初中数学级数学下册 2.6 一元一次不等式组同步练习1 (新版)北师大版
2021-2022学年度初中数学北师大版八年级下册第二章第六节 一元一次不等式组 同步练习
初中数学北师大版八年级下册第二章第六节一元一次不等式组同步练习一、单选题1.下列不等式组中,无解的是()A.{x<2x<−3B.{x<2x>−3C.{x>2x>−3D.{x>2x<−32.已知关于x的不等式组的{x−a≥b2x−a<2b+1解集为3≤x<5,则ba的值为()A.﹣2B.−12C.﹣4D.﹣143.若不等式组{x<1x<m的解为x<m,则m的取值范围为()A.m≤1B.m=1C.m≥1D.m<14.定义:对于实数a,符号[a]表示不大于a的最大整数.例如:[3.2]=3,[2]=2,[-2.3]=-3.如果[x−12]=2,则x的取值范围是()A.5≤x≤7B.5<x≤7C.5<x<7D.5≤x<75.定义一种运算:a∗b={a,a≥bb,a<b,则不等式(2x+1)∗(2−x)>3的解集是()A.x>1或x<13B.−1<x<13C.x>1或x<−1D.x>13或x<−16.已知某程序如图所示,规定:从“输入实数x”到“结果是否大于95”为一次操作,如果该程序进行了两次操作停止,那么实数x的取值范围是()A.x>23B.11≤x≤23C.23<x≤47D.x≤477.若关于x的一元次不等式组{−2x+3m4≤2x2x+7≤4(x+1)的解集为x≥32,且关于y的方程3y−2=2m−(5−3y)2的解为非负整数,则符合条件的所有整数m的积为()A.2B.7C.11D.108.目前,我国已获批上市4款自主研发的新冠疫苗.某生物制药公司计划生产制造A、B两种疫苗共40万支,已知生产每支A疫苗需甲种原料8mg,乙种原料5mg;生产每支B疫苗需甲种原料4mg,乙种原料9mg.公司现有甲种原料4kg,乙种原料3kg,设计划生产A疫苗x支,下列符合题意的不等式组是( )A .{8x +5(400000−x)≤40000004x +9(400000−x)≤3000000B .{5x +9(400000−x)≤40000008x +4(400000−x)≤3000000C .{8x +4(400000−x)≤40000005x +9(400000−x)≤3000000D .{8x +9(400000−x)≤40000005x +4(400000−x)≤3000000二、填空题9.不等式组 {5x +4>3xx−12≤2x−15 的解是 .10.已知关于 x 的不等式组 {5−3x ≥−1,a −2x <0无解,则 a 的取值范围是 . 11.三个数3, 1-a ,1-2a 在数轴上从左到右依次排列,且以这三个数为边长能构成三角形,则a 的取值范围为12.在某种药品的说明书上的部分内容是“用法用量:每天 30~60mg ,分2~3次服用”.则一次服用这种药品的剂量 x 的范围是 mg .13.对于任意实数,m ,n ,定义一种运算: m※n =mn −m −n +72 ,请根据上述定义解决问题:若关于x 的不等式 a <(12※x)<7 的解集中只有一个整数解,则实数a 的取值范围是 .14.若点 P 的坐标为 (x−15,2x −10) ,其中 x 满足不等式组 {5x −10≥2(x +1)12x −1≤7−32x ,则点 P 在第 象限.15.令 a 、b 两数中较大的数记作 max|a ,b|,如 max|2,3|=3,已知 k 为正整数且使不等式 max|2k+1,﹣k+5|≤5 成立,则 k 的值是 .16. 12月是成都奶油巧克力草莓大丰收的季节,重庆渝北海领开展“水果一带一路”活动,成都顺丰快递公司出动所有车辆分12月25,26日两批往重庆运输现摘草莓.