小学六年级数学工程问题教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学六年级数学工程问题教案小学六年级数学工程问题教案
教学目标
1.理解工程问题的数量关系,掌握工程问题的特征,分析思路及解题的方法.
2.能正确熟练地解答这类应用题.
3.培养学生运用所学到知识解决生活中的实际问题.
教学重点
理解工程问题的数量关系和题目特点,掌握分析、解答方法.
教学难点
理解工程问题的数量关系.
教学过程
一、复习旧知.
(一)解答下面应用题
1.挖一条水渠100米,用5天挖完,平均每天挖多少米?
列式:100÷5=20(米)
2.挖一条水渠,用5天挖完,平均每天挖全长的几分之几?
列式:
教师提问:上面这两道题研究的是哪三种的关系?已知什么,求什么?
学生回答:上面两道题研究的是工作总量,工作时间和工作效率的三量关系,已知工作总量和工程时间,求工作效率.
3.挖一条水渠100米,平均每天挖20米,几天可以挖完?
列式:100÷20=5(天)
4.挖一条水渠,每天挖全长的,几天可以挖完?
列式:(天)
师生小结:上面3、4两题研究的是工作总量、工作效率和工作时间问题.已知工作总量,工作效率求工作时间.
二、探索新知.
(一)教学例9.
例9.一段公路长30千米,甲队单独修10天完成,乙队单独修15天完成,两队合修几天可以完成?
1.教师提问:
(1)用我们学过的方法怎样分析?怎样解答?
30÷(30÷10+30÷15)=6(天)
(2)把上题的一段公路完成60千米、90千米、30千米、24千米等如何分析解答?
60÷(60÷10+60÷15)=6(天)
90÷(90÷10+90÷15)=6(天)
24÷(24÷10+24÷15)=6(天)
(3)通过计算,你发现了什么?(结果都相同)
(4)为什么结果都相同呢?
工作总量的具体数量变了,但数量关系没有变;工作效率是用“工作总量÷工作时间”得到的,所以工作效率是随着工作总量的变化而变化的.因此它们的商也就是工作时间不变.)
(5)去掉具体的数量,你还能解答吗?
把这段公路的长看作单位“1”,甲队每天修这段公路的,乙队每天修这段公路的.两队合修,每天可以修这段公路的()
列式:
2.教师:这就是我们今天学习的新知识.(板书课题:工程问题)
3.归纳总结.
4.小组讨论:工程问题有什么特点?
工作总量用单位“1”表示,工作效率用来表示数量关系:工作总量÷工作效率(和)=工作时间
5.练习.
(1)一项工程,甲队单独做20天完成,乙队单独做要30天完成,如果两队合作,每天完成这项工程的几分之几?几天可以完成?
(2)加工一批零件,甲单独用12小时,乙单独做用10小时,丙单独做用15小时.甲、丙两人合作,多少小时完成?甲、乙、丙三人合作多少小时可以完成?
三、巩固练习.
(一)选择正确的算式.
一堆货物,甲车单独运4小时可以完成,乙车单独运6小时可以完成,现在由甲、乙两车合运这批货物的` ,需要多少小时?正确列式是()
四、归纳总结.
今天我们这节课学习了新的分数应用题―工程应用题.其解答特点是什么?(工作总量÷工作效率和=合作时间)工程应用题的结构特点是什么?(把工作总量看作单位“1”,工作效率用“ ”表示.)工程应用题还有很多变化,以后我们继续学习.
小学六年级数学教案――《工程问题应用题》教学设计
教学内容:小学数学第十一册第98页例10
教材简析:工程问题应用是分数应用题中的一个特例。

它的数量关系和解题思路与整数工程应用题基本相同。

本节教学,主要是用整数工程应用题引入,让学生根据具体数量解答,然后把工作总量抽象成一个整体,用单位“1”表示。

通过教学,使学生理解工程问题的实际意义,掌握它的解题方法,培养学生的分析,对比能力和综合、概括能力,提高他们的解题能力,发展他们的智力。

教学目标:1.认识分数工程问题的特点。

2.理解、掌握分数工程问题的数量关系,解题思路和方法。

3.能正确解答分数工程问题。

教具、学具准备:投影片几张。

过程设计:
一、复习引入:
口答列式:
1.修一条100米长的跑道,5天修完。

平均每天修多少米?
2.一项工程,5天完成,平均每天完成几分之几?
3.修一条100米长的跑道,每天修25米,几天修完?
4.一项工程,每天完成1/8,几天可以完成全工程?
(通过这组题,复习工程问题的三个基本数量关系,以及工作总量、工作效率、不定具体的数量应样表示,为学习用分数解答奠定基础。


二、新课:
1、引出课题:工程问题应用题.
2、教学例10
(1)出示例10:一段公路长30千米,甲队单独修10天完成,乙队单独修15天完成,两队合修几天可以完成?
(2)审题后,根据条件问题列成下表,分析解答,讲算理:
小学六年级数学教案――工程问题应用题
教学目标:
1、理解比较抽象的工作总量、工作效率、工作时间的数量关系。

