第63讲 │ n次独立重复试验与二项分布
n次独立重复试验与二项分布
二项分布及其应用1.条件概率及其性质(1)对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做______________,用符号__________来表示,其公式为P (B |A )=__________.在古典概型中,若用n (A )表示事件A 中基本事件的个数,则P (B |A )=n (AB )n (A ).(2)条件概率具有的性质: ①____________;②如果B 和C 是两互斥事件,则P (B ∪C |A )=__________________________________. 2.相互独立事件(1)对于事件A 、B ,若A 的发生与B 的发生互不影响,则称_______________________. (2)若A 与B 相互独立,则P (B |A )=________, P (AB )=P (B |A )·P (A )=____________.(3)若A 与B 相互独立,则________,________,________也都相互独立. (4)若P (AB )=P (A )P (B ),则________________. 3.二项分布(1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有______种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的.(2)在n 次独立重复试验中,事件A 发生k 次的概率为________________________(p 为事件A 发生的概率),事件A 发生的次数是一个随机变量X ,其分布列为____________,记为____________. 1.“互斥事件”与“相互独立事件”的区别与联系(1)“互斥”与“相互独立”都是描述的两个事件间的关系.(2)“互斥”强调不可能同时发生,“相互独立”强调一个事件的发生与否对另一个事件发生的概率没有影响.(3)“互斥”的两个事件可以独立,“独立”的两个事件也可以互斥. 2.条件概率条件概率通常是指在事件A 发生的条件下,事件B 发生的概率.放在总体情况下看:先求P (A ),P (AB )再求P (B |A )=P (AB )P (A ).关键是求P (A )和P (AB ).1.已知P (AB )=320,P (A )=35,则P (B |A )=________.2.如图所示的电路,有a ,b ,c 三个开关,每个开关开或关的概率都是,且是 相互独立的,则灯泡甲亮的概率为.3.(2010·福建)某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率为________.4.在4次独立重复试验中事件A 出现的概率相同,若事件A 至少发生一次的概率为6581,则事件A 在1次试验中出现的概率为________.5.(2011·广东)甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为 A.12 B.35 C.23 D.34题型一 条件概率例1 抛掷红、蓝两颗骰子,设事件A 为“蓝色骰子的点数为3或6”,事件B 为“两颗骰子的点数之和大于8”.(1)求P (A ),P (B ),P (AB );(2)当已知蓝色骰子的点数为3或6时,求两颗骰子的点数之和大于8的概率.1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问(1)从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是多少? (2)从2号箱取出红球的概率是多少? 题型二 相互独立事件的概率例2 甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为12与p ,且乙投球2次均未命中的概率为116.(1)求乙投球的命中率p ;(2)求甲投球2次,至少命中1次的概率;(3)若甲、乙两人各投球2次,求共命中2次的概率.设甲、乙两射手独立地射击同一目标,他们击中目标的概率分别为0.8、0.9,求:(1)两人都击中目标的概率;(2)两人中恰有1人击中目标的概率; (3)在一次射击中,目标被击中的概率; (4)两人中,至多有1人击中目标的概率. 题型三 独立重复试验与二项分布例3 某射手每次射击击中目标的概率是23,且各次射击的结果互不影响.(1)假设这名射手射击5次,求恰有2次击中目标的概率;(2)假设这名射手射击5次,求有3次连续击中目标,另外2次未击中目标的概率;(3)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分.在3次射击中,若有2次连续击中,而另外一次未击中,则额外加1分;若3次全击中,则额外加3分.记ξ为射手射击3次后的总分数,求ξ的分布列.探究提高 (1)独立重复试验是在同样的条件下重复地、各次之间相互独立地进行的一种试验.在这种试验中,每一次试验只有两种结果,即某事件要么发生,要么不发生,并且任何一次试验中发生的概率都是一样的. (2)二项分布满足的条件①每次试验中,事件发生的概率是相同的. ②各次试验中的事件是相互独立的.③每次试验只有两种结果:事件要么发生,要么不发生. ④随机变量是这n 次独立重复试验中事件发生的次数.为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类.这三类工程所含项目的个数分别占总数的12、13、16,现在3名工人独立地从中任选一个项目参与建设.(1)求他们选择的项目所属类别互不相同的概率;(2)(2)记ξ为3人中选择的项目属于基础设施工程或产业建设工程的人数,求ξ的分布列.方法与技巧1.古典概型中,A 发生的条件下B 发生的条件概率公式为P (B |A )=P (AB )P (A )=n (AB )n (A ),其中,在实际应用中P (B |A )=n (AB )n (A )是一种重要的求条件概率的方法. 2.运用公式P (AB )=P (A )P (B )时一定要注意公式成立的条件,只有当事件A 、B 相互独立时,公式才成立. 3.在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X =k )=C k n p k(1-p )n -k,k =0,1,2,…,n ,其中p是一次试验中该事件发生的概率.实际上,C k n p k(1-p )n -k正好是二项式[(1-p )+p ]n的展开式中的第k +1项.失误与防范1.独立重复试验中,每一次试验只有两种结果,即某事件要么发生,要么不发生,并且任何一次试验中某事件发生的概率相等.注意恰好与至多(少)的关系,灵活运用对立事件. 2.二项分布要注意确定成功概率.专项基础训练题组 一、选择题1.设随机变量X ~B ⎝⎛⎭⎫6,12,则P (X =3)等于( )A.516B.316C.58D.382.(2010·辽宁)两个实习生每人加工一个零件,加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰好有一个一等品的概率为 ( )A.12B.512C.14D.163.(2011·湖北)如图,用K 、A1、A2三类不同的元件连接成一个系统.当K 正常工作且 A1、A2至少有一个正常工作时,系统正常 工作.已知K 、A1、A2正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为 ( ) A .0.960 B .0.864 C .0.720D .0.576二、填空题4.(2011·湖南)如图,EFGH 是以O 为圆心,半径为1的圆的内接正方形.将一颗豆子 随机地扔到该圆内,用A 表示事件“豆子 落在正方形EFGH 内”,B 表示事件 “豆子落在扇形OHE(阴影部分)内”, 则(1)P(A)=;(2)P(B|A)=.5.在100件产品中有95件合格品,5件不合格品.现从中不放回地取两次,每次任取一件,则在第一次取到不合格品后,第二次再次取到不合格品的概率为________.6.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为1625,则该队员每次罚球的命中率为________. 三、解答题7.(2011·大纲全国)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立.(1)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(2)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率.8.(2010·江苏)某工厂生产甲、乙两种产品.甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%.生产1件甲产品,若是一等品则获得利润4万元,若是二等品则亏损1万元;生产1件乙产品,若是一等品则获得利润6万元,若是二等品则亏损2万元.设生产各件产品相互独立. (1)记X (单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,求X 的分布列; (2)求生产4件甲产品所获得的利润不少于10万元的概率. B 组 专项能力提升题组 一、选择题1.一个电路如图所示,A 、B 、C 、D 、E 、F 为 6个开关,其闭合的概率都是,且是相互独立的,则灯亮的概率是 ( ) A.164 B.5564 C.18 D.1162.(2010·江西)一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测.方法一:在10箱中各任意抽查一枚;方法二:在5箱中各任意抽查两枚.国王用方法一、二能发现至少一枚劣币的概率分别记为p 1和p 2.则( )A .p 1=p 2B .p 1<p 2C .p 1>p 2D .以上三种情况都有可能3.箱中装有标号为1,2,3,4,5,6且大小相同的6个球.从箱中一次摸出两个球,记下号码并放回,如果两球号码之积是4的倍数,则获奖.现有4人参与摸奖,恰好有3人获奖的概率是( ) A.16625B.96625C.624625D.4625二、填空题4.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生2次的概率,则事件A 在1次试验中发生的概率p 的取值范围是________.5.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将 3次遇到黑色障碍物,最后落入A 袋或B 袋中.已知 小球每次遇到黑色障碍物时,向左、右两边下落的概率都是12,则小球落入A 袋中的概率为.6.(2010·安徽)甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A 1,A 2和A 3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是________(写出所有正确结论的编号).①P (B )=25;②P (B |A 1)=511;③事件B 与事件A 1相互独立;④A 1,A 2,A 3是两两互斥的事件;⑤P (B )的值不能确定,因为它与A 1,A 2,A 3中究竟哪一个发生有关. 三、解答题7.某公司是否对某一项目投资,由甲、乙、丙三位决策人投票决定,他们三人都有“同意”、“中立”、“反对”三类票各一张,投票时,每人必须且只能投一张票,每人投三类票中的任何一类票的概率都为13,他们的投票相互没有影响,规定:若投票结果中至少有两张“同意”票,则决定对该项目投资;否则,放弃对该项目的投资.(1)求该公司决定对该项目投资的概率;(2)求该公司放弃对该项目投资且投票结果中最多有一张“中立”票的概率.8.投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审. (1)求投到该杂志的1篇稿件被录用的概率;(2)求投到该杂志的4篇稿件中,至少有2篇被录用的概率.。
独立重复试验与二项分布
独立重复试验与二项分布1.n 次独立重复试验一般地,在 条件下重复做的n 次试验称为n 次独立重复试验. 2.在n 次独立重复试验中“在相同的条件下”等价于各次试验的结果不会受其他试验的 ,即P(A1A2…An)= .其中Ai(i =1,2,…,n)是第i 次试验的结果. 3.二项分布一般地,在 中,设事件A 发生的 是X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P(X =k)= ,其中k =0,1,2,…,n.此时称随机变量X 服从二项分布,记作 ,并称 为成功概率.4.k n k k n p p C --)1(是np p )]1([-+的二项展开式中的第 项.说明:1.独立重复试验的判断(1)每次试验是在相同的条件下进行的;(2)每次试验的结果不会受其他试验的影响,即每次试验是相互独立的; (3)基本事件的概率可知,且每次试验保持不变;(4)每次试验只有两种结果,要么发生,要么不发生. 2.二项分布的判断(1)在一次试验中,事件A 发生与不发生二者必居其一. (2)事件A 在每次试验中,发生的概率相同.(3)试验重复地进行了n 次(n ≥2),且每次试验结果互不影响. 3.二项分布问题(1)随机变量X 服从二项分布,则X 的分布列为:X 0 1 … k… nPC 0n p 0q nC 1n p 1qn -1…C k n p k qn -k…C n n p n q 0(2)由于C k n p k qn -k恰好是二项展开式(p +q )n=C 0n p 0q n+C 1n p 1qn -1+…+C k n p k qn -k+…+C n n p n q 0中第k+1项(这里k 可取0,1,2,…,n )中各个值,所以称这样的随机变量X 服从二项分布. (3)利用二项分布来解决实际问题的关键在于在实际问题中建立二项分布的模型,也就是看它是否为n 次独立重复试验,随机变量是否为在这n 次独立重复试验中某事件发生的次数,满足这两点的随机变量才服从二项分布,否则就不服从二项分布.题型一 独立重复试验例1 某射手进行射击训练,假设每次射击击中目标的概率为35,且每次射击的结果互不影响,已知射手射击了5次,求:(1)其中只在第一、三、五次击中目标的概率;(2)其中恰有3次击中目标的概率;(3)其中恰有3次连续击中目标,而其他两次没有击中目标的概率.探究1 独立重复试验也叫贝努利试验,它的特征有两个:一是在相同条件下,独立地进行n 次重复试验;二是每次试验只有两种可能结果:A 或A .在n 次试验中,事件A 出现了k次的概率为P (X =k )=C k n p k(1-p )n -k.思考题1 在人寿保险事件中,很重视某一年龄段的投保人的死亡率,假如每个投保人能活到65岁的概率为0.6,试问3个投保人中:(1)全部活到65岁的概率; (2)有2个活到65岁的概率; (3)有1个活到65岁的概率; (4)都活不到65岁的概率.题型二 二项分布的应用例2 某一中学生心理咨询中心服务电话接通率为34,某班3名同学商定明天分别就同一问题询问该服务中心.且每人只拨打一次,求他们中成功咨询的人数X 的分布列.规律 二项分布问题主要体现在有放回的n 次独立重复试验中,如:掷硬币,有放回地取球、射击、投篮等模型,解题时应具体问题具体分析,切勿直接套用公式. 探究2 如何利用二项分布解题(1)利用二项分布来解决实际问题的关键在于在实际问题中建立二项分布的模型,也就是看它是否为n 次独立重复试验,随机变量是否为在这n 次独立重复试验中某事件发生的次数,满足这两点的随机变量才服从二项分布,否则就不服从二项分布.(2)解决这类实际问题往往需要把所求的概率的事件分拆为若干个事件,而这每个事件均为独立重复试验.在解题时,还要注意概率的加法公式、乘法公式、“正难则反”思想(利用对立事件求概率)的灵活运用.思考题2某厂生产的电子元件,其每件产品的次品率为5%(即每件为次品的概率).现从一批产品中任意连续地抽取出2件,其中次品数ξ的概率分布是ξ01 2P请完成上表.点评二项分布是一种常见的离散型随机变量的概率分布,它应用十分广泛,利用二项分布的模型,可以快速地写出随机变量的分布列,从而简化了求随机变量取每一个具体概率值的过程,因此我们应熟练掌握二项分布,利用二项分布来解决实际问题的关键在于在实际问题中建立二项分布的模型也就是看它是否为n次独立重复试验,随机变量是否为在这n次独立重复试验中某事件发生的次数,满足这两点的随机变量才服从二项分布,否则就不服从二项分布.例3甲、乙、丙三台机床各自独立地加工同一种零件,已知甲、乙、丙三台机床加工的零件是一等品的概率分别为0.7、0.6、0.8,乙、丙两台机床加工的零件数相等,甲机床加工的零件数是乙机床加工的零件数的2倍.(1)从甲、乙、丙三台机床加工的零件中各取一件检验,求至少有一件一等品的概率;(2)将甲、乙、丙三台机床加工的零件混合到一起,从中任意地抽取一件检验,求它是一等品的概率;(3)将甲、乙、丙三台机床加工的零件混合到一起,从中任意地抽取4件检验,其中一等品的个数记为X,求X的分布列.探究3解此类题首先判断随机变量是否服从二项分布:一般地,如果n个相互独立的试验具备相同的条件,在这相同的条件下只有两个结果(A和A),且P(A)相同,那么即可建立二项分布的概率模型.其次计算P(X=k)=C k n p k(1-p)n-k,k=0,1,2,…,n.最后区别问题的不同情形计算相应的概率写出答案.思考题3 现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择,为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X-Y|,求随机变量ξ的分布列.题型三超几何分布的应用例4 从6名男同学和4名女同学中随机选出3名同学参加一项竞技测试.试求选出的3名同学中,至少有一名女同学的概率.探究4 二项分布与超几何分布的关系:由古典概型得出超几何分布,由独立重复试验概型得出二项分布,这两个分布的关系是:在产品抽样检验中,若采用有放回抽样,则次品数服从二项分布;若采用不放回抽样,则次品数服从超几何分布.在实际工作中,抽样一般都采用不放回方式,因此计算次品数为k的概率时应该用超几何分布,但是超几何分布的数值计算涉及到总体数目,因此非常繁杂,而二项分布的计算只涉及到抽样次数和一个概率值,计算相对简单,并且二项分布的计算可以查专门的数表,所以,当产品总数很大而抽样数不太大时,不放回抽样可以认为是有放回抽样,计算超几何分布可以用计算二项分布来代替.思考题4 一批产品共50件,其中5件次品,45件合格品,从这批产品中任意抽2件,求其中出现次品的概率.。
n次独立重复试验和二项分布
1.条件概率及其性质
[归纳·知识整合]
条件概率的定义
条件概率的性质
设A、B为两个事件,且
(1)0≤P(B|A)≤1
P(A)>0,称P(B|A)=
PAB PA
(2)如果B和C是两个互
为在事件A发生条件下,事 斥事件,则P(B∪C|A)
件B发生的条件概率
= P(B|A)+P(C|A)
2.事件的相互独立性 (1)定义:设A、B为两个事件,如果P(AB)=P(A)·P(B), 则称事件A与事件B相互独立. (2)性质: ①若事件A与B相互独立,则P(B|A)= P(B) ,P(A|B)= P(A),P(AB)= P(A)P(B) . ②如果事件A与B相互独立,那么 A与 B , A 与B , A 与 B 也相互独立.
