,80,[)80,90,[]90,100.(1)求a 的值;(2)估计该单位其他部门的员工对后勤部门的评分的中位数;(3)以评分在[)40,60的受访者中,随机抽取2人,求此2人中至少有1人对后勤部门评分在[)40,50内的概率.25.某校高一举行了一次数学竞赛,为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100)作为样本(样本容量为n )进行统计,按照[)50,60,[)60,70,[)70,80,[)80,90,[]90,100的分组作出频率分布直方图,已知得分在[)50,60,[]90,100的频数分别为8,2.(1)求样本容量n 和频率分布直方图中的,x y 的值; (2)估计本次竞赛学生成绩的中位数;(3)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生,求所抽取的2名学生中至少有一人得分在[]90,100内的概率.26.设关于x 的一元二次方程2220x bx a -+=,其中,a b 是某范围内的随机数,分别在下列条件下,求上述方程有实根的概率. (1)若随机数,{1,2,3,4}a b ∈;(2)若a 是从区间[0,4]中任取的一个数,b 是从区间[1,3]中任取的一个数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A解析:A 【解析】从流程图看,该程序是利用辗转相除法计算,m n 的最大公约数.题设中已知72m =,输入的数为n ,程序给出了它们的最大公约数为6,比较四个数,只有72,30的最大公约数为6,故输入的数n 的值为30,选A. 2.C解析:C 【解析】 【分析】由已知求得样本点的中心的坐标,代入线性回归方程求得ˆa,则线性回归方程可求,取6x =求得y 值即可.【详解】()10123425x =++++=,()11015203035225y =++++=,样本点的中心的坐标为()2,22,代入ˆˆa yb x =-,得22 6.529a =-⨯=.y ∴关于x 得线性回归方程为 6.59y x =+.取6x =,可得6.56948(y =⨯+=万元). 故选:C . 【点睛】本题考查线性回归方程的求法,考查计算能力,是基础题.3.C解析:C 【解析】此题为几何概型.数对(,)i i x y 落在边长为1的正方形内,其中两数的平方和小于1的数落在四分之一圆内,概型为41m P n π==,所以4mnπ=.故选C . 4.B解析:B 【解析】 【分析】模拟执行程序框图,依次写出每次循环得到的,i S 的值,当输出的63S =时,退出循环,对应的条件为5i ≤,从而得到结果. 【详解】当=11S i =,时,不满足输出条件,故进行循环,执行循环体; 当1123,2S i =+==,不满足输出条件,故进行循环,执行循环体;当2327,3S i =+==,不满足输出条件,故进行循环,执行循环体; 当37215,4S i =+==,不满足输出条件,故进行循环,执行循环体; 当415231,5S i =+==,不满足输出条件,故进行循环,执行循环体; 当313263,6S i =+==,满足输出条件,故判断框中应填入的条件为5i ≤, 故选B. 【点睛】该题考查的是有关程序框图的问题,根据题意写出判断框中需要填入的条件,属于简单题目.5.C解析:C 【解析】 【分析】由题意从(1)班、(2)班的样本中各取一份,(2)班成绩更好即(2)班成绩比(1)班成绩高,用列举法列出所有可能结果,由此计算出概率。

高二上期期末检测数学模拟试题(参考答案)

高二上期期末检测数学模拟试题(参考答案)

高二上期期末检测模拟试题数学 试题 参考答案一、单选题(本大题共8小题,共40分。

在每小题列出的选项中,选出符合题目的一项)1、【答案】B2、【答案】D解析:由题意,得存在实数x ,y ,使得AD x AB y AC =+成立,即(5,6,)(2,1,3)(1,4,2)x y λ−=−+−−,所以52,64,32,x y x y x y λ=− −=−+ =− 解得2,1,8,x y λ==− = 故选D. 3、【答案】C解析:由535S S =,且21(21)n n S n a −=−,得()312355a a a a =++,所以120a a +=,设等差数列{}n a 的公差为d ,则()()341248a a a a d +−+==,所以121d a ==−,,所以5147a a d =+=. 4、【答案】A 5、【答案】D解析:()57134a a a a +=+,则4q = ,∴4624a q a ==故选:D 6、【答案】D 7、【答案】C小题,共9、【答案】ACD解析:因为数列是一类特殊的函数,其自变量n +∈N ,故数列的图象是一群孤立的点,A 正确;数列1,0,1,0,…与数列0,1,0,1,…的对应项不一样,故不是同一数列,B 错误; ,…前四项的规律,可知一个通项公式可以是()1nna n n +=∈+N ,C 正确; 10、【答案】ABD解析:当倾斜角为90°时,斜率不存在,故A 选项正确;设(0,2)关于直线1y x =+的对称点为(),m n ,则满足212122n mn m − =−+ =+ ,解得:11m n = = ,故点(0,2)关于直线1y x =+的对称点为(1,1),B 正确;当在x 轴和y 轴上截距都等于0时,此时直线为y x =,故C 错误;直线20x y −−=与两坐标轴的交点坐标为()2,0与()0,2−,故与两坐标轴围成的三角形的面积为12222××=,D 正确. 故选:ABD. 11、【答案】BC解析:因为双曲线22:1169x y C −=,所以5c =,又因为12112102022P P F P F S c y y =⋅=⋅⋅= ,所以4P y =,所以选项A 错误;将其代入22:1169x y C −=得2241169x −=,即20||3x =,由对称性,不妨取P 的坐标为20,43,可知2133PF =, 由双曲线定义可知1213372833PF PF ++ 所以121337|||350|33PF PF +=+=,所以选项B 正确; 由对称性,对于上面点P , 在12PF F 中,12371321033PF c PF =>=>=, 且24012020553PF k −==>−,所以12PF F 为钝角三角形,选项C 正确; 因为122920tan tan 22PF F b S θθ===,所以9πtan tan 2206θ=<=, 即π26θ<,所以12π3F PF θ∠=<,所以选项D 错误(余弦定理也可以解决); 12、【答案】ABD 解析:作出如图所示图形:对A,由抛物线定义及题意得222sin 302M M py py +==− , 即2212MM py p y+= =−,解得3p =,故A 正确; 对B,3p =,则30,2F,当直线l 的斜率不存在时,显然不合题意,设()11,M x y ,()22,N x y ,设直线l 的方程为y kx =22py =得2690x kx −−=,则12126,9x x k x x +==−, 121322MON S x x =×−=△当且仅当0k =时等号成立,故B 正确;对C,121212123322OM ON x x y y x x kx kx ⋅=+=+++ ()()()221212393919162424k x x k x x k k k =++++=−++⋅+故MON ∠钝角,则不存在直线l ,使得90OMF ONF ∠+∠>°,故C 错误; 对D,26x y =,即216y x =,故13y x ′=,1x ,在点N 2x ,为121x x =−,故相切的两条直线互相垂直,故D 正确.故选:ABD.三、填空题(本大题共4小题,共20分) 13、【答案】解析:将2220x y x ++=化为标准式得()2211x y ++=,故半径为1; 圆心()1,0−到直线y kx =,由弦长为1可得1=,解得k =.故答案为:.14、【答案】33,84解析:设00(,)P x y ,则有2200143x y +=,即2200443x y −=.①由题意知12(2,0),(2,0)A A −,设直线1PA 的斜率为1k ,直线2PA 的斜率为2k ,则001200,22y y k k x x ==+−, 所以212204y k k x ⋅=−.② 由①②得1234k k ⋅=−.因为2[2,1]k ∈−−,所以1k 的取值范围为33,84,故选B.15、【答案】21nn + 解析:由题意,11a =,当(,1]x n n ∈+时,{}1x n =+,(22{},21x x n n n n ⋅∈+++ ,{{}}x x ⋅的取值依次为2221,2,,21n n n n n n ++++++ ,…,221n n ++,共1n +个,即11n n a a n +=++,由此可得(1)1211123,22(1)1n n n n a n a n n n n + =++++===− ++, 所以1211121n n a a a n +++=+ . 四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.) 16、【答案】解析:本题考查抛物线、双曲线的几何性质,直线与抛物线的位置关系.由题意得,02p F,设直线l 的方程为2p x my =+,()11,A x y ,()22,B x y .由22,,2y px p x my = =+消去x 得2220y mpy p −−=,0∆>, 122y y mp ∴+=①,212y y p ⋅=−②.又||(3||AF FB =+,即(3AF FB =+,1122,(3,22p p x y x y∴−−=+−,12(3y y ∴=−+③.将③代入①得21)y mp +=−④,将③代入②得222(3y p +=⑤,再由④⑤解得21m =,故直线l 的斜率1k =±.又抛物线22(0)y px p =>的焦点F 是双曲线22221(0,0)x y a b a b −=>>的右焦点,2p c ∴=.∴直线l 的方程即为()y k x c =−. 由双曲线的左焦点(,0)c −到直线l的距离2d b =>,解得c >,即222c b >.又222b c a =−,()2222c c a ∴>−,即ce a=<, 又1e >,∴双曲线的离心率e ∈. 17、【答案】(1).依题意得()()12111410,28,a d a d a a d +=+=+因为0d ≠,解得12,2.a d ==所以()2122n a n n =+−×=.(2).由(1)得()2222n n n S n n +==+, 所以211111nS n n n n ==−++. 所以11111111223111n n T nn n n =−+−++−=−=+++…. 解析:18、【答案】(解析:(1)1BB ⊥ 平面ABC ,BC ⊂平面ABC , 1BB BC ∴⊥,平面111//A B C 平面ABC , 1BB ∴⊥平面111A B C , 11B C ⊂ 平面111A B C , 111BB B C ∴⊥11111tan B C C BB BB∴∠==1tan B CB ∠==111C BB B CB ∴∠=∠, 1190CBC B CB ∴∠+∠=°, 即11BC B C ⊥,又111A B BB ⊥,1111A B B C ⊥,1111BB B C B = ,1BB ⊂平面11BCC B ,11C B ⊂平面11BCC B , 11A B ∴⊥平面11BCC B , 111A B BC ∴⊥,1111A B B C B = ,1B C ⊂平面11A B C ,11A B ⊂平面11A B C , 1BC ∴⊥平面11A B C , 1A C ⊂ 平面11A B C ,11BC A C ∴⊥.(2)如图,作1A H AC ⊥于H ,在直角梯形11ABB A 中,得1AA =同理可得1CC =在等腰梯形11ACC A 中,()1112AH AC AC =−=则1A H ==1112A AC S AC A H ∴=⋅=△设B 到平面1A AC 的距离为d , 由11A ABC B A AC V V −−=,1113ABC A AC S BB S d ⋅=⋅△△, 则11ABC A AC S BB dS ⋅=△△又1A B =所以直线1A B 与平面1ACC A =.19、【答案】(1)圆C 的方程为22(3)(1)9x y −+−=或22(3)(1)9x y +++= (2)反射光线所在直线的方程为29150x y +−= 解析:(1)设圆222:()()(0)C x a y b r r −+−=>.由题意,得30a b −=①,||r a =②,227r +=③. 由①得3a b =,则3||r b =,代入③得21b =.当1b =时,3a =,3r =,∴圆22:(3)(1)9C x y −+−=;当1b =−时,3a =−,3r =,∴圆22:(3)(1)9C x y +++=.综上所述,圆C 的方程为22(3)(1)9x y −+−=或22(3)(1)9x y +++=. (2) 圆C 与y 轴正半轴相切, ∴圆22:(3)(1)9C x y −+−=. 设(1,2)M −−关于直线4y x =+的对称点为(,)M x y ′, 则21,1214,22y x y x + =− + −− =+ 解得6,3,x y =− = (6,3)M ′∴−,∴反射光线所在直线的斜率1336k −==+∴反射光线所在直线的方程为23(6)9y x −=−+,即29150x y +−=.20、【答案】 解析:解法一:取CD 的中点T ,连接AT ,可得AT CD ⊥, 所以AB AT ⊥,因为PA ⊥平面ABCD ,故以P A ,AB ,AT 所在直线为轴建立空间直角坐标系,如图.可得(,0,0)B a ,1,02C a ,1,02D a −,(0,0,)P b . (1)设平面PBD 的法向量为()111,,x y z =m ,因为(,0,)PB a b =− ,3,02BD a a =−, 所以11110,30,2ax bz ax ay −=−=令1x b =,则(,)b a =m ;设平面P AC 的法向量为()222,,x y z =n ,因为(0,0,)AP b =,1,02AC a =,所以2220,10,2bz ax = = 令21y =,则(n .所以0⋅=m n ,从而平面PBD ⊥平面P AC .(2)易得1,04O a,3,08M a, 设平面OPM 的法向量为()1333,,x y z =n ,因为1,,4OP a b =−,1,08OM a =,所以333331410,8ax ay bz ax −+= 31y =,则1(n ;设平面PMD 的法向量为()2444,,x y z =n ,因为1,2PD a b =−−,7,08MD a =−,所以4444410,270,8ax bz ax −−=−=令47y b =,则2,7)b =n .设二面角O PM D −−的平面角为θ,由tan θ=θ=所以1cos cos ,θ=n =解法二:过点O 作//OT PA ,因为PA ⊥平面ABCD ,所以OT ⊥平面ABCD .因为四边形ABCD 为菱形,所以OC OD ⊥,如图,以OC ,OD ,OT 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,(1,0,0)A −,(1,0,0)C ,(0,B ,D ,(1,0,)P b −.(1)设平面PBD 的法向量为()111,,x y z =m ,因为(1,)PB b =− ,(0,BD =,所以11110,0,x bz −−= = 令11z =,则(,0,1)b =m ;设平面P AC 的法向量为()222,,x y z =n ,因为平面P AC 即为xOz 平面,所以(0,1,0)=n .所以0⋅=m n ,从而平面PBD ⊥平面P AC . (2)易得1,0,02M.设平面OPM 的法向量为()1333,,x y z =n ,因为(1,0,)OP b − ,1,0,02OM=,所以3330,10,2x bz x −+== 可取1(0,1,0)=n ;设平面PMD 的法向量为()2444,,x y z =n ,因为)PD b =− ,12MD=−,所以444440,10,2x bz x +−= −=令4y b =,则2,b =n .设二面角O PM D −−的平面角为θ,则tan θ=θ=所以1cos cos ,θ=n解得b =CD ==12112111222111111113333333222242n n n n n T b b b −−−=−+−++−=−+++++=+++++22、【答案】(1)标准方程为. (2)存在,点(0,0)M .2212x y +=解析:(1)因为椭圆E,所以c a =,所以直线1l 的斜率为-1.如图,设E 的右焦点为F ,右顶点为P ,上顶点为Q ,过点P 作于点D ,则π||14PD PFD ∠=,所以,即1a c c −=−=,解得,则1,b a ==.故椭圆E 的标准方程为.(2)由题意可得点O 是线段AB 的中点. 又||||AC BC =,所以OA OC ⊥.①当直线AC 的斜率存在时,设直线AC 的方程为()()1122,,,,y kx m A x y C x y =+, 由2212x y y kx m+==+ ,得()222214220k x kmx m +++−=, 则()()222(4)421220km k m ∆=−+−>,即22210k m −+>. 由根与系数的关系可得2121222422,2121km m x x x x k k −+=−=++, 由OA OC ⊥可得12120x x y y +=,即()()12120x x kx m kx m +++=, 即()()22121210k x x km x x m++++=,所以()()2222222122402121k m k m m k k +−−+=++, 故22312k m =−. 假设存在点()0,0M x 满足条件,设点M 到直线AC 的距离为d ,则()()2200222213kx m kx m d k m++==+,,a b c 1PD l ⊥|||PF PD =1c =2212x y +=当00x =时,2d 为定值23,即d ②当直线AC 的斜率不存在时,根据椭圆的对称性可得11x y =,所以221112x x +=,故2123x =,点(0,0)到直线AC综上可得,存在点(0,0)M ,使得点M 到直线AC。

