一维随机变量的分布函数
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一维随机变量的分布函数
一维随机变量的分布函数是指在实数轴上,对于任意实数x,随机变量X小于等于x的概率,即F(x)=P(X<=x),其中P为概率。
分布函数具有以下性质:
1. F(x)是一个单调不减的函数,即随着x的增大,F(x)也会增大或不变。
2. F(x)的取值范围是[0,1],因为概率的取值范围也是[0,1]。
3. F(x)是右连续的,即对于任意x,F(x)的左右极限相等,且F(x)在x处连续。
4. 若X是一个连续型随机变量,则F(x)可以表示为X的概率密度函数f(x)的积分,即F(x)=∫f(t)dt,其中积分下限为负无穷,上限为x。
5. 若X是一个离散型随机变量,则F(x)可以表示为X的概率质量函数p(x)的累加和,即F(x)=∑p(t),其中t取遍所有小于等于x 的离散值。
分布函数是描述随机变量的一个重要工具,可以用来求解各种概率问题,例如求解随机变量X落在某个区间内的概率,或者求解X的统计特征值等。
- 1 -。