【压轴题】七年级数学下期中试题(含答案)
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【详解】
设10元的数量为x,5元的数量为y.
则 ,
解得 , , , , , .
所以共有6种换法.
故选C.
【点睛】
本题考查的知识点是二元一次方程组的应用,解题关键是弄清题意,找出合适的等量关系,列出方程组.
8.A
解析:A
【解析】
【分析】
先根据一元一次不等式组解出x的取值范围,再根据不等式组只有三个整数解,求出实数a的取值范围即可.
A.16cmB.18cmC.20cmD.21cm
10.已知关于x,y的二元一次方程组 的解是 ,则n-m的值是( )
A.6B.3C.-2D.1
11.我们定义 ,例如: ,若 满足 ,则 的整数解有( )
A.0个B.1个C.2个D.3个
12.下列调查方式,你认为最合适的是()
A.调查市场上某种白酒的塑化剂的含量,采用普查方式
故选C.
【点睛】
此题考查平面直角坐标系中点的坐标,明确点在x轴上时纵坐标为0是解题的关键.
2.A
解析:A
【解析】
【分析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
【详解】
解:A、1600名学生的体重是总体,故A正确;
B、1600名学生的体重是总体,故B错误;
C、每个学生的体重是个体,故C错误;
D、从中抽取了100名学生的体重是一个样本,故D错误;
故选:A.
【点睛】
本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
B.调查鞋厂生产的鞋底能承受的弯折次数,采用普查方式
C.旅客上飞机前的安检,采用抽样调查方式
D.了解我市每天的流动人口数,采用抽样调查方式
二、填空题
13.有下列命题:①无理数是无限不循环小数;②平方根与立方根相等的数有1和0;③若ab,bc,则ac;④邻补角是互补的角;⑤无理数包括正无理数、零、负无理数.其中正确的有___个.
【压轴题】七年级数学下期中试题(含答案)
一、选择题
1.已知点P(3 , +2)在x轴上,则P点的坐标是( )
A.(3,2)B.(6,0)C.(-6,0)D.(6,2)
2.为了了解天鹅湖校区2019-2020学年1600名七年级学生的体重情况,从中抽取了100名学生的体重,就这个问题,下面说法正确的是()
17.在整数20200520中,数字“0”出现的频率是_________.
18. 的算术平方根是________.
19.如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达 点,那么 点对应的数是______.你的理由是______.
20.如图,直线a、b被直线l所截,a∥b,∠1=70°,则∠2=.
【详解】
,
解不等式①得:x≥-1,
解不等式②得:x<a,
∵不等式组 有解,
∴-1≤x<a,
∵不等式组只有三个整数解,
∴不等式的整数解为:-1、0、1,
∴1<a≤2,
故选:A
【点睛】
本题考查一元一次不等式组的整数解,解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
【详解】
解:A、调查市场上某种白酒的塑化剂的含量,采用抽样调查比较合适,故此选项错误;
B、调查鞋厂生产的鞋底能承受的弯折次数,采用抽样调查比较合适,故此选项错误;
C、旅客上飞机前的安检,必须进行普查,故此选项错误;
D、了解我市每天的流动人口数,采用抽样调查方式,比较合适,故此选项正确 D.
7.把一张50元的人民币换成10元或5元的人民币,共有
A.4种换法B.5种换法C.6种换法D.7种换法
8.已知关于 的不等式组 恰有3个整数解,则 的取值范围为( )
A. B. C. D.
9.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()
此题主要考查了全面调查与抽样调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
二、填空题
13.2【解析】【分析】根据无理数平方根和立方根的概念两直线的位置关系邻补角的概念分别判断后即可得到答案【详解】解::①无理数是无限不循环小数本说法正确;②平方根与立方根相等的数是0本说法错误;③若ab
【点睛】
本题主要考查解二元一次方程组,灵活运用整体思想是解题关键.
5.C
解析:C
【解析】
【分析】
直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
【详解】
解:在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别减去正数a(a>1),那么所得的图案与原图案相比,
故答案为:2.
【点睛】
本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫假命题.
14.70°【解析】【分析】依据平行线的性质可得∠BAE=∠DCE=140°依据折叠即可得到∠α=70°【详解】解:如图∵AB∥CD∴∠BAE=∠DCE=140°由折叠可得:∴∠α=70°故答案为:70°
解析:70°.