【必考题】高二数学上期末模拟试题(及答案)(2)

【必考题】高二数学上期末模拟试题(及答案)(2)

【必考题】高二数学上期末模拟试题(及答案)(2)一、选择题1.气象意义上的春季进入夏季的标志为连续5天的日平均温度不低于022C.现有甲、乙、丙三地连续5天的日平均气温的记录数据(记录数据都是正整数):①甲地:5个数据是中位数为24,众数为22;②乙地:5个数据是中位数为27,总体均值为24;③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.8则肯定进入夏季的地区有()A.①②③B.①③C.②③D.①2.将1000名学生的编号如下:0001,0002,0003,…,1000,若从中抽取50个学生,用系统抽样的方法从第一部分0001,0002,…,0020中抽取的号码为0015时,抽取的第40个号码为()A.0795B.0780C.0810D.08153.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.小华同学利用刘徽的“割圆术”思想在半径为1的圆内作正n边形求其面积,如图是其设计的一个程序框图,则框图中应填入、输出n的值分别为()(参考数据:20sin200.3420,sin()0.11613≈≈)A.1180sin,242S nn=⨯⨯B.1180sin,182S nn=⨯⨯C.1360sin,542S nn=⨯⨯D.1360sin,182S nn=⨯⨯4.执行如图所示的程序框图,输出的S值为()A .1B .-1C .0D .-25.在半径为2圆形纸板中间,有一个边长为2的正方形孔,现向纸板中随机投飞针,则飞针能从正方形孔中穿过的概率为( ) A .4π B .3πC .2πD .1π6.执行如图所示的程序框图,若输入的a ,b ,c 依次为()sin sin αα,()cos sin αα,()sin cos αα,其中,42ππα⎛⎫∈⎪⎝⎭,则输出的x 为( )A .()cos cos ααB .()sin sin ααC .()cos sin ααD .()sin cos αα7.执行如图所示的程序框图,如果输入的1a =-,则输出的S =A .2B .3C .4D .58.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设D 为BE 中点,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .17B .14C .13D .4139.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2AD BD ,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .14B .13C .17D .41310.从1,2,3,…,9中任取两数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个奇数和两个都是奇数;③至少有一个奇数和两个都是偶数;④至少有一个奇数和至少有一个偶数.在上述事件中,是对立事件的是 ( ). A .①B .②④C .③D .①③11.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如40337=+.(注:如果一个大于1的整数除1和自身外无其他正因数,则称这个整数为素数.)在不超过11的素数中,随机选取2个不同的数,其和小于等于10的概率是( ) A .12B .13C .14D .1512.执行如图所示的程序框图,若输入x =9,则循环体执行的次数为( )A .1次B .2次C .3次D .4次二、填空题13.将函数sin 23cos 2y x x =-的图象向左平移6π个单位长度,得到函数()y g x =的图象,则5()6g π__________.14.若正方体1111ABCD A B C D -的棱长为3,E 为正方体内任意一点,则AE 的长度大于3的概率等于_________.15.在[1,1]-上随机地取一个数k ,则事件“直线y kx =与圆22(5)9x y -+=相离”发生的概率为_______。

【好题】高二数学上期末一模试卷附答案(2)

【好题】高二数学上期末一模试卷附答案(2)

【好题】高二数学上期末一模试卷附答案(2)一、选择题1.如图,ABC ∆和DEF ∆都是圆内接正三角形,且//BC EF ,将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在ABC ∆内”,B 表示事件“豆子落在DEF ∆内”,则(|)P B A =( )A .33B .3 C .13D .232.下面的程序框图表示求式子32×35×311×323×347×395的值, 则判断框内可以填的条件为( )A .90?i ≤B .100?i ≤C .200?i ≤D .300?i ≤3.2018年12月12日,某地食品公司对某副食品店某半月内每天的顾客人数进行统计得到样本数据的茎叶图如图所示,则该样本的中位数是( )A .45B .47C .48D .634.某市委积极响应十九大报告提出的“到2020年全面建成小康社会”的目标,鼓励各县积极脱贫,计划表彰在农村脱贫攻坚战中的杰出村代表,已知A ,B 两个贫困县各有15名村代表,最终A 县有5人表现突出,B 县有3人表现突出,现分别从A ,B 两个县的15人中各选1人,已知有人表现突出,则B县选取的人表现不突出的概率是()A.13B.47C.23D.565.某工厂对一批新产品的长度(单位:mm)进行检测,如下图是检测结果的频率分布直方图,据此估计这批产品的中位数与平均数分别为( )A.20,22.5B.22.5,25C.22.5,22.75D.22.75,22.75 6.高二某班共有学生60名,座位号分别为01, 02, 03,···, 60.现根据座位号,用系统抽样的方法,抽取一个容量为4的样本.已知03号、18号、48号同学在样本中,则样本中还有一个同学的座位号是()A.31号B.32号C.33号D.34号7.设A为定圆C圆周上一点,在圆周上等可能地任取一点与A连接,求弦长超过半径2倍的概率()A.34B.35C.13D.128.在长为10cm的线段AB上任取一点C,作一矩形,邻边长分別等于线段AC、CB的长,则该矩形面积小于216cm的概率为()A.23B.34C.25D.139.赵爽是我国古代数学家、天文学家大约在公元222年赵爽为《周碑算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的)类比“赵爽弦图”,赵爽弦图可类似地构造如图所示的图形,它是由个3全等的等边三角形与中间的一个小等边三角形组成的一个大等边三角形,设DF 2AF,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A.B.C.D.10.在区间,22ππ⎡⎤-⎢⎥⎣⎦上随机取一个数x ,cos x 的值介于0到12之间的概率为( )A .13 B .2πC .12D .2311.甲、乙两位同学在高一年级的5次考试中,数学成绩统计如茎叶图所示,若甲、乙两人的平均成绩分别是12,x x ,则下列叙述正确的是( )A .12x x >,乙比甲成绩稳定B .12x x >,甲比乙成绩稳定C .12x x <,乙比甲成绩稳定D .12x x <,甲比乙成绩稳定12.小赵和小王约定在早上7:00至7:15之间到某公交站搭乘公交车去上学,已知在这段时间内,共有2班公交车到达该站,到站的时间分别为7:05,7:15,如果他们约定见车就搭乘,则小赵和小王恰好能搭乘同一班公交车去上学的概率为( ) A .13B .49C .59D .23二、填空题13.某程序框图如图所示,若输入的4t =,则输出的k =______.14.阅读如图所示的程序框图,若,,,则输出的结果是________.15.如果执行如图的程序框图,那么输出的S =__________.16.利用计算机产生0~1之间的均匀随机数a ,则使关于x 的一元二次方程20x x a -+=无实根的概率为______.17.如图是一个算法流程图,则输出的S 的值为______.18.对具有线性相关关系的变量,x y ,有一组观测数据(,)i i x y (1,2,3,,10i =L ),其回归直线方程是3ˆ2ˆybx =+,且121012103()30x x x y y y +++=+++=L L ,则b =______. 19.执行下面的程序框图,如果输入的0.02t =,则输出的n =_______________.20.如图,曲线sin32xy π=+把边长为4的正方形OABC 分成黑色部分和白色部分.在正方形内随机取一点,则此点取自黑色部分的概率是__________.三、解答题21.现有8名马拉松比赛志愿者,其中志愿者1A ,2A ,3A 通晓日语,1B ,2B ,3B 通晓俄语,1C ,2C 通晓英语,从中选出通晓日语、俄语和英语的志愿者各1名,组成一个小组.()1列出基本事件;()2求1A 被选中的概率;()3求1B 和1C 不全被选中的概率.22.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下: 零件的个数x (个)2345加工的时间y (小时)2.5344.5(1)求出y 关于x 的线性回归方程ˆˆˆybx a =+,并在坐标系中画出回归直线;(2)试预测加工个零件需要多少小时?(注:,,,)23.高一某班以小组为单位在周末进行了一次社会实践活动,且每小组有5名同学,活动结束后,对所有参加活动的同学进行测评,其中A ,B 两个小组所得分数如下表: A 组 86 77 80 94 88 B 组9183?7593其中B 组一同学的分数已被污损,看不清楚了,但知道B 组学生的平均分比A 组学生的平均分高出1分.(1)若从B 组学生中随机挑选1人,求其得分超过85分的概率;(2)从A 组这5名学生中随机抽取2名同学,设其分数分别为m ,n ,求||8m n -≤的概率.24.为庆祝党的98岁生日,某高校组织了“歌颂祖国,紧跟党走”为主题的党史知识竞赛。

