高考物理带电粒子在磁场中的运动解题技巧分析及练习题(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理带电粒子在磁场中的运动解题技巧分析及练习题(含答案)
一、带电粒子在磁场中的运动专项训练
1.如图所示,在一直角坐标系xoy 平面内有圆形区域,圆心在x 轴负半轴上,P 、Q 是圆上的两点,坐标分别为P (-8L ,0),Q (-3L ,0)。

y 轴的左侧空间,在圆形区域外,有一匀强磁场,磁场方向垂直于xoy 平面向外,磁感应强度的大小为B ,y 轴的右侧空间有一磁感应强度大小为2B 的匀强磁场,方向垂直于xoy 平面向外。

现从P 点沿与x 轴正方向成37°角射出一质量为m 、电荷量为q 的带正电粒子,带电粒子沿水平方向进入第一象限,不计粒子的重力。

求: (1)带电粒子的初速度;
(2)粒子从P 点射出到再次回到P 点所用的时间。

【答案】(1)8qBL
v m
=;(2)41(1)45m t qB π=+ 【解析】 【详解】
(1)带电粒子以初速度v 沿与x 轴正向成37o 角方向射出,经过圆周C 点进入磁场,做匀速圆周运动,经过y 轴左侧磁场后,从y 轴上D 点垂直于y 轴射入右侧磁场,如图所示,由几何关系得:
5sin37o QC L =
15sin37O
OQ
O Q L =
=
在y 轴左侧磁场中做匀速圆周运动,半径为1R ,
11R O Q QC =+
2
1
v qvB m
R =
解得:8qBL
v m
=
; (2)由公式2
2
v qvB m R =得:2mv R qB =,解得:24R L =
由24R L =可知带电粒子经过y 轴右侧磁场后从图中1O 占垂直于y 轴射放左侧磁场,由对称性,在y 圆周点左侧磁场中做匀速圆周运动,经过圆周上的E 点,沿直线打到P 点,设带电粒子从P 点运动到C 点的时间为1t
5cos37o PC L =
1PC
t v
=
带电粒子从C 点到D 点做匀速圆周运动,周期为1T ,时间为2t
12m
T qB
π=
21
37360
o
o t T = 带电粒子从D 做匀速圆周运动到1O 点的周期为2T ,所用时间为3t
22·2m m
T q B qB
ππ=
= 3212
t T =
从P 点到再次回到P 点所用的时间为t
12222t t t t =++
联立解得:41145
m
t qB π⎛⎫=+
⎪⎝
⎭。

2.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点
3,0P ⎫
⎪⎪⎝⎭
处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.
(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;
(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;
(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.
某同学查阅资料后,得到一种处理相关问题的思路:
带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq
32
2
3
0B E E v B +⎛⎫ ⎪⎝⎭
【解析】 【详解】
(1)粒子1在一、二、三做匀速圆周运动,则2
111
v qv B m r =
由几何憨可知:()2
22
1133r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭
得到:123BLq
v m
=
(2)粒子213
L v t =,212qE h t m =
在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到2
89qLB E m
=
又22
212v v Eh =+,得到:22219BLq
v m
=
(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0
E v B
'= 而'223
v v v ''=
+ 所以,运动过程中粒子的最小速率为v v v =''-'
即:2
2
003E E v v B B ⎛⎫=+- ⎪⎝⎭
3.欧洲大型强子对撞机是现在世界上最大、能量最高的粒子加速器,是一种将质子加速对撞的高能物理设备,其原理可简化如下:两束横截面积极小,长度为l -0质子束以初速度v 0同时从左、右两侧入口射入加速电场,出来后经过相同的一段距离射入垂直纸面的圆形匀强磁场区域并被偏转,最后两质子束发生相碰。

已知质子质量为m ,电量为e ;加速极板AB 、A′B′间电压均为U 0,且满足eU 0=
3
2
mv 02。

两磁场磁感应强度相同,半径均为R ,圆心O 、O′在质子束的入射方向上,其连线与质子入射方向垂直且距离为H=7
2
R ;整个装置处于真空中,忽略粒子间的相互作用及相对论效应。

(1)试求质子束经过加速电场加速后(未进入磁场)的速度ν和磁场磁感应强度B ;
(2)如果某次实验时将磁场O 的圆心往上移了2
R
,其余条件均不变,质子束能在OO′ 连线的某位置相碰,求质子束原来的长度l 0应该满足的条件。

