人教版九年级数学下27.3 位 似精品教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3、这几副图片表示出了图形之间的什么特殊的关系?
引出课题——位似。

教师板书。

二、自主活动实践感知
1、建构新知:位似图形及其有关概念
如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比.
2、让学生进一步操作,亲身感受位似图形与相似图形的联系与区别。

通过观察、思考、交流、讨论得出如下结论:
位似图形是一种特殊的相似图形,而相似图形未必都能构成位似关系。

(引导学生动手、动脑,观察、思考,感悟知识的生成和变化)
3、认一认:
见课本P66页图27.3-2(1)、(2)、(3)辨认位似图形,并指认位似中心。

(从正反两个方面强化学生对位似图形的认识)
4、练一练:
例1 下列说法正确的是()
A.两个图形如果是位似图形,那么这两个图形一定全等;
B.两个图形如果是位似图形,那么这两个图形不一定相似;
C.两个图形如果是相似图形,那么这两个图形一定位似;
D.两个图形如果是位似图形,那么这两个图形一定相似。

例2 下列每组图中的两个多边形,是位似图形的是()
例3下列四边形ABCD和四边形EFGD是位似图形,它们的位似中心是()
A. 点E
B. 点F
C.点G
D.点D
例4 已知上图中,AE∶ED=3∶2,则四边形ABCD与四边形EFGD的位似比为()
A. 3∶2
B. 2∶3
C. 5∶2
D. 5∶3
(开发学生的思维能力,帮助学生掌握新知)
三、合作探究明确强化
1、想一想:
本课已学过哪几种放大图形的方法?
(让学生思考、交流,加深对前后知识的理解,感悟知识之间的内在联系)学生归纳:直角坐标系放大图形法;橡皮筋放大图形法。

它们都属于位似图形的作法。

2、做一做:
按如下方法可以将△ABC的三边缩小为原来的一半:
如图,任取一点O,连接AO,BO,CO,并取它们的中点D,E,F.△DEF的三边就是△ABC相应三边的一半。

(1)任意画一个三角形,用上面的方法亲自试一试;
(2) 如果在射线AO,BO,CO上分别取点D,E,F,
使DO=2OA,EO=2OB,FO=2OC,那么结果又会怎样?
(让学生主动参与,合作探究,调动学生学习积极性)
四、试一试
已知五边形ABCDE,作出一个五边形A’B’C’D’E’,使新五边形 A’B’C’D’E’与原五边形ABCDE对应线段的比为1∶2。

相关文档
最新文档