模糊数学规划作业
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P211
1.用lindo 、lingo 或MA TLAB 软件求解本章的例题和下列模糊线性规划问题:
(1)123123123123
max 344,634[1200,100],
..545[1550,200],,,0.f x x x x x x s t x x x x x x =++++≤⎧⎪
++≤⎨⎪≥⎩ 解:
a.解普通线性规划
123123123123
max 344,6341200,
..5451550,,,0.f x x x x x x s t x x x x x x =++++≤⎧⎪
++≤⎨⎪≥⎩ lingo 程序:
max =3*x1+4*x2+4*x3; 6*x1+3*x2+4*x3<1200; 5*x1+4*x2+5*x3<1550;
运行得:
Global optimal solution found.
Objective value: 1550.000 Total solver iterations: 1
Variable Value Reduced Cost X1 0.000000 2.000000 X2 387.5000 0.000000 X3 0.000000 1.000000
Row Slack or Surplus Dual Price 1 1550.000 1.000000 2 37.50000 0.000000 3 0.000000 1.000000 由运行结果知:最优解为:1
230,387.5,0.x x x ===最优值为1550.
b. 解普通线性规划
123123123123
max 344,
63412001001300,
..54515502001750,,,0.f x x x x x x s t x x x x x x =++++≤+=⎧⎪
++≤+=⎨⎪≥⎩ lingo 程序:
max =3*x1+4*x2+4*x3; 6*x1+3*x2+4*x3<1300;
5*x1+4*x2+5*x3<1750;
运行得:
Global optimal solution found.
Objective value: 1733.333 Total solver iterations: 1
Variable Value Reduced Cost X1 0.000000 5.000000 X2 433.3333 0.000000 X3 0.000000 1.333333
Row Slack or Surplus Dual Price 1 1733.333 1.000000 2 0.000000 1.333333 3 16.66667 0.000000 由运行结果知:最优解为:1
230,433.3333,0.x x x ===最优值为1733.333.
c.001550,1733.3331550183.333.f d ==-=
d. 解普通线性规划
123123
123123max ,
344183.33315506341001300,
..5452001750,,,0.
x x x x x x s t x x x x x x λλλλ++-≥⎧⎪+++≤⎪⎨
+++≤⎪⎪≥⎩, lingo 程序:
max =a;
3*x1+4*x2+4*x3-183.333*a>1550; 6*x1+3*x2+4*x3+100*a<1300; 5*x1+4*x2+5*x3+200*a<1750;
运行得:
Global optimal solution found.
Objective value: 0.5217396 Total solver iterations: 2
Variable Value Reduced Cost A 0.5217396 0.000000 X1 0.000000 0.5217396E-02 X2 411.4130 0.000000 X3 0.000000 0.2608698E-02
Row Slack or Surplus Dual Price 1 0.5217396 1.000000 2 0.000000 -0.2608698E-02 3 13.58698 0.000000 4 0.000000 0.2608698E-02 由运行结果知:最优解为:1
230,411.4130,00.5217396.x x x λ====,
从而,原问题的模糊最优解为1230,411.4130,0x x x ===,模糊最优值为
3*04*411.41304*01645.652.f =++=
(2)12312312123
min 42,[8,2],
..2[6,1],,,0.f x x x x x x s t x x x x x =++-+≥⎧⎪
+=⎨⎪≥⎩ 解:说明:程序及运行结果略。
a.解普通线性规划
12312312123
min 42,8,..26,,,0.f x x x x x x s t x x x x x =++-+≥⎧⎪+=⎨⎪≥⎩
用lingo 求得最优解为:1236,0,2x x x ===,最优值为10.
b. 解普通线性规划
1231231212123min 42,826,2615,..2617,,,0.
f x x x x x x x x s t x x x x x =++-+≥-=⎧⎪+≥-=⎪⎨
+≤+=⎪⎪≥⎩ 用lingo 求得最优解为:1236,0,0x x x ===,最优值为6.
c.0010,106 4.f d ==-=
d. 解普通线性规划
1231231212
123max ,
42410,26,..25,27,
,,0.
x x x x x x s t x x x x x x x λλλλλ+++<⎧⎪-+-≥⎪⎪+-≥⎨⎪++≤⎪⎪≥⎩
用lingo 求得最优解为:1236.4444,0,0.6667,0.5556.x x x λ====
从而,原问题的模糊最优解为1236.4444,0,0.6667,x x x ===模糊最优值为
6.44444*02*0.6667
7.777
8.f =++=
2.药物配方问题 某种药物含三种主要成分123,,A A A ,含量分别为755±mg/盒,1205±mg/盒,13810±mg/盒。
这三种成分主要来自5种原料12345,,,,B B B B B ,各种原料每千克所含成分单价如表5.7所示。
现要配制该药10000盒,如何选购原料较好?
解:设选购原料12345,,,,B B B B B 的量分别为12345,,,,x x x x x ,则由题意可知我们所要求的
规划问题是:123451234512345
1234512345min 1.3 1.5 1.6 1.7 1.8,
856012080120[750000,50000],
801509016060[1200000,50000]
..100120150120200[1380000,100000],,,,0.
f x x x x x x x x x x x x x x x s t x x x x x x x x x x =++++++++=⎧⎪++++=⎪⎨
++++=⎪⎪≥⎩ a.解普通线性规划123451234512345
1234512345min 1.3 1.5 1.6 1.7 1.8,856012080120750000,8015090160601200000,
..1001201501202001380000,,,,,0.
f x x x x x x x x x x x x x x x s t x x x x x x x x x x =++++++++=⎧⎪++++=⎪⎨
++++=⎪⎪≥⎩ lingo 程序:
min =1.3*x1+1.5*x2+1.6*x3+1.7*x4+1.8*x5; 85*x1+60*x2+120*x3+80*x4+120*x5=750000; 80*x1+150*x2+90*x3+160*x4+60*x5=1200000; 100*x1+120*x2+150*x3+120*x4+200*x5=1380000;
运行结果:
Global optimal solution found.