【答案】(1) 02v v =;02mv B eR =(2) 0336
l π++≥ 【解析】
【详解】
解:(1)对于单个质子进入加速电场后,则有:220011eU mv mv 22
=- 又:2
003eU mv 2
=
解得:0v 2v =;
根据对称,两束质子会相遇于OO '的中点P ,粒子束由CO 方向射入,根据几何关系可知必定沿OP 方向射出,出射点为D ,过C 、D 点作速度的垂线相交于K ,则K ,则K 点即为轨迹的圆心,如图所示,并可知轨迹半径r=R
根据洛伦磁力提供向心力有:2
v evB m r
=
可得磁场磁感应强度:0
2mv B eR
=
(2)磁场O 的圆心上移了
R
2
,则两束质子的轨迹将不再对称,但是粒子在磁场中运达半径认为R ,对于上方粒子,将不是想着圆心射入,而是从F 点射入磁场,如图所示,E 点是原来C 点位置,连OF 、OD ,并作FK 平行且等于OD ,连KD ,由于OD=OF=FK ,故平行四边形ODKF 为菱形,即KD=KF=R ,故粒子束仍然会从D 点射出,但方向并不沿OD 方向,K 为粒子束的圆心
由于磁场上移了R 2,故sin ∠COF=R
2R
=12,∠COF=π6,∠DOF=∠FKD=π
3
对于下方的粒子,没有任何改变,故两束粒子若相遇,则只可能相遇在D 点,
下方粒子到达C 后最先到达D 点的粒子所需时间为00
(2)
(4)2
224R
R
H R R t v v π
π++
-+'==
而上方粒子最后一个到达E 点的试卷比下方粒子中第一个达到C 的时间滞后0
l Δt t = 上方最后的一个粒子从E 点到达D 点所需时间为
()0
00π1
R Rsin 2πR 62π3336t R 2v 2v -+-=
+=
要使两质子束相碰,其运动时间满足t t t '≤+∆ 联立解得0π336
l ++≥
4.在如图所示的平面直角坐标系中,存在一个半径R =0.2m 的圆形匀强磁场区域,磁感应强度B =1.0T ,方向垂直纸面向外,该磁场区域的右边缘与y 坐标轴相切于原点O 点。

y 轴右侧存在一个匀强电场,方向沿y 轴正方向,电场区域宽度l =0.1m 。

现从坐标为(﹣0.2m ,﹣0.2m )的P 点发射出质量m =2.0×10﹣9kg 、带电荷量q =5.0×10﹣5C 的带正电粒子,沿y 轴正方向射入匀强磁场,速度大小v 0=5.0×103m/s (粒子重力不计)。

(1)带电粒子从坐标为(0.1m ,0.05m )的点射出电场,求该电场强度;
(2)为了使该带电粒子能从坐标为(0.1m ,﹣0.05m )的点回到电场,可在紧邻电场的右侧区域内加匀强磁场,试求所加匀强磁场的磁感应强度大小和方向。

【答案】(1)1.0×104N/C (2)4T ,方向垂直纸面向外 【解析】 【详解】
解:(1)带正电粒子在磁场中做匀速圆周运动,根据洛伦兹力提供向心力有:
20
0v qv B m r
=
可得:r =0.20m =R
根据几何关系可以知道,带电粒子恰从O 点沿x 轴进入电场,带电粒子做类平抛运动,设粒子到达电场边缘时,竖直方向的位移为y 根据类平抛规律可得:2012
l v t y at ==
, 根据牛顿第二定律可得:Eq ma =
联立可得:41.010E =⨯N/C
(2)粒子飞离电场时,沿电场方向速度:30
5.010y qE l
v at m v ===⨯g m/s=0v 粒子射出电场时速度:02=v v
根据几何关系可知,粒子在B '区域磁场中做圆周运动半径:2r y '=
根据洛伦兹力提供向心力可得: 2
v qvB m r '='
联立可得所加匀强磁场的磁感应强度大小:4mv
B qr '=
='
T 根据左手定则可知所加磁场方向垂直纸面向外。