2、掌握一般工程问题的结构特征。

3、学会解题方法,会正确解答一般的工程问题。

教学重点:学会解题方法,会正确解答一般的工程问题。

教学难点:理解比较抽象的工作总量、工作效率、工作时间的数量关系。

教学准备:投影片。

教学过程:
一、复习准备:
1、口答,并说出数量关系式。

(1)甲乙合做60件产品,甲每天做3件,乙每天做2件。

他们要几天完成?
60÷(3+2)=12天
工作总量÷工作效率=工作时间
(2)加工80个零件,甲用4小时完成。

平均每小时加工多少个零件?
80÷4=20(个)
工作总量÷工作时间=工作效率
2、回答,说说你是怎么想的。

(1)加工一批零件,甲用4小时完成。

平均每小时完成这批零件的几分之几?
1÷4=
(把工作总量看作“1”)
(2)一项工程,甲单独修建,需要4天完成,乙单独修建,需要8天完成。

①甲队独修,每天完成全工程的()。

②乙队独修,每天完成全工程的()。

③两队合修,每天完成全工程的()。

小结:刚才这几道题中,工作总量所以用“1”表示,因为工作总量不再是一个具体的数量,而工作效率是一个分数,这个分数实质上是单位时间完成了工作总量的几分之几。

二、教学新课。

1、出示例2.(小黑板)
一项工程,由甲工程队单独施工,需8天完成。

由乙工程队单独施工,需要12天完成。

两队共同施工需要多少天完成?
(1)审题后,想:这道题需我们求什么?你可以根据哪个关系式来解答?
(2)学生尝试做,并同桌交流。

(3)反馈说明。

1÷(+)=1÷(+)=1÷=4(天)
(把工作总量看作“1”,两队的工作效率就是+。


教师:如果不把工作总量看作“1”,而是看作2、3、5、10结果会怎样?
学生任选一个数列式计算。

小结:计算结果是一样的。

不过看作“1”是最简捷、最常用的。

2、练一练。

(1)填空。

①甲做一项工作需5天完成,每天完成这项工作的(),3天完成这项工作的()。

②一项工程,甲队独做需要36天完成,乙队独做需要45天完成。

两队合做,一天可以完成这项工程的(),()天可以完成。

(2)修一条公路,甲队独做需10天,乙队独做需15天,甲乙两队合做,几天可以完成?
(全班练,抽学生写在投影片上,同桌互说是怎么想的)
3、小结:四人小组讨论。

刚才练的题有什么特点?我们是怎么解的?
教师:这就是我们今天学的工程问题。

(出示课题)
三、巩固练习
1、变式练习
打印一份稿件,甲单独干要10小时,乙单独干要12小时,丙单独干要15小时。

(1)甲、乙、丙三人合打1小时,完成这份稿件的几分之几?
(2)三人合打一小时后,还剩下几分之几?
1-=
(3)甲、乙、丙三人合干,几小时可以完成?
1÷(++)=4(小时)
(4)甲、乙两人合干5小时,可以完成这份稿件的几分之几?
(+)×5=
(四人小组交流,想想还可以提出哪些问题并解答。


2、看书,质疑。

四、教学小结:今天我们学习了什么?你是怎样来解答这些应用题的?
五、作业:《作业本》P70[67]
小学六年级数学教案――工程问题应用题
教学目标:
1、理解比较抽象的工作总量、工作效率、工作时间的数量关系。

2、掌握一般工程问题的结构特征。

3、学会解题方法,会正确解答一般的工程问题。

教学重点:学会解题方法,会正确解答一般的工程问题。

教学难点:理解比较抽象的工作总量、工作效率、工作时间的数量关系。

教学准备:投影片。

教学过程:
一、复习准备:
1、口答,并说出数量关系式。

(1)甲乙合做60件产品,甲每天做3件,乙每天做2件。

他们要几天完成?60÷(3+2)=12天
工作总量÷工作效率=工作时间
(2)加工80个零件,甲用4小时完成。

平均每小时加工多少个零件?
80÷4=20(个)
工作总量÷工作时间=
小学六年级数学教案――工程问题教案
教学目标
1.理解工程问题的数量关系,掌握工程问题的特征,分析思路及解题的方法.
2.能正确熟练地解答这类应用题.
3.培养学生运用所学到知识解决生活中的实际问题.
教学重点
理解工程问题的数量关系和题目特点,掌握分析、解答方法.
教学难点
理解工程问题的数量关系.
教学过程
一、复习旧知.
(一)解答下面应用题
1.挖一条水渠100米,用5天挖完,平均每天挖多少米?
列式:100÷5=20(米)
2.挖一条水渠,用5天挖完,平均每天挖全长的几分之几?
列式:
教师提问:上面这两道题研究的是哪三种的关系?已知什么,求什么?
学生回答:上面两道题研究的是工作总量,工作时间和工作效率的三量关系,已知工作总量和工程时间,求工作效率.
3.挖一条水渠100米,平均每天挖20米,几天可以挖完?
列式:100÷20=5(天)
4.挖一条水渠,每天挖全长的,几天可以挖完?
列式:(天)
师生小结:上面3、4两题研究的是工作总量、工作效率和工作时间问题.已知工作总量,工作效率求工作时间.
二、探索新知.
(一)教学例9.
例9.一段公路长30千米,甲队单独修10天完成,乙队单独修15天完成,两队合修几天可以完成?
1.教师提问:
(1)用我们学过的方法怎样分析?怎样解答?
30÷(30÷10+30÷15)=6(天)
(2)把上题的一段公路完成60千米、90千米、30千米、24千米等如何分析解答?
60÷(60÷10+60÷15)=6(天)
90÷(90÷10+90÷15)=6(天)
24÷(24÷10+24÷15)=6(天)
(3)通过计算,你发现了什么?(结果都相同)
(4)为什么结果都相同呢?
工作总量的具体数量变了,但数量关系没有变;工作效率是用“工作总量÷工作时间”得到的,所以工作效率是随着工作总量的变化而变化的.因此它们的商也就是工作时间不变.)
(5)去掉具体的数量,你还能解答吗?
把这段公路的长看作单位“1”,甲队每天修这段公路的,乙队每天修这段公路的.两队合修,每天可以修这段公路的()
列式:
2.教师:这就是我们今天学习的新知识.(板书课题:工程问题)
3.归纳总结.
4.小组讨论:工程问题有什么特点?。

相关文档
最新文档