高二数学上学期期末考试试题 理含解析 试题 2

高二数学上学期期末考试试题 理含解析 试题 2

卜人入州八九几市潮王学校宁夏源上游二零二零—二零二壹高二数学上学期期末考试试题理〔含解析〕一、选择题〔本大题一一共12小题,每一小题5分,一共60分〕 1.:0p x ∀>,x x =,那么p ⌝为〔〕A.0x ∀>,x x ≠B.00x ∀≤,00x x =C.0x ∀≤,x x =D.00x ∃>,00x x ≠【答案】D 【解析】 【分析】 .【详解】p ⌝:00x ∃>,00x x ≠.应选:D. 【点睛】.321i i -〔i 为虚数单位〕的一共轭复数是〔〕 A.2155i -+ B.2133i + C.2155i -- D.2133i - 【答案】C 【解析】试题分析:由题;3(21)22121(21)(21)555i i i i i i i i -+-===-+--+-,那么一共轭复数为:2155i --. 考点:复数的运算及一共轭复数的概念.3.a =〔2,0,3〕,b =〔4,-2,1〕,c =〔-2,x ,2〕,假设〔a -b 〕⊥c ,那么x = A.4B.—4C.2D.—2【答案】B 【解析】此题考察空间向量的运算. 点拨:向量垂直那么其数量积为零. 解答:由得:()()()2,0,34,2,12,2,2a b -=--=-又()a b c -⊥ 所以()0a b c -⋅=即()()222220x -⨯-++⨯=所以4x =-.4.假设x ,y 满足32x x y y x ≤⎧⎪+≥⎨⎪≤⎩,,,那么x +2y 的最大值为A.1B.3C.5D.9【答案】D 【解析】试题分析:如图,画出可行域,2z x y =+表示斜率为12-的一组平行线,当2z x y =+过点()3,3C 时,目的函数获得最大值max 3239z =+⨯=,应选D.【名师点睛】此题主要考察简单的线性规划.解决此类问题的关键是正确画出不等式组表示的可行域,将目的函数赋予几何意义.求目的函数的最值的一般步骤为:一画、二移、三求.常见的目的函数类型有:〔1〕截距型:形如zax by =+.求这类目的函数的最值时常将函数z ax by =+转化为直线的斜截式:a zy x b b =-+,通过求直线的截距z b的最值间接求出z 的最值;〔2〕间隔型:形如()()22z x a y b =-+-;〔3〕斜率型:形如y bz x a-=-,而此题属于截距形式. 5.以下说法正确的选项是〔〕. A.a R ∈,“11a<〞是“1a >〞的必要不充分条件 B.“p 且q p 或者q 的必要不充分条件C.x R ∃∈,使得2230x x ++<〞的否认是:“2,230R x x x ++∀>∈〞D.p :“,sin cos x R x x ∀∈+≤p ⌝【答案】A 【解析】 A.由11a <得a >1或者a <0,那么“11a<〞是“a >1”的必要不充分条件,正确, B.假设p ∧qp ,qp ∨qp 假q 真时,p ∨qp ∧q “p ∧q 〞是“p ∨q 〞的充分不必要条件,故B 错误, C.“∃x ∈R 使得2230x x ++<〞的否认是:“∀x ∈R ,2 23x x ++⩾0”,故C 错误,D. ∵sin x +cos x x +π4)⩽p p ⌝D 错误, 应选A.6.函数f 〔x 〕=x 2﹣8lnx 的单调递减区间为〔〕 A.[2,+∞〕 B.〔﹣∞,2]C.〔0,2]D.〔﹣2,2〕【答案】C 【解析】8()20,002f x x x x x'=-∴<<,因此单调递减区间为〔0,2],选C. 7.假设20sin a xdx π=⎰,那么函数1()x f x ax e -=+的图象在1x =处的切线方程为〔〕A.20x y -=B.20x y +=C.20x y -=D.20x y+=【答案】A【解析】 【分析】由微积分根本定理求得a 值,再根据导函数求切线方程.【详解】2200sin d (cos )1ax x x ππ==-=⎰,1()x f x x e -=+,1()1x f x e -='+,(1)2f '=,那么切线方程为22(1)y x -=-,即20x y -=.【点睛】此题考察微积分根本定理和由导函数求切线方程,属于根底题. 8.各项均不为0的等差数列{}n a ,满足23711220a a a -+=,数列{}n b 是等比数列,且77b a =,那么68b b ⋅=〔〕A.11B.12C.14D.16【答案】D 【解析】 【分析】根据等差数列和等比数列的性质进展计算即可. 【详解】由等差数列的性质得31172a a a +=,∴23711220a a a -+=,()2311720a a a +-=,27704a a =-,解之得:70a =(舍),74a =,∴774b a ==,由等比数列的性质得:22687416b b b ==⋅=.应选:D.【点睛】此题主要考察等差数列与等比数列的性质的应用,考察计算才能,属于常考题.9.聊斋志异中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.〞在这里,我们称形如以下形式的等式具有“穿墙术〞:====.那么按照以上规律,假设=n=〔〕A.7B.35C.48D.63【答案】D 【解析】 【分析】由题意结合所给的等式归纳推理得到规律即可确定n 的值. 【详解】考察所给的等式的特征,归纳其性质有:假设等式左侧根号外面的数为m ,那么根号内部的分子为m ,分母为21m -,据此归纳推理可知:28163n =-=.此题选择D 选项. 【点睛】10.实数a ,b ,c ,d 成等比数列,且曲线33y x x =-的极大值点为b ,极小值为c ,那么ad =〔〕A.4B.4-C.2D.2-【答案】D 【解析】 【分析】求出函数的极值,利用等比数列的性质求解即可. 【详解】曲线33y x x =-,可得233y x '=-,令2330x -=,可得函数的极值点为:1-,1,当1x =-时,函数获得极小值2c =-,当1x =时,函数获得极大值2b =, 由于实数a ,b ,c ,d 成等比数列, 可得2adbc ==-.应选:D.【点睛】此题考察利用导数研究函数的极值,考察等比数列的知识,考察计算才能,属于根底题.11.假设双曲线C:22221x y a b -=〔0a >,0b >〕的一条渐近线被圆()2224x y -+=所截 得的弦长为2,那么C 的离心率为〔〕A.2【答案】A 【解析】由几何关系可得,双曲线()222210,0x y a b a b-=>>的渐近线方程为0bx ay ±=,圆心()2,0到渐近线间隔为d ==,那么点()2,0到直线bx ay +=的间隔为2bd c=== 即2224()3c a c -=,整理可得224c a =,双曲线的离心率2e ===.应选A . 点睛:双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或者离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式cea=;②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或者a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围). 12.函数()f x 的定义域为()0,∞+,且满足()()0f x xf x '+>〔()f x '是()f x 的导函数〕,那么不等式()()()2111x f x f x --<+的解集为〔〕A.(),2-∞B.()1,+∞C.()1,2-D.()1,2【答案】D 【解析】 【分析】 构造函数()()g x xf x =,利用导数分析函数()y g x =在()0,∞+上的单调性,在不等式()()()2111x f x f x --<+两边同时乘以1x +化为()()()()221111x f x x f x --<++,即()()211g x g x -<+,然后利用函数()y g x =在()0,∞+上的单调性进展求解即可.【详解】构造函数()()g x xf x =,其中0x >,那么()()()0g x f x xf x ''=+>,所以,函数()y g x =在定义域()0,∞+上为增函数,在不等式()()()2111x f x f x --<+两边同时乘以1x +得()()()()221111xf x x f x --<++,即()()211g x g x -<+,所以22111010x x x x ⎧-<+⎪->⎨⎪+>⎩,解得12x <<,因此,不等式()()()2111x f x f x --<+的解集为()1,2,应选D.【点睛】此题考察利用构造新函数求解函数不等式问题,其解法步骤如下: 〔1〕根据导数不等式的构造构造新函数()y g x =;〔2〕利用导数分析函数()y g x =的单调性,必要时分析该函数的奇偶性;〔3〕将不等式变形为()()12gx g x <,利用函数()y g x =的单调性与奇偶性求解.二、填空题〔本大题一一共4小题,每一小题5分,一共20分〕 13.正方体1111ABCD A B C D -中,点E ,F 分别为AB ,11B C 中点,那么异面直线1A E 与BF 所成角的余弦值为____________. 【答案】45【解析】 【分析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,利用向量法能求出异面直线1A E 与BF 所成角余弦值.【详解】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,设正方体1111ABCD A B C D -中棱长为2,如以下列图:那么()12,0,2A ,()2,1,0E ,()2,2,0B ,()1,2,2F ,()10,1,2A E =-,()1,0,2BF =-,设异面直线1A E 与BF 所成角为θ,那么11|455|A E BF cos A E BFθ⋅===⋅, ∴异面直线1A E 与BF 所成角余弦值为45. 故答案为:45. 【点睛】此题考察用空间向量法求异面直线所成的角,考察空间想象才能和运算才能,属于常考题. 14.抛物线2:4C y x =-的焦点为F ,()2,1A -,P 为抛物线C 上的动点,那么PF PA +的最小值为____________. 【答案】3 【解析】 【分析】设点P 在准线上的射影为D ,由抛物线的定义把问题转化为求PD PA +的最小值,同时可推断出当D ,P ,A 三点一共线时,PD PA +最小,答案可得.【详解】设点A 在准线上的射影为D ,()2,1A -在抛物线内部,由抛物线的定义可知PF PD =,抛物线2:4C y x =-,1p =,∴要求PF PA +的最小值,即求PD PA+的最小值,只有当D ,P ,A 三点一共线时,PD PA +最小,且最小值为()123--=〔准线方程为1x =〕.故答案为:3.