P2=P(A·B·C )+P(A·B ·C)+P( A ·B·C)+P(A·B·C)
=110×110×25+110×190×35+190×110×35+110×110×35=55090.
—————
————————————
求相互独立事件同时发生的概率的方法
(1)利用相互独立事件的概率乘法公式直接求解;
∴X的分布列为:
X4
3
2
1
0
P 0.2401 0.4116 0.2646 0.0756 0.0081
—————
————————————
二项分布满足的条件
(1)每次试验中,事件发生的概率是相同的.
(2)各次试验中的事件是相互独立的.
(3)每次试验只有两种结果:事件要么发生,要么不发生.
(4)随机变量是这n次独立重复试验中事件发生的次数.
(1)从5道题中不放回地依次抽取2道的事件数为 n(Ω)=A25=20; 根据分步乘法计数原理,n(A)=A13×A14=12; 于是P(A)=nnΩA=2102=35.
独立重复试验与二项分布 课件
1.n 次独立重复试验:一般地,在 相同 条件下重复做的 n 次试验称为 n 次独立重复试验.
2.在 n 次独立重复试验中,“在相同的条件下”等价于 各次试验的结果不会受其他试验的 影响 ,即 P(A1A2…An)=
P(A1)P(A2)…P(An).其中 Ai(i=1,2,…,n)是第 i 次试验的结 果.
则 P(A)=0.7,P(B)=0.6,P(C)=0.8. 所以从甲、乙、丙三台机床加工的零件中各取一件检验, 至少有一件一等品的概率为 P1=1-P(-A )P(-B )P(-C )=1-0.3×0.4×0.2=0.976. (2)将甲、乙、丙三台机床加工的零件混合到一起,从中任 意地抽取一件检验,它是一等品的概率为 P2=2×0.7+40.6+0.8=0.7.
4 243
1 729
[点评] 解此类题首先判断随机变量 X 服从二项分布,即 X~B(n,p),然后求出 P(X=k)=Cknpk(1-p)n-k(k=0,1,2,…,n), 最后列出二项分布列.
二项分布的应用
甲、乙、丙三台机床各自独立地加工同一种零 件,已知甲、乙、丙三台机床加工的零件是一等品的概率分别 为 0.7、0.6、0.8,乙、丙两台机床加工的零件数相等,甲机床 加工的零件数是乙机床加工的零件数的 2 倍.
4.Cknpk(1-p)n-k 是[p+(1-p)]n 的二项展开式中的第 k+1 项.
独立重复试验概率的求法
某人射击 5 次,每次中靶的概率均为 0.9,求他至 少有 2 次中靶的概率.
[分析] 至少有 2 次中靶包括恰好有 2 次中靶,恰好有 3 次 中靶,恰好有 4 次中靶和恰好有 5 次中靶四种情况,这些事件 是彼此互斥的,而每次射击中靶的概率均相等,并且相互之间 没有影响,所以每次射击又是相互独立事件,因而射击 5 次是 进行 5 次独立重复试验.
n次独立重复试验及二项分布
n次独立重复试验及二项分布一基础知识1.条件概率及其性质(1)条件概率的定义:对于任何两个事件A和B,在已知事件A发生的条件下,事件B发生的概率叫做条件概率,用符号P(B|A)来表示,其公式为P(B|A)=P(AB)P(A)(P(A)>0).(2)条件概率的性质①非负性:0≤P(B|A)≤1;②可加性:如果B和C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A).2.相互独立事件(1)对于事件A,B,若事件A的发生与事件B的发生互不影响,则称事件A,B是相互独立事件.(2)若P(AB)=P(A)P(B),则A与B相互独立.(3)若A与B相互独立,则A与B,A与B,A与B也都相互独立.(4)若A与B相互独立,则P(B|A)=P(B),P(AB)=P(B|A)P(A)=P(A)P(B).(5)一般地,如果事件A1,A2,…,A n(n>2,n∈N*)相互独立,那么这n个事件同时发生的概率等于每个事件发生的概率的积,即P(A1A2…A n)=P(A1)P(A2)·…·P(A n).互斥事件与相互独立事件的相同点与不同点(1)相同点:二者都是描述两个事件间的关系;(2)不同点:互斥事件强调两事件不可能同时发生,即P(AB)=0,相互独立事件则强调一个事件的发生与否对另一个事件发生的概率没有影响.3.独立重复试验与二项分布(1)独立重复试验:一般地,在相同条件下重复做的n次试验称为n次独立重复试验.独立重复试验的条件:①每次试验在相同条件下可重复进行;②各次试验是相互独立的;③每次试验都只有两种结果,即事件要么发生,要么不发生.(2)二项分布:一般地,在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,则事件A恰好发生k次的概率为P(X=k)=C k n p k(1-p)n-k,k=0,1,2,…,n,则称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.判断一个随机变量是否服从二项分布,要看两点:,(1)是否为n次独立重复试验;,(2)随机变量是否为某事件在这n次独立重复试验中发生的次数.考点一条件概率[典例精析](1)(2019·合肥模拟)将三颗骰子各掷一次,记事件A为“三个点数都不同”,B为“至少出现一个6点”,则条件概率P(A|B)=________,P(B|A)=_______.(2)从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=________.[解析](1)P(A|B)的含义是在事件B发生的条件下,事件A发生的概率,即在“至少出现一个6点”的条件下,“三个点数都不相同”的概率,因为“至少出现一个6点”有6×6×6-5×5×5=91种情况,“至少出现一个6点,且三个点数都不相同”共有C 13×5×4=60种情况,所以P (A |B )=6091.P (B |A )的含义是在事件A 发生的条件下,事件B 发生的概率,即在“三个点数都不相同”的条件下,“至少出现一个6点”的概率,因为“三个点数都不同”有6×5×4=120种情况,所以P (B |A )=12.(2)P (A )=C 23+C 22C 25=410=25,P (AB )=C 22C 25=110,由条件概率公式,得P (B |A )=P (AB )P (A )=11025=14.[答案] (1)6091 12 (2)14[题组训练]1.(2019·石家庄摸底)某种电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为12,两次闭合后都出现红灯的概率为15,则开关在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为________.解析:设“开关第一次闭合后出现红灯”为事件A ,“开关第二次闭合后出现红灯”为事件B ,则“开关两次闭合后都出现红灯”为事件AB ,“开关在第一次闭合后出现红灯的条件下第二次闭合后出现红灯”为事件B |A ,由题意得P (B |A )=P (AB )P (A )=25.答案:252.现有3道理科题和2道文科题共5道题,若不放回地一次抽取2道题,则在第1次抽到理科题的条件下,第2次抽到理科题的概率为________.解析:法一:设第1次抽到理科题为事件A ,第2次抽到理科题为事件B ,则P (B |A )=P (AB )P (A )=3×2A 2535=12.法二:在第1次抽到理科题的条件下,还有2道理科题和2道文科题,故在第1次抽到理科题的条件下,第2次抽到理科题的概率为12.答案:12考点二 相互独立事件的概率[典例精析](1)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立,则同一工作日至少3人需使用设备的概率为________.(2)某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率为________.[解析] (1)设甲、乙、丙、丁需使用设备分别为事件A ,B ,C ,D ,则P (A )=0.6,P (B )=P (C )=0.5,P (D )=0.4,恰好3人使用设备的概率P 1=P (A BCD +A B CD +AB C D +ABC D )=(1-0.6)×0.5×0.5×0.4+0.6×(1-0.5)×0.5×0.4+0.6×0.5×(1-0.5)×0.4+0.6×0.5×0.5×(1-0.4)=0.25,4人使用设备的概率P 2=0.6×0.5×0.5×0.4=0.06,故所求概率P =0.25+0.06=0.31.(2)依题意,该选手第2个问题回答错误,第3,4个问题均回答正确,第1个问题回答正误均有可能,则所求概率P =1×0.2×0.82=0.128. [答案] (1)0.31 (2)0.128 [变式发散]1.(变设问)保持本例(2)条件不变,则该选手恰好回答了5个问题就晋级下一轮的概率为________. 解析:依题意,该选手第3个问题的回答是错误的,第4,5个问题均回答正确,第1,2个问题回答均错误或有且只有1个错误,则所求概率P =0.23×0.82+2×0.2×0.8×0.2×0.82=0.005 12+0.040 96=0.046 08. 答案:0.046 082.(变设问)保持本例(2)条件不变,则该选手回答了5个问题(5个问题必须全部回答)就结束的概率为________.解析:依题意,设答对的事件为A ,可分第3个回答正确与错误两类,若第3个回答正确,则有A A A A 或A A A A 两类情况,其概率为:0.8×0.2×0.8×0.2+0.2×0.2×0.8×0.2=0.025 6+0.006 4=0.032.若该选手第3个问题的回答是错误的,第1,2个问题回答均错误或有且只有1个错误,则所求概率P =0.23+2×0.2×0.8×0.2=0.008+0.064=0.072.所以所求概率为0.032+0.072=0.104. 答案:0.104[题组训练]1.在高三的某次模拟考试中,对于数学选修4系列的考查中,甲同学选做《不等式选讲》的概率为13,乙同学选做《不等式选讲》的概率为14,假定二人的选择相互之间没有影响,那么这次模拟考试中甲、乙两个同学至少有1人选做《不等式选讲》的概率为________.解析:记高三的某次模拟考试中“甲同学不选做《不等式选讲》”为事件A ,“乙同学不选做《不等式选讲》”为事件B ,且A ,B 相互独立.依题意,P (A )=1-13=23,P (B )=1-14=34,所以P (AB )=P (A )·P (B )=23×34=12.又因为甲、乙二人至少有一人选做《不等式选讲》的对立事件为甲、乙二人都不选做《不等式选讲》,所以所求概率为1-P (AB )=1-12=12.答案:122.从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14. (1)设X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列; (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.解:(1)随机变量X 的所有可能取值为0,1,2,3,则P (X =0)=)211(-×)311(-×)411(-=14,P (X =1)=12×)311(-×)411(-)411(-+)211(-×13×)411(-+)211(-×)311(-×14=1124,P (X =2)=)211(-×13×14+12×)311(-×14+12×13×)411(-=14,P (X =3)=12×13×14=124.所以随机变量X 的分布列为(2)设Y 表示第一辆车遇到红灯的个数,Z 表示第二辆车遇到红灯的个数,则所求事件的概率为P (Y +Z =1)=P (Y =0,Z =1)+P (Y =1,Z =0)=P (Y =0)P (Z =1)+P (Y =1)P (Z =0)=14×1124+1124×14=1148.所以这2辆车共遇到1个红灯的概率为1148.考点三 独立重复试验与二项分布[典例精析]九节虾的真身是虎斑虾,虾身上有一深一浅的横向纹路,煮熟后有明显的九节白色花纹,肉味鲜美.