5.科学家设想在宇宙中可能存在完全由反粒子构成的反物质.例如:正电子就是电子的反粒子,它跟电子相比较,质量相等、电量相等但电性相反.如图是反物质探测卫星的探测器截面示意图.MN 上方区域的平行长金属板AB 间电压大小可调,平行长金属板AB 间距为d ,匀强磁场的磁感应强度大小为B ,方向垂直纸面向里.MN 下方区域I 、II 为两相邻的方向相反的匀强磁场区,宽度均为3d ,磁感应强度均为B ,ef 是两磁场区的分界线,PQ 是粒子收集板,可以记录粒子打在收集板的位置.通过调节平行金属板AB 间电压,经过较长时间探测器能接收到沿平行金属板射入的各种带电粒子.已知电子、正电子的比荷是b ,不考虑相对论效应、粒子间的相互作用及电磁场的边缘效应.
(1)要使速度为v 的正电子匀速通过平行长金属极板AB ,求此时金属板AB 间所加电压U ;
(2)通过调节电压U 可以改变正电子通过匀强磁场区域I 和II 的运动时间,求沿平行长金属板方向进入MN 下方磁场区的正电子在匀强磁场区域I 和II 运动的最长时间t m ; (3)假如有一定速度范围的大量电子、正电子沿平行长金属板方向匀速进入MN 下方磁场区,它们既能被收集板接收又不重叠,求金属板AB 间所加电压U 的范围.
【答案】(1)Bvd (2)Bb π
(3)3B 2d 2
b <U <221458
B d b
【解析】 【详解】
(1)正电子匀速直线通过平行金属极板AB ,需满足 Bev=Ee
因为正电子的比荷是b ,有 E=
U d
联立解得:
u Bvd =
(2)当正电子越过分界线ef 时恰好与分界线ef 相切,正电子在匀强磁场区域I 、II 运动的时间最长。

4
T t =
m t =2t
2
111
v ev B m R =
T =
122R m
v Be
=ππ 联立解得:t Bb
π
=
(3)临界态1:正电子恰好越过分界线ef ,需满足 轨迹半径R 1=3d
1ev B =m 2
11
v R
1
1U ev B e
d
=⑪ 联立解得:22
13U d B b =
临界态2:沿A 极板射入的正电子和沿B 极板射入的电子恰好射到收集板同一点 设正电子在磁场中运动的轨迹半径为R 1 有(R 2﹣
14
d )2+9d 2=22R 2Bev =m 22
2
v R
Be 2v =
2
U e d 联立解得:
2221458
B d b
U
解得:U 的范围是:3B 2d 2
b <U <221458
B d b
6.如图甲所示,在直角坐标系中的0≤x≤L 区域内有沿y 轴正方向的匀强电场,右侧有以点(2L ,0)为圆心、半径为L 的圆形区域,与x 轴的交点分别为M 、N ,在xOy 平面内,从电离室产生的质量为m 、带电荷量为e 的电子以几乎为零的初速度从P 点飘入电势差为U 的加速电场中,加速后经过右侧极板上的小孔Q 点沿x 轴正方向进入匀强电场,已知O 、
Q 两点之间的距离为
2
L
,飞出电场后从M 点进入圆形区域,不考虑电子所受的重力。

(1)求0≤x≤L 区域内电场强度E 的大小和电子从M 点进入圆形区域时的速度v M ;
(2)若圆形区域内加一个垂直于纸面向外的匀强磁场,使电子穿出圆形区域时速度方向垂直于x 轴,求所加磁场磁感应强度B 的大小和电子在圆形区域内运动的时间t ; (3)若在电子从M 点进入磁场区域时,取t =0,在圆形区域内加如图乙所示变化的磁场(以垂直于纸面向外为正方向),最后电子从N 点飞出,速度方向与进入圆形磁场时方向相同,请写出磁场变化周期T 满足的关系表达式。

【答案】(1)
2U
E
L
=,2
M
eU
v
m
=,设v M
的方向与x轴的夹角为θ,θ=45°;(2)
2
M
mv mv
B
eR L e
==,
3
3
4
8
M
R L m
t
v eU
ππ
==;(3)T的表达式为22
T
n emU
=(n=
1,2,3,…)
【解析】
【详解】
(1)在加速电场中,从P点到Q点由动能定理得:2
1
2
eU mv
=
可得
2eU
v
m
=
电子从Q点到M点,做类平抛运动,
x轴方向做匀速直线运动,
2
L m
t L
v eU
==
y轴方向做匀加速直线运动,2
1
22
L eE
t
m
=⨯
由以上各式可得:
2U
E
L
=
电子运动至M点时:22
()
M
Ee
v v t
m
=+
即:2
M
eU
v
m
=
设v M的方向与x轴的夹角为θ,
2
cos
2
M
v
v
θ==
解得:θ=45°。