该公司共有A ,B ,C 三种车型,其中A 型车数量占公司车辆总数的一半,B 型车数量与C 型车数量相等.25日安排A 型车数量的一半,B 型车数量的 13 ,C 型车数量的 34 进行运输,且25日A ,B ,C 三种车型每辆车载货量分别为10吨,15吨,20吨,则25日刚好运完所有草莓重量的一半.26日安排剩下的所有车辆完成剩下的所有草莓的运输,且26日A ,B ,C 三种车型每辆载货量分别不超过14吨,27吨,24吨.26日B 型车实际载货量为26日A 型车每辆实际载货量的 32.已知同型货车每辆的实际载货量相等,A ,B ,C 三种车型每辆车26日运输成本分别为100元/吨,200元/吨,75元/吨,则26日运输时,一辆A 型车、一辆B 型车,一辆C 型车总的运输成本至多为 元.三、解答题17.解不等式组: {6(23x −2)<x −31−x2−2⩽x 并把解集在数轴上表示出来.18.已知a ,b ,c 是△ABC 的三边长,若b =2a ﹣1,c =a+5,且△ABC 的周长不超过20cm ,求a 的范围.19.x 取哪些正整数值时,不等式 5x +2>3(x −1) 与 2x−13≤3x+16 都成立?20.已知关于x ,y 的方程满足方程组 {3x +2y =m +1 ①2x +y =m −1 ② ,(Ⅰ)若 x-y=2 ,求m 的值;(Ⅱ)若x ,y ,m 均为非负数,求m 的取值范围,并化简式子|m −3|+|m −5| ;(Ⅲ)在(Ⅱ)的条件下求 s =2x −3y +m 的最小值及最大值.四、综合题21.疫情期间,为满足市民的防护需求,某医药公司想要购买A 、B 两种口罩.在进行市场调研时发现:A 型口罩比B 型口罩每件进价多了10元.用68000元购买A 型口罩的件数是用32000元购买B 型口罩件数的2倍.(1)A 、B 型口罩进价分别为每件多少元?(2)若该公司计划购买A 、B 型口罩共200件,其中A 型口罩的件数不大于B 型口罩的件数,且用于购买A 型口罩的钱数多于购买B 型口罩的钱数.设购买A 型口罩x 件,则符合条件的进货方案共多少种?(件数均为整数,不用列出方案)22.2010年6月5日是第38个世界环境日,世界环境日的主题为“多个物种、一颗星球、一个未来”.为了响应节能减排的号召,某品牌汽车4S 店准备购进A 型(电动汽车)和B 型(太阳能汽车)两种不同型号的汽车共16辆,以满足广大支持环保的购车者的需求.市场营销人员经过市场调查得到如下信息:(1)若经营者的购买资金不少于576万元且不多于600万元,则有哪几种进车方案?(2)在(1)的前提下,如果你是经营者,并且所进的汽车能全部售出,你会选择哪种进车方案才能使获得的利润最大?最大利润是多少?(3)假设每台电动汽车每公里的用电费用为0.65元,且两种汽车最大行驶里程均为30万公里,那么从节约资金的角度,你做为一名购车者,将会选购哪一种型号的汽车?并说明理由.23.对实数x 、y ,我们定义一种新运算:F (x ,y ) =ax +by (其中a ,b 为常数).例如:F (2,3) =2a +3b ,F (2, −3 ) =2a −3b .已知F (1,1)=2,F (1, −1 )=0. (1)则 a = , b = ;(2)若方程组 {F(x,−y)=4m −3F(x,2y)=−5m 的解中,x 是非正数,y 是负数: ①求m 的取值范围;②若 2x ⋅4y =2n ,求n 的最小值;(3)若关于x 的不等式组 {F(3x,0)>−2cF(−2x,0)≥−3c恰好有3个整数解,求c 的取值范围.24.某校校园超市老板到批发中心选购甲、乙两种品牌的文具盒,乙品牌的进货单价是甲品牌进货单价的2倍,考虑各种因素,预计购进乙品牌文具盒的数量y (个)与甲品牌文具盒的数量x (个)之间的函数关系如图所示.