【点睛】此题考察抛物线知识的应用,解题关键是根据抛物线的定义将求PF PA +的最小值的问题转化为求PD PA +的最小值的问题,考察逻辑思维才能和转化才能,属于中档题. 15.0x>,0y >,且3622x y+=.假设247x y m m +>-成立,那么m 的取值范围为________. 【答案】(,3)(4,)-∞⋃+∞ 【解析】 【分析】根据均值不等式的“1”的妙用得最值求解.【详解】因为136132414(4)12(121222222y x x y x y x y x y ⎛⎫⎛⎫+=++=+++= ⎪ ⎪⎝⎭⎝⎭, 当且仅当32x =,6y =时,取等号, 由题意得2127m m >-,解得4m >或者3m <. 故得解.【点睛】此题考察均值不等式,属于中档题.16.如以下列图中的实心点个数1,5,12,22,…,被称为五角形数,其中第1个五角形数记作11a =,第2个五角形数记作25a =,第3个五角形数记作312a =,第4个五角形数记作422a =,……,假设按此规律继续下去,那么na =.【答案】232n n-【解析】试题分析:由题观察所给的图形,对应的点分别为:1,1+4,1+4+7,1+4+7+10,….可得为点的个数为一个首项为1,公差为3的等差数列的和.那么23(1)322n n n n n na S n --==+=考点:观察推理才能及等差数列的求和. 三、解答题〔一共70分〕17.1234iz i+=-. 〔1〕求z;〔2〕23i -是关于x 的一元二次实系数方程20xpx q ++=的一个根,务实数p ,q 的值.【答案】〔1〕z =;〔2〕4p =-,13q =.【解析】 【分析】〔1〕利用复数代数形式的乘除运算化简复数z ,再由复数求模公式计算得答案; 〔2〕把23i -代入方程20xpx q ++=中,求解即可得答案.【详解】〔1〕由()()()()123451012343425512354i i i i i i z i i ++-+=+=-==-+-+,得5z ==;〔2〕把23i -代入方程20x px q ++=中,得到:()()521230p q p i -++++=,即520p q-++=且1230p +=,解得4p =-,13q =.【点睛】此题考察复数的概念,考察复数的运算性质,考察计算才能,属于常考题. 18.函数()()322f x ax a x =-+〔a 为实数〕.〔1〕假设1a =,求函数()f x 在区间[]1,3上的值域;〔2〕假设函数()f x 在区间[]1,3上是增函数,求a 的取值范围.【答案】〔1〕[]4,0-;〔2〕4a ≥.【解析】【分析】〔1〕求出函数的导数,解关于导函数的方程,求出函数的单调区间,从而求出函数的值域即可; 〔2〕求出函数的导数,问题转化为432a x ≥-,记4()32g x x =-,那么()maxa g x ≥,从而求出a 的范围即可.【详解】〔1〕当1a =时,()323f x x x =-,()236f x x x '=-,令()0f x '=,解得0x =或者2,又12f ,()24f =-,()30f =,所以()f x 在[]1,3上的值域为[]4,0-;〔2〕()()2322f x ax a x '=-+,由于()f x 在区间[]1,3上是增函数,那么()()23220f x ax a x '=-+≥对于13x ≤≤恒成立,即不等式()324ax -≥对于13x ≤≤恒成立,因320x ->,别离变量得:432a x ≥-, 记4()32g x x =-,那么()maxa g x ≥, 而函数()gx 在[]1,3上为减函数,那么()()14max g x g ==,所以4a ≥.【点睛】此题考察函数的导数的应用,详细考察判断函数的单调性以及单调性求解函数中的变量的范围,考察逻辑思维才能和运算才能,属于常考题.19.如图,在直三棱柱111ABC A B C -中,AB AC ⊥,2AB AC ==,1AA =D 为棱BC 的中点.〔1〕求直线1DB 与平面11AAC C 所成角的正弦值;〔2〕求平面11AAC C 与平面1ADB 所成二面角的余弦值. 【答案】〔1〔2〕5-. 【解析】 【分析】 以点A 为坐标原点,分别以AC 、AB 、1AA 所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系A xyz -, 〔1〕设平面11AAC C 的一个法向量为(,,)m x y z =,那么100AC m AA m ⎧⋅=⎪⎨⋅=⎪⎩,列出方程得出m ,直线1DB 与平面11AAC C 所成角的正弦值即为1cos ,DB m <>的值,计算即可; 〔2〕设平面1ADB 的一个法向量为111(,,)n x y z =,那么100AD n DB n ⎧⋅=⎪⎨⋅=⎪⎩,列出方程得出n ,再计算cos ,m n <>即可.【详解】那么(0,0,0)A,1A ,(2,0,0)C ,(0,2,0)B ,(1,1,0)D,1B ,所以(2,0,0)AC =,1AA =,(1,1,0)AD =,1(1,1DB =-,如以下列图:〔1〕设平面11AAC C 的一个法向量为(,,)m x y z =,那么100AC m AA m ⎧⋅=⎪⎨⋅=⎪⎩,即200x =⎧⎪⎨=⎪⎩,取(0,1,0)m =,所以1111cos ,1DB m DB m DB m⋅<>===⨯⋅,所以直线1DB 与平面11AAC C〔2〕设平面1ADB 的一个法向量为111(,,)n x y z =,那么100AD n DB n ⎧⋅=⎪⎨⋅=⎪⎩,即1111100x y x y +=⎧⎪⎨-++=⎪⎩,取(1,1,n =-,所以1cos ,1m n m n m n⋅-<>===⋅⨯,所以求平面11AAC C 与平面1ADB 所成二面角的余弦值5-. 【点睛】此题考察利用向量法解决线面角和面面角的问题,考察逻辑思维才能和运算才能,属于常考题. 20.n S 为等比数列{}n a 的前n 项和,且4333S S a =+,29a =.〔1〕求数列{}n a 的通项公式;〔2〕设()21nn b n a =-,求数列{}n b 的前n 项和n T .【答案】〔1〕3n n a =;〔2〕()1133n n T n +=-⋅+. 【解析】 【分析】 〔1〕设等比数列{}n a 的首项为1a ,公比为q ,由可得关于1a 和q 的方程组,求得1a 和q ,代入等比数列的通项公式得答案; 〔2〕把数列{}n a 的通项公式代入()21n n b n a =-,利用错位相减法求数列{}n b 的前n 项和nT.【详解】〔1〕设等比数列{}n a 的首项为首项为1a ,公比为q ,由4333S S a =+,29a =,得()2321111139a q q q a a qa q ⎧+++=+⎪⎨=⎪⎩,解得:13a q ==,∴1333n n n a -=⨯=;〔2〕()()21213n n n b n a n =-=-⋅,∴()21333213n n T n =⨯+⨯+⋯+-⋅,① ∴()23131333213n n T n +=⨯+⨯+⋯+-⋅,②①-②,得:()231232333213n n nT n +-=+⨯++⋯+--⋅⎡⎤⎣⎦()()()1111913322136321313n n n n n n -+++-=+⨯--⋅=-+--⋅-,故()1133n nT n +=-⋅+.【点睛】此题考察等比数列通项公式的求法,考察错位相减法求和,考察逻辑思维才能和运算才能,属于常考题.21.椭圆()2222:10x y C a b a b +=>>的两个焦点分别为12,F F ,离心率为12.设过点2F 的直线l 与椭圆C 相交于不同两点,A B ,1ABF ∆周长为8.〔Ⅰ〕求椭圆C 的HY 方程; 〔Ⅱ〕点()4,0T,证明:当直线l 变化时,总有TA 与TB 的斜率之和为定值.【答案】〔1〕22143x y +=〔2〕见解析【解析】试题分析:〔Ⅰ〕根据题意列出关于a 、b 、c 的方程组,结合性质222a b c =+,,求出a 、b 、c ,即可得结果;(II)当直线垂直于轴时,显然直线与的斜率之和为0;当直线不垂直于轴时,设的方程为()1y k x =-与椭圆方程联立,根据两点间的斜率公式及韦达定理将TA TB k k +用参数k 表示,化简消去k 即可得结论. 试题解析:〔Ⅰ〕由条件得,所以椭圆C 的HY 方程为〔Ⅱ〕当直线垂直于轴时,显然直线与的斜率之和为0; 当直线不垂直于轴时,设的方程为,与椭圆方程联立得那么,,其中恒成立.==因为=所以综上:直线与的斜率之和为定值.【方法点睛】此题主要考察待定待定系数法椭圆HY 方程方程、圆锥曲线的定值问题以及韦达定理的应用,属于难题.探究圆锥曲线的定值问题常见方法有两种:①从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 22.函数2()ln 2a f x x x x =-,直线l :(2)1y k x k =--+,且k Z ∈. 〔1〕假设20,x e e⎡⎤∃∈⎣⎦,使得0()0f x >成立,务实数a 的取值范围;〔2〕设0a =,当1x >时,函数()f x 的图象恒在直线l 的上方,求k 的最大值.【答案】〔1〕2(,)e-∞;〔2〕k 的最大值为4. 【解析】 〔1〕由题意可得2ln 2a x x x <,即2ln xa x<, 令()2ln x hx x=,2,x e e ⎡⎤∈⎣⎦, ∴()222ln 'xh x x -=,令()'0h x >,解得0x e <<,∴()hx 在2,x e e ⎡⎤∈⎣⎦上递减,∴当xe =时,()max 2h x e=, ∴2a e <,即a 的取值范围是2,e ⎛⎫-∞ ⎪⎝⎭.〔2〕由题意可知()ln 21x x x k k >--+在()1,x ∈+∞上恒成立,即ln 211x x x k x +-<-,令()ln 21(1)1x x x hx x x +-=>-,∴()()2ln 2'1x x h x x --=-,令()ln 2(1)x x x x ϕ=-->,()11'10x x xxϕ-=-=>,∴()x ϕ在()1,x ∈+∞上递增,又()31ln30ϕ=-<,()42ln40ϕ=->,∴存在唯一实数()03,4x ∈,使得()00x ϕ=,即00ln 20x x --=,〔*〕 ∴()hx 在()01,x x ∈上递减,在()0,x x ∈+∞上递增,∴()()()()00000000min 00221ln 2114,511x x x x x x hx h x x x x -+-+-====+∈--,∴()min kh x <,又k Z ∈,∴k 的最大值为4.点睛:此题以含参数的函数解析式为背景,精心设置了两道问题,旨在考察运用导数与函数的单调性之间的关系等有关知识的综合运用.解答第一问时,先将不等式进展转化,再构造函数运用导数求其最值,使得问题获解;求解第二问时,先将参数从不等式中别离出来,再构造函数,运用导数知识求出其最值,使得问题巧妙获解.。

