方正县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方正县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 等差数列{a n }中,a 2=3,a 3+a 4=9 则a 1a 6的值为( ) A .14 B .18 C .21 D .27
2. 已知函数f (x )=x 2﹣6x+7,x ∈(2,5]的值域是( ) A .(﹣1,2]
B .(﹣2,2]
C .[﹣2,2]
D .[﹣2,﹣1)
3. 以下四个命题中,真命题的是( ) A .2
,2x R x x ∃∈≤-
B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<
C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数
D .已知m ,n 表示两条不同的直线,α,β表示不同的平面,并且m α⊥,n β⊂,则“αβ⊥”是 “//m n ”的必要不充分条件
【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力. 4. 在△ABC
中,,则这个三角形一定是( )
A .等腰三角形
B .直角三角形
C .等腰直角三角
D .等腰或直角三角形
5. 下列图象中,不能作为函数y=f (x )的图象的是( )
A
. B
.C

D

6. 已知表示数列
的前项和,若对任意的
满足
,且
,则
( )
A .
B .
C .
D .
7. 下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程y=3﹣5x ,变量x 增加一个单位时,y 平均增加5个单位;③线性回归方程y=bx+a
必过
;④在吸烟
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患肺病;其中错误的个数是( ) A .0
B .1
C .2
D .3
8. 将正方形的每条边8等分,再取分点为顶点(不包括正方形的顶点),可以得到不同的三角形个数为( ) A .1372 B .2024 C .3136 D .4495
9. (理)已知tan α=2
,则=( )
A

B

C

D

10.设全集U={1,2,3,4,5},集合A={2,3,4},B={2,5},则B ∪(∁U A )=( ) A .{5} B .{1,2,5}
C .{1,2,3,4,5}
D .∅
11.如图在圆O 中,AB ,CD 是圆O 互相垂直的两条直径,现分别以OA ,OB ,OC ,OD 为直径作四个 圆,在圆O 内随机取一点,则此点取自阴影部分的概率是( )
A .
π
1
B .
π21 C .π121- D .π
2141- 【命题意图】本题考查几何概型概率的求法,借助圆这个载体,突出了几何概型的基本运算能力,因用到圆的几何性质及面积的割补思想,属于中等难度. 12.已知F 1、F 2是椭圆的两个焦点,
满足
=0的点M 总在椭圆内部,则椭圆离心率的取值范围是( )
A .(0,1)
B .(0
,]
C .(0


D .
[
,1)
二、填空题
13.自圆C :22(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则PQ 的最小值为( ) A .
1310 B .3 C .4 D .21
10
【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力、数形结合的思想. 14.已知(1+x+x 2)(
x )n (n ∈N +
)的展开式中没有常数项,且2≤n ≤8,则n= .
15.log 3
+lg25+lg4﹣7
﹣(﹣9.8)0
= .
D
A
B
C
O
16.设数列{a n }的前n 项和为S n ,已知数列{S n }是首项和公比都是3的等比数列,则{a n }的通项公式a n = .
17.数据﹣2,﹣1,0,1,2的方差是 .
18.已知直线5x+12y+m=0与圆x 2
﹣2x+y 2
=0相切,则m= .
三、解答题
19.等差数列{a n }的前n 项和为S n ,已知a 1=10,a 2为整数,且S n ≤S 4。

(1)求{a n }的通项公式;
(2)设b n =
,求数列{b n }的前n 项和T n 。

20.(本小题满分12分)已知函数2
()(21)ln f x x a x a x =-++(a R ∈).
(I )若1
2
a >,求)(x f y =的单调区间; (II )函数()(1)g x a x =-,若0[1,]x e ∃∈使得00()()f x g x ≥成立,求实数a 的取值范围.
21.设不等式
的解集为.
(1)求集合; (2)若,∈,试比较