某酒店购进一批九节虾,并随机抽取了40只统计质量,得到的结果如下表所示:(1)若购进这批九节虾35 000 g ,且同一组数据用该组区间的中点值代表,试估计这批九节虾的数量(所得结果保留整数);(2)以频率估计概率,若在本次购买的九节虾中随机挑选4只,记质量在[5,25)间的九节虾的数量为X ,求X 的分布列.[解] (1)由表中数据可以估计每只九节虾的质量为140×(4×10+12×20+11×30+8×40+5×50)=29.5(g),因为35 000÷29.5≈1 186(只), 所以这批九节虾的数量约为1 186只.(2)由表中数据知,任意挑选1只九节虾,质量在[5,25)间的概率p =4+1240=25,X 的所有可能取值为0,1,2,3,4,则P (X =0)=)53(4=81625,P (X =1)=C 14×25×)53(3=216625,P (X =2)=C 24×)52(2×)53(2=216625,P (X =3)=C 34×)52(3×35=96625,P (X =4)=)52(4=16625. 所以X 的分布列为[题组训练]1.甲、乙两名运动员练习定点投球,已知在该点每次投篮甲命中的概率是0.8,乙命中的概率是0.9,每人投两次,则甲、乙都恰好命中一次的概率为( )A.0.32B.0.18C.0.50D.0.057 6 解析:选D 甲命中一次的概率为C 12×0.8×(1-0.8)=0.32,乙命中一次的概率为C 12×0.9×(1-0.9)=0.18,他们投篮命中与否相互独立,所以甲、乙都恰好命中一次的概率为P =0.32×0.18=0.057 6.2.一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的分布列; (2)玩三盘游戏,至少有一盘出现音乐的概率为多少? 解:(1)X 可能的取值为10,20,100,-200.根据题意,有P (X =10)=C 13×)21(1×)211(-2=38,P (X =20)=C 23×)21(2×)211(-1=38, P (X =100)=)21(3=18,P (X =-200)=)211(-3=18.所以X 的分布列为(2)设“第i 盘游戏没有出现音乐”为事件A i (i =1,2,3),则P (A 1)=P (A 2)=P (A 3)=P (X =-200)=18.所以“三盘游戏中至少有一盘出现音乐”的概率为1-P (A 1A 2A 3)=1-)81(3=1-1512=511512.因此,玩三盘游戏,至少有一盘出现音乐的概率为511512.[课时跟踪检测]A 级 1.如果生男孩和生女孩的概率相等,则有3个小孩的家庭中女孩多于男孩的概率为( )A.23B.12C.34D.14解析:选B 设女孩个数为X ,女孩多于男孩的概率为P (X ≥2)=P (X =2)+P (X =3)=C 23×)21(2×12+C 33×)21(3=3×18+18=12.2.(2018·广西三市第一次联考)某机械研究所对新研发的某批次机械元件进行寿命追踪调查,随机抽查的200个机械元件情况如下:30天以上的概率为( )A.1316B.2764C.2532D.2732解析:选D 由表可知元件使用寿命在30天以上的频率为150200=34,则所求概率为C 23)43(2×14+)43(3=2732. 3.(2019·武汉调研)小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A 为“4个人去的景点不相同”,事件B 为“小赵独自去一个景点”,则P (A |B )=( )A.29B.13C.49D.59解析:选A 小赵独自去一个景点共有4×3×3×3=108种情况,即n (B )=108,4个人去的景点不同的情况有A 44=4×3×2×1=24种,即n (AB )=24,∴P (A |B )=n (AB )n (B )=24108=29. 4.甲、乙两个小组各10名学生的英语口语测试成绩如下(单位:分).甲组:76,90,84,86,81,87,86,82,85,83 乙组:82,84,85,89,79,80,91,89,79,74现从这20名学生中随机抽取一人,将“抽出的学生为甲组学生”记为事件A ;“抽出的学生的英语口语测试成绩不低于85分”记为事件B ,则P (AB ),P (A |B )的值分别是( )A.14,59B.14,49C.15,59D.15,49 解析:选A 由题意知,P (AB )=1020×510=14,根据条件概率的计算公式得P (A |B )=P (AB )P (B )=14920=59.5.在一个质地均匀的小正方体的六个面中,三个面标0,两个面标1,一个面标2,将这个小正方体连续抛掷两次,若向上的数字的乘积为偶数,则该乘积为非零偶数的概率为( )A.14B.89C.116D.532解析:选D 两次数字乘积为偶数,可先考虑其反面——只需两次均出现1向上,故两次数字乘积为偶数的概率为1-2)62(=89;若乘积非零且为偶数,需连续两次抛掷小正方体的情况为(1,2)或(2,1)或(2,2),概率为13×16×2+16×16=536.故所求条件概率为53689=532. 6.设由0,1组成的三位编号中,若用A 表示“第二位数字为0的事件”,用B 表示“第一位数字为0的事件”,则P (A |B )=________.解析:因为第一位数字可为0或1,所以第一位数字为0的概率P (B )=12,第一位数字为0且第二位数字也是0,即事件A ,B 同时发生的概率P (AB )=12×12=14,所以P (A |B )=P (AB )P (B )=1412=12.答案:127.事件A ,B ,C 相互独立,如果P (AB )=16,P (B C )=18,P (AB C )=18,则P (B )=______,P (A B )=______.解析:由题意得⎩⎪⎨⎪⎧P (A )·P (B )=16, ①P (B )·P (C )=18, ②P (A )·P (B )·P (C )=18, ③由③÷①得P (C )=34,所以P (C )=1-P (C )=1-34=14.将P (C )=14代入②得P (B )=12,所以P (B )=1-P (B )=12,由①可得P (A )=13,所以P (A B )=P (A )·P (B )=23×12=13. 答案:12 138.某大厦的一部电梯从底层出发后只能在第17,18,19,20层停靠,若该电梯在底层有5个乘客,且每位乘客在这四层的每一层下电梯的概率为14,用ξ表示5位乘客在第20层下电梯的人数,则P (ξ=4)=________.解析:考查一位乘客是否在第20层下电梯为一次试验,这是5次独立重复试验,故ξ~B )41,5(,即有P (ξ=k )=C k 5k )41(×)43(5-k ,k =0,1,2,3,4,5.故P (ξ=4)=C 45)41(4×)43(1=151 024. 答案:151 0249.挑选空军飞行员可以说是“万里挑一”,要想通过需要过五关:目测、初检、复检、文考(文化考试)、政审.若某校甲、乙、丙三位同学都顺利通过了前两关,根据分析甲、乙、丙三位同学能通过复检关的概率分别是0.5,0.6,0.75,能通过文考关的概率分别是0.6,0.5,0.4,由于他们平时表现较好,都能通过政审关,若后三关之间通过与否没有影响.(1)求甲、乙、丙三位同学中恰好有一人通过复检的概率; (2)设只要通过后三关就可以被录取,求录取人数X 的分布列.解:(1)设A ,B ,C 分别表示事件“甲、乙、丙通过复检”,则所求概率P =P (A B C )+P (A B C )+P (A B C )=0.5×(1-0.6)×(1-0.75)+(1-0.5)×0.6×(1-0.75)+(1-0.5)×(1-0.6)×0.75=0.275. (2)甲被录取的概率为P 甲=0.5×0.6=0.3, 同理P 乙=0.6×0.5=0.3,P 丙=0.75×0.4=0.3.∴甲、乙、丙每位同学被录取的概率均为0.3,故可看成是独立重复试验,即X ~B (3,0.3),X 的可能取值为0,1,2,3,其中P (X =k )=C k 3(0.3)k ·(1-0.3)3-k ,k =0,1,2,3. 故P (X =0)=C 03×0.30×(1-0.3)3=0.343,P (X =1)=C 13×0.3×(1-0.3)2=0.441, P (X =2)=C 23×0.32×(1-0.3)=0.189,P (X =3)=C 33×0.33=0.027,故X 的分布列为10.甲、乙两人各射击一次,击中目标的概率分别为23和34.假设两人射击是否击中目标相互之间没有影响,每人每次射击是否击中目标相互之间也没有影响. (1)求甲射击4次,至少有1次未击中目标的概率;(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;(3)假设每人连续2次未击中目标,则终止其射击.问:乙恰好射击5次后,被终止射击的概率为多少? 解:(1)记“甲连续射击4次,至少有1次未击中目标”为事件A 1,则事件A 1的对立事件A 1为“甲连续射击4次,全部击中目标”.由题意知,射击4次相当于做4次独立重复试验.故P (A 1)=C 44)32(4=1681.所以P (A 1)=1-P (A 1)=1-1681=6581. 所以甲连续射击4次,至少有一次未击中目标的概率为6581.(2)记“甲射击4次,恰好有2次击中目标”为事件A 2,“乙射击4次,恰好有3次击中目标”为事件B 2,则P (A 2)=C 24×)32(2×)321(-2=827,P (B 2)=C 34)43(3×)431(-1=2764. 由于甲、乙射击相互独立,故P (A 2B 2)=P (A 2)P (B 2)=827×2764=18. 所以两人各射击4次,甲恰有2次击中目标且乙恰有3次击中目标的概率为18.(3)记“乙恰好射击5次后,被终止射击”为事件A 3,“乙第i 次射击未击中”为事件D i (i =1,2,3,4,5), 则A 3=D 5D 4D 3(D 2D 1∪D 2D 1∪D 2D 1),且P (D i )=14.由于各事件相互独立,故P (A 3)=P (D 5)P (D 4)P (D 3)P (D 2D 1+D 2D 1+D 2D 1)=14×14×34×)41411(⨯-=451 024. 所以乙恰好射击5次后,被终止射击的概率为451 024.B 级1.箱子里有5个黑球,4个白球,每次随机取出一个球,若取出黑球,则放回箱中,重新取球;若取出白球,则停止取球,那么在第4次取球之后停止的概率为( )A.C 35C 14C 45 B.)95(3×49 C.35×14 D.C 14×)95(3×49 解析:选B 由题意知,第四次取球后停止是当且仅当前三次取的球是黑球,第四次取的球是白球的情况,此事件发生的概率为)95(3×49.2.已知盒中装有3只螺口灯泡与7只卡口灯泡,这些灯泡的外形都相同且灯口向下放着,现需要一只卡口灯泡,电工师傅每次从中任取一只并不放回,则在他第1次抽到的是螺口灯泡的条件下,第2次抽到的是卡口灯泡的概率为( )A.310B.29C.78D.79解析:选D 设事件A 为“第1次抽到的是螺口灯泡”,事件B 为“第2次抽到的是卡口灯泡”,则P (A )=310,P (AB )=310×79=730.则所求概率为P (B |A )=P (AB )P (A )=730310=79. 3.为了防止受到核污染的产品影响我国民众的身体健康,要求产品在进入市场前必须进行两轮核辐射检测,只有两轮都合格才能进行销售,否则不能销售.已知某产品第一轮检测不合格的概率为16,第二轮检测不合格的概率为110,两轮检测是否合格相互没有影响.若产品可以销售,则每件产品获利40元;若产品不能销售,则每件产品亏损80元.已知一箱中有4件产品,记一箱产品获利X 元,则P (X ≥-80)=________. 解析:由题意得该产品能销售的概率为)611(-)1011(-=34.易知X 的所有可能取值为-320,-200,-80,40,160,设ξ表示一箱产品中可以销售的件数,则ξ~B )43,4(,所以P (ξ=k )=C k 4)43(k )41(4-k, 所以P (X =-80)=P (ξ=2)=C 24)43(2)41(2=27128,P (X =40)=P (ξ=3)=C 34)43(3)41(1=2764, P (X =160)=P (ξ=4)=C 44)43(4)41(0=81256, 故P (X ≥-80)=P (X =-80)+P (X =40)+P (X =160)=243256.