高二数学上学期期末考试试题含解析2

高二数学上学期期末考试试题含解析2

卜人入州八九几市潮王学校HY 伊西哈拉镇二零二零—二零二壹高二数学上学期期末考试试题〔含解析〕第I 卷(选择题一共60分)一、选择题(此题一共12道小题,每一小题5分,一共60分) 1.:,tan 1P x R x ∃∈= ) A.:,tan 1p x R x⌝∃∈≠ B.:,tan 1p x R x ⌝∃∉≠C.:,tan 1p x R x ⌝∀∈≠D.:,tan 1p x R x ⌝∀∉≠【答案】C 【解析】,使的否认为,使,应选C .2.抛物线()240y ax a =<的焦点坐标为A.(,0)aB.(,0)a -C.(0,)aD.(0,)a -【答案】A 【解析】 抛物线()240y ax a =<,开口向右且焦点在x 轴上,坐标为(),0a .应选A.3.“a>1”是“<1”的()A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】选A.因为a>1,所以<1.而a<0时,显然<1,故由<1推不出a>1.4.△ABC 的三个顶点为A 〔3,3,2〕,B 〔4,-3,7〕,C 〔0,5,1〕,那么BC 边上的中线长为〔〕 A.2 B.3C.4D.5【答案】B 【解析】试题分析:由中△ABC 的三个顶点为A 〔3,3,2〕,B 〔4,-3,7〕,C 〔0,5,1〕,利用中点公式,求出BC 边上中点D 的坐标,代入空间两点间距公式,即可得到答案.解:∵B〔4,-3,7〕,C 〔0,5,1〕,那么BC 的中点D 的坐标为〔2,1,4〕那么AD 即为△ABC 中BC 边上的中线222(32)(31)(42)3AD =-+-+-=应选B.考点:空间中两点之间的间隔点评:此题考察的知识点是空间中两点之间的间隔,其中根据条件求出BC 边上中点的坐标,是解答此题的关键.假设向量,a b 与任何向量不能构成空间向量的一组基底,那么,a b 的关系是不一共线;②,,,O A B C 为空间四点,且向量,,OA OB OC 不构成空间的一个基底,那么点,,,O A B C 一定一共面;③向量,,a b c 是空间的一个基底,那么向量,,a b a b c +-〕 A.①② B.①③C.②③D.①②③【答案】C 【解析】 【分析】根据空间向量的基底判断②③的正误,找出反例判断①【详解】解:①假设向量a b ,与任何向量不能构成空间向量的一组基底,那么a b ,的关系是不一共线;所以不正确.反例:假设有一个向量a b ,为零向量,一共线但不能构成空间向量的一组基底,所以不正确. ②O ,A ,B ,C 为空间四点,且向量OAOB OC ,,不构成空间的一个基底,那么点O ,A ,B ,C 一定一共面;这是正确的.③向量a b c ,,是空间的一个基底,那么向量a b a b c +-,,,也是空间的一个基底;因为三个向量非零不一共线,正确. 应选:C .【点睛】此题考察一共线向量与一共面向量,考察学生分析问题,解决问题的才能,是根底题. 6.如下列图,在平行六面体1111ABCD A B C D -中,M 为11A C 与11B D 的交点.假设AB a =,AD b =,1AA c =,那么以下向量中与BM 相等的向量是〔〕A.1122-++a b c B.1122++a b c C.1122--+a b cD.1122-+a b c 【答案】A 【解析】 【分析】运用向量的加法、减法的几何意义,可以把BM 用的一组基底表示.【详解】1111()2BM BB B M AA AD AB =+=+-111()222c b a a b c =+-=-++. 【点睛】此题考察了空间向量用一组基底进展表示.7.△ABC 的周长为20,且顶点B 〔0,﹣4〕,C 〔0,4〕,那么顶点A 的轨迹方程是〔〕A.2213620x y +=〔x≠0〕 B.2212036x y +=〔x≠0〕 C.221620x y +=〔x≠0〕D.221206x y +=〔x≠0〕【解析】 由于8BC =,所以A 到,B C 的间隔之和为12,满足椭圆的定义,其中26,4,20a c b ===,由于焦点在y 轴上,应选B .点睛:此题主要考察椭圆的定义和HY 方程.涉及到动点到两定点间隔之和为常数的问题,可直接用椭圆定义求解.涉及椭圆上点、焦点构成的三角形问题,往往利用椭圆定义、勾股定理或者余弦定理求解.求椭圆的HY 方程,除了直接根据定义外,常用待定系数法(先定性,后定型,再定参). 8.过抛物线2y4x =的焦点作直线交抛物线于()()1122A x ,y B x ,y 两点,假设12x x 6+=,那么AB (=)A.6B.8C.9D.10【答案】B 【解析】 【分析】根据抛物线的性质直接求解,即焦点弦长为12AB x x p =++.【详解】抛物线24y x =中,2p =,∴12628AB x x p =++=+=,应选B .【点睛】AB 是抛物线的焦点弦,1122(,),(,)A x y B x y ,0p >,抛物线22y px =的焦点弦长为12AB x x p =++,抛物线22y px =-的焦点弦长为12()AB x x p =-++,抛物线22x py =的焦点弦长为12AB y y p =++,抛物线22x py =-的焦点弦长为12()AB y y p =-++.9.假设直线ykx 2=+与双曲线22x y 6-=的右支交于不同的两点,那么k 的取值范围是()A.33⎛⎫- ⎪ ⎪⎝⎭B.0,3⎛⎫⎪ ⎪⎝⎭C.3⎛⎫- ⎪ ⎪⎝⎭D.1⎛⎫- ⎪ ⎪⎝⎭【解析】 【分析】由直线与双曲线联立得(1-k 2)x 2-4kx -10=0,由1212000x x x x ∆>⎧⎪+>⎨⎪⋅>⎩,,,结合韦达定理可得解.【详解】解析:把y =kx +2代入x 2-y 2=6,得x 2-(kx +2)2=6,化简得(1-k 2)x 2-4kx -10=0,由题意知1212000x x x x ∆>⎧⎪+>⎨⎪⋅>⎩,,,即()22221640104011001k k k k k ⎧+->⎪⎪⎪>⎨-⎪-⎪>⎪-⎩,,,解得3-<k <-1.答案:D.【点睛】此题主要考察了直线与双曲线的位置关系,属于中档题. 10.试在抛物线2y 4x =-上求一点P ,使其到焦点F 的间隔与到()A 2,1-的间隔之和最小,那么该点坐标为()A.1,14⎛⎫-⎪⎝⎭ B.1,14⎛⎫⎪⎝⎭C.(2,--D.(2,-【答案】A 【解析】由题意得抛物线的焦点为(1,0)F -,准线方程为:1l x =. 过点P 作PMl ⊥于点M ,由定义可得PM PF =,所以PA PF PA PM+=+,由图形可得,当,,P A M 三点一共线时,||||PA PM +最小,此时PA l ⊥. 故点P 的纵坐标为1,所以横坐标14x =-.即点P 的坐标为1(,1)4-.选A . 点睛:与抛物线有关的最值问题的解题策略该类问题一般解法是利用抛物线的定义,实现由点到点的间隔与点到直线的间隔的转化.(1)将抛物线上的点到准线的间隔转化为该点到焦点的间隔,构造出“两点之间线段最短〞,使问题得解; (2)将抛物线上的点到焦点的间隔转化为点到准线的间隔,利用“与直线上所有点的连线中的垂线段最短〞解决.11.在长方体1111ABCD A B C D -中,假设AB BC 1==,1AA 2=,那么A 到直线1A C 的间隔为()A.263B.362C.233D.63【答案】C 【解析】 【分析】由题意可得:连接1A C ,AC ,过A 作1AEA C ⊥,根据长方体得性质可得:1A C ⊥平面ABCD ,即可得到AC 2=,1A C 6=,再根据等面积可得答案.【详解】由题意可得:连接1A C ,AC ,过A 作1AE A C ⊥,如下列图:根据长方体得性质可得:1A A⊥平面ABCD .因为AB BC 1==,1AA 2=,所以AC =1A C =根据等面积可得:11A A AC AEA C ⋅==.应选:C .【点睛】此题主要考察了点、线、面间的间隔计算,以及空间几何体的概念、空间想象力,属于根底题..12.点12F F 、分别是椭圆22221x y a b+=的左、右焦点,过1F 且垂直于x 轴的直线与椭圆交于A B 、两点,假设2ABF ∆为正三角形,那么该椭圆的离心率e 为〔〕A.12B.2C.13D.3【答案】D 【解析】在方程22221x y a b+=中,令x c =-,可得2b y a =±,∴22b AB a=.∵△ABF 2为正三角形,∴12F F AB=,即2222b c a=,22ac =,22)2a c ac -=,2220ac +=,220e +-=,解得e =e =.选D .点睛:求椭圆离心率或者其范围的方法(1)求,,a b c 的值,由2222222e =1()c a b b a a a-==-直接求. (2)列出含有,,a b c 的方程(或者不等式),借助于222b a c =-消去b ,然后转化成关于e 的方程(或者不等式)求解.第二卷(主观题一共90分)二、填空题(每一小题5分,一共20分,将答案写在答题纸上)13.A 〔1,-2,11〕、B 〔4,2,3〕、C 〔x ,y ,15〕三点一共线,那么xy=___________. 【答案】2. 【解析】试题分析:由三点一共线得向量AB 与AC 一共线,即AB k AC =,(3,4,8)(1,2,4)k x y -=-+,124348x y -+==-,解得12x =-,4y =-,∴2xy =. 考点:空间三点一共线.米时,量得水面宽为米.那么水面升高米后,水面 宽是____________米〔准确到米〕.【答案】【解析】试题分析:设抛物线方程为2y ax bx c =++,当x =0时c=2,当x =-4和x=4时y=0,求得18a =-,b=0,那么2128y x =-+,令y=1,得22x =±,所以水面宽42 5.66≈.考点:抛物线方程.15.假设椭圆221369x y +=的弦被点〔4,2〕平分,那么这条弦所在的直线方程是________【答案】y=-0.5x+4设弦为AB ,且()()1122,,,A x y B x y ,代入椭圆方程得222211221,1369369x y x y +=+=,两式作差并化简得2112211212y y x x x x y y -+=-=--+,即弦的斜率为12-,由点斜式得()1222y x -=--,化简得0.54y x =-+.16.②在ABC △中,“60B ∠=︒〞是“,,A B C ∠∠∠三个角成等差数列〞的充要条件;③1{2x y >>是3{2x y xy +>>的充要条件;④“22am bm <〞是“a b <〞的充分必要条件;以上说法中,判断错误的有_______________. 【答案】③④ 【解析】对于①,①正确;对于②,假设60B∠=,那么120A C ∠+∠=,有2A CB ∠+∠=∠,那么,,A B C ∠∠∠三个角成等差数列,反之假设,,A B C ∠∠∠三个角成等差数列,有2A C B ∠+∠=∠,又由3=180A B C B ∠+∠+∠=∠,那么60B ∠=,故在ABC ∆中,“60B∠=〞是“,,A B C ∠∠∠三个角成等差数列〞的充要条件,②正确;对于③,当19,22x y ==,那么满足32x y xy +>⎧⎨>⎩,而不满足12x y >⎧⎨>⎩,那么12x y >⎧⎨>⎩是32x y xy +>⎧⎨>⎩的不必要条件,③错误;对于④,假设a b <,当0m =时,有22am bm =,那么“22am bm <〞是“a b <〞的不必要条件,④错误,故答案为③④.三、解答题(本大题一一共6个小题,一共70分,解容许写出文字说明、证明过程或者演算步骤). 17.2:10p x mx ++=2:44(2)10q x m x +-+=无实根,假设p p ∧为假,p q ∨为真,务实数m【答案】(1,2] 【解析】 【分析】p 和q 的真假性,逐个判断.【详解】因为p p ∧假,并且p q ∨为真,故p 假,而q 真即210x mx ++=不存在两个不等的负根,且244(2)10x m x +-+=无实根.所以216(2)160m ∆=--<,即13m <<,当12m <≤时,210x mx ++=不存在两个不等的负根, 当23m <<时,210x mx ++=存在两个不等的负根.所以m 的取值范围是(1,2]【点睛】此题考察了常用的逻辑用语和一元二次方程的性质,属于根底题. 18.椭圆C 的两焦点分别为()()12F F -、,长轴长为6。