的大小。

22.如图,在三棱柱ABC﹣A1B1C1中,底面△ABC是边长为2的等边三角形,D为AB中点.
(1)求证:BC1∥平面A1CD;
(2)若四边形BCC
B1是正方形,且A1D=,求直线A1D与平面CBB1C1所成角的正弦值.
1
23.某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并
按分数段,,,,,进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图(如下).
(Ⅰ)体育成绩大于或等于70分的学生常被称为“体育良好”.已知该校高一年级有1000名学生,试估计高一年级中“体育良好”的学生人数;
(Ⅱ)为分析学生平时的体育活动情况,现从体育成绩在和的样本学生中随机抽取2人,求在抽取的2名学生中,至少有1人体育成绩在的概率;
(Ⅲ)假设甲、乙、丙三人的体育成绩分别为,且分别在,,三组中,其中
.当数据的方差最大时,写出的值.(结论不要求证明)
(注:,其中为数据的平均数)
24.在直角坐标系xOy中,以原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为
ρ(sinθ+cosθ)=1,曲线C2的参数方程为(θ为参数).
(Ⅰ)求曲线C1的直角坐标方程与曲线C2的普通方程;
(Ⅱ)试判断曲线C1与C2是否存在两个交点?若存在,求出两交点间的距离;若不存在,说明理由.
方正县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
1.【答案】A
【解析】解:由等差数列的通项公式可得,a3+a4=2a1+5d=9,a1+d=3
解方程可得,a1=2,d=1
∴a1a6=2×7=14
故选:A
【点评】本题主要考查了等差数列的通项公式的简单应用,属于基础试题
2.【答案】C
【解析】解:由f(x)=x2﹣6x+7=(x﹣3)2﹣2,x∈(2,5].
∴当x=3时,f(x)min=﹣2.
当x=5时,.
∴函数f(x)=x2﹣6x+7,x∈(2,5]的值域是[﹣2,2].
故选:C.
3.【答案】D
4.【答案】A
【解析】解:∵,
又∵cosC=,
∴=,整理可得:b2=c2,
∴解得:b=c.即三角形一定为等腰三角形.
故选:A.
5.【答案】B
【解析】解:根据函数的定义可知,对应定义域内的任意变量x只能有唯一的y与x对应,选项B中,当x >0时,有两个不同的y和x对应,所以不满足y值的唯一性.
所以B不能作为函数图象.
【点评】本题主要考查函数图象的识别,利用函数的定义是解决本题的关键,注意函数的三个条件:非空数集,定义域内x的任意性,x对应y值的唯一性.
6.【答案】C
【解析】
令得,所以,即,所以是以1为公差的等差数列,首项为,所以,故选C
答案:C
7.【答案】C
【解析】解:对于①,方差反映一组数据的波动大小,将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变,正确;
对于②,设有一个回归方程y=3﹣5x,变量x增加一个单位时,y应平均减少5个单位,②错误;
对于③,线性回归方程y=bx+a必过样本中心点,正确;
对于④,在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,
我们说某人吸烟,那么他有99%的可能患肺病,错误;
综上,其中错误的个数是2.
故选:C.
8.【答案】
C
【解析】
【专题】排列组合.
【分析】分两类,第一类,三点分别在三条边上,第二类,三角形的两个顶点在正方形的一条边上,第三个顶点在另一条边,根据分类计数原理可得.
【解答】解:首先注意到三角形的三个顶点不在正方形的同一边上.任选正方形的三边,使三个顶点分别在其上,有4种方法,
再在选出的三条边上各选一点,有73种方法.这类三角形共有4×73=1372个.
另外,若三角形有两个顶点在正方形的一条边上,第三个顶点在另一条边上,则先取一边使其上有三角形的两个顶点,有4种方法,
再在这条边上任取两点有21种方法,然后在其余的21个分点中任取一点作为第三个顶点.这类三角形共有4×21×21=1764个.
综上可知,可得不同三角形的个数为1372+1764=3136.
【点评】本题考查了分类计数原理,关键是分类,还要结合几何图形,属于中档题.
9. 【答案】D
【解析】解:∵tan α=2
,∴
=
=
=.
故选D .
10.【答案】B
【解析】解:∵C U A={1,5}
∴B ∪(∁U A )={2,5}∪{1,5}={1,2,5}. 故选B .
11.【答案】C
【解析】设圆O 的半径为2,根据图形的对称性,可以选择在扇形OAC 中研究问题,过两个半圆的交点分别向OA ,OC 作垂线,则此时构成一个以1为边长的正方形,则这个正方形内的阴影部分面积为
12

,扇形OAC 的面积为π,所求概率为π
π
π
12112
-=
-=P . 12.【答案】C 【解析】解:设椭圆的半长轴、半短轴、半焦距分别为a ,b ,c ,

=0,
∴M 点的轨迹是以原点O 为圆心,半焦距c 为半径的圆. 又M 点总在椭圆内部,
∴该圆内含于椭圆,即c <b ,c 2<b 2=a 2﹣c 2
. ∴e 2
=
<,∴0<e