答案:2432564.从某市的高一学生中随机抽取400名同学的体重进行统计,得到如图所示的频率分布直方图.(1)估计从该市高一学生中随机抽取一人,体重超过60 kg 的概率; (2)假设该市高一学生的体重X 服从正态分布N (57,σ2).①利用(1)的结论估计该高一某个学生体重介于54~57 kg 之间的概率;②从该市高一学生中随机抽取3人,记体重介于54~57 kg 之间的人数为Y ,利用(1)的结论,求Y 的分布列.解:(1)这400名学生中,体重超过60 kg 的频率为(0.04+0.01)×5=14,由此估计从该市高一学生中随机抽取一人,体重超过60 kg 的概率为14.(2)①∵X ~N (57,σ2),由(1)知P (X >60)=14,∴P (X <54)=14,∴P (54<X <60)=1-2×14=12,∴P (54<X <57)=12×12=14,即高一某个学生体重介于54~57 kg 之间的概率为14.②∵该市高一学生总体很大,∴从该市高一学生中随机抽取3人,可以视为独立重复试验, 其中体重介于54~57 kg 之间的人数Y ~B )41,3(,其中P (Y =i )=C i 3)41(i )43(3-i ,i =0,1,2,3.∴Y 的分布列为5.为了适当疏导电价矛盾,保障电力供应,支持可再生能源发展,促进节能减排,某省于2018年推出了省内居民阶梯电价的计算标准:以一个年度为计费周期、月度滚动使用,第一阶梯电量:年用电量2 160度以下(含2 160度),执行第一档电价0.565 3元/度;第二阶梯电量:年用电量2 161至4 200度(含4 200度),执行第二档电价0.615 3元/度;第三阶梯电量:年用电量4 200度以上,执行第三档电价0.865 3元/度.某市的电力部门从本市的用电户中随机抽取10户,统计其同一年度的用电情况,列表如下表:(2)现要在这10户家庭中任意选取4户,对其用电情况作进一步分析,求取到第二阶梯电量的户数的分布列;(3)以表中抽到的10户作为样本估计全市的居民用电情况,现从全市居民用电户中随机地抽取10户,若抽到k 户用电量为第一阶梯的可能性最大,求k 的值.解:(1)因为第二档电价比第一档电价多0.05元/度,第三档电价比第一档电价多0.3元/度,编号为10的用电户一年的用电量是4 600度,则该户本年度应交电费为4 600×0.565 3+(4 200-2 160)×0.05+(4 600-4 200)×0.3=2 822.38(元).(2)由题表可知,10户中位于第二阶梯电量的有4户,设取到第二阶梯电量的用户数为ξ,则ξ可取0,1,2,3,4.P (ξ=0)=C 04C 46C 410=114,P (ξ=1)=C 14C 36C 410=821,P (ξ=2)=C 24C 26C 410=37,P (ξ=3)=C 34C 16C 410=435,P (ξ=4)=C 44C 06C 410=1210, 故ξ的分布列为(3)由题意可知从全市中抽取10户,用电量为第一阶梯的户数满足X ~B )52,10(,可知P (X =k )=C k 10)52(k ·)53(10-k (k =0,1,2,3,…,10). 由⎩⎨⎧ C k 10⎝⎛⎭⎫25k ⎝⎛⎭⎫3510-k ≥C k +110⎝⎛⎭⎫25k +1⎝⎛⎭⎫359-k ,C k 10⎝⎛⎭⎫25k ⎝⎛⎭⎫3510-k ≥C k -110⎝⎛⎭⎫25k -1⎝⎛⎭⎫3511-k ,解得175≤k ≤225.又k ∈N *,所以当k =4时概率最大,故k =4.。
独立重复试验与二项分布 课件
1
4
4
k k
11 4 7 4
7 4
k
11 4
k 2.
P2 (2)
C
2 10
( 1 )2 4
(3)8 4
0.28
例2.有译电员若干员,每人独立 破到译 译密 出码密的码概 的率 概均 率为 为013.9,若9,至要少达 要配备多少人?
(lg2=0.3010,lg3=0.4771)
袋中有12个球,其中白球4个,
则:C13P(1 P)2 C23P(2 1 P) C33P3 19 27
3P(1 P)2 3P(2 1 P) P3 19 27
P3 3P(1 P) 19 , P 1
27
3
例2.甲、乙两个篮球运动员投篮 命中率为0.7及0.6,若每人各投3次, 试求甲至少胜乙2个进球的概率
P(甲胜3个球) (0.7)(3 1 0.6)3 0.021952
P( 3) P( 0) 1 3 3 3 3 5 5 25
例4.有10道单项选择题,每题有4个选支,某人随机选定 每题中其中一个答案,求答对多少题的概率最大?并求 出此种情况下概率的大小.
解:设“答对k题”的事件为A,用P1(0 k)表示其概率,由
P10 (k )
P10 (k 1)
可以发现
P(Bk ) C3k pkq3k,k=0,1,2,3
一般地,在n次独立重复试验中,设事件A发生的次数 为X,在每次试验中事件A发生的概率是P,那么在n次 独立重复试验中,这个事件恰好发生k次的概率
A
P( X k) Cnk pk (1 p)nk,k 0,1,2,, n
此时称随机变量X服从二项分布,记作X~B(n,p), 并称p为成功概率。
独立重复试验与二项分布 课件
1.n次独立重复试验的概念 一般地,在__相__同____条件下重复做的n次试验称为n次 独立重复试验. 想一想 甲、乙、丙三人分别射击同一个目标,都是“中”与“ 不中”两种结果,是三次独立重复试验吗? 提示:不是,因三人射击水平不同,而不是在相同条件下 进行的重复试验.
2.二项分布
ξ
0
1
2
3
P
27 125
54 125Leabharlann 36 1258 125
【名师点评】 解决此类问题首先判断随机变量是否服从二
项分布:一般地,如果几个相互独立的试验具备相同的条件,在 这相同的条件下只有两个结果(A 和-A ),且 P(A)相同,那么即可 建立二项分布的概率模型;其次计算 P(ξ=k)=Cknpk(1-p)n- k,k=0,1,2,…,n;最后根据每次试验都是相互独立的,求出相应 的概率即可.
所以,甲队以 3∶0 胜利、以 3∶1 胜利的概率都为287, 以 3∶2 胜利的概率为247.5 分
(2)设“乙队以 3∶2 胜利”为事件 A4, 由题意,各局比赛结果相互独立,所以
P(A4)=C241-232×232×1-12=247.6 分
由题意,随机变量 X 的所有可能的取值为 0,1,2,3.7 分 根据事件的互斥性得
是25,设 ξ 为途中遇到红灯的次数,求随机变量 ξ 的分布列.
【解】 由题意 ξ~B3,25,则 P(ξ=0)=C03520533=12275,P(ξ=1)=C13251352=15245, P(ξ=2)=C23522531=13265, P(ξ=3)=C33523=1825.
所以离散型随机变量 ξ 的分布列为
题型一 独立重复试验概率的求法
独立重复试验与二项分布 课件
(2)记“甲射击 4 次,恰有 2 次击中目标”为事件 A2,“乙射击 4 次,恰 有 3 次击中目标”为事件 B2,则
P(A2)=C24×232×1-234-2=287; P(B2)=C34×343×1-344-3=2674. 由于甲、乙射击相互独立,故 P(A2B2)=P(A2)P(B2)=287×2674=18. 所以两人各射击 4 次,甲恰有 2 次击中目标且乙恰有 3 次击中目标的概率为18.
又 P(C)=C232321-2323×13×12+13×23× 12+13×13×12=1304 , P(D)=C3323313×13×12=345, 由互斥事件的概率公式得 P(AB)=P(C)+P(D)=1304 +345=3345 =23443.
[规律方法] 对于概率问题的综合题,首先,要准确地确定事件的性 质,把问题化归为古典概型、互斥事件、独立事件、独立重复试验四类事件 中的某一种;其次,要判断事件是A+B还是AB,确定事件至少有一个发 生,还是同时发生,分别运用相加或相乘事件公式,最后,选用相应的求古 典概型、互斥事件、条件概率、独立事件、n次独立重复试验的概率公式求 解.
二项分布
某公司招聘员工,先由两位专家面试,若两位专家都同意通过,
则视作通过初审予以录用;若这两位专家都未同意通过,则视作未通过初审
不予录用;当这两位专家意见不一致时,再由第三位专家进行复审,若能通
过复审则予以录用,否则不予录用.设应聘人员获得每位初审专家通过的概
率均为1,复审能通过的概率为 3 ,各专家评审的结果相互独立.
概率为 P=C23122×12=38.]
独立重复试验与二项分布
独立重复试验与二项分布一 独立重复试验的定义:一般地,在相同的条件下重复做的n 次试验称为n 次独立重复试验。
二 独立重复试验的内容:⑴“相同的条件下”意思就是每次试验结果不会受到其他试验的影响,各个试验相互独立。
因而有n 次独立重复试验的结果123,,,......n A A A A123123P(A A A ....A )(A )P(A )P(A ).....P(A )n n P 有(2)独立重复试验的两个特征:① 每次试验条件都完全相同,有关概率保持不变,② 独立重复试验只能有两个结果,即发生于不发生,成功与失败。
相当与特殊的0-1分布。
(3)独立重复试验的实际原型就是有放回的抽样调查。
eg 1独立重复试验应满足的条件是:①每次试验之间是相互独立的;②每次试验只有发生于不发生两种结果;③每次试验中发生的机会是均等的;④每次试验大声的事件是互斥的。
(①②③)三 二项分布定义:一般滴,在n 次独立重复试验中,设事件A 发生的次数为X ,在 每次试验中A 发生的概率为P ,那么在n 次独立重复试验中事件,事件A 恰好发生看k 次的概率为此时称随机变量X ~B (n ,p ),p 为成功的概率。
eg1 甲乙两个运动员投篮命中率分别为0.7和0.6,每人投篮3次,求:(1)二人进球数相等的概率;(0.321)(2)甲比乙进球多的概率。
(0.436)2 某人射击5次,每次中靶的概率均为0.9,求他至少有2次中靶的概率?(0.99954)四 利用二项分布解题:利用二项分布的模型可以快速滴写出随机变量的分布列,从而简化求随机变量取每一个具体值概率的繁琐过程,关键在在实际问题中去建立二项分布的模型,看它是否为n 次独立重复试验随机变量是否为在这n 次独立重复试验事件发生的次数,如何符合则直接运用公式解题。
eg 某公式安装了3台报警器,他们彼此独立工作,且发生险情时 每台报警器报警的概率均为0.9,求发生险情时,下列事件的概率?(1)3台都未报警的;(2)恰有一台报警;(3)恰有2台报警;(4)3台都报警;(5)至少有2太报警;(6)至少有一台报警;五 奇异随机事件概率的步骤:第一步,确定事件的性质,古典、互斥、独立、独立重复。
数学独立重复试验与二项分布
=k)=C3k×0.9k×0.13-k,k=0,1,2,3,故 ξ 的分布列是
ξ
0
1
2
3
P 0.001 0.027 0.243 0.729
第30页/共37页
解决此类问题首先判断随机变量是否服从二项分布: 一般地,如果几个相互独立的试验具备相同的条件,在这 相同的条件下只有两个结果(A 和A-),且 P(A)相同,那么 即可建立二项分布的概率模型;其次计算 P(ξ=k)=Cknpk(1 -p)n-k,k=0,1,2,…,n;最后根据每次试验都是相互独 立的,求出相应的概率即可.
(2)该射手射击了 5 次,其中恰有 3 次击中目标.根据排列 组合知识,5 次当中选 3 次,共有 C35种情况,因为各次射击 的结果互不影响,所以符合 n 次独立重复试验概率模型.故 所求概率为 P=C35×(35)3×(1-35)2=261265;
第10页/共37页
(3)该射手射击了 5 次,其中恰有 3 次连续击中目标,而其他 两次没有击中目标,应用排列组合知识,把 3 次连续击中目 标看成一个整体可得共有 C13种情况. 故所求概率为 P=C13·(35)3·(1-35)2=3312245.
第14页/共37页
1.在人寿保险事业中,很重视某一年龄段的投保人的 死亡率,假如每个投保人能活到65岁的概率为0.6, 试问3个投保人中: (1)全部活到65岁的概率; (2)有2个活到65岁的概率; (3)有1个活到65岁的概率; (4)都活不到65岁的概率.