(2)如图甲所示,电子从M点到A点,做匀速圆周运动,因O2M=O2A,O1M=O1A,且O2A∥MO1,所以四边形MO1AO2为菱形,即R=L
由洛伦兹力提供向心力可得:
2
M M
v ev B m
R
=

2
M
mv mv
B
eR L e
==
3
3
4
8
M
R L m
t
v eU
ππ
==。

(3)电子在磁场中运动最简单的情景如图乙所示,在磁场变化的半个周期内,粒子的偏转角为90°,根据几何知识,在磁场变化的半个周期内,电子在x轴方向上的位移恰好等于轨道半径2R',即222
R L
'=
因电子在磁场中的运动具有周期性,如图丙所示,电子到达N点且速度符合要求的空间条件为:22)2
n R L
'=(n=1,2,3,…)
电子在磁场中做圆周运动的轨道半径
M
mv
R
eB
'=
解得:
22
n emU
B=n=1,2,3,…)
电子在磁场变化的半个周期内恰好转过
1
4
圆周,同时在MN间的运动时间是磁场变化周期
的整数倍时,可使粒子到达N点且速度满足题设要求,应满足的时间条件是
1
42
T
T=
又0
2m
T
eB
π
=
则T的表达式为
22
T
n emU
=n=1,2,3,…)。

7.某控制带电粒子运动的仪器原理如图所示,区域PP′M′M内有竖直向下的匀强电场,电场场强E=1.0×103V/m,宽度d=0.05m,长度L=0.40m;区域MM′N′N内有垂直纸面向里的匀强磁场,磁感应强度B=2.5×10-2T,宽度D=0.05m,比荷
q
m
=1.0×108C/kg的带正电的粒子以水平初速度v0从P点射入电场.边界MM′不影响粒子的运动,不计粒子重力.
(1) 若v 0=8.0×105m/s ,求粒子从区域PP′N′N 射出的位置;
(2) 若粒子第一次进入磁场后就从M′N′间垂直边界射出,求v 0的大小; (3) 若粒子从M′点射出,求v 0满足的条件.
【答案】(1)0.0125m (2) 3.6×105m/s. (3) 第一种情况:v 0=54.00.8()10/21
n
m s n -⨯+ (其中n =
0、1、2、3、4)第二种情况:v 0=53.20.8()10/21
n
m s n -⨯+ (其中n =0、1、2、3).
【解析】 【详解】
(1) 粒子以水平初速度从P 点射入电场后,在电场中做类平抛运动,假设粒子能够进入磁场,则
竖直方向2
1··
2Eq d t m
= 得2md
t qE
=
代入数据解得t =1.0×10-6s 水平位移x =v 0t 代入数据解得x =0.80m
因为x 大于L ,所以粒子不能进入磁场,而是从P′M′间射出, 则运动时间t 0=
L v =0.5×10-
6s , 竖直位移2
01··
2Eq y t m
==0.0125m 所以粒子从P′点下方0.0125m 处射出.
(2) 由第一问可以求得粒子在电场中做类平抛运动的水平位移x =v 2md
qE
粒子进入磁场时,垂直边界的速度 v 1=
qE m ·t 2qEd m
设粒子与磁场边界之间的夹角为α,则粒子进入磁场时的速度为v =
1
v sin α
在磁场中由qvB =m 2
v R
得R =mv qB 粒子第一次进入磁场后,垂直边界M′N′射出磁场,必须满足x +Rsinα=L 把x =v 0
2md qE 、R =mv qB 、v =1v sin α、12qEd
v m =
代入解得 v 0=L·
2Eq
md
-E B v 0=3.6×105m/s.
(3) 由第二问解答的图可知粒子离MM′的最远距离Δy =R -Rcosα=R(1-cosα) 把R =
mv qB 、v =1v sin α、12qEd v m
=代入解得 12(1cos )12tan sin 2
mEd mEd y B q B q αα
α-∆=
=
可以看出当α=90°时,Δy 有最大值,(α=90°即粒子从P 点射入电场的速度为零,直接在电场中加速后以v 1的速度垂直MM′进入磁场运动半个圆周回到电场)
1max 212mv m qEd mEd
y qB qB m B q
∆=
== Δy max =0.04m ,Δy max 小于磁场宽度D ,所以不管粒子的水平射入速度是多少,粒子都不会从边界NN′射出磁场.
若粒子速度较小,周期性运动的轨迹如下图所示:
粒子要从M′点射出边界有两种情况, 第一种情况: L =n(2v 0t +2Rsinα)+v 0t 把2md t qE =
R =mv qB 、v 1=vsinα、12qEd
v m
=代入解得
2 21221
L qE n E
v
n md n B
=-⋅
++
v0=
4.00.8
21
n
n
-
⎛⎫