图案向左平移了a个单位长度,并且向下平移了a个单位长度.
故选:C.
【点睛】
本题考查了坐标系中点、图形的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
6.A
解析:A
【解析】
【分析】
设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.
14.如果一张长方形的纸条,如图所示折叠,那么∠α等于____.
15.如图,在平面直角坐标系xOy中,点A,点B的坐标分别为(0,2),(-1,0),将线段AB沿x轴的正方向平移,若点B的对应点的坐标为B'(2,0),则点A的对应点A'的坐标为___.
16.已知点P(x+3,x﹣4)在x轴上,则x的值为_____________.
三、解答题
21.如图,四边形ABCD中,∠A=∠C=90°,BE、DF分别平分∠ABC、∠ADC,判断BE、DF是否平行,并说明理由.
22.为弘扬中华传统文化,某校组织八年级 名学生参加汉字听写大赛.为了解学生整体听写能力,从中抽取部分学生的成绩(得分取正整数,满分为 分)进行统计分析,得到如下所示的频数分布表:
9.C
解析:C
【解析】
试题分析:已知,△ABE向右平移2cm得到△DCF,根据平移的性质得到EF=AD=2cm,AE=DF,又因△ABE的周长为16cm,所以AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm.故答案选C.
考点:平移的性质.
【解析】
【分析】
依据平行线的性质,可得∠BAE=∠DCE=140°,依据折叠即可得到∠α=70°.
【详解】
解:如图,
∵AB∥CD,
∴∠BAE=∠DCE=140°,
由折叠可得: ,
∴∠α=70°.
故答案为:70°.
【点睛】
本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.
15.(32)【解析】【分析】根据平移的性质即可得到结论【详解】∵将线段AB沿x轴的正方向平移若点B的对应点B′的坐标为(20)∵-1+3=2∴0+3=3∴A′(32)故答案为:(32)【点睛】本题考查了
A.形状不变,大小扩大到原来的a倍
B.图案向右平移了a个单位长度
C.图案向左平移了a个单位长度,并且向下平移了a个单位长度
D.图案向右平移了a个单位长度,并且向上平移了a个单位长度
6.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是( )
3.D
解析:D
【解析】
【分析】
【详解】
∵∠C=80°,∠CAD=60°,
∴∠D=180°﹣80°﹣60°=40°,
∵AB∥CD,
∴∠BAD=∠D=40°.
故选D.
4.B
解析:B
【解析】
【分析】
把两个方程相加可得3x+3y=15,进而可得答案.
【详解】
两个方程相加,得3x+3y=15,
∴x+y=5,
故选B.
分数段
频数
所占百分比
请根据尚未完成的表格,解答下列问题:
(1)本次抽样调查的样本容量为____,表中 _, _;
(2)补全如图所示的频数分布直方图;
(3)若成绩超过 分为优秀,则该校八年级学生中汉字听写能力优秀的约有多少人?
23.某学校为了迎接“中招考试理化生实验”,需购进 , 两种实验标本共75个.经调查, 种标本的单价为20元, 种标本的单价为12元,若总费用不超过1180元,那么最多可以购买多少个 种标本?(列不等式解决)
解析:(3,2)
【解析】
【分析】
根据平移的性质即可得到结论.
【详解】
∵将线段AB沿x轴的正方向平移,若点B的对应点B′的坐标为(2,0),
∵-1+3=2,
∴0+3=3
∴A′(3,2),
故答案为:(3,2)
【点睛】
本题考查了坐标与图形变化-平移.解决本题的关键是正确理解题目,按题目的叙述一定要把各点的大致位置确定,正确地作出图形.
【详解】
设索长为x尺,竿子长为y尺,
根据题意得: .
故选A.
【点睛】
本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
7.C
解析:C
【解析】
【分析】
用二元一次方程组解决问题的关键是找到2个合适的等量关系.由于10元和5元的数量都是未知量,可设出10元和5元的数量.
本题中等量关系为:10元的总面值+5元的总面值=50元.
解析:2
【解析】
【分析】
根据无理数、平方根和立方根的概念、两直线的位置关系、邻补角的概念分别判断后即可得到答案.