第15页/共37页
解:设 A={投保人能活到 65 岁}, 则 A ={投保人活不到 65 岁},P(A)=p=0.6, 所以 P( A )=1-p=1-0.6=0.4. 3 个投保人中活到 65 岁的人数 X 相当于 3 次独立重复试验 中事件 A 发生的次数,则 X~B(3,0.6).
二项分布与n次独立重复试验的模型-精品
二项分布与n次独立重复试验的模型【知识点的知识】1、二项分布:一般地,在〃次独立重复的试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为P,则P(X=k)〃力攵=(),1,2,…〃,此时称随机变量X服从二项分布,记作X~B(72,p),并记(1・〃)nk=h(k,n,〃).2、独立重复试验:(1)独立重复试验的意义:做〃次试验,如果它们是完全同样的一个试验的重复,且它们相互独立,那么这类试验叫做独立重复试验.(2)一般地,在〃次独立重复试验中,设事件4发生的次数为X,在每件试验中事件A发生的概率为P,那么在〃次独立重复试验中,事件A恰好发生k次的概率为。
(X=A)=C: p k(1-p)n'k,k=0,1,2,…小此时称随机变量X服从二项分布,记作X〜8(小p), 并称p为成功概率.(3)独立重复试验:若〃次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这〃次试验是独立的.(4)独立重复试验概率公式的特点:P〃(k)=c5/'(I・p)"勺是〃次独立重复试验中某事件A恰好发生Z次的概率.其中,〃是重复试验的次数,〃是一次试验中某事件A发生的概率,左是在〃次独立重复试验中事件A恰好发生的次数,需要弄清公式中小〃,左的意义,才能正确运用公式.【典型例题分析】典例1:如果C〜8(100,2),当P(C=攵)取得最大值时-,攵=50.2解:•・・C〜B(100,—2当P(g=k)= c|)k呜)1。
工端口g)叫由组合数知,当女=50时取到最大值.故答案为:50.典例2:一个盒子里有2个黑球和机个白球(”22,且加EN*),现举行摸奖活动:从盒中取球,每次取2个,记录颜色后放回.若取出2球的颜色相同则为中奖,否则不中.(I)求每次中奖的概率〃(用〃z表示);(II)若m=3,求三次摸奖恰有一次中奖的概率;(III)记三次摸奖恰有一次中奖的概率为/(p),当〃z为何值时,/(p)取得最大值?解:(I)・・♦取出2球的颜色相同则为中奖,2 2・・・每次中奖的概率〃=T~^=1-m+2;C JR+2m+3m+2(11)若加=3,每次中奖的概率p=2,5・・•三次摸奖恰有一次中奖的概率为心•■1,(1-春)2=黑;J5 5 125(III)三次摸奖恰有一次中奖的概率为/(p)=C;p(l-p)2=3p3・6p2+3p(OVpVl),:.f(〃)=3(p-1)(3p-1),・•・/(〃)在(0,—)上单调递增,在(1,1)上单调递减,3 32・・〃=《时,/(p)取得最大值,即〃=$%&=23 m2+3m+23・・・加=2,即机=2时,f(p)取得最大值.【解题方法点拨】独立重复试验是相互独立事件的特例(概率公式也是如此),就像对立事件是互斥事件的特例一样,只要有“恰好”字样的用独立重复试验的概率公式计算更简单,就像有“至少”或“至多”字样的题用对立事件的概率公式计算更简单一样.。
n次独立重复试验与二项分布Word版含解析
10.8 n 次独立重复试验与二项分布[知识梳理]1.条件概率及其性质(1)对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号P (B |A )来表示,其公式为P (B |A )=P (AB )P (A )(P (A )>0).在古典概型中,若用n (A )表示事件A 中基本事件的个数,则P (B |A )=n (AB )n (A )(n (AB )表示AB 共同发生的基本事件的个数).(2)条件概率具有的性质 ①0≤P (B |A )≤1;②如果B 和C 是两个互斥事件, 则P (B ∪C |A )=P (B |A )+P (C |A ). 2.相互独立事件(1)对于事件A 、B ,若A 的发生与B 的发生互不影响,则称A 、B 是相互独立事件.(2)若A 与B 相互独立,则P (B |A )=P (B ), P (AB )=P (B |A )P (A )=P (A )P (B ).(3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立.(4)若P (AB )=P (A )P (B ),则A 与B 相互独立. 3.独立重复试验与二项分布(1)独立重复试验在相同条件下重复做的n 次试验称为n 次独立重复试验.A i (i =1,2,…,n )表示第i 次试验结果,则P (A 1A 2A 3…A n )=P (A 1)P (A 2)…P (A n ).(2)二项分布在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率是p ,此时称随机变量X 服从二项分布,记作X ~B (n ,p ),并称p 为成功概率.在n 次独立重复试验中,事件A恰好发生k 次的概率为P (X =k )=C k n p k (1-p )n -k (k =0,1,2,…,n ).[诊断自测] 1.概念思辨(1)相互独立事件就是互斥事件.( )(2)P (B |A )表示在事件A 发生的条件下,事件B 发生的概率;P (BA )表示事件A ,B 同时发生的概率,一定有P (AB )=P (A )·P (B ).( )(3)二项分布是一个概率分布,其公式相当于(a +b )n 二项展开式的通项公式,其中a =p ,b =(1-p ).( )(4)二项分布是一个概率分布列,是一个用公式P (X =k )=C k n p k(1-p )n -k ,k =0,1,2,…,n 表示的概率分布列,它表示了n 次独立重复试验中事件A 发生的次数的概率分布.( )答案 (1)× (2)× (3)× (4)√2.教材衍化(1)(选修A2-3P 55T 2(1))袋中有5个小球(3白2黑),现从袋中每次取一个球,不放回地抽取两次,则在第一次取到白球的条件下,第二次取到白球的概率是( )A.35B.34C.12D.310 答案 C解析 记事件A 为“第一次取到白球”,事件B 为“第二次取到白球”,则事件AB 为“两次都取到白球”,依题意知P (A )=35,P (AB )=35×24=310,所以P (B |A )=P (AB )P (A )=31035=12.故选C.(2)(选修A2-3P 58T 2)将一枚硬币连掷5次,如果出现k 次正面的概率等于出现k +1次正面的概率,则k =________.答案 2解析 依题意有C k 5×⎝ ⎛⎭⎪⎫12k ×⎝ ⎛⎭⎪⎫125-k =C k +15×⎝ ⎛⎭⎪⎫12k +1×⎝ ⎛⎭⎪⎫125-(k +1),所以C k 5=C k +15,所以k =2.3.小题热身(1)两个实习生每人加工一个零件,加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( )A.12B.512C.14D.16 答案 B解析 设事件A :甲实习生加工的零件为一等品;事件B :乙实习生加工的零件为一等品,且A ,B 相互独立,则P (A )=23,P (B )=34,所以这两个零件中恰有一个一等品的概率为P (A B -)+P (A -B )=P (A )P (B -)+P (A -)P (B )=23×⎝⎛⎭⎪⎫1-34+⎝⎛⎭⎪⎫1-23×34=512.故选B.(2)(2015·全国卷Ⅰ)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.312 答案 A解析 3次投篮投中2次的概率为P (k =2)=C 23×0.62×(1-0.6)=3×0.62×0.4,投中3次的概率为P (k =3)=0.63,所求事件的概率P =P (k =2)+P (k =3)=0.648.故选A.题型1 条件概率典例 从1,2,3,4,5中任取2个不同的数,事件A :“取到的2个数之和为偶数”,事件B :“取到的2个数均为偶数”,则P (B |A )=( )A.18B.14C.25D.12 答案 B解析 解法一:事件A 包括的基本事件:(1,3),(1,5),(3,5),(2,4)共4个.事件AB 发生的结果只有(2,4)一种情形,即n (AB )=1. 故由古典概型概率P (B |A )=n (AB )n (A )=14.故选B.解法二:P (A )=C 23+C 22C 25=410,P (AB )=C 22C 25=110.由条件概率计算公式,得P (B |A )=P (AB )P (A )=110410=14.故选B.[条件探究1] 若将本典例中的事件B 改为“取到的2个数均为奇数”,则结果如何?解 P (A )=C 23+C 22C 25=25,P (B )=C 23C 25=310.又B ⊆A ,则P (AB )=P (B )=310,所以P (B |A )=P (AB )P (A )=P (B )P (A )=34. [条件探究2] 本典例条件改为:从1,2,3,4,5中不放回地依次取2个数,事件A 为“第一次取到的是奇数”,事件B 为“第二次取到的是奇数”,求P (B |A )的值.解 从1,2,3,4,5中不放回地依次取2个数,有A 25种方法;其中第一次取到的是奇数,有A 13A 14种方法;第一次取到的是奇数且第二次取到的是奇数,有A 13A 12种方法.则P (A )=A 13A 14A 25=35,P (AB )=A 13A 12A 25=310,∴P (B |A )=P (AB )P (A )=31035=12.方法技巧条件概率的两种求解方法1.利用定义,分别求P (A )和P (AB ),得P (B |A )=P (AB )P (A ),这是求条件概率的通法.2.借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再求事件A 与事件B 的交事件中包含的基本事件数n (AB ),得P (B |A )=n (AB )n (A ).冲关针对训练(2017·唐山二模)已知甲在上班途中要经过两个路口,在第一个路口遇到红灯的概率为0.5,两个路口连续遇到红灯的概率为0.4,则甲在第一个路口遇到红灯的条件下,第二个路口遇到红灯的概率为( )A .0.6B .0.7C .0.8D .0.9 答案 C解析设“第一个路口遇到红灯”为事件A,“第二个路口遇到红灯”为事件B,则P(A)=0.5,P(AB)=0.4,则P(B|A)=P(AB)P(A)=0.8.故选C.题型2相互独立事件的概率典例(2014·陕西高考)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:(1)设X表示在这块地上种植1季此作物的利润,求X的分布列;(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.解(1)设A表示事件“作物产量为300 kg”,B表示事件“作物市场价格为6元/kg”,由题设知P(A)=0.5,P(B)=0.4,∵利润=产量×市场价格-成本,∴X所有可能的取值为500×10-1000=4000,500×6-1000=2000,300×10-1000=2000,300×6-1000=800.P(X=4000)=P(A)P(B)=(1-0.5)×(1-0.4)=0.3,P(X=2000)=P(A)P(B)+P(A)P(B)=(1-0.5)×0.4+0.5×(1-0.4)=0.5,P(X=800)=P(A)P(B)=0.5×0.4=0.2,所以X的分布列为(2)设C i表示事件“第i季利润不少于2000元”(i=1,2,3),由题意知C1,C2,C3相互独立,由(1)知P(C i)=P(X=4000)+P(X=2000)=0.3+0.5=0.8(i=1,2,3),3季的利润均不少于2000元的概率为P(C1C2C3)=P(C1)P(C2)P(C3)=0.83=0.512;3季中有2季利润不少于2000元的概率为P(C1C2C3)+P(C1C2C3)+P(C1C2C3)=3×0.82×0.2=0.384,所以,这3季中至少有2季的利润不少于2000元的概率为0.512+0.384=0.896.方法技巧利用相互独立事件求概率的思路1.求解该类问题在于正确分析所求事件的构成,将其转化为彼此互斥事件的和或相互独立事件的积,然后利用相关公式进行计算.2.求相互独立事件同时发生的概率的主要方法(1)利用相互独立事件的概率乘法公式直接求解.(2)正面计算较繁(如求用“至少”表述的事件的概率)或难以入手时,可从其对立事件入手计算.冲关针对训练(2018·哈尔滨质检)某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立.(1)求至少有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元.求该企业可获利润的分布列.解 记E ={甲组研发新产品成功},F ={乙组研发新产品成功},由题设知P (E )=23,P (E -)=13,P (F )=35,P (F -)=25,且事件E 与F ,E 与F -,E -与F ,E -与F -都相互独立.(1)记H ={至少有一种新产品研发成功},则H -=E -F -, 于是P (H -)=P (E -)P (F -)=13×25=215, 故所求的概率为P (H )=1-P (H -)=1-215=1315.