+
⎝⎭
×105m/s(其中n=0、1、2、3、4)
第二种情况:
L=n(2v0t+2Rsinα)+v0t+2Rsinα

2md
t
qE
=、R=
mv
qB
、v1=vsinα、
1
2qEd
v
m
=代入解得
2(1)
21221
L qE n E
v
n md n B
+
=-⋅
++
v0=
3.20.8
21
n
n
-
⎛⎫

+
⎝⎭
×105m/s(其中n=0、1、2、3).
8.平面直角坐标系的第一象限和第四象限内均存在垂直纸面向里的匀强磁场,磁感应强度大小分别为2B和B(B的大小未知),第二象限和第三象限内存在沿﹣y方向的匀强电场,x轴上有一点P,其坐标为(L,0)。

现使一个电量大小为q、质量为m的带正电粒子从坐标(﹣2a,a)处以沿+x方向的初速度v0出发,该粒子恰好能经原点进入y轴右侧并在随后经过了点P,不计粒子的重力。

(1)求粒子经过原点时的速度;
(2)求磁感应强度B的所有可能取值
(3)求粒子从出发直至到达P点经历时间的所有可能取值。

【答案】(12v0,方向:与x轴正方向夹45°斜向下;(2)磁感应强度B的所有可能取值:0
nmv
B
qL
= n=1、2、3……;
(3)粒子从出发直至到达P点经历时间的所有可能取值:
23
(1)
24
a m m
t k k
v qB qB
ππ
=++-
k=1、2、3……或
23
24
a m m
t n n
v qB qB
ππ
=++ n=1、2、3……。

【解析】
【详解】
(1)粒子在电场中做类平抛运动,水平方向:2a =v 0t , 竖直方向:2
y v a t =

解得:v y =v 0,tan θ=
y v v =1,θ=45°,
粒子穿过O
点时的速度:0v ==;
(2)粒子在第四象限内做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律得:
2
v qvB m r
= ,
粒子能过P 点,由几何知识得:L =nr cos45° n =1、2、3……, 解得:0
nmv B qL
=
n =1、2、3……; (3)设粒子在第二象限运动时间为t 1,则:t 1=
2a v ; 粒子在第四、第一象限内做圆周运动的周期:12m T qB π=
,2m
T qB
π=, 粒子在下方磁场区域的运动轨迹为1/4圆弧,在上方磁场区域的运动轨迹为3/4圆弧, 若粒子经下方磁场直接到达P 点,则粒子在磁场中的运动时间:t 2=
1
4
T 1, 若粒子经过下方磁场与上方磁场到达P 点,粒子在磁场中的运动时间:t 2=1
4T 1+34
T 2, 若粒子两次经过下方磁场一次经过上方磁场到达P 点:t 2=2×
1
4T 1+34T 2, 若粒子两次经过下方磁场、两次经过上方磁场到达P 点:t 2=2×1
4T 1+2×34
T 2, ………… 则23(1)24m
m
t k k qB
qB
ππ=+- k =1、2、3 (2324)
m
t n
n
qB qB
ππ=+ n =1、2、3…… 粒子从出发到P 点经过的时间:t =t 1+t 2, 解得:023(1)24a m m t k k v qB qB
ππ=++- k =1、2、3…… 或02324a m m t n n v qB qB
ππ=
++ n =1、2、3……;
9.如图所示,在平面直角坐标系xOy 平面内,直角三角形abc 的直角边ab 长为6d ,与y 轴重合,∠bac=30°,中位线OM 与x 轴重合,三角形内有垂直纸面向里的匀强磁场.在笫一象限内,有方向沿y 轴正向的匀强电场,场强大小E 与匀强磁场磁感应强度B 的大小间满足E=v 0B .在x=3d 的N 点处,垂直于x 轴放置一平面荧光屏.电子束以相同的初速度v 0从y 轴上-3d≤y≤0的范围内垂直于y 轴向左射入磁场,其中从y 轴上y=-2d 处射入的电子,经磁场偏转后,恰好经过O 点.电子质量为m,电量为e,电子间的相互作用及重力不计.求 (1)匀强磁杨的磁感应强度B
(2)电子束从y 轴正半轴上射入电场时的纵坐标y 的范围; (3)荧光屏上发光点距N 点的最远距离L
【答案】(1)0mv ed ; (2)02y d ≤≤;(3)9
4
d ; 【解析】
(1)设电子在磁场中做圆周运动的半径为r ; 由几何关系可得r =d
电子在磁场中做匀速圆周运动洛伦兹力提供向心力,由牛顿第二定律得:2
0v ev B m r
=
解得:0
mv B ed
=
(2)当电子在磁场中运动的圆轨迹与ac 边相切时,电子从+ y 轴射入电场的位置距O 点最远,如图甲所示.
设此时的圆心位置为O ',有:sin 30r
O a '=