高二数学上学期期末考试试题文含解析试题2

高二数学上学期期末考试试题文含解析试题2

卜人入州八九几市潮王学校二零二零—二零二壹高二数学上学期期末考试试题文〔含解析〕一、选择题〔每一小题3分,一共30分〕22y x =的焦点到准线的间隔是()A.1B.12C.14D.18【答案】C 【解析】 【分析】先写出抛物线的HY 方程,再根据抛物线的定义求解即可.【详解】解:由题意可得,抛物线的HY 方程为22y x=,14p =,∴焦点到准线的间隔是14p =, 应选:C .【点睛】此题主要考察抛物线的性质,属于根底题. 2.完成以下抽样调查,较为合理的抽样方法依次是()①从20件产品中抽取2件进展检查;②某高中三个年级一共有2400人,其中高一830人、高二800人、高三770人,为了理解学生对数学的建议,拟抽取一个容量为300的样本;③某剧场有38排,每排有32个座位,在一次报告中恰好坐满了听众,报告完毕以后,为了理解听众意见,需要请38名听众进展座谈. A.①简单随机抽样,②系统抽样,③分层抽样 B.①分层抽样,②系统抽样,③简单随机抽样 C.①系统抽样,②简单随机抽样,③分层抽样 D.①简单随机抽样,②分层抽样,③系统抽样【解析】 【分析】根据简单随机抽样、分层抽样、系统抽样的特点即可得出答案.【详解】解:①中样本出现的可能性相等,且容量不大,符合简单随机抽样的特点; ②中,数学学习是一环扣一环,不同年级的学生掌握情况差异较大,故应用分层抽样; ③中,容量较大,但差异不是很明显,故可用系统抽样; 应选:D .【点睛】此题主要考察简单随机抽样、分层抽样、系统抽样的概念及特点,属于根底题.00:,20p x R x ∃∈->2:,q x R x x ∀∈<,那么()A.p q ∨p q ∧C.()p q ∧⌝()p q ∨⌝【答案】C 【解析】 【分析】00:,20p x R x ∃∈->,得02x >,由2x x <得01x <<q q ⌝应选:C .22221x y a b-=的一条渐近线经过点()3,4-,那么此双曲线的离心率为()B.54C.43D.53【答案】D因为双曲线22221x y a b-=的一条渐近线经过点〔3,-4〕, 应选D.考点:双曲线的简单性质【名师点睛】渐近线是双曲线独特的性质,在解决有关双曲线问题时,需结合渐近线从数形结合上找打破口.与渐近线有关的结论或者方法还有:〔1〕与双曲线22221x y a b-=一共渐近线的可设为2222(0)x y a b λλ-=≠;〔2〕假设渐近线方程为b y x a =±,那么可设为2222(0)x y a bλλ-=≠;〔3〕双曲线的焦点到渐近线的间隔等于虚半轴长b ;〔4〕22221(0.0)x y a b a b-=>>的一条渐近线的斜率为b a ==可以看出,双曲线的渐近线和离心率的本质都表示双曲线张口的大小.另外解决不等式恒成立问题关键是等价转化,其本质是确定极端或者极限位置. )A.“假设1a >,那么21a >〞的1a >,那么21a ≤〞B.“1x =〞是“2320x x -+=〞的充分条件C.2320x -+=,那么1x =1x ≠,那么2320x x -+≠〞D.:p x R ∃∈,使得210x x ++<,那么p ⌝:x R ∀∈,均有210x x ++≥【答案】A 【解析】 【分析】1a >,那么21a >1a ≤,那么21a ≤〞;B ,由2320x x -+=得1x =,或者2x =,那么“1x =〞是“2320x x -+=〞的充分条件;2320x -+=,那么1x =“假设1x ≠,那么2320x x -+≠〞;的:p x R ∃∈,使得210x x ++<的否认p ⌝:x R ∀∈,均有210x x ++≥;应选:A . 〕 A. C. 【答案】D 【解析】 【分析】根据茎叶图分别找出中位数,求出平均数,方差,即可判断. 【详解】由茎叶图可得:x 甲7582838793845++++==,x乙7783858591845++++==, 两个平均数相等,所以A 选项错误;2s 甲()()()()()()2222212167584828483848784938455=⨯-+-+-+-+-=, 2s乙()()()()()()222221100778483848484858491842055=⨯-+-+-+-+-==, 应选:D【点睛】此题考察根据茎叶图的数字特征,求平均数,中位数,方差.n 名学生的某次数学同步练习成绩,根据成绩分数依次分成六组:[)[)[)[)[)[]90,100,100,110,110,120,120,130,130,140,140,150,得到频率分布直方图如下列图,假设不低于140分的人数为110.①0.031m =;②800n =;③100分以下的人数为60;④分数在区间[)120,140的人数占大半.那么说法正确的选项是〔〕A.①②B.①③C.②③D.②④【答案】B 【解析】 【分析】根据频率分布直方图的性质和频率分布直方图中样本估计总体,准确运算,即可求解. 【详解】由题意,根据频率分布直方图的性质得10(0.0200.0160.0160.0110.006)1m +++++=,解得0.031m =.故①正确;因为不低于140分的频率为0.011100.11⨯=,所以11010000.11n==,故②错误; 由100分以下的频率为0.00610=0.06⨯,所以100分以下的人数为10000.06=60⨯, 故③正确;分数在区间[120,140)的人数占0.031100.016100.47⨯+⨯=,占小半.故④错误. 所以说法正确的选项是①③. 应选B.【点睛】此题主要考察了频率分布直方图的应用,其中解答熟记频率分布直方图的性质,以及在频率分布直方图中,各小长方形的面积表示相应各组的频率,所有小长方形的面积的和等于1,着重考察了分析问题和解答问题的才能,属于根底题.8.如下列图,在正方体1AC 中,E ,F 分别是1DD ,BD 的中点,那么直线1AD 与EF 所成角的余弦值是〔〕A.12 B.2C.3D.2【答案】C 【解析】 【分析】先通过平移将两条异面直线平移到同一个起点E ,得到的锐角或者直角就是异面直线所成的角,在三角形中再利用余弦定理求出此角即可. 【详解】如图,取AD 的中点G ,连接EG ,GF ,∠GEF 为直线AD 1与EF 所成的角设棱长为2,那么,GF=1,cos∠GEF=3,应选C .【点睛】本小题主要考察异面直线所成的角,考察空间想象才能、运算才能和推理论证才能,属于根底题.2:2310p x x -+≤,2:(21)(1)0q x a x a a -+++≤,假设p 是q 的充分不必要条件,那么实数a 的取值范围是()A.1[0,]2B.1(0,]2C.1(,0)[,)2-∞+∞D.1(,0)(,)2-∞+∞【答案】A 【解析】 【分析】先求出不等式的解集,再根据充分不必要条件的定义可得[],11,12a a ⎡⎤⎢⎥⎣⎦+,解出即可.【详解】解:由22310x x -+≤得112x ≤≤, 由2(21)(1)0x a x a a -+++≤得,1a x a ≤≤+,∵p 是q 的充分不必要条件,∴[],11,12a a ⎡⎤⎢⎥⎣⎦+,∴1211a a ⎧≤⎪⎨⎪+>⎩,或者1211a a ⎧<⎪⎨⎪+≥⎩, ∴102a <≤,或者102a ≤<, ∴102a ≤≤, 应选:A .【点睛】此题主要考察充分条件与必要条件的应用,属于根底题. 10.如图,正方体1111ABCD A B C D -A 为球心,2为半径作一个球,那么图中球面与正方体的外表相交所得到的两段弧长之和为〔〕 A.56π B.23π C.πD.76π 【答案】A 【解析】试题分析:图中弧EF 为过圆心的平面与球面相交所得大圆的一段弧,因为16A AE BAF π∠=∠=,所以6EAFπ∠=,由弧长公式知弧EF 的长为263ππ⨯=,弧FG 为不过圆心的平面与球面相交所得小圆的弧,其圆心为B ,因为球心到平面的间隔d =,球半径2R =,所以小圆半径1r =,又2GBFπ∠=,所以弧FG 的长为122ππ⨯=,两段弧长之和为56π,应选A .考点:1、球的截面性质;2、弧长公式. 二、填空题〔每一小题3分,一共12分〕()1,2,A z 、()2,1,1B -,那么z =______.【答案】0或者2 【解析】 【分析】利用空间中两点间的间隔公式以及AB =z 的等式,即可求出实数z 的值.【详解】由题意得AB ==()211z -=,解得0z =或者2,故答案为0或者2.【点睛】此题考察空间中两点间间隔公式的应用,考察计算才能,属于根底题. 12.某四棱锥的三视图如下列图,那么该四棱锥的体积为__________. 【答案】83【解析】 【分析】根据三视图复原直观图,再根据图中数据计算体积. 【详解】解:由三视图可得该四棱锥的直观图为∴其体积1822233V=⨯⨯⨯=, 故答案为:83.【点睛】此题主要考察由三视图复原直观图,属于根底题.M 与圆221:(1)1C x y ++=外切,与圆222:(1)25C x y -+=内切,那么动圆圆心M 的轨迹方程是__________.【答案】22198x y【解析】 【分析】首先根据圆与圆的位置关系确定出该动圆是椭圆,然后根据相关的两求出椭圆的方程. 【详解】解:设动圆的圆心为:(,)M x y ,半径为R ,动圆与圆221:(1)1M x y ++=外切,与圆222:(1)25M x y -+=内切,12||||156MM MM R R ∴+=++-=, 1212||||||MM MM M M +>,因此该动圆是以原点为中心,焦点在x 轴上的椭圆,且26a =,1c =, 解得3a =, ∴2228b a c =-=,∴椭圆的方程为:22198x y ,故答案为:22198x y .【点睛】此题主要考察椭圆的方程及圆与圆的位置关系,属于中档题.221916x y -=,点12,F F 是其左右焦点,A 是圆22(6)4x y +-=上的一点,点M 在双曲线的右支上,那么1||||MF MA +的最小值是__________.【答案】【解析】 【分析】 设点C的坐标为(0,6),利用双曲线的定义,可得12||||26MF MF a -==,于是1||||MF MA +=2||||2||MF CM a CA ++-2||62CF ≥+-,转化求解即可.【详解】解:由题意可得,291625c =+=,即5c =,那么1F ,2F 的坐标分别为(5,0)-,(5,0), 由双曲线的定义,得12||||26MF MF a -==, 又A 是圆22(6)4x y +-=上的点,圆的圆心为(0,6)C ,半径为2,由图可知,22||||||CM MF CF +≥,12||||||||2||MF MA MF CM a CA +=++-2||624CF ≥+-=+那么1||||MF MA +的最小值为故答案为:【点睛】此题主要考察双曲线的几何性质,纯熟掌握双曲线的性质及其圆外一点到圆上一点间隔的最小值是解题的关键,属于中档题. 三、解答题15.如图,在直三棱柱ABC-A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且11B DA F⊥,1111AC A B ⊥.求证:〔1〕直线DE 平面A 1C 1F ; 〔2〕平面B 1DE⊥平面A 1C 1F. 【答案】〔1〕详见解析〔2〕详见解析 【解析】试题分析:〔1〕利用线面平行断定定理证明线面平行,而线线平行的寻找往往结合平面几何的知识,如中位线的性质等;〔2〕利用面面垂直断定定理证明,即从线面垂直出发给予证明,而线面垂直的证明,往往需要屡次利用线面垂直性质定理与断定定理. 试题解析:证明:〔1〕在直三棱柱111ABC A B C -中,11A C AC ,在三角形ABC 中,因为D ,E 分别为AB ,BC 的中点, 所以DEAC ,于是11DE AC ,又因为DE ⊄平面1111,AC F AC ⊂平面11AC F ,所以直线DE//平面11AC F . 〔2〕在直三棱柱111ABC A B C -中,1111AA A B C ⊥平面因为11A C ⊂平面111A B C ,所以111AA AC ⊥,又因为111111*********,,AC A B AA ABB A A B ABB A A B AA A ⊥⊂⊂⋂=,平面平面,所以11A C ⊥平面11ABB A .因为1B D ⊂平面11ABB A ,所以111AC B D ⊥.又因为1111111111111,,B D A F AC AC F A F AC F AC A F A ⊥⊂⊂⋂=,平面平面,所以111B DAC F ⊥平面.因为直线11B D B DE ⊂平面,所以1B DE平面11.A C F ⊥平面【考点】直线与直线、直线与平面、平面与平面的位置关系【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型:〔1〕证明线面、面面平行,需转化为证明线线平行;〔2〕证明线面垂直,需转化为证明线线垂直;〔3〕证明线线垂直,需转化为证明线面垂直;〔4〕证明面面垂直,需转化为证明线面垂直,进而转化为证明线线垂直.16.某地施行HYHY ,对农副产品进展深加工以进步产品附加值,某农产品本钱为每件3元,加工后的试营销期间,对该产品的价格与销售量统计得到如下数据:数据显示单价x 与对应的销量y 满足线性相关关系. 〔1〕求销量y 〔件〕关于单价x 〔元〕的线性回归方程ˆˆˆybx a =+; 〔2〕根据销量y 关于单价x 的线性回归方程,要使加工后收益P 最大,应将单价定为多少元?〔产品收益=销售收入-本钱〕.参考公式:ˆb=()121()()ni i i n i i x x y y x x ==---∑∑=1221ni i i n i i x y nxy x nx==--∑∑,ˆˆa y bx=- 【答案】〔1〕ˆ20200yx =-+;〔2〕元. 【解析】〔1〕由题意计算平均数和回归系数,即可写出回归直线方程;〔2〕由题意写出收益函数P 的解析式,求出P 取最大值时对应的x 值即可. 【详解】解:〔1〕由题意得,x =16×〔6+++++7〕=,y =16×〔80+74+73+70+65+58〕=70;那么()61()5 1.20.30 1.5614iii x x y y =--=------=-∑,621()0.250.090.010.010.090.250.7ii x x =-=+++++=∑;所以142007ˆ.b-==-,() 7020 6.5200ˆˆay bx =-=--⨯= 所以所求回归直线方程为20200ˆyx =-+. 〔2〕由题意可得,()()()3202ˆ003P yx x x =-=-+-, 整理得P =-20〔x -〕2+245, 当x =时,P 获得最大值为245;所以要使收益到达最大,应将价格定位元.【点睛】此题考察了线性回归方程的求法与应用问题,也考察了计算与推理才能,是根底题.()2222:10x y M a b a b +=>>的一个顶点坐标为()2,0y x m =+交椭圆于不同的两点,A B〔Ⅰ〕求椭圆M 的方程; 〔Ⅱ〕设点()1,1C,当ABC ∆的面积为1时,务实数m 的值.【答案】〔Ⅰ〕:2x 4+y 2=1;〔Ⅱ〕m =±【解析】〔Ⅰ〕根据顶点坐标、离心率和,,a b c 的关系可求得,,a b c ,从而得到椭圆方程;〔Ⅱ〕直线方程与椭圆方程联立,根据有两个交点可得>0∆,求得m 范围;联立后写出韦达定理的形式,代入弦长公式求得AB ,利用点到直线间隔公式求得点C 到直线AB 的间隔,从而利用112ABC S AB d ∆=⋅=构造方程解得m ,验证符合>0∆的m 即为结果.【详解】〔Ⅰ〕由题意知:2a =,c a =c =2221b a c =-= ∴椭圆M 的方程为:2214x y += 〔Ⅱ〕设()11,A x y ,()22,B x y联立2214y x m x y =+⎧⎪⎨+=⎪⎩得:2258440x mx m ++-= ()226420440m m ∴∆=-->,解得:m <<1285m x x ∴+=-,212445m x x -= 又点C 到直线AB的间隔为:d=11122ABC S AB d ∆∴=⋅==,解得:(m = 【点睛】此题考察直线与椭圆的综合应用问题,涉及到椭圆HY 方程的求解、韦达定理、弦长公式、点到直线间隔公式的应用,需要注意的是联立后要利用判别式大于零确定参数的取值范围. 18.如图,在四棱锥P ABCD -中,底面ABCD 是菱形且60BAD ∠=,侧棱PA PD =,O 为边AD 的中点,M 为线段PC 上的定点.〔1〕求证:平面PAD ⊥平面POB ; 〔2〕假设AB =PA =PB =//PA 平面MOB ,求三棱锥A MOB -的体积.【答案】〔1〕证明见解析;〔2 【解析】 【分析】 〔1〕通过证明AD ⊥平面POB 得出平面PAD ⊥平面POB ;〔2〕连接AC 交OB 与N ,连接BD 交AC 于E ,连接MN ,那么//PA MN ,计算OP 得出M到平面ABCD 的间隔d ,那么13P MOB A MOB AOB V V S d --∆==.【详解】证明:〔1〕PA PD =,O 是AD 的中点,PO AD ∴⊥,底面ABCD 是菱形,60BAD ∠=︒,OB AD ∴⊥,又PO ⊂平面PAD ,AD ⊂平面PAD ,OB ∴⊥平面PAD ,又OB ⊂平面POB ,∴平面PAD ⊥平面POB ;〔2〕PAD ∆是等腰三角形,AD AB ==PA =,12AO AD ∴=2OP ∴, 连接AC 交OB 与N ,连接BD 交AC 于E ,连接MN ,//PA 平面OMB ,PA ⊂平面PAC ,平面PAC平面OMB MN =,//PA MN ∴,∴PM ANPC AC=, 四边形ABCD 是菱形,60BAD ∠=︒,23AN AE ∴=,2AC AE =, ∴13PM AN PC AC ==, M ∴到平面ABCD 的间隔2433d PO ==.11143323P MOB A MOB AOB V V S d --∆∴===⨯⨯. 【点睛】此题主要考察面面垂直的断定定理,线面平行的性质,棱锥的体积计算,属于中档题.()2,0M 的直线l 与抛物线()2:20C y px p =>交于A ,B 两点,O 为坐标原点,OA OB ⊥.〔1〕求p 的值;〔2〕假设l 与坐标轴不平行,且A 关于x 轴的对称点为D ,求证:直线BD 恒过定点.【答案】(1)1p =(2)见证明【解析】 【分析】(1)由题意分类讨论直线的斜率存在和斜率不存在两种情况即可确定p 的值;(2)设出点的坐标,结合(1)中的结论利用点斜式得到直线BD 的方程,由直线方程即可证得直线BD 恒过定点.【详解】〔1〕当直线lx ⊥轴时,可得(A ,(2,B -,由OA OB ⊥得440p-=,1p ∴=,当直线l 与x 轴不垂直时,设l 的方程为()2y k x =-代入22y px =得2240ky py pk --=,()0k ≠设()11,A x y ,()22,B x y ,那么124y y p =-,()21212244y y x x p==由OA OB ⊥得12120x x y y +=,即440p -=,1p ∴=,,综上所述1p =.〔2〕由〔1〕知抛物线方程为22y x =,由于A ,D 关于x 轴对称,故D 的坐标为()11,x y -,所以直线BD 的方程为()211121y y y y x x x x ++=--22112221222y y y x y y ⎛⎫+=- ⎪⎝⎭-,即()121220x y y y y y +--=,又1244y y p =-=-,所以()12240x y y y +-+=,∴直线BD 恒过点()2,0-.【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系; (2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,假设过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,假设不过焦点,那么必须用一般弦长公式.。