(2)设企业可获利润为X (万元),则X 的可能取值为0,100,120,220,因为P (X =0)=P (EF )=13×25=215,P (X =100)=P (E -F )=13×35=315=15,P (X =120)=P (E F -)=23×25=415,P (X =220)=P (EF )=23×35=615=25. 故所求的分布列为题型3 独立重复试验与二项分布典例 (2017·太原一模)近几年来,我国许多地区经常出现雾霾天气,某学校为了学生的健康,对课间操活动做了如下规定:课间操时间若有雾霾则停止组织集体活动,若无雾霾则组织集体活动.预报得知,这一地区在未来一周从周一到周五5天的课间操时间出现雾霾的概率是:前3天均为50%,后2天均为80%,且每一天出现雾霾与否是相互独立的.(1)求未来一周5天至少一天停止组织集体活动的概率; (2)求未来一周5天不需要停止组织集体活动的天数X 的分布列; (3)用η表示该校未来一周5天停止组织集体活动的天数,记“函数f (x )=x 2-ηx -1在(3,5)上有且只有一个零点”为事件A ,求事件A 发生的概率.解 (1)未来一周5天都组织集体活动的概率是P =⎝ ⎛⎭⎪⎫123⎝ ⎛⎭⎪⎫152=1200, 则至少有一天停止组织集体活动的概率是1-P =199200. (2)X 的取值是0,1,2,3,4,5,则P (X =0)=225,P (X =1)=⎝ ⎛⎭⎪⎫123×C 12×45×15+C 13⎝ ⎛⎭⎪⎫123⎝ ⎛⎭⎪⎫452=56200=725,P (X =2)=C 23⎝ ⎛⎭⎪⎫123⎝ ⎛⎭⎪⎫452+C 13⎝ ⎛⎭⎪⎫123×C 12×15×45+⎝ ⎛⎭⎪⎫123⎝ ⎛⎭⎪⎫152=73200, P (X =3)=C 13⎝ ⎛⎭⎪⎫123⎝ ⎛⎭⎪⎫152+C 23⎝ ⎛⎭⎪⎫123×C 12×15×45+⎝ ⎛⎭⎪⎫123⎝ ⎛⎭⎪⎫452=43200,P (X =4)=C 23⎝ ⎛⎭⎪⎫123⎝ ⎛⎭⎪⎫152+⎝ ⎛⎭⎪⎫123×C 12×15×45=11200,P (X =5)=⎝ ⎛⎭⎪⎫123⎝ ⎛⎭⎪⎫152=1200,所以不需要停止组织集体活动的天数X 分布列是(3)函数f (x )=x 2-ηx -1在(3,5)上有且只有一个零点,且0≤η≤5,则f (3)f (5)<0,83<η<245,故η=3或4, 故所求概率为 P (A )=[C 13⎝ ⎛⎭⎪⎫123⎝ ⎛⎭⎪⎫452+C 23⎝ ⎛⎭⎪⎫123×C 12×15×45+⎝ ⎛⎭⎪⎫123⎝ ⎛⎭⎪⎫152 ]+[ ⎝ ⎛⎭⎪⎫123×C 12×45×15+C 23⎝ ⎛⎭⎪⎫123·⎝ ⎛⎭⎪⎫452]=73200+725=129200.方法技巧1.独立重复试验的实质及应用独立重复试验的实质是相互独立事件的特例,应用独立重复试验公式可以简化求概率的过程.2.判断某概率模型是否服从二项分布P n (X =k )=C k np k (1-p )n -k 的三个条件(1)在一次试验中某事件A 发生的概率是一个常数p .(2)n 次试验不仅是在完全相同的情况下进行的重复试验,而且每次试验的结果是相互独立的.(3)该公式表示n 次试验中事件A 恰好发生了k 次的概率. 提醒:在实际应用中,往往出现数量“较大”“很大”“非常大”等字眼,这表明试验可视为独立重复试验,进而判定是否服从二项分布.冲关针对训练(2018·洛阳统考)雾霾天气对人体健康有伤害,应对雾霾污染、改善空气质量的首要任务是控制PM 2.5,要从压减燃煤、严格控车、调整产业、强化管理、联防联控、依法治理等方面采取重大举措,聚焦重点领域,严格指标考核.某省环保部门为加强环境执法监管,派遣四个不同的专家组对A 、B 、C 三个城市进行治霾落实情况抽查.(1)若每个专家组随机选取一个城市,四个专家组选取的城市可以相同,也可以不同,求恰有一个城市没有专家组选取的概率;(2)每一个城市都要由四个专家组分别对抽查情况进行评价,并对所选取的城市进行评价,每个专家组给检查到的城市评价为优的概率为12,若四个专家组均评价为优则检查通过不用复检,否则需进行复检.设需进行复检的城市的个数为X ,求X 的分布列和期望.解 (1)随机选取,共有34=81种不同方法,恰有一个城市没有专家组选取的有C 13(C 14A 22+C 24)=42种不同方法,故恰有一个城市没有专家组选取的概率为4281=1427.(2)设事件A :“一个城市需复检”,则P (A )=1-⎝ ⎛⎭⎪⎫124=1516,X 的所有可能取值为0,1,2,3,P (X =0)=C 03·⎝⎛⎭⎪⎫1163=14096,P (X =1)=C 13·⎝⎛⎭⎪⎫1162·1516=454096,P (X =2)=C 23·116·⎝ ⎛⎭⎪⎫15162=6754096, P (X =3)=C 33·⎝⎛⎭⎪⎫15163=33754096. 所以X 的分布列为!X ~B ⎝ ⎛⎭⎪⎫3,1516,E (X )=3×1516=4516.1.(2014·全国卷Ⅱ)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A .0.8B .0.75C .0.6D .0.45 答案 A解析 由条件概率公式可得所求概率为0.60.75=0.8,故选A. 2.(2017·河北“五个一名校联盟”二模)某个电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为12,两次闭合后都出现红灯的概率为15,则在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为( )A.110B.15C.25D.12 答案 C解析 设“开关第一次闭合后出现红灯”为事件A ,“第二次闭合后出现红灯”为事件B ,则由题意可得P (A )=12,P (AB )=15,则在第一次闭合后出现红灯的条件下第二次闭合出现红灯的概率是P (B |A )=P (AB )P (A )=1512=25.故选C. 3.(2016·四川高考)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是________.答案 32解析 同时抛掷两枚质地均匀的硬币,至少有一枚硬币正面向上的概率为1-⎝ ⎛⎭⎪⎫122=34,且X ~B ⎝⎛⎭⎪⎫2,34,∴均值是2×34=32.4.(2018·长沙模拟)某中学高三年级共有学生1000人,将某次模拟考试的数学成绩(满分150分,所有成绩均不低于70分)按[70,80),[80,90),…,[140,150]分成8组,并制成如图所示的频率分布直方图.(1)求x 的值;(2)试估计本次模拟考试数学成绩在[130,150]内的学生人数; (3)为了研究低分学生的失分情况,3位教师分别在自己电脑上从成绩在[80,100)内的试卷中随机抽取1份进行分析,每人抽到的试卷是相互独立的,ξ为抽到的成绩在[90,100)内的试卷数,写出ξ的分布列,并求数学期望.解 (1)由(0.002+0.005+0.008+2x +2×0.02+0.025)×10=1,得x =0.01.(2)由(1)得成绩在[130,150]内的频率为(0.01+0.008)×10=0.18,估计本次模拟考试数学成绩在[130,150]内的学生人数为1000×0.18=180.(3)由图得成绩在[80,100)内的试卷数为1000×(0.01+0.005)×10=150,其中成绩在[80,90)内的试卷数为50,成绩在[90,100)内的试卷数为100,从中任取1份试卷,则成绩在[80,90)内的概率为50150=13,成绩在[90,100)内的概率为100150=23.由题意知ξ的所有可能取值为0,1,2,3,故P (ξ=0)=C 03×⎝ ⎛⎭⎪⎫230×⎝ ⎛⎭⎪⎫133=127, P (ξ=1)=C 13×23×⎝ ⎛⎭⎪⎫132=29,P (ξ=2)=C 23×⎝ ⎛⎭⎪⎫232×13=49,P (ξ=3)=C 33×⎝ ⎛⎭⎪⎫233×⎝ ⎛⎭⎪⎫130=827.所以ξ的分布列为由于ξ~B ⎝ ⎛⎭⎪⎫3,23,所以E (ξ)=3×23=2.[重点保分 两级优选练]A 级一、选择题1.(2018·广西柳州模拟)把一枚硬币任意抛掷三次,事件A =“至少有一次出现反面”,事件B =“恰有一次出现正面”,则P (B |A )=( )A.37B.38C.78D.18 答案 A解析 依题意得P (A )=1-123=78,P (AB )=323=38,因此P (B |A )=P (AB )P (A )=37,故选A. 2.(2018·厦门模拟)甲、乙两人进行乒乓球比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为23,则甲以3∶1的比分获胜的概率为( )A.827B.6481C.49D.89 答案 A解析 第四局甲第三次获胜,并且前三局甲获胜两次,所以所求的概率为P =C 23⎝ ⎛⎭⎪⎫232×13×23=827.故选A.3.(2017·山西一模)甲乙二人争夺一场围棋比赛的冠军,若比赛为“三局两胜”制,甲在每局比赛中获胜的概率均为23,且各局比赛结果相互独立,则在甲获得冠军的情况下,比赛进行了三局的概率为( )A.13B.25C.23D.45 答案 B解析 由题意,甲获得冠军的概率为23×23+23×13×23+13×23×23=2027,其中比赛进行了3局的概率为23×13×23+13×23×23=827, ∴所求概率为827÷2027=25,故选B.4.口袋里放有大小相同的两个红球和一个白球,有放回地每次摸取一个球,定义数列{a n }:a n =⎩⎪⎨⎪⎧-1,第n 次摸取红球,1,第n 次摸取白球.如果S n为数列{a n }的前n 项和,那么S 7=3的概率为( )A .C 57⎝ ⎛⎭⎪⎫132·⎝ ⎛⎭⎪⎫235B .C 27⎝ ⎛⎭⎪⎫232·⎝ ⎛⎭⎪⎫135C .C 47⎝ ⎛⎭⎪⎫232·⎝ ⎛⎭⎪⎫135D .C 37⎝ ⎛⎭⎪⎫132·⎝ ⎛⎭⎪⎫135答案 B解析 S 7=3说明摸取2个红球,5个白球,故S 7=3的概率为C 27⎝ ⎛⎭⎪⎫232·⎝ ⎛⎭⎪⎫135,故选B.5.(2017·天津模拟)一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了X 次球,则P (X =12)等于( )A .C 1012⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582B .C 912⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582C .C 911⎝ ⎛⎭⎪⎫582⎝ ⎛⎭⎪⎫382D .C 911⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582答案 D解析 “X =12”表示第12次取到红球,且前11次有9次取到红球,2次取到白球,因此P (X =12)=C 911⎝ ⎛⎭⎪⎫389×⎝ ⎛⎭⎪⎫582×38=C 911⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582.故选D.6.如果ξ~B ⎝⎛⎭⎪⎫15,14,那么使P (ξ=k )取最大值的k 值为( )A .3B .4C .5D .3或4 答案 D解析 采取特殊值法.∵P (ξ=3)=C 315⎝ ⎛⎭⎪⎫143⎝ ⎛⎭⎪⎫3412,P (ξ=4)=C 415⎝ ⎛⎭⎪⎫144⎝ ⎛⎭⎪⎫3411,P (ξ=5)=C 515⎝ ⎛⎭⎪⎫145⎝ ⎛⎭⎪⎫3410,从而易知P (ξ=3)=P (ξ=4)>P (ξ=5).故选D.7.如图所示,在两个圆盘中,指针落在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是( )A.49B.29C.23D.13 答案 A解析 设A 表示“第一个圆盘的指针落在奇数所在的区域”,则P (A )=23,B 表示“第二个圆盘的指针落在奇数所在的区域”,则P (B )=23.则P (AB )=P (A )P (B )=23×23=49.故选A.8.设随机变量X ~B (2,p ),Y ~B (4,p ),若P (X ≥1)=59,则P (Y ≥2)的值为( )A.3281B.1127C.6581D.1681答案 B 解析P (X ≥1)=P (X =1)+P (X =2)=C 12p (1-p )+C 22p 2=59,解得p =13.⎝⎛⎭⎪⎫0≤p ≤1,故p =53舍去.故P (Y ≥2)=1-P (Y =0)-P (Y =1)=1-C 04×⎝ ⎛⎭⎪⎫234-C 14×13×⎝ ⎛⎭⎪⎫233=1127.故选B.9.某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .400 答案 B解析 1000粒种子每粒不发芽的概率为0.1,∴不发芽的种子数ξ~B (1000,0.1).∴1000粒种子中不发芽的种子数的期望E (ξ)=1000×0.1=100粒.又每粒不发芽的种子需补种2粒,∴需补种的种子数的期望E (X )=2×100=200粒.故选B.10.位于坐标原点的一个质点M 按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12,质点M 移动五次后位于点(2,3)的概率是( )A.⎝ ⎛⎭⎪⎫125 B .C 25×⎝ ⎛⎭⎪⎫125C .C 35×⎝ ⎛⎭⎪⎫123 D .C 25×C 35×⎝ ⎛⎭⎪⎫125 答案 B解析 如图,由题可知质点M 必须向右移动2次,向上移动3次才能位于点(2,3),问题相当于5次重复试验中向右恰好发生2次的概率.