3OO d O a ='-' 解得OO d '=
即从O 点进入磁场的电子射出磁场时的位置距O 点最远 所以22m y r d ==
电子束从y 轴正半轴上射入电场时的纵坐标y 的范围为02y d ≤≤
设电子从02y d ≤≤范围内某一位置射入电场时的纵坐标为y ,从ON 间射出电场时的位置横坐标为x ,速度方向与x 轴间夹角为θ,在电场中运动的时间为t ,电子打到荧光屏上产生的发光点距N 点的距离为L ,如图乙所示:
根据运动学公式有:0x v t =
212eE y t m
=
⋅ y eE v t m
=
tan y v v θ=
tan 3L
d x
θ=
- 解得:(32)2L d y y =即9
8
y d =
时,L 有最大值
解得:94
L d =
当322d y y -=
【点睛】本题属于带电粒子在组合场中的运动,粒子在磁场中做匀速圆周运动,要求能正确的画出运动轨迹,并根据几何关系确定某些物理量之间的关系;粒子在电场中的偏转经常用化曲为直的方法,求极值的问题一定要先找出临界的轨迹,注重数学方法在物理中的应用.
10.如图所示的xOy 坐标系中,Y 轴右侧空间存在范围足够大的匀强磁场,磁感应强度大小为B ,方向垂直于xOy 平面向外.Q 1、Q 2两点的坐标分别为(0,L)、(0,-L),坐标为(-
3
3
L ,0)处的C 点固定一平行于y 轴放置的绝缘弹性挡板,C 为挡板中点.带电粒子与弹性绝缘挡板碰撞前后,沿y 轴方向分速度不变,沿x 轴方向分速度反向,大小不变.现有质量为m ,电量为+q 的粒子,在P 点沿PQ 1方向进入磁场,α=30°,不计粒子重力.
(1)若粒子从点Q 1直接通过点Q 2,求:粒子初速度大小.
(2)若粒子从点Q 1直接通过坐标原点O ,求粒子第一次经过x 轴的交点坐标. (3)若粒子与挡板碰撞两次并能回到P 点,求粒子初速度大小及挡板的最小长度. 【答案】(1)23qBL (2)(3
L ,)(3)49L 【解析】
(3)粒子初速度大小为
,挡板的最小长度为
试题分析:(1)由题意画出粒子运动轨迹如图甲所示,粒子在磁场中做圆周运动的半径大小为R 1,由几何关系得R 1cos30°=L...(1) 粒子磁场中做匀速圆周运动,有: (2)
解得:
(3)
(2)由题意画出粒子运动轨迹如图乙所示,设其与x 轴交点为M ,横坐标为x M ,由几何关系知:2R 2cos30°=L…(4) x M =2R 2sin30°…(5) 则M 点坐标为(
) (6)
(3)由题意画出粒子运动轨迹如图丙所示,
粒子在磁场中做圆周运动的半径大小为R3,
偏转一次后在y负方向偏移量为△y1,由几何关系得:△y1=2R3cos30° (7)
为保证粒子最终能回到P,粒子每次射出磁场时速度方向与PQ2连线平行,与挡板碰撞后,速度方向应与PQ1连线平行,每碰撞一次,粒子出进磁场在y轴上距离△y2(如图中A、E间距)可由题给条件得:
(8)
当粒子只碰二次,其几何条件是:3△y1﹣2△y2=2L (9)
解得: (10)
粒子磁场中做匀速圆周运动,有: (11)
解得: (12)
挡板的最小长度为: (13)
解得: (14)
11.如图所示,三块挡板围成截面边长L =1.2m 的等边三角形区域,C 、P 、Q 分别是MN 、AM 和AN 中点处的小孔,三个小孔处于同一竖直面内,MN 水平,MN 上方是竖直向下的匀强电场,场强E =4×10-4N /C .三角形区域内有垂直纸面向里的匀强磁场,磁感应强度为B 1;AMN 以外区域有垂直纸面向外, 磁感应强度大小为B 2=3B 1的匀强磁场.现将一比荷q/m =105C/kg 的帯正电的粒子,从O 点由静止释放,粒子从MN 小孔C 进入内部匀强磁场,经内部磁场偏转后直接垂直AN 经过Q 点进入外部磁场.已知粒子最终回到了O 点,OC 相距2m .设粒子与挡板碰撞过程中没有动能损失,且电荷量不变,不计粒子重力,不计挡板厚度,取π=3.求:
(1) 磁感应强度B 1的大小;
(2) 粒子从O 点出发,到再次回到O 点经历的时间;
(3) 若仅改变B 2的大小,当B 2满足什么条件时,粒子可以垂直于MA 经孔P 回到O 点(若粒子经过A 点立即被吸收). 【答案】(1)51210T 3
B -=⨯;(2)-22.8510s t =⨯;(3)52
42
10T 3k B -+=⨯' 【解析】 【详解】
(1) 粒子从O 到C 即为在电场中加速,则由动能定理得:212
Eqx mv = 解得v =400 m/s
带电粒子在磁场中运动轨迹如图所示.
由几何关系可知 10.6m 2
L
R =
= 由2
11
v qvB m R =
代入数据得 512
10T 3
B -=
⨯ (2)由题可知 B 2=3B 1=2×10-5 T
2
11
v qvB m R =
则 1
20.2m 3
R R =
= 由运动轨迹可知:进入电场阶段做匀加速运动,则112
x vt = 得到 t 1=0.01 s
粒子在磁场B 1中的周期为 11
2m
T qB π=
则在磁场B 1中的运动时间为 3211
310s 3
t T -==⨯ 在磁场B 2中的运动周期为 22
2m
T qB π= 在磁场B 2中的运动时间为
3-3321803001801110s 5.510s 3606
t T π
-︒+︒+︒=
=⨯=⨯︒
则粒子在复合场中总时间为:3-21231722010s 2.8510s 6
t t t t π-⎛
⎫=++=+
⨯=⨯ ⎪⎝