故选:C .
【点评】本题考查椭圆的基本知识和基础内容,解题时要注意公式的选取,认真解答.
二、填空题
13.【答案】D 【



14.【答案】5.
【解析】二项式定理.
【专题】计算题.
【分析】要想使已知展开式中没有常数项,需(x)n(n∈N+)的展开式中无常数项、x﹣1项、x﹣2项,利
用(x)n(n∈N+)的通项公式讨论即可.
【解答】解:设(x)n(n∈N+)的展开式的通项为T r+1,则T r+1=x n﹣r x﹣3r=x n﹣4r,2≤n≤8,
当n=2时,若r=0,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠2;
当n=3时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠3;
当n=4时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠4;
当n=5时,r=0、1、2、3、4、5时,(1+x+x2)(x)n(n∈N+)的展开式中均没有常数项,故n=5适合题意;
当n=6时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠6;
当n=7时,若r=2,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠7;
当n=8时,若r=2,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠2;
综上所述,n=5时,满足题意.
故答案为:5.
【点评】本题考查二项式定理,考查二项展开式的通项公式,突出考查分类讨论思想的应用,属于难题.
15.【答案】.
【解析】解:原式=+lg100﹣2﹣1=+2﹣2﹣1=,
故选:
【点评】本题考查了对数的运算性质,属于基础题.
16.【答案】.
【解析】解:∵数列{S n}是首项和公比都是3的等比数列,∴S n =3n.
故a1=s1=3,n≥2时,a n=S n ﹣s n﹣1=3n﹣3n﹣1=2•3n﹣1,
故a n=.
【点评】本题主要考查等比数列的通项公式,等比数列的前n项和公式,数列的前n项的和Sn与第n项an 的关系,属于中档题.
17.【答案】2.
【解析】解:∵数据﹣2,﹣1,0,1,2,
∴=,
∴S2=[(﹣2﹣0)2+(﹣1﹣0)2+(0﹣0)2+(1﹣0)2+(2﹣0)2]=2,
故答案为2;
【点评】本题考查方差的定义与意义:一般地设n个数据,x
,x2,…x n的平均数,是一道基础题;
1
18.【答案】8或﹣18
【解析】【分析】根据直线与圆相切的性质可知圆心直线的距离为半径,先把圆的方程整理的标准方程求得圆心和半径,在利用点到直线的距离求得圆心到直线的距离为半径,求得答案.
【解答】解:整理圆的方程为(x﹣1)2++y2=1
故圆的圆心为(1,0),半径为1
直线与圆相切
∴圆心到直线的距离为半径
即=1,求得m=8或﹣18
故答案为:8或﹣18
三、解答题
19.【答案】
【解析】(1)由a1=10,a2为整数,且S n≤S4得
a4≥0,a5≤0,即10+3d≥0,10+4d≤0,解得﹣≤d≤﹣,
∴d=﹣3,
∴{a n}的通项公式为a n=13﹣3n。

(2)∵b n==,
∴T n=b1+b2+…+b n=(﹣+﹣+…+﹣)=(﹣)
=。

20.【答案】
【解析】【命题意图】本题考查导数的应用等基础知识,意在考查转化与化归思想的运用和综合分析问题解决问题的能力.
请21.【答案】(1)
(2)
【解析】(1)由
所以
(2)由(1)和,
所以

22.【答案】
【解析】证明:(1)连AC1,设AC1与A1C相交于点O,连DO,则O为AC1中点,
∵D为AB的中点,
∴DO∥BC1,
∵BC1⊄平面A1CD,DO⊂平面A1CD,
∴BC1∥平面A1CD.
解:∵底面△ABC是边长为2等边三角形,D为AB的中点,
四边形BCC
B1是正方形,且A1D=,
1
∴CD⊥AB,CD==,AD=1,
∴AD2+AA12=A1D2,∴AA1⊥AB,
∵,∴,
∴CD⊥DA1,又DA1∩AB=D,
∴CD⊥平面ABB1A1,∵BB1⊂平面ABB1A1,∴BB1⊥CD,
∵矩形BCC1B1,∴BB1⊥BC,
∵BC∩CD=C∴BB1⊥平面ABC,
∵底面△ABC是等边三角形,
∴三棱柱ABC﹣A1B1C1是正三棱柱.
以C为原点,CB为x轴,CC1为y轴,过C作平面CBB1C1的垂线为z轴,建立空间直角坐标系,
B(2,0,0),A(1,0,),D(,0,),A1(1,2,),
=(,﹣2,﹣),平面CBB1C1的法向量=(0,0,1),
设直线A1D与平面CBB1C1所成角为θ,
则sinθ===.
∴直线A1D与平面CBB1C1所成角的正弦值为.
23.【答案】
【解析】【知识点】样本的数据特征古典概型
【试题解析】(Ⅰ)由折线图,知样本中体育成绩大于或等于70分的学生有人,
所以该校高一年级学生中,“体育良好”的学生人数大约有
人.
(Ⅱ)设“至少有1人体育成绩在”为事件

记体育成绩在的数据为,,体育成绩在的数据为,,,
则从这两组数据中随机抽取2个,所有可能的结果有10种,它们是:,,
,,,,,,,.
而事件的结果有7种,它们是:,,,,,,,
因此事件的概率.
(Ⅲ)a,b,c的值分别是为,,.
24.【答案】
【解析】解:(Ⅰ)由曲线C1的极坐标方程为ρ(sinθ+cosθ)=1,可得它的直角坐标方程为x+y=1,
根据曲线C2的参数方程为(θ为参数),可得它的普通方程为+y2=1.
(Ⅱ)把曲线C1与C2是联立方程组,化简可得5x2﹣8x=0,显然△=64>0,
故曲线C1与C2是相交于两个点.
解方程组求得,或,可得这2个交点的坐标分别为(0,1)、(,﹣).
【点评】本题主要考查把极坐标方程化为直角坐标方程,把参数方程化为普通方程的方法,求两条曲线的交点,属于基础题.。

相关文档
最新文档