所求概率为P =C 25×⎝ ⎛⎭⎪⎫122×⎝ ⎛⎭⎪⎫123=C 25×⎝ ⎛⎭⎪⎫125.故选B.二、填空题11.(2017·眉山期末)已知X ~B ⎝ ⎛⎭⎪⎫8,12,当P (X =k )(k ∈N,0≤k ≤8)取得最大值时,k 的值是________.答案 4解析 ∵X ~B ⎝ ⎛⎭⎪⎫8,12,∴P (X =k )=C k 8⎝ ⎛⎭⎪⎫12k ⎝ ⎛⎭⎪⎫128-k =C k 8⎝ ⎛⎭⎪⎫128,∴当P (X =k )(k ∈N,0≤k ≤8)取得最大值时只有C k 8是一个变量, ∴根据组合数的性质得到当k =4时,概率取得最大值. 12.(2017·安顺期末)甲、乙二人参加一项抽奖活动,每人抽奖中奖的概率均为0.6,两人都中奖的概率为0.4,则已知甲中奖的前提下乙也中奖的概率为________.答案 23解析 每人抽奖中奖的概率均为0.6,两人都中奖的概率为0.4, 设甲中奖概率为P (A ),乙中奖的概率为P (B ),两人都中奖的概率为P (AB ),则P (A )=0.6,P (B )=0.6,两人都中奖的概率为P (AB )=0.4,则已知甲中奖的前提下乙也中奖的概率为P (B |A )=P (AB )P (A )=0.40.6=23.13.(2017·南昌期末)位于数轴原点的一只电子兔沿着数轴按下列规则移动:电子兔每次移动一个单位,移动的方向向左或向右,并且向左移动的概率为23,向右移动的概率为13,则电子兔移动五次后位于点(-1,0)的概率是________.答案 80243解析 根据题意,质点P 移动五次后位于点(-1,0),其中向左移动3次,向右移动2次;其中向左平移的3次有C 35种情况,剩下的2次向右平移;则其概率为C 35×⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫233=80243.14.先后掷两次骰子(骰子的六个面上分别是1,2,3,4,5,6点),落在水平桌面后,记正面朝上的点数分别为x ,y ,记事件A 为“x +y 为偶数”,事件B 为“x ,y 中有偶数且x ≠y ”,则概率P (B |A )=________.答案 13解析 根据题意,事件A 为“x +y 为偶数”,则x ,y 两个数均为奇数或偶数,共有2×3×3=18个基本事件.∴事件A 发生的概率为P (A )=2×3×36×6=12,而A ,B 同时发生,基本事件有“2+4”“2+6”“4+2”“4+6”“6+2”“6+4”,一共有6个基本事件,∴事件A ,B 同时发生的概率为P (AB )=66×6=16,∴P (B |A )=P (AB )P (A )=1612=13.B 级三、解答题15.(2017·河北“五个一名校联盟”二模)空气质量指数(Air Quality Index ,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI 大小分为六级:0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;300以上为严重污染.一环保人士记录去年某地六月10天的AQI 的茎叶图如图. (1)利用该样本估计该地六月空气质量为优良(AQI ≤100)的天数; (2)将频率视为概率,从六月中随机抽取3天,记三天中空气质量为优良的天数为ξ,求ξ的分布列和数学期望.解 (1)从茎叶图中可以发现样本中空气质量为优的天数为2,空气质量为良的天数为4,∴该样本中空气质量为优良的频率为610=35,从而估计该地六月空气质量为优良的天数为30×35=18.(2)由(1)估计某天空气质量为优良的概率为35,ξ的所有可能取值为0,1,2,3,且ξ~B ⎝ ⎛⎭⎪⎫3,35.∴P (ξ=0)=⎝ ⎛⎭⎪⎫253=8125,P (ξ=1)=C 13⎝ ⎛⎭⎪⎫35⎝ ⎛⎭⎪⎫252=36125,P (ξ=2)=C 23⎝ ⎛⎭⎪⎫352⎝ ⎛⎭⎪⎫25=54125,P (ξ=3)=⎝ ⎛⎭⎪⎫353=27125,ξ的分布列为E (ξ)=3×35=1.8.16.党的十九大报告提出:要提高人民健康水平,改革和完善食品、药品安全监管体制.为加大监督力度,某市工商部门对本市的甲、乙两家小型食品加工厂进行了突击抽查,从两个厂家生产的产品中分别随机抽取10件样品,测量该产品中某种微量元素的含量(单位:毫克),所得测量数据如图.食品安全法规定:优等品中的此种微量元素含量不小于15毫克. (1)从甲食品加工厂抽出的上述10件样品中随机抽取4件,求抽到的4件产品优等品的件数ξ的分布列;(2)若从甲、乙两个食品加工厂的10件样品中分别任意抽取3件,求甲、乙食品加工厂抽到的优等品的件数恰好相同的概率.解 (1)由茎叶图,从甲食品加工厂抽出的10件样品中,优等品有8件,非优等品有2件,故抽取的4件样品中至少有2件优等品,ξ的可能取值为2,3,4.P(ξ=2)=C28C22C410=215,P(ξ=3)=C38C12C410=815,P(ξ=4)=C48C02C410=13.ξ的分布列为4错(2)甲食品加工厂抽取的样品中优等品有8件,乙食品加工厂抽取的样品中优等品有7件.故从甲、乙两个食品加工厂的10件样品中分别任意抽取3件,则优等品的件数相同时,可能为1件、2件或3件.优等品同为3件的概率P1=C38C02C310×C37C03C310=49360;优等品同为2件时的概率P2=C28C12C310×C27C13C310=49200;优等品同为1件时的概率P3=C18C22C310×C17C23C310=7600.故所求事件的概率为P=P1+P2+P3=49360+49200+7600=7071800.17.(2018·郑州质检)2017年3月15日下午,谷歌围棋人工智能AlphaGo与韩国棋手李世石进行最后一轮较量,AlphaGo获得本场比赛胜利,最终人机大战总比分定格在1∶4.人机大战也引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查.根据调查结果绘制的学生日均学习围棋时间的频率分布直方图如图所示,将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.(1)根据已知条件完成下面的列联表,并据此资料判断是否有95%的把握认为“围棋迷”与性别有关?(2)将上述调查所得到的频率视为概率.现在从该地区大量学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名学生中的“围棋迷”人数为X .若每次抽取的结果是相互独立的,求X 的分布列,期望E (X )和方差D (X ).附:K 2=n (ad -bc )2(a +b )(c +d)(a +c )(b +d ),其中n =a +b +c +d .解 (1)由频率分布直方图可知,在抽取的100人中,“围棋迷”有25人,从而2×2列联表如下:将2×2列联表中的数据代入公式计算,得K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=100×(30×10-15×45)245×55×75×25=10033≈3.030,因为3.030<3.841,所以没有95%的把握认为“围棋迷”与性别有关.(2)由频率分布直方图知抽到“围棋迷”的频率为0.25,将频率视为概率,即从该地区学生中抽取一名“围棋迷”的概率为14.由题意知,X ~B ⎝⎛⎭⎪⎫3,14,从而X 的分布列为E (X )=3×14=34,D (X )=3×14×34=916.18.(2018·湖南十三校联考)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为P 0(0<P 0<1),中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(1)张三选择方案甲抽奖,李四选择方案乙抽奖,记他们的得分和为X ,若X ≤3的概率为79,求P 0;(2)若张三、李四两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,得分和的数学期望较大?解 (1)由已知得张三中奖的概率为23,李四中奖的概率为P 0,且两人中奖与否互不影响.记“这2人的得分和X ≤3”为事件A ,则事件A 的对立事件为“X =5”.因为P (X =5)=23×P 0,所以P (A )=1-P (X =5)=1-23×P 0=79,所以P 0=13.(2)设张三、李四都选择方案甲抽奖的中奖次数为X 1,都选择方案乙抽奖的中奖次数为X 2,则这两人选择方案甲抽奖得分和的数学期望为E (2X 1), 选择方案乙抽奖得分和的数学期望为E (3X 2), 由已知可得X 1~B ⎝⎛⎭⎪⎫2,23,X 2~B (2,P 0),所以E (X 1)=2×23=43,E (X 2)=2P 0,从而E (2X 1)=2E (X 1)=83,E (3X 2)=3E (X 2)=6P 0. 若E (2X 1)>E (3X 2),则83>6P 0⇒0<P 0<49; 若E (2X 1)<E (3X 2),则83<6P 0⇒49<P 0<1; 若E (2X 1)=E (3X 2),则83=6P 0⇒P 0=49.综上所述,当0<P 0<49时,他们都选择方案甲进行抽奖时,得分和的数学期望较大;当49<P 0<1时,他们都选择方案乙进行抽奖时,得分和的数学期望较大;当P 0=49时,他们都选择方案甲或都选择方案乙进行抽奖时,得分和的数学期望相等.。
独立重复试验与二项分布 课件
1.n 次独立重复试验 一般地,在 相同 条件下重复做的 n 次试验称为 n 次独立重 复试验.
2.二项分布 前提
X 字母事件 A 发生的次数
每次试验中事件 A 发生的概率 P(X=k)=Cpk(1-p)n-k,k= 0,1,2,…,n
8 729
解决二项分布问题的两个关注点 (1)对于公式 P(X=k)=Cknpk(1-p)n-k(k=0,1,2,…,n)必须 在满足“独立重复试验”时才能运用,否则不能应用该公式. (2)判断一个随机变量是否服从二项分布,关键有两点:一是对 立性,即一次试验中,事件发生与否两者必有其一;二是重复 性,即试验是独立重复地进行了 n 次.
Y01 2
P
77 15 15
1 15
二项分布实际应用问题的解题策略 (1)根据题意设出随机变量. (2)分析出随机变量服从二项分布. (3)找到参数 n(试验的次数)和 p(事件发生的概率). (4)写出二项分布的分布列.
另一枚的点数为点 P 的纵坐标,求连续抛掷这两枚骰子三次, 点 P 在圆 x2+y2=16 内的次数 X 的分布列. 【解】 由题意可知,点 P 的坐标共有 6×6=36(种)情况,其 中在圆 x2+y2=16 内的有点(1,1),(1,2),(1,3),(2,1), (2,2),(2,3),(3,1),(3,2)共 8 种,则点 P 在圆 x2+y2= 16 内的概率为386=29.
结论 记法
随机变量 X 服从二项分布 记作 X~B(n,p) ,并称 p 为
成功概率
探究点 1 独立重复试验的概率 甲、乙两人各射击一次,击中目标的概率分别是23和34,
假设每次射击是否击中目标,相互之间没有影响.(结果须用分 数作答) (1)求甲射击 3 次,至少 1 次未击中目标的概率; (2)求两人各射击 2 次,甲恰好击中目标 2 次且乙恰好击中目标 1 次的概率.
独立重复试验与二项分布 课件
为若干个相互独立事件的乘积.这两个步骤做好了,问题的思路就
清晰了,接下来就是按照相关的概率值进行计算的问题了.如果某
(1)3 台都未报警的概率为
P(X=0)= C30 × 0.90 × 0.13 = 0.001;
(2)恰有 1 台报警的概率为
P(X=1)= C31 × 0.91 × 0.12 = 0.027;
(3)恰有 2 台报警的概率为
P(X=2)= C32 × 0.92 × 0.1 = 0.243;
(4)3 台都报警的概率为
发生k次的概率为 P(X=k)=C pk(1-p)n-k,k=0,1,2,…,n,此时称随机变
量X服从二项分布,简记为X~B(n,p),并称p为成功概率.
知识拓展 1.在 n 次试验中,有些试验结果为 A,有些试验结果为,
所以总结果是几个 A 同几个的一种搭配,要求总结果中事件 A 恰好
发生 k 次,就是 k 个 A 同 n-k 个的一种搭配,搭配种类为C ;其次,每
1
分布,故该空填C32
20
C25 C195
答案:(1)
C3100
2 19 1
20
.
1
(2)C32
20
2
19 1
20
【示例2】 某厂生产的电子元件,其次品率为5%,现从一批产品
中任意连续地抽取2件,其中次品数ξ的概率分布列为
ξ
P
,请完成此表.
0
1
2
解析:由于本题中工厂生产的电子元件数量很大,从中抽取2件时,
(X=1)或不发生(X=0);二项分布是指在n次独立重复试验中事件A发
生的次数X的分布列,试验次数为n(每次试验的结果也只有两种:事
独立重复试验与二项分布课件
3
【解析】P X
2
C62
(
1 3
)
2
(
2 )4 3
80 . 243
答案:80
243
3.任意抛掷三枚硬币,恰有2枚正面朝上的概率为_____.
【解析】
P
X
2
C(32
1 2
)2 1 2
3. 8
答案:3
8
1.n次独立重复试验的特征 (1)每次试验的条件都完全相同,有关事件的概率保持不变. (2)每次试验的结果互不影响,即各次试验相互独立. (3)每次试验只有两种结果,这两种可能的结果是对立的.