(3)设挡板外磁场变为'
2B ,粒子在磁场中的轨迹半径为r ,则有 2
'
2v qvB m r
=
根据已知条件分析知,粒子可以垂直于MA 经孔P 回到O 点,需满足条件
()212L
k r =+其中 k =0、1、2、3…… 解得52
42
10T 3
k B -+=⨯'
12.如图所示,在矩形区域abcd 内充满垂直纸面向里的匀强磁场,磁感应强度为B 。

在ad 边中点O 的粒子源,在t=0时刻垂直于磁场发射出大量的同种带电粒子,所有粒子的初速度大小相同,方向与Od 的夹角分布在0~180°范围内。

已知沿Od 方向发射的粒子在t=t 0时刻刚好从磁场边界cd 上的p 点离开磁场,ab=1.5L ,bc=L 3,粒子在磁场中做圆周运动的半径R=L ,不计粒子的重力和粒子间的相互作用,求:
(1)粒子在磁场中的运动周期T ; (2)粒子的比荷q /m ;
(3)粒子在磁场中运动的最长时间。

【答案】(1)06t T =;(2)03Bt m q π=;(3)max 02t t =。

【解析】
试题解析:(1)(4分)
初速度沿Od 方向发射的粒子在磁场中运动的轨迹如图1,其圆心为θ, 由几何关系有:2
3
=
θsin 所以:θ=60°

=
3600θT t 解得:
06t T = (2)(4分)粒子做圆周运动的向心力由洛仑兹力提供, 根据牛顿第二定律得:R v m qvB 2
= T
R v π2=
所以:qB m
T π2=
解得0
3Bt m q π= (3)(4分)如图2所示,在磁场中运动时间最长的粒子的轨迹的弦Ob=L 3,圆轨迹的直径为2L
所以:Ob 弦对应的圆心角为120° 粒子在磁场中运动的最长时间023t T t max ==
考点:带电粒子在磁场中的运动,牛顿第二定律。