【必考题】高二数学上期末一模试题(含答案)

【必考题】高二数学上期末一模试题(含答案)

【必考题】高二数学上期末一模试题(含答案)一、选择题1.将A ,B ,C ,D ,E ,F 这6个字母随机排成一排组成一个信息码,则所得信息码恰好满足A ,B ,C 三个字母连在一起,且B 在A 与C 之间的概率为( ) A .112B .15C .115D .2152.如图是把二进制的数11111化成十进制数的一个程序框图,则判断框内应填入的条件是( )A .4i >?B .5i >?C .4i ≤?D .5i ≤?3.执行如图的程序框图,那么输出的S 的值是( )A .﹣1B .12C .2D .14.某工厂对一批新产品的长度(单位:mm )进行检测,如下图是检测结果的频率分布直方图,据此估计这批产品的中位数与平均数分别为( )A .20,22.5B .22.5,25C .22.5,22.75D .22.75,22.755.把化为五进制数是( )A .B .C .D .6.执行如图的程序框图,如果输出a 的值大于100,那么判断框内的条件为( )A .5k <?B .5k ≥?C .6k <?D .6k ≥?7.为了解某社区居民的家庭年收入和年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x 万 8.3 8.6 9.9 11.1 12.1 支出y 万5.97.88.18.49.8根据上表可得回归直线方程ˆˆˆybx a =+,其中0.78b ∧=,a y b x ∧∧=-元,据此估计,该社区一户收入为16万元家庭年支出为( ) A .12.68万元B .13.88万元C .12.78万元D .14.28万元8.按照程序框图(如图所示)执行,第3 个输出的数是( )A .6B .5C .4D .39.太极图是以黑白两个鱼形纹组成的图案,它形象化地表达了阴阳轮转、相反相成是万物生成变化根源的哲理,展现了一种相互转化、相对统一的形式美.按照太极图的构图方法,在平面直角坐标系中,圆O 被3sin6y x π=的图象分割为两个对称的鱼形图案,其中小圆的半径均为1,现在大圆内随机取一点,则此点取自阴影部分的概率为( )A .136B .118C .112D .1910.执行如图所示的程序框图,若输入2x =-,则输出的y =( )A .8-B .4-C .4D .811.下表是某两个相关变量x ,y 的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程ˆ0.70.35yx =+,那么表中t 的值为( ) x 3 4 5 6 y2.5t44.5A .3B .3.15C .3.5D .4.512.执行如图所示的程序框图,则输出s 的值为( )A .10B .17C .19D .36二、填空题13.下图给出了一个程序框图,其作用是输入x 的值,输出相应的y 值.若要使输入的x 值与输出的y 值满足关系式y=-2x+4,则这样的x 值___个.14.下图是华师一附中数学讲故事大赛7位评委给某位学生的表演打出的分数的茎叶图.记分员在去掉一个最高分和一个最低分后,算得平均分为91分,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清,若记分员计算无误,则数字x 应该是____________.15.设{}{}1,3,5,7,2,4,6a b ∈∈,则函数()log a bf x x =是增函数的概率为__________.16.已知某产品连续4个月的广告费i x (千元)与销售额i y (万元)(1,2,3,4i =)满足4115ii x==∑,4112i i y ==∑,若广告费用x 和销售额y 之间具有线性相关关系,且回归直线方程为^y bx a =+,0.6b =,那么广告费用为5千元时,可预测的销售额为___万元. 17.某校高中生共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样法抽取一个容量为45的样本,那么从高一、高二、高三各年级抽取人数分别为 .18.执行如图所示的程序框图,若1ln 2a =,22b e =,ln 22c =(其中e 是自然对数的底),则输出的结果是__________.19.已知AOB ∆中,60AOB ∠=o ,2OA =,5OB =,在线段OB 上任取一点C ,则AOC ∆为锐角三角形的概率_________.20.已知由样本数据点集合(){},|1,2,3,,i ix y i n =L L ,求得的回归直线方程为1.230.08y x Λ=+ ,且4x =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【必考题】高二数学上期末模拟试题带答案(2)一、选择题1.执行如图的程序框图,若输入1t =-,则输出t 的值等于( )A .3B .5C .7D .152.已知一组数据的茎叶图如图所示,则该组数据的平均数为( )A .85B .84C .83D .813.如果数据121x +、221x +、L 、21n x +的平均值为5,方差为16,则数据:153x -、253x -、L 、53n x -的平均值和方差分别为( )A .1-,36B .1-,41C .1,72D .10-,1444.大学生小明与另外3名大学生一起分配到某乡镇甲、乙丙3个村小学进行支教,若每个村小学至少分配1名大学生,则小明恰好分配到甲村小学的概率为( )A .112B .12C .13D .165.执行如图所示的程序框图,输出的S 值为( )A.1B.-1C.0D.-2 6.执行如图的程序框图,那么输出的S的值是()A.﹣1 B.12C.2 D.17.某工厂对一批新产品的长度(单位:mm)进行检测,如下图是检测结果的频率分布直方图,据此估计这批产品的中位数与平均数分别为( )A.20,22.5B.22.5,25C.22.5,22.75D.22.75,22.75 8.如图是某手机商城2018年华为、苹果、三星三种品牌的手机各季度销量的百分比堆积图(如:第三季度华为销量约占50%,苹果销量约占20%,三星销量约占30%).根据该图,以下结论中一定正确的是( )A .华为的全年销量最大B .苹果第二季度的销量大于第三季度的销量C .华为销量最大的是第四季度D .三星销量最小的是第四季度9.在R 上定义运算:A()1B A B =-,若不等式()x a -()1x a +<对任意的实数x ∈R 恒成立,则实数a 的取值范围是( ) A .11a -<<B .02a <<C .1322a -<< D .3122a -<< 10.甲、乙两位同学在高一年级的5次考试中,数学成绩统计如茎叶图所示,若甲、乙两人的平均成绩分别是12,x x ,则下列叙述正确的是( )A .12x x >,乙比甲成绩稳定B .12x x >,甲比乙成绩稳定C .12x x <,乙比甲成绩稳定D .12x x <,甲比乙成绩稳定11.袋中装有红球3个、白球2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是( )A .至少有一个白球;都是白球B .至少有一个白球;至少有一个红球C .至少有一个白球;红、黑球各一个D .恰有一个白球;一个白球一个黑球12.执行如图所示的程序框图,若输入x =9,则循环体执行的次数为( )A .1次B .2次C .3次D .4次二、填空题13.如图,在半径为1的圆上随机地取两点,B E ,连成一条弦BE ,则弦长超过圆内接正BCD ∆边长的概率是__________.14.小明通过做游戏的方式来确定接下来两小时的活动,他随机地往边长为1的正方形内扔一颗豆子,若豆子到各边的距离都大于14,则去看电影;若豆子到正方形中心的距离大于12,则去打篮球;否则,就在家写作业则小明接下来两小时不在家写作业的概率为______.(豆子大小可忽略不计)15.一个算法的伪代码如下图所示,执行此算法,若输出的y 值为1,则输入的实数x 的值为________.16.利用计算机产生0~1之间的均匀随机数a ,则使关于x 的一元二次方程20x x a -+=无实根的概率为______.17.下图是华师一附中数学讲故事大赛7位评委给某位学生的表演打出的分数的茎叶图.记分员在去掉一个最高分和一个最低分后,算得平均分为91分,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清,若记分员计算无误,则数字x 应该是____________.18.某校为了解1000名高一新生的身体生长状况,用系统抽样法(按等距的规则)抽取40名同学进行检查,将学生从1~1000进行编号,现已知第18组抽取的号码为443,则第一组用简单随机抽样抽取的号码为_________19.如图所示,在边长为1的正方形OABC 中任取一点M .则点M 恰好取自阴影部分的概率是 .20.将红、黄、蓝、白、黑5个小球分别放入红、黄、蓝、白、黑5个盒子里,每个盒子里放且只放1个小球,则红球不在红盒内且黄球不在黄盒内的概率是______.三、解答题21.从某居民区随机抽取10个家庭,获得第i 个家庭的月收入i x (单位:千元)与月储蓄i y ,(单位:千元)的数据资料,算出101010102111180,20184,720ii i i i i i i i xy x y x ========∑∑∑∑,,附:线性回归方程1221ˆˆˆˆˆˆ,,ni ii nii x y nxyybx a b ay bx xnx ==-=+==--∑∑,其中,x y 为样本平均值. (1)求家庭的月储蓄y 对月收入x 的线性回归方程ˆˆˆybx a =+ ; (2)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.22.为了了解某省各景区在大众中的熟知度,随机从本省1565:岁的人群中抽取了n 人,得到各年龄段人数的频率分布直方图如图所示,现让他们回答问题“该省有哪几个国家AAAAA 级旅游景区?”,统计结果如下表所示: 组号 分组回答正确的人数回答正确的人数占本组的频率第1组 [)1525, a0.5第2组 [)2535, 18x第3组[)3545,b 0.9第4组 [)4555, 9 0.36第5组[)5565,3y(1)分别求出,,,a b x y 的值;(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组抽取的人数;(3)在(2)中抽取的6人中随机抽取2人,求所抽取的人中恰好没有年龄段在[)3545,的概率23.已知一个口袋有3个白球,1个黑球,这些球除颜色外全部相同,现将口袋中的球随机逐个取出,并依次放入编号为1,2,3,4的抽屉内. (1)求编号为2的抽屉内放黑球的概率;(2)口袋中的球放入抽屉后,随机取出两个抽屉中的球,求取出的两个球是一黑一白的概率.24.全世界越来越关注环境保护问题,某监测站点于2016年8月某日起连续n 天监测空气质量指数(AQI ),数据统计如下: 空气质量指数(3/g m μ)0-50 51-100 101-150 151-200 201-250 空气质量等级 空气优 空气良 轻度污染中度污染 重度污染 天数2040m105(1)根据所给统计表和频率分布直方图中的信息求出,n m 的值,并完成频率分布直方图;(2)在空气质量指数分别为51-100和151-200的监测数据中,用分层抽样的方法抽取5天,从中任意选取2天,求事件A “两天空气都为良”发生的概率.25.某中学随机选取了40名男生,将他们的身高作为样本进行统计,得到如图所示的频率分布直方图.观察图中数据,完成下列问题.(Ⅰ)求a 的值及样本中男生身高在[]185,195(单位:cm )的人数;(Ⅱ)假设同一组中的每个数据可用该组区间的中点值代替,通过样本估计该校全体男生的平均身高;(Ⅲ)在样本中,从身高在[)145,155和[]185,195(单位:cm )内的男生中任选两人,求这两人的身高都不低于185cm 的概率.26.我国是世界上严重缺水的国家之一,某市为了制定合理的节水方案,对家庭用水情况进行了调查,通过抽样,获得了某年100个家庭的月均用水量(单位:t ),将数据按照[0,2),[2,4),[4,6),[6,8),[8,10]分成5组,制成了如图所示的频率分布直方图.(1)记事件A :“全市家庭月均用水量不低于6t ”,求()P A 的估计值;(2)假设同组中的每个数据都用该组区间的中点值代替,求全市家庭月均用水量平均数的估计值(精确到0.01);(3)求全市家庭月均用水量的25%分位数的估计值(精确到0.01).【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】直接根据程序框图依次计算得到答案. 【详解】模拟执行程序,可得1t =-,不满足条件0t >,0t =,满足条件()()250t t +-<, 不满足条件0t >,1t =,满足条件()()250t t +-<, 满足条件0t >,3t =,满足条件()()250t t +-<,满足条件0t >,7t =,不满足条件()()250t t +-<,退出循环,输出t 的值为7. 故选:C. 【点睛】本题考查了程序框图,意在考查学生的计算能力和理解能力.2.A解析:A 【解析】 【分析】利用茎叶图、平均数的性质直接求解. 【详解】由一组数据的茎叶图得: 该组数据的平均数为:1(7581858995)855++++=. 故选:A . 【点睛】本题考查平均数的求法,考查茎叶图、平均数的性质等基础知识,考查运算求解能力,是基础题.3.A解析:A 【解析】 【分析】计算出数据1x 、2x 、L 、n x 的平均值x 和方差2s 的值,然后利用平均数和方差公式计算出数据153x -、253x -、L 、53n x -的平均值和方差. 【详解】设数据1x 、2x 、L 、n x 的平均值为x ,方差为2s , 由题意()()()()121221212121215n n x x x x x x x nn++++++++=+=+=L L,得2x =,由方差公式得()()()()()()22212212121212121n x x x x x x n⎡⎤⎡⎤⎡⎤+-+++-++++-+⎣⎦⎣⎦⎣⎦L ()()()2221224416n x x x x x x s n⎡⎤-+-++-⎢⎥⎣⎦===L ,24s ∴=. 所以,数据153x -、253x -、L 、53n x -的平均值为()()()12535353n x x x n-+-+-L ()1235535321n x x x x n+++=-=-=-⨯=-L,方差为()()()()()()22212535353535353n x x x x x x n⎡⎤⎡⎤⎡⎤---+---++---⎣⎦⎣⎦⎣⎦L ()()()2221229936n x x x x x x s n⎡⎤-+-++-⎢⎥⎣⎦===L . 故选:A. 【点睛】本题考查平均数与方差的计算,熟练利用平均数与方差的公式计算是解题的关键,考查计算能力,属于中等题.4.C解析:C 【解析】 【分析】基本事件总数n 2343C A ==36,小明恰好分配到甲村小学包含的基本事件个数m 322332A C A =+=12,由此能求出小明恰好分配到甲村小学的概率.【详解】解:大学生小明与另外3名大学生一起分配到某乡镇甲、乙、丙3个村小学进行支教, 每个村小学至少分配1名大学生,基本事件总数n 2343C A ==36,小明恰好分配到甲村小学包含的基本事件个数m 322332A C A =+=12,∴小明恰好分配到甲村小学的概率为p 121363m n ===. 故选C . 【点睛】本题考查概率的求法,考查古典概率、排列组合等基础知识,考查运算求解能力,是基础题.5.B解析:B 【解析】 【分析】由题意结合流程图运行程序,考查5i >是否成立来决定输出的数值即可. 【详解】结合流程图可知程序运行过程如下: 首先初始化数据:1,2i S ==, 此时不满足5i >,执行循环:111,122S i i S =-==+=; 此时不满足5i >,执行循环:111,13S i i S=-=-=+=; 此时不满足5i >,执行循环:112,14S i i S=-==+=; 此时不满足5i >,执行循环:111,152S i i S =-==+=; 此时不满足5i >,执行循环:111,16S i i S=-=-=+=; 此时满足5i >,输出1S =-. 本题选择B 选项. 【点睛】本题主要考查循环结构流程图的识别与运行过程,属于中等题.6.B解析:B 【解析】由题意可得:初如值S=2,k=2015, S=-1,k=2016<2018S=12,k=2017<2018 2,2018S k ==输出2,选C.7.C解析:C【解析】【分析】根据平均数的定义即可求出.根据频率分布直方图中,中位数的左右两边频率相等,列出等式,求出中位数即可.8.A解析:A【解析】【分析】根据图象即可看出,华为在每个季度的销量都最大,从而得出华为的全年销量最大,从而得出A 正确;由于不知每个季度的销量多少,从而苹果、华为和三星在哪个季度的销量大或小是没法判断的,从而得出选项B ,C ,D 都错误.