【详解】
解::①无理数是无限不循环小数,本说法正确;
②平方根与立方根相等的数是0,本说法错误;
③若ab,bc,则 ,本说法错误;
④邻补角是互补的角,本说法正确;
⑤无理数包括正无理数、负无理数,本说法错误;
【详解】
解:结合题意可知 可化为 ,
解不等式可得 ,
故x的整数解只有1;
故选:B.
【点睛】
本题考查的是一元一次不等式组的求解,根据题意得到不等式组并正确求解即可.
12.D
解析:D
【解析】
【分析】
一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.据此对各项进行判断即可.
24.已知:如图, , ,求证: .
25.解方程组: .
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【解析】
【分析】
根据点P在x轴上,即y=0,可得出a的值,从而得出点P的坐标.
【详解】
∵点P(3a,a+2)在x轴上,
∴y=0,
即a+2=0,
解得a=-2,
∴3a=-6,
∴点P的坐标为(-6,0).
16.x=4【解析】【分析】【详解】解:∵点P(x+3x−4)在x轴上∴x−4=0解得:x=4故答案为:x=4
解析:x=4
【解析】
【分析】
【详解】
解:∵点P(x+3,x−4)在x轴上,
∴x−4=0,
解得:x=4,
A.1600名学生的体重是总体B.1600名学生是总体
C.每个学生是个体D.100名学生是所抽取的一个样本
3.如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD的度数等于( )
A.60°B.50°C.45°D.40°
4.已知x、y满足方程组 ,则x+y的值是()
A.3B.5C.7D.9
5.在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别减去正数a(a>1),那么所得的图案与原图案相比( )
10.B
解析:B
【解析】
【分析】
把 代入方程组 ,求出m、n的值,再代入要求的代数式求值即可.
【详解】
把 代入 得: ,
解得:m=-1,n=2,
∴n-m=2-(-1)=3.
故选:B.
【点睛】
本题考查了二元一次方程组的解,能得出m,n的值是解此题的关键.
11.B
解析:B
【解析】
【分析】
先根据题目的定义新运算,得到关于x的不等式组,再得到不等式组的解集即可.
设10元的数量为x,5元的数量为y.
则 ,
解得 , , , , , .
所以共有6种换法.
故选C.
【点睛】
本题考查的知识点是二元一次方程组的应用,解题关键是弄清题意,找出合适的等量关系,列出方程组.
8.A
解析:A
【解析】
【分析】
先根据一元一次不等式组解出x的取值范围,再根据不等式组只有三个整数解,求出实数a的取值范围即可.
A.16cmB.18cmC.20cmD.21cm
10.已知关于x,y的二元一次方程组 的解是 ,则n-m的值是( )
A.6B.3C.-2D.1
11.我们定义 ,例如: ,若 满足 ,则 的整数解有( )
A.0个B.1个C.2个D.3个
12.下列调查方式,你认为最合适的是()
A.调查市场上某种白酒的塑化剂的含量,采用普查方式
故选C.
【点睛】
此题考查平面直角坐标系中点的坐标,明确点在x轴上时纵坐标为0是解题的关键.
2.A
解析:A
【解析】
【分析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
【详解】
解:A、1600名学生的体重是总体,故A正确;
B、1600名学生的体重是总体,故B错误;
C、每个学生的体重是个体,故C错误;
D、从中抽取了100名学生的体重是一个样本,故D错误;
故选:A.
【点睛】
本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
B.调查鞋厂生产的鞋底能承受的弯折次数,采用普查方式
C.旅客上飞机前的安检,采用抽样调查方式
D.了解我市每天的流动人口数,采用抽样调查方式
二、填空题
13.有下列命题:①无理数是无限不循环小数;②平方根与立方根相等的数有1和0;③若ab,bc,则ac;④邻补角是互补的角;⑤无理数包括正无理数、零、负无理数.其中正确的有___个.
【压轴题】七年级数学下期中试题(含答案)
一、选择题
1.已知点P(3 , +2)在x轴上,则P点的坐标是( )
A.(3,2)B.(6,0)C.(-6,0)D.(6,2)
2.为了了解天鹅湖校区2019-2020学年1600名七年级学生的体重情况,从中抽取了100名学生的体重,就这个问题,下面说法正确的是()
17.在整数20200520中,数字“0”出现的频率是_________.