当购进的甲、乙品牌的文具盒中,甲有120个时,购进甲、乙品牌文具盒共需7200元.(1)根据图象,求y与x之间的函数关系式;(2)求甲、乙两种品牌的文具盒进货单价;(3)若该超市每销售1个甲种品牌的文具盒可获利4元,每销售1个乙种品牌的文具盒可获利9元,根据学生需求,超市老板决定,准备用不超过6300元购进甲、乙两种品牌的文具盒,且这两种品牌的文具盒全部售出后获利不低于1795元,问该超市有几种进货方案?哪种方案能使获利最大?最大获利为多少元?答案解析部分1.D2.A3.A4.D5.C6.C7.D8.C9.-2<x≤310.a≥411.−3<a<−212.10≤x≤3013.6≤a<13214.四15.2或116.540017.解:解不等式①,得:x<3,解不等式②,得:x≥﹣1,则不等式组的解集为﹣1≤x<3,将不等式组的解集表示在数轴上如下:18.解:由题意得:{a+5<2a−1+aa+5+a+2a−1≤20,解得3<a≤4.∴a的取值范围为3<a≤419.解:解不等式5x+2>3(x−1)得:5x+2>3x−3x >−52解不等式 2x−13≤3x+16得:2(2x −1)≤3x +1 4x −2≤3x +1x ≤3∴ −52<x ≤3∴符合条件的正整数值有1、2、3 20.解:(Ⅰ) {3x +2y =m +1 ①2x +y =m −1 ②①-②×2得: −x =−m +3 得: x =m −3 2m −6+y =m −1③ 把③代入②2m-6+y=m-1 y =−m +5④把③和④代入 x −y =2 , m-3+m-5=2, m =5 , ∴ 的值为5.(Ⅱ)∵x ,y ,m 均为非负数,{m −3≥0−m +5≥0m ≥0∴3≤m ≤5∴|m −3|+|m −5| . =m-3+5-m , =2.(Ⅲ)把 x=m-3 y=-m+5, x −y =2 代入 s =2x −3y +m , ∴ s=2x-3y+m , =2(m-3 )-3(-m+5)+m =6m-21 ∵ 3≤m≤5 , ∴-3≤6m -21≤9∴−3≤s ≤9 .答: s =2x −3y +m 的最小值为-3,最大值为9.21.(1)解:设B 型口罩每件的进价为y 元,则A 型口罩每件的进价为(y+10)元 依题意得: 68000y+10 =2×32000y 解得:y =160经检验,y =160是原方程的解,且符合题意∴y+10=170.答:A 型口罩每件的进价为170元,B 型口罩每件的进价为160元; (2)解:设购买A 型口罩x 件,则购买B 型口罩(200﹣x )件 依题意得: {x ≤200−x170x >160(200−x) 解得:963233<x≤100又∵x 为正整数,∴x 可以取97,98,99,100, ∴符合条件的进货方案共4种.22.(1)解:设A 型汽车购进x 辆,则B 型汽车购进(16﹣x )辆.根据题意得: {30x +42(16−x)≤60030x +42(16−x)≥576 , 解得:6≤x≤8. ∵x 为整数, ∴x 取6、7、8. ∴有三种购进方案:(2)解:设总利润为w 万元.根据题意得:W =(32﹣30)x+(45﹣42)(16﹣x ) =﹣x+48. ∵﹣1<0,∴w 随x 的增大而减小,∴当x =6时,w 有最大值,W 最大=﹣6+48=42(万元).∴当购进A 型车6辆,B 型车10辆时,可获得最大利润,最大利润是42万元. (3)解:设电动汽车行驶的里程为a 万公里.当32+0.65a =45时,解得:a =20<30. ∴选购太阳能汽车比较合算.23.