【详解】根据图象可看出,华为在每个季度的销量都最大,所以华为的全年销量最大;每个季度的销量不知道,根据每个季度的百分比是不能比较苹果在第二季度和第三季度销量多少的,同样不能判断华为在哪个季度销量最大,三星在哪个季度销量最小;B ∴,C ,D 都错误,故选A .【点睛】本题主要考查对销量百分比堆积图的理解.9.C解析:C【解析】【分析】根据新运算的定义, ()x a -()x a +22x x a a =-++-,即求221x x a a -++-<恒成立,整理后利用判别式求出a 范围即可【详解】 Q A ()1B A B =-∴()x a -()x a +()()()()22=11x a x a x a x a x x a a --+=--+-=-++-⎡⎤⎣⎦ Q ()x a -()1x a +<对于任意的实数x ∈R 恒成立,221x x a a ∴-++-<,即2210x x a a -++--<恒成立,()()2214110a a ∴∆=-⨯-⨯--<,1322a ∴-<< 故选:C【点睛】本题考查新定义运算,考查一元二次不等式中的恒成立问题, 当x ∈R 时,利用判别式是解题关键10.C解析:C【解析】 甲的平均成绩11(7378798793)825x =++++=,甲的成绩的方差22222211[(7382)(7882)(7982)(8782)(9382)]50.45s =-+-+-+-+-=; 乙的平均成绩21(7989899291)885x =++++=,乙的成绩的方差22222221[(7988)(8988)(8988)(9288)(9188)]21.65s =-+-+-+-+-=. ∴12x x <,乙比甲成绩稳定.故选C .11.C解析:C【解析】【分析】由题意逐一考查所给的事件是否互斥、对立即可求得最终结果.【详解】袋中装有红球3个、白球2个、黑球1个,从中任取2个,逐一分析所给的选项:在A 中,至少有一个白球和都是白球两个事件能同时发生,不是互斥事件,故A 不成立. 在B 中,至少有一个白球和至少有一个红球两个事件能同时发生,不是互斥事件,故B 不成立;在C 中,至少有一个白球和红、黑球各一个两个事件不能同时发生但能同时不发生, 是互斥而不对立的两个事件,故C 成立;在D 中,恰有一个白球和一个白球一个黑球两个事件能同时发生,不是互斥事件,故D 不成立;本题选择C 选项.【点睛】“互斥事件”与“对立事件”的区别:对立事件是互斥事件,是互斥中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.12.C解析:C【解析】【分析】根据程序框图依次计算得到答案.【详解】9,5x y ==,41y x -=>;115,3x y ==,413y x -=>; 1129,39x y ==,419y x -=<;结束. 故选:C .【点睛】本题考查了程序框图的循环次数,意在考查学生的理解能力和计算能力. 二、填空题13.【解析】【分析】取圆内接等边三角形的顶点为弦的一个端点当另一端点在劣弧上时求出劣弧的长度运用几何概型的计算公式即可得结果【详解】记事件{弦长超过圆内接等边三角形的边长}如图取圆内接等边三角形的顶点为解析:13【解析】【分析】取圆内接等边三角形BCD 的顶点B 为弦的一个端点,当另一端点在劣弧CD 上时,BE BC >,求出劣弧CD 的长度,运用几何概型的计算公式,即可得结果.【详解】记事件A ={弦长超过圆内接等边三角形的边长},如图,取圆内接等边三角形BCD 的顶点B 为弦的一个端点,当另一端点在劣弧CD 上时,BE BC >,设圆的半径为r ,劣弧CD 的长度是23r π, 圆的周长为2r π, 所以()21323r P A r ππ==,故答案为13. 【点睛】本题主要考查“长度型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与长度有关的几何概型问题关鍵是计算问题的总长度以及事件的长度;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误. 14.【解析】【分析】根据题意画出图形求出写作业所对应的区域面积利用得到结果【详解】由题意可知当豆子落在下图中的空白部分时小明在家写作业大正方形面积;阴影正方形面积空白区域面积:根据几何概型可知小明不在家 解析:5π4- 【解析】【分析】根据题意画出图形,求出写作业所对应的区域面积,利用()()1P A P A =-得到结果.【详解】由题意可知,当豆子落在下图中的空白部分时,小明在家写作业∴大正方形面积111S =⨯=;阴影正方形面积1111224S =⨯= 空白区域面积:22111244S ππ-⎛⎫=⨯-= ⎪⎝⎭根据几何概型可知,小明不在家写作业的概率为:2514S P S π-=-= 本题正确结果:54π- 【点睛】本题考查几何概型中的面积型,属于基础题. 15.3【解析】【分析】执行该算法后输出y =令y =1求出对应x 值即可【详解】执行如图所示的算法知该算法输出y =当x≥1时令y =x2﹣2x ﹣2=1解得x =3或x =﹣1(不合题意舍去);当x <1时令y ==1此解析:3【解析】【分析】执行该算法后输出y =222,11,11x x x x x x ⎧--≥⎪⎨+<⎪-⎩,令y =1求出对应x 值即可. 【详解】执行如图所示的算法知,该算法输出y =222,11,11x x x x x x ⎧--≥⎪⎨+<⎪-⎩ 当x ≥1时,令y =x 2﹣2x ﹣2=1,解得x =3或x =﹣1(不合题意,舍去);当x <1时,令y =11x x +-=1,此方程无解; 综上,则输入的实数x 的值为3.故答案为3.【点睛】 本题考查算法与应用问题,考查分段函数的应用问题,是基础题.16.【解析】∵方程无实根∴Δ=1-4a<0∴即所求概率为故填: 解析:34【解析】∵方程无实根,∴Δ=1-4a <0,∴14a >,即所求概率为34.故填:3417.1【解析】【分析】因为题目中要去掉一个最高分所以对进行分类讨论然后结合平均数的计算公式求出结果【详解】若去掉一个最高分和一个最低分86分后平均分为不符合题意故最高分为94分去掉一个最高分94分去掉一 解析:1【解析】【分析】因为题目中要去掉一个最高分,所以对x 进行分类讨论,然后结合平均数的计算公式求出结果【详解】若4x >,去掉一个最高分()90x +和一个最低分86分后,平均分为()1899291949291.65++++=,不符合题意,故4x ≤,最高分为94分,去掉一个最高分94分,去掉一个最低分86分后,平均分()18992909192915x +++++=,解得1x =,故数字x 为1【点睛】本题考查了由茎叶图求平均值,理解题目意思运用平均数计算公式即可求出结果,注意分类讨论18.18【解析】【分析】由题意知抽样方法为系统抽样因此若第一组抽取号码为x 则第18组抽取的号码为即可解得【详解】因为抽样方法为系统抽样因此若第一组抽取号码为x 则第18组抽取的号码为解得【点睛】本题主要考 解析:18【解析】【分析】由题意知,抽样方法为系统抽样,因此,若第一组抽取号码为x ,则第18组抽取的号码为1725443x +⨯=,即可解得.【详解】因为抽样方法为系统抽样,因此,若第一组抽取号码为x ,则第18组抽取的号码为1725443x +⨯=,解得18x =.【点睛】本题主要考查了系统抽样,属于中档题.19.【解析】试题分析:根据题意正方形的面积为而阴影部分由函数与围成其面积为则正方形中任取一点点取自阴影部分的概率为则正方形中任取一点点取自阴影部分的概率为考点:定积分在求面积中的应用几何概型点评:本题考 解析:【解析】 试题分析:根据题意,正方形的面积为 而阴影部分由函数与围成,其面积为, 则正方形中任取一点,点取自阴影部分的概率为.则正方形中任取一点,点取自阴影部分的概率为考点:定积分在求面积中的应用 几何概型点评:本题考查几何概型的计算,涉及定积分在求面积中的应用,关键是正确计算出阴影部分的面积.20.65【解析】设红球不在红盒内且黄球不在黄盒内的概率为再设红球在红盒内的概率为黄球在黄盒内的概率为红球在红盒内且黄球在黄盒内的概率为则红球不在红盒且黄球不在黄盒由古典概型概率公式可得则即故答案为解析:65【解析】设红球不在红盒内且黄球不在黄盒内的概率为P ,再设红球在红盒内的概率为1P ,黄球在黄盒内的概率为2P ,红球在红盒内且黄球在黄盒内的概率为3P ,则()1231P P P P =-+-:P 红球不在红盒且黄球不在黄盒 由古典概型概率公式可得,1234!3!,5!5!P P P ===,则()1234!3!131125!5!20P P P P ⎛⎫=-+-=-⨯-= ⎪⎝⎭,即0.65P =,故答案为0.65. 三、解答题21.(1)0.30.4y x =-;(2)1.7【解析】【分析】(1)根据数据,利用最小二乘法,即可求得y 对月收入x 的线性回归方程回归方程ˆˆyb =x ˆa +; (2)将x =7代入即可预测该家庭的月储蓄.【详解】(1)由题意知,10101110,80,20i i i i n xy =====∑∑ , 80208,21010x y ∴==== ∴21082160,1064640n x y n x ⋅⋅=⨯⨯=⋅=⨯=1010211184,720i i ii i x y x ====∑∑ 由1221184160ˆ0.3720640n i i i n i i x y nxy b xnx ==--===--∑∑. ˆˆ20.380.4ay bx =-=-⨯=- 故所求回归方程为0.30.4y x =-(2)将7x =代入回归方程可以预测该家庭的月储蓄为0.370.4 1.7y =⨯-=(千元).【点睛】本题考查线性回归方程的应用,考查最小二乘法求线性回归方程,考查转化思想,属于中档题.22.(1)5a =,27b =,0.9x =,0.2y =;(2)分边抽取2,3,1人;(3)15. 【解析】【分析】(1)根据数据表和频率分布直方图可计算得到第4组的人数和频率,从而可得总人数;根据总数、频率和频数的关系,可分别计算得到所求结果;(2)首先确定第2,3,4组的总人数,根据分层抽样原则计算即可得到结果;(3)首先计算得到基本事件总数;再计算出恰好没有年龄段在[)3545,包含的基本事件个数,根据古典概型概率公式可求得结果. 【详解】(1)第4组的人数为:9250.36=人,第4组的频率为:0.025100.25⨯= 251000.25n ∴== Q 第一组的频率为0.010100.1⨯= ∴第一组的人数为:0.110010⨯=100.55a ∴=⨯=Q 第二组的频率为0.020100.2⨯= ∴第二组的人数为:0.210020⨯=180.920x ∴== Q 第三组的频率为0.030100.3⨯= ∴第三组的人数为:0.310030⨯=300.927b ∴=⨯=Q 第五组的频率为0.015100.15⨯= ∴第五组的人数为:0.1510015⨯=30.215y ∴== (2)第2,3,4组的总人数为:1827954++=人 ∴第2组抽取的人数为:186254⨯=人;第3组抽取的人数为:276354⨯=人;第4组抽取的人数为:96154⨯=人 (3)在(2)中抽取的6人中随机抽取2人,基本事件总数为:2615n C ==所抽取的人中恰好没有年龄段在[)3545,包含的基本事件个数为:233m C == ∴所抽取的人中恰好没有年龄段在[)3545,的概率:31155m p n === 【点睛】本题考查利用频率分布直方图计算总数、频数和频率、分层抽样基本方法的应用、古典概型计算概率问题;关键是熟练掌握频率分布直方图的相关知识,能够通过频率分布直方图准确计算出各组数据对应的频率.23.(1) 14P =.(2) 12P =. 【解析】【分析】 (1)4个球放入编号为1,2,3,4的抽屉里,有4种方法,满足题意的有1中,根据古典概型公式得到结果;(2)根据抽屉的编号,对于一种确定的放法,取法有6种情况,满足一白一黑的有3种情况,进而得到结果.【详解】(1)将口袋中的3个白球,1个黑球,依次放入编号为1,2,3,4的抽屉内,共有4种不同的放法,分别是(白,白,白,黑),(白,白,黑,白),(白,黑,白,白),(黑,白,白,白),其中编号为2的抽屉内放黑球的情况有1种,所以编号为2的抽屉内放黑球的概率为14P =. (2)假设口袋内的球逐个依次取出放入抽屉内后是(白,白,白,黑),随机取出两个球,根据抽屉的编号,可能是()1,2,()1,3,()1,4,()2,3,()2,4,()3,4共6种,其中一黑一白的是()1,4,()2,4,()3,4共3种,所以取出的两个球是一黑一白的概率为12P =. 【点睛】 本题考查了古典概型公式的应用,对于古典概型,要求事件总数是可数的,满足条件的事件个数可数,使得满足条件的事件个数除以总的事件个数即可.24.(1)答案见解析;(2)35. 【解析】【试题分析】(1)借助题设中提供的频率分布直方图,算出0-50的频率为0.004500.2⨯=,进而求出样本容量200.2100n =÷=,从而求出25m =,最后完成频率分布直方图;(2)先运用分层抽样的方法求出空气质量指数为51-100和151200-的监测天数中分别抽取4天和1天,即将空气质量指数为51-100的4天分别记为,,,a b c d ;将空气质量指数为151-200的1天记为e ,算出从中任取2天的基本事件数为10种和其中事件A “两天空气都为良”包含的基本事件数为6种,进而算得事件A “两天都为良”发生的概率是()63105P A ==: (1)由频率分布直方图可知0-50的频率为0.004500.2⨯=,所以200.2100n =÷=,从而25m =,频率分布直方图补充如下图所示.(2)在空气质量指数为51-100和151200-的监测天数中分别抽取4天和1天,在所抽取的5天中,将空气质量指数为51-100的4天分别记为,,,a b c d ;将空气质量指数为151-200的1天记为e ,从中任取2天的基本事件分别为:(),a b ,(),a c ,(),a d ,(),a e ,(),b c ,(),b d ,(),b e ,(),c d ,(),c e ,(),d e ,共10种.其中事件A “两天空气都为良”包含的基本事件为:(),a b ,(),a c ,(),a d ,(),b c ,(),b d 共6种,所以事件A “两天都为良”发生的概率是()63105P A ==. 25.(1)4(2)171.5?cm (3)25 【解析】试题分析:(1)根据频率直方图的总面积为1,可求得a 0.010=,n=N*高*组距400.01104⨯⨯=.(2)平均数为,每个区间的中点值与频率乘积和.(3)学生身高在[]185,195内的人有4个,记这四人为a,b,c,d .所以,身高在[)145,155和[]185,195内的男生共6人.采用枚举可得总共15个基本事件,满足的有6个.()62P M 155==. 试题解析:(Ⅰ)根据题意, ()0.005a 0.0200.0250.040101++++⨯=. 解得 a 0.010=.所以样本中学生身高在[]185,195内(单位:cm )的人数为 400.01104⨯⨯=. (Ⅱ)设样本中男生身高的平均值为x ,则x 1500.051600.21700.41800.251900.1=⨯+⨯+⨯+⨯+⨯7.532684519171.5=++++= .所以,该校男生的平均身高为171.5cm .(Ⅲ)样本中男生身高在[)145,155内的人有 400.005102⨯⨯=(个),记这两人为A,B .由(Ⅰ)可知,学生身高在[]185,195内的人有4个,记这四人为a,b,c,d .所以,身高在[)145,155和[]185,195内的男生共6人.从这6人中任意选取2人,有b,ac,ad,aA,aB,bc,bd,bA,bB,cd,cA,cB,dA,dB,AB , 共15种情况.设所选两人的身高都不低于185cm 为事件M ,事件M 包括ab,ac,ad,bc,bd,cd ,共6种情况.所以,所选两人的身高都不低于185cm 的概率为()62P M 155==. 26.(1)0.3;(2)4.92 t .;(3)3.18t【解析】【分析】(1)通过频率分布直方图求得[]6,10的频率,由此求得()P A 的估计值.(2)根据由频率分布直方图计算平均数的方法,计算出全市家庭月均用水量平均数的估计值.(3)通过频率分布直方图,计算出累计频率为0.25的位置,从而求得全市家庭月均用水量的25%分位数的估计值.【详解】(1)由直方图可知()P A 的估计值为()(0.090.06)20.3P A =+⨯=.(2)因为0.06210.11230.18250.09270.0629 4.92⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=. 因此全市家庭月均用水量的平均数估计值为4.92 t .(3)频率分布直方图中,用水量低于2 t 的频率为0.0620.12⨯=.用水量低于4 t 的频率为0.0620.1120.34⨯+⨯=.故全市家庭月均用水量的25%分位数的估计值为0.250.1222 3.18()0.22t -+⨯≈. 【点睛】本小题主要考查根据频率分布直方图计算频率、平均数、百分位数,属于基础题.。

相关文档
最新文档