Objective value: 15327.27
Total solver iterations: 0
Variable Value Reduced Cost X1 0.000000 0.1424242 X2 6840.909 0.000000 X3 136.3636 0.000000 X4 0.000000 0.1121212 X5 2693.182 0.000000
Row Slack or Surplus Dual Price 1 15327.27 -1.000000 2 0.000000 -0.2424242E-02 3 0.000000 -0.3939394E-02 4 0.000000 -0.6363636E-02
由运行结果可知:当2356840.909,136.3636,2693.182x x x ===时取到最优值
15327.27.
b. 解普通线性规划12345123451
234512345123451234min 1.3 1.5 1.6 1.7 1.8,
856012080120800000,856012080120700000,
8015090160601250000,
..8015090160601150000,100120150120f x x x x x x x x x x x x x x x x x x x x s t x x x x x x x x x =++++++++≤++++≥++++≤++++≥+++5
12345123452001480000,
1001201501202001280000,,,,,0.
x x x x x x x x x x x ⎧⎪⎪⎪⎪
⎨⎪+≤⎪
⎪++++≥⎪
≥⎩ 用lingo 求得最优解为:2356575.758,363.6364,2181.818x x x ===,最优值为14372.73.
c. 0015327.27,15327.2714372.73954.54.f d ==-=
d. 解普通线性规划123451
23451234512345123max ,
1.3 1.5 1.6 1.7 1.8954.5415327.27,85601208012050000800000,
85601208012050000700000,801509016060500001250000,
..8015090160x x x x x x x x x x x x x x x x x x x x s t x x x x λλλλλ+++++≤+++++≤++++-≥+++++≤+++4512345123451234560500001150000,1001201501202001000001480000,1001201501202001000001280000,,,,,0.x x x x x x x x x x x x x x x x λλλ⎧⎪⎪⎪⎪
⎪⎨
+-≥⎪⎪+++++≤⎪
++++-≥⎪⎪≥⎩ 用lingo 求得最优解为:2356708.333,250,2437.5,0.5x x x λ====,模糊最优值为14850。
当选购原料235,,B B B 分别为6708.333kg ,250kg ,2437.5kg 时较好。
3.农场规划问题 某农场有100hm2土地及15000元资金可用于发展生产。
农场劳动力情况为春夏季7000~7500人*日,秋冬季6000~6200人*日。
如果本身用不了可外出干活,春夏季收入2.1元/(人*日),秋冬季收入1.8元/(人*日)。
该农场可种植三种作物:大豆、玉米、小麦,并饲养奶牛和鸡。
种植作物时不需要专门投资,而饲养动物时每头奶牛投资400元,每只鸡3元。
养奶牛时每头须拔出1.5hm2土地种饲草,养鸡时不占用土地,农场现有条件最多允许养30头奶牛和3000只鸡。
种植作物和饲养动物每年需要的人*日数及收入情况如表5.8所示。
试规划该农场比较满意的经营方案。
表5.8
解:设种植种植1x 公顷大豆、种植2x 公顷玉米、种植3x 公顷小麦、饲养4x 头奶牛、饲养5x 只鸡、春夏季外出干活1z 人*日、秋冬季外出干活2z 人*日、用于农场的劳动力春夏季为1y ,冬季为2y ,则由题意可知我们所要求的规划问题是:
12345121123452
1234512344511
2212345121max 1753001204002 2.1 1.8,507540500.3,2035101000.6,
1.5100,..400315000,70007500,
60006200,,,,,,,,,f x x x x x z z y x x x x x y x x x x x x x x x s t x x y z y z x x x x x y y z z =++++++=++++=+++++++≤+≤≤+≤≤+≤2450,30,3000.
x x ⎧⎪⎪⎪⎪⎨⎪⎪
⎪⎪
≥≤≤⎩
lingo 程序:
max =175*x1+300*x2+120*x3+400*x4+2*x5+2.1*z1+1.8*z2; y1=50*x1+75*x2+40*x3+50*x4+0.3*x5; y2=20*x1+35*x2+10*x3+100*x4+0.6*x5; x1+x2+x3+1.5*x4<100; 400*x4+3*x5<15000; y1+z1>7000; y1+z1<7500; y2+z2>6000; y2+z2<6200; x4<30; x5<3000; @gin (x4); @gin (x5);
运行得:
Global optimal solution found.
Objective value: 35666.25 Extended solver steps: 0 Total solver iterations: 5
Variable Value Reduced Cost X1 0.000000 45.50000 X2 77.50000 0.000000 X3 0.000000 61.50000 X4 15.00000 4.250000 X5 3000.000 -0.2900000 Z1 37.50000 0.000000 Z2 187.5000 0.000000 Y1 7462.500 0.000000 Y2 6012.500 0.000000
Row Slack or Surplus Dual Price 1 35666.25 1.000000
2 0.000000 -2.100000
3 0.000000 -1.800000
4 0.000000 79.50000
5 0.000000 0.000000
6 500.0000 0.000000
7 0.000000 2.100000
8 200.0000 0.000000
9 0.000000 1.800000
10 15.00000 0.000000
11 0.000000 0.000000
hm,养奶牛15只,养鸡3000只,春夏外出干活37.5人*由运行结果知:当种玉米77.52
日,秋冬外出干活187.5人*日时可取到最优值35666.25元。