13.如图(a)所示,在空间有一坐标系xoy ,直线OP 与x 轴正方向的夹角为30°,第一象限内有两个方向都垂直纸面向外的匀强磁场区域Ⅰ和Ⅱ,直线OP 是它们的边界,OP 上方区域Ⅰ中磁场的磁感应强度为B ,一质量为m ,电荷量为+q 的质子(不计重力及质子对磁场的影响)以速度v 从O 点沿与OP 成30°角的方向垂直磁场进入区域Ⅰ,质子先后通过磁场区域Ⅰ和Ⅱ后,恰好垂直于x 轴进入第四象限,第四象限存在沿-x 轴方向的特殊电场,电场强度E 的大小与横坐标x 的关系如图(b )所示,试求:
(1)区域Ⅱ中磁场的磁感应强度大小 ; (2)质子再次到达y 轴时的速度大小和方向。

【答案】 (1)B B 22=;(2)v v v 2
6
2)32(+=
+=';方向向左下方与y 轴负向成32arccos -(2
2
6arccos -)的夹角 【解析】
试题分析: (1)由几何关系知:质子再次回到OP 时应平行于x 轴正向进入Ⅱ区,设质子从OP 上的C 点进入Ⅱ区后再从D 点垂直x 轴进入第四象限,轨迹如图。

由几何关系可知:O 1C ⊥OX ,O 1C 与OX 的交点O 2即为Ⅱ内圆弧的圆心,C OO 1∆等边三角形。

设质子在Ⅰ区圆运动半径为1r ,在Ⅱ区圆运动半径为2r ,
则:10
1221
30sin r r r == 由21
v qBv m r =
得:1mv r qB
=
, 同理得:22mv
r qB =
X /×
Bq
mv E
o
Bv 23 Bv 2
1
即区域Ⅱ中磁场的磁感应强度:B B 22= (2)D 点坐标: qB
mv
r r x )13(30cos 201+=+=
质子从D 点再次到达y 轴的过程,
22
)13(2)13()223(21mv qB mv Bv Bv q x E q qU W i i +=+⨯+=
∆==∑电 设质子再次到达y 轴时的速度大小为v ',
由动能定理:222
1
21mv v m W -'=电 得:v v v 2
6
2)32(+=+=' 因粒子在y 轴方向上不受力,故在y 轴方向上的分速度不变
如图有: 2
2
632cos -=-='=
v v
α 即方向向左下方与y 轴负向成32arccos -(2
2
6arccos -)的夹角 考点: 带电粒子在磁场中的运动
14.(20分)如图所示,平面直角坐标系xOy 的第二象限内存在场强大小为E ,方向与x 轴平行且沿x 轴负方向的匀强电场,在第一、三、四象限内存在方向垂直纸面向里的匀强磁场。

现将一挡板放在第二象限内,其与x,y 轴的交点M 、N 到坐标原点的距离均为2L 。

一质量为m ,电荷量绝对值为q 的带负电粒子在第二象限内从距x 轴为L 、距y 轴为2L 的A 点由静止释放,当粒子第一次到达y 轴上C 点时电场突然消失。

若粒子重力不计,粒子与挡板相碰后电荷量及速度大小不变,碰撞前后,粒子的速度与挡板的夹角相等(类似于光反射时反射角与入射角的关系)。

求:
(1)C 点的纵坐标。

(2)若要使粒子再次打到档板上,磁感应强度的最大值为多少?
(3)磁感应强度为多大时,粒子从A 点出发与档板总共相碰两次后到达C 点?这种情况下粒子从A 点出发到第二次到达C 点的时间多长?
【答案】(1)3L ;(2)qL mE B 221=;(3
)qL Em B 2322=;9(2)24mL
t qE
π+=总。

【解析】
试题分析:(1)设粒子到达挡板之前的速度为v 0
有动能定理 202
1
mv qEL = (1分) 粒子与挡板碰撞之后做类平抛运动
在x 轴方向 2
2t m
qE L =
(1分) 在y 轴方向 t v y 0= (1分) 联立解得 L y 2=
C 点的纵坐标为L L y 3=+ (1分)
(2)粒子到达C 点时的沿x 轴方向的速度为m
qEL
at v x 2== (1分)
沿y 轴方向的速度为m
qEL
v v y 20== (1分) 此时粒子在C 点的速度为m
qEL
v 2= (1分) 粒子的速度方向与x 轴的夹角 x
y v v =
θtan ο
45=θ (1分)
磁感应强度最大时,粒子运动的轨道半径为 L r 2
2
1=
(2分)
根据牛顿第二定律 1
2
1r v m qvB = (1分)。

相关文档
最新文档