【解析】1.设要使至少命中1次的概率不小于0.75,应射击n
次,记事件A=“射击一次,击中目标”,则P(A)=0.25.
∵射击n次相当于n次独立重复试验,
∴事件A至少发生1次的概率为P=1-0.75n.
由题意,令 1 0.75n 0.75,( 3)n 1,
lg 1
44
∴ n 4 ∴4n.8至2,少取5.
=0.84+0.85≈0.410+0.328≈0.74. 故5次预报中至少有4次准确的概率约为0.74.
二项分布问题
解决二项分布问题的两个关注点
(1)对于公式 PX k Cknpk 1 p nk (k 0,1,2,,n) 必须在满足
“独立重复试验”时才能运用,否则不能应用该公式. (2)判断一个随机变量是否服从二项分布,关键有两点:一是对 立性,即一次试验中,事件发生与否两者必有其一;二是重复性, 即试验是独立重复地进行了n次.
称__随__机__变__量__X_服从二项分布. (2)表示:记作_X_~__B_(_n_,__p_). (3)p的名称:成__功__概率.
n次独立重复实验与二项分布.完整版PPT
3点必须注意 1. 求P(B|A)=PPAAB,关键是求P(A)和P(AB).注意P(B|A) 与P(A|B)不同. 2. 在应用相互独立事件的概率公式时,对含有“至多有一 个发生”、“至少有一个发生”的情况,可结合对立事件的概 率求解. 3. 判断某事件发生是否是独立重复试验,关键有两点: ①在同样的条件下重复,相互独立进行;②试验结果要么发 生,要么不发生
(3)设在4Βιβλιοθήκη 参加 人员中选择A社区医院的人数为ξ,求ξ的分布列和数学期望.
能解决一些简单的实际问题.
填一填:0.72 2+(10-3)2×0.
P(700≤X<900)=P(X<900)-P(X<700)=0.
奇思妙想:例题条件不变,求该射手恰好命中两次的概率.
提示:记“这粒种子发芽”为事件A, (2)P(B|A)=________.
两个实习生每人加工一个零件,加工为一等品的概率分别 为23和34,两个零件是否加工为一等品相互独立,则这两个零件 中恰有一个一等品的概率为________.
在相同条件下重复做的n次试验称为n次独立重复试验,即若用Ai(i=1,2,…,n)表示第i次试验结果,则
3. 独立重复试验与二项分布 [审题视点] (1)利用二项分布的概率公式求解;
1个必记区别 事件互斥是指事件不可能同时发生;事件相互独立是指一 个事件的发生与否对另一事件发生的概率没有影响.要注意两 者的区别,以免事件概型的判断错误.
2种必会方法 1. 定义法求条件概率:求出P(A)、P(AB),由P(B|A)= PAB破解. PA 2. 转化法求条件概率:转化为古典概型求解,先求事件A 包含的基本事件数n(A),再在事件A发生的条件下求事件B包含 的基本事件数n(AB),得P(B|A)=nnAA·B .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第63讲 │ 要点探究
P=P(DE F )+P(D E F)+P( D EF)+P(DEF) =0.6×0.5×0.5+0.6×0.5×0.5+0.4×0.5×0.5+ 0.6×0.5×0.5 =0.55. (2)由题意知X可能的取值为0,1,2,3. 又由(1)知 D E F、 D E F 、D E F 是两两互斥事件,且各 盘比赛的结果相互独立. 因此P(X=0)=P( D E F )=0.4×0.5×0.5=0.1.
[答案] (1)对
(2)对
(3)对
(4)对
[解析] 根据事件独立性的概念可知(1)(2)(3)(4)均正确.
第63讲 │ 问题思考
► 问题3 关于n次独立重复试验和二项分布
(1)n次独立重复试验要满足:①每次试验只有两个相互对立 的结果,可以分别称为“成功”和“失败”;②每次试验“成 功”的概率为p,“失败”的概率为1-p;③各次试验是相互独 立的;(
第63讲 │ 要点探究
变式题 (1)一个箱中有9张标有1,2,3,4,5,6,7,8,9的卡片,从
中依次取两张,则在第一张是奇数的条件下第二张也是奇数的 概率是________. (2)某种家用电器能使用三年的概率为0.8,能使用四年的概 率为0.4,已知某一这种家用电器已经使用了三年,则它能够使 用到四年的概率是________.
X P 0 0.1 1 0.35 2 0.4 3 0.15
第63讲 │ 要点探究
因此E(X)=0×0.1+1×0.35+2×0.4+3×0.15=1.6
[点评]
概率计算的核心环节就是把一个随机事件利
用事件的互斥和相互独立进行合理分拆,这样就能把复杂 事件的概率计算转化为一个个简单事件的概率计算.
第63讲 │ 要点探究
第63讲 │ 要点探究
► 探究点2 相互独立事件的概率
红队队员甲、乙、丙与蓝队队员A、
例2[2011· 山东卷]
B、C进行围棋比赛,甲对A、乙对B、丙对C各一盘,已知甲 胜A、乙胜B、丙胜C的概率分别为0.6,0.5,0.5.假设各盘比 赛结果相互独立. (1)求红队至少两名队员获胜的概率; (2)用X表示红队队员获胜的总盘数,求X的分布列和数学 期望E(X).
第63讲 │ 问题思考 问题思考
► 问题1 关于条件概率 )
(1)条件概率也是事件发生的概率,只不过是在已知一 个事件发生的情况下另一个事件发生的概率;( (2)符号P(B|A)表示在事件A发生的条件下事件B发生的 概率,而P(AB)表示事件A,B同时发生的概率,这是两个不 同的概念,在P(A)>0的条件下,P(AB)=P(A)P(B).( )
[答案] (1)对
(2)对
[解析]根据条件概率的概念可知(1)(2)均正确.
第63讲 │ 问题思考
► 问题2 关于事件的相互独立性 )
(1)两个事件相互独立是指一个事件发生与否对另一个事件 的发生与否没有关系;( (2)事件的“互斥”与“相互独立”是两个不同的概念.两 事件“互斥”是指两事件不可能同时发生,两事件“相互独 立”是指一个事件的发生与否对另一事件发生的概率没有影 响;( ) ) (3)若事件A与B相互独立,则A与 B , A 与B, A 与 B 也都相 互独立;(
第63讲 │ 要点探究
(2)B=A4+ A4 · 1· 3+ A4 · 1 · 2· 3, A A A A A P(B)=P(A4+ A4 · 1· 3+ A4 · 1 · 2· 3) A A A A A =P(A4)+P( A4 · 1· 3)+P( A4 · 1 · 2· 3) A A A A A =P(A4)+P( A4 )P(A1)P(A3)+P( A4 )P( A1 )P(A2)· 3) P(A =0.9+0.1×0.9×0.9+0.1×0.1×0.9×0.9 =0.9891.
第63讲 │ 要点探究
[思路] 设甲胜A为事件D,乙胜B为事件E,丙胜C为事件
F,则第一问题就是求事件 D EF+D E F+DE F +DEF的概 率,根据互斥事件的概率加法公式和独立事件的概率乘法公式 进行计算;第二问中的X=0,1,2,3,分别对应事件DEF,DEF+ D E F +DEF,DE F +D E F+ D EF,DEF,求出其概率就得 到了分布列,然后按照数学期望的计算公式求数学期望.
第63讲 │ 要点探究
[点评] (1)本题的条件概率就相当于在95件合格品中含有70 件一等品,从中任取一件,取到的是一等品的概率,这里把基 本事件的全体从100件减缩为95件,在这种减缩的情况下,问题 就转化为一般的古典概型的计算;(2)在计算条件概率时一定要 区分清楚是哪个事件在哪个事件发生的条件下的概率,正确地 使用条件概率的计算公式.
1 [答案](1)Байду номын сангаас2
(2)0.5
第63讲 │ 要点探究
[解析] (1)方法1:设第一张是奇数记为事件A,第二张是奇 A1A1 5 A2 5 5 8 5 数记为事件B,P(A)= 2 = ,P(AB)= 2= , A9 9 A9 18 5 PAB 18 1 所以P(B|A)= = = . 5 2 PA 9
变式题 [2010· 全国卷Ⅱ] 如图63-1所示,由M到N的电路
中有4个元件,分别标为T1,T2,T3,T4,电流能通过T1,T2, T3的概率都是p,电流能通过T4的概率是0.9,电流能否通过各元 件相互独立.已知T1,T2,T3中至少有一个能通过电流的概率为 0.999. (1)求p; (2)求电流能在M与N之间通过的概率.
图63-1
第63讲 │ 要点探究
[解答] 记Ai表示事件:电流能通过Ti,i=1,2,3,4, A表示事件:T1,T2,T3中至少有一个能通过电流, B表示事件:电流能在M与N之间通过. (1) A = A1 · 2 · 3 ,A1,A2,A3相互独立, A A P( A )=P( A1 · 2 · 3 )=P( A1 )P( A2 )P( A3 )=(1-p)3. A A 又P( A )=1-P(A)=1-0.999=0.001, 故(1-p)3=0.001,p=0.9.
第63讲 │ 要点探究
P(X=1)=P( D E F)+P( D E F )+P(D E F ) =0.4×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5 =0.35. P(X=3)=P(DEF)=0.6×0.5×0.5=0.15. 由对立事件的概率公式得 P(X=2)=1-P(X=0)-P(X=1)-P(X=3)=0.4. 所以X的分布列为:
第63讲 │ 要点探究
[思路] (1)可以根据条件概率的公式计算,也可以在减缩的 基本事件中使用古典概型的公式计算;(2)使用条件概率的公式 进行计算.
14 [答案](1) 19
2 (2) 3
3 5
第63讲 │ 要点探究
[解析] (1)设B表示取得一等品,A表示取得合格品,则 方法1:因为95件合格品中有70件一等品,又由于一等品 也是合格品,∴AB=B. 70 14 P(B|A)= = . 95 19 70 PAB 100 14 方法2:P(B|A)= = = . 95 19 PA 100
第63讲 │ 问题思考
[答案] (1)对
(2)对
(3)对
[解析] 根据独立重复试验和二项分布的知识可知(1)(2)(3)均 正确.
第63讲 │ 要点探究 要点探究
► 探究点1
例1
条件概率
(1)设100件产品中有70件一等品,25件二等品,规
定一、二等品为合格品.从中任取 1件,已知取得的是合格 品,则它是一等品的概率是 ________. (2)甲、乙两市位于长江下游,根据一百多年的记录知 道,一年中雨天的比例,甲为 20%,乙为18%,两市同时下 雨的天数占12%.则乙市下雨时甲市也下雨的概率是 _____________ ,甲市下雨时乙市也下雨的概率是 ________.
第63讲 │ 问题思考
(4)P(AB)=P(A)P(B)使用的前提是A,B为相互独立事件.也 就是说,只有两个相互独立事件同时发生的概率,才等于每个 事件发生的概率的积.一般地,如果事件A1,A2,„,An相互 独立,则这n个事件都发生的概率等于每个事件发生的概率的 积,即P(A1A2„An)=P(A1)P(A2)„P(An).同样,只有当A1, A2,„,An相互独立时,这n个事件同时发生的概率,才等于每 个事件发生的概率的积.( )
第63讲 │ 要点探究
方法2:设第一张是奇数记为事件A,第二张是奇数记为事 件B, n(A)=5×8=40,n(AB)=5×4=20, nAB 20 1 所以P(B|A)= = = . nA 40 2 (2)记事件A为这个家用电器使用了三年,事件B为这个家用 电器使用到四年,显然事件B⊂A,即事件AB=B,故P(A)= PAB 0.8,P(AB)=0.4,所以P(B|A)= =0.5. PA
-
)
(2)二项分布是一个概率分布列,是一个用公式P(X=k)=C k n pk(1-p)n k,k=0,1,2,„,n表示的概率分布列,它表示了n次 独立重复试验中事件A发生的次数的概率分布;( p)+p]n展开式的第(k+1)项.( ) ) (3)P(X=k)=C k pk(1-p)n-k,k=0,1,2,„,n是二项式[(1- n
第63讲
n次独立重复试验 与二项分布
第63讲 │ 考纲要求 考纲要求
了解条件概率和两个事件相互独立的概念,理解n次独立 重复试验的模型及二项分布,并能解决一些简单的实际问 题.
第63讲 │ 知识梳理 知识梳理
1.条件概率 (1)条件概率的概念:一般地,设A,B为两个事件,且 PAB P(A)>0,称P(B|A)=________为在事件A发生的条件下,事件B PA 发生的条件概率.P(B|A)读作A发生的条件下B发生的概率. (2)条件概率的性质: 性质1:任何事件的条件概率都在0和1之间,即 0≤P(A|B)≤1,必然事件的条件概率等于1,不可能事件的条件 概率等于0. 性质2:如果B,C是两个互斥事件,则P(B∪C|A)= P(B|A)+P(C|A) ____________.