18. 的算术平方根是________.
19.如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达 点,那么 点对应的数是______.你的理由是______.
20.如图,直线a、b被直线l所截,a∥b,∠1=70°,则∠2=.
【详解】
,
解不等式①得:x≥-1,
解不等式②得:x<a,
∵不等式组 有解,
∴-1≤x<a,
∵不等式组只有三个整数解,
∴不等式的整数解为:-1、0、1,
∴1<a≤2,
故选:A
【点睛】
本题考查一元一次不等式组的整数解,解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
【详解】
解:A、调查市场上某种白酒的塑化剂的含量,采用抽样调查比较合适,故此选项错误;
B、调查鞋厂生产的鞋底能承受的弯折次数,采用抽样调查比较合适,故此选项错误;
C、旅客上飞机前的安检,必须进行普查,故此选项错误;
D、了解我市每天的流动人口数,采用抽样调查方式,比较合适,故此选项正确 D.
7.把一张50元的人民币换成10元或5元的人民币,共有
A.4种换法B.5种换法C.6种换法D.7种换法
8.已知关于 的不等式组 恰有3个整数解,则 的取值范围为( )
A. B. C. D.
9.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()
此题主要考查了全面调查与抽样调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
二、填空题
13.2【解析】【分析】根据无理数平方根和立方根的概念两直线的位置关系邻补角的概念分别判断后即可得到答案【详解】解::①无理数是无限不循环小数本说法正确;②平方根与立方根相等的数是0本说法错误;③若ab
【点睛】
本题主要考查解二元一次方程组,灵活运用整体思想是解题关键.
5.C
解析:C
【解析】
【分析】
直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
【详解】
解:在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别减去正数a(a>1),那么所得的图案与原图案相比,
故答案为:2.
【点睛】
本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫假命题.
14.70°【解析】【分析】依据平行线的性质可得∠BAE=∠DCE=140°依据折叠即可得到∠α=70°【详解】解:如图∵AB∥CD∴∠BAE=∠DCE=140°由折叠可得:∴∠α=70°故答案为:70°
解析:70°.
图案向左平移了a个单位长度,并且向下平移了a个单位长度.
故选:C.
【点睛】
本题考查了坐标系中点、图形的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
6.A
解析:A
【解析】
【分析】
设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.
14.如果一张长方形的纸条,如图所示折叠,那么∠α等于____.
15.如图,在平面直角坐标系xOy中,点A,点B的坐标分别为(0,2),(-1,0),将线段AB沿x轴的正方向平移,若点B的对应点的坐标为B'(2,0),则点A的对应点A'的坐标为___.
16.已知点P(x+3,x﹣4)在x轴上,则x的值为_____________.
三、解答题
21.如图,四边形ABCD中,∠A=∠C=90°,BE、DF分别平分∠ABC、∠ADC,判断BE、DF是否平行,并说明理由.
22.为弘扬中华传统文化,某校组织八年级 名学生参加汉字听写大赛.为了解学生整体听写能力,从中抽取部分学生的成绩(得分取正整数,满分为 分)进行统计分析,得到如下所示的频数分布表:
9.C
解析:C
【解析】
试题分析:已知,△ABE向右平移2cm得到△DCF,根据平移的性质得到EF=AD=2cm,AE=DF,又因△ABE的周长为16cm,所以AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm.故答案选C.
考点:平移的性质.
【解析】
【分析】
依据平行线的性质,可得∠BAE=∠DCE=140°,依据折叠即可得到∠α=70°.
【详解】
解:如图,
∵AB∥CD,
∴∠BAE=∠DCE=140°,
由折叠可得: ,
∴∠α=70°.
故答案为:70°.
【点睛】
本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.
15.(32)【解析】【分析】根据平移的性质即可得到结论【详解】∵将线段AB沿x轴的正方向平移若点B的对应点B′的坐标为(20)∵-1+3=2∴0+3=3∴A′(32)故答案为:(32)【点睛】本题考查了
A.形状不变,大小扩大到原来的a倍
B.图案向右平移了a个单位长度
C.图案向左平移了a个单位长度,并且向下平移了a个单位长度
D.图案向右平移了a个单位长度,并且向上平移了a个单位长度
6.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是( )
3.D
解析:D
【解析】
【分析】
【详解】
∵∠C=80°,∠CAD=60°,
∴∠D=180°﹣80°﹣60°=40°,
∵AB∥CD,
∴∠BAD=∠D=40°.
故选D.
4.B
解析:B
【解析】
【分析】
把两个方程相加可得3x+3y=15,进而可得答案.
【详解】
两个方程相加,得3x+3y=15,
∴x+y=5,
故选B.
分数段
频数
所占百分比
请根据尚未完成的表格,解答下列问题:
(1)本次抽样调查的样本容量为____,表中 _, _;
(2)补全如图所示的频数分布直方图;
(3)若成绩超过 分为优秀,则该校八年级学生中汉字听写能力优秀的约有多少人?
23.某学校为了迎接“中招考试理化生实验”,需购进 , 两种实验标本共75个.经调查, 种标本的单价为20元, 种标本的单价为12元,若总费用不超过1180元,那么最多可以购买多少个 种标本?(列不等式解决)
解析:(3,2)
【解析】
【分析】
根据平移的性质即可得到结论.
【详解】
∵将线段AB沿x轴的正方向平移,若点B的对应点B′的坐标为(2,0),
∵-1+3=2,
∴0+3=3
∴A′(3,2),
故答案为:(3,2)
【点睛】
本题考查了坐标与图形变化-平移.解决本题的关键是正确理解题目,按题目的叙述一定要把各点的大致位置确定,正确地作出图形.
【详解】
设索长为x尺,竿子长为y尺,
根据题意得: .
故选A.
【点睛】
本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
7.C
解析:C
【解析】
【分析】
用二元一次方程组解决问题的关键是找到2个合适的等量关系.由于10元和5元的数量都是未知量,可设出10元和5元的数量.
本题中等量关系为:10元的总面值+5元的总面值=50元.
解析:2
【解析】
【分析】
根据无理数、平方根和立方根的概念、两直线的位置关系、邻补角的概念分别判断后即可得到答案.
【详解】
解::①无理数是无限不循环小数,本说法正确;
②平方根与立方根相等的数是0,本说法错误;
③若ab,bc,则 ,本说法错误;
④邻补角是互补的角,本说法正确;
⑤无理数包括正无理数、负无理数,本说法错误;
【详解】
解:结合题意可知 可化为 ,
解不等式可得 ,
故x的整数解只有1;
故选:B.
【点睛】
本题考查的是一元一次不等式组的求解,根据题意得到不等式组并正确求解即可.
12.D
解析:D
【解析】
【分析】
一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.据此对各项进行判断即可.
24.已知:如图, , ,求证: .
25.解方程组: .
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【解析】
【分析】
根据点P在x轴上,即y=0,可得出a的值,从而得出点P的坐标.
【详解】
∵点P(3a,a+2)在x轴上,
∴y=0,
即a+2=0,
解得a=-2,
∴3a=-6,
∴点P的坐标为(-6,0).
16.x=4【解析】【分析】【详解】解:∵点P(x+3x−4)在x轴上∴x−4=0解得:x=4故答案为:x=4
解析:x=4
【解析】
【分析】
【详解】
解:∵点P(x+3,x−4)在x轴上,
∴x−4=0,
解得:x=4,
A.1600名学生的体重是总体B.1600名学生是总体
C.每个学生是个体D.100名学生是所抽取的一个样本
3.如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD的度数等于( )
A.60°B.50°C.45°D.40°
4.已知x、y满足方程组 ,则x+y的值是()
A.3B.5C.7D.9
5.在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别减去正数a(a>1),那么所得的图案与原图案相比( )
10.B
解析:B
【解析】
【分析】
把 代入方程组 ,求出m、n的值,再代入要求的代数式求值即可.
【详解】
把 代入 得: ,
解得:m=-1,n=2,
∴n-m=2-(-1)=3.
故选:B.
【点睛】
本题考查了二元一次方程组的解,能得出m,n的值是解此题的关键.
11.B
解析:B
【解析】
【分析】
先根据题目的定义新运算,得到关于x的不等式组,再得到不等式组的解集即可.