(1)1;1(2)解:①原式= {x −y =4m −3x +2y =−5m ,解得: {x =m −2y =1−3m , ∵x 是非正数,y 是负数,∴{m −2≤01−3m <0,解得: 13<m ≤2 ;②原式整理为: 2x ⋅22y =2n ,∴x +2y =n ,即 m −2+2(1−3m)=n , 整理得: n =−5m ,∴当 m 取最大值2时,此时 n 的值最小, 最小值为: n =−5×2=−10 ;(3)解:不等式组整理为: {3x >−2c−2x ≥−3c, 解得: −23c <x ≤32c ,∵不等式组恰好有3个整数解,∴2<32c −(23c)≤3 ,解得:1213<c ≤1813.24.(1)解:设y 与x 之间的函数关系式为y=kx+b ,由函数图象,得 {50k +b =250200k +b =100,解得: {k =−1b =300. ∴y 与x 之间的函数关系式为y=﹣x+300. (2)解:∵y=﹣x+300,∴当x=120时,y=180.设甲品牌进货单价是a 元,则乙品牌的进货单价是2a 元,由题意,得 120a+180×2a=7200,解得:a=15, ∴乙品牌的进货单价是30元.答:甲、乙两种品牌的文具盒进货单价分别为15元,30元.(3)解:设甲品牌进货m 个,则乙品牌的进货(﹣m+300)个,由题意,得{15m +30(−m +300)≤63004m +9(−m +300)≥1795,解得:180≤m≤181.∵m 为整数,∴m=180,181. ∴共有两种进货方案:方案1:甲品牌进货180个,则乙品牌的进货120个;方案2:甲品牌进货181个,则乙品牌的进货119个.设两种品牌的文具盒全部售出后获得的利润为W元,由题意,得W=4m+9(﹣m+300)=﹣5m+2700.∵k=﹣5<0,∴W随m的增大而减小.∴m=180时,W最大=1800元.。
2023学年北师大版八年级数学下册《2-6解一元一次不等式组》同步能力达标测评(附答案)
2022-2023学年北师大版八年级数学下册《2.6一元一次不等式组——解一元一次不等式组》同步能力达标测评(附答案)(共20小题,每小题6分,满分120分)1.解不等式组:.2.解不等式组,并将解集在数轴上表示出来.3.求不等式组的正整数解.4.解不等式组:,并求出所有整数解的和.5.解不等式组,并写出它的所有非负整数解.6.解不等式组:.请结合题意填空,完成本题的解答.(1)解不等式(1),得;(2)解不等式(2),得;(3)把不等式(1)和(2)的解集在数轴上表示出来;(4)原不等式组的解集为.7.在平面直角坐标系中,已知点M(a+1,2a﹣4).根据下列条件回答问题:(1)当点M在x轴,y轴上时,分别求出点M的坐标;(2)当点M在第四象限的角平分线上时,求a的值;(3)若经过点M,N(b+1,4)的直线与x轴平行,且MN=5,求点M,N的坐标.8.解不等式组.(1)将不等式组的解集在数轴上表示出来;(2)求出最小整数解与最大整数解的和.9.已知方程组的解中,x为非正数,y为负数(1)求a的取值范围;(2)当a为何整数时,不等式2ax﹣x>2a﹣1的解集为x<1?(直接写出答案)10.若方程组的解满足﹣1<x+y<1,求k的取值范围.11.已知方程组,当m为何值时,x>y且2x<3y,并化简|3m+2|﹣|m﹣5|.12.若不等式组的解集为1≤x≤5.求方程ax+3b=0的解.13.已知关于a,b的方程组.(1)若原方程组的解也是二元一次方程2a﹣3b=7的一个解,求m的值;(2)若原方程组的解a,b满足a+2b<12,求不等式组的解集.14.已知方程组的解x≤0,y<0.(1)求a的取值范围;(2)化简|a﹣3|+|a+4|;(3)在a的取值范围中,a为何整数时,不等式2ax+x>2a+1的解为x<1?15.阅读下列材料:解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:解:因为x﹣y=2,所以y+2=x.又因为x>1,所以y+2>1,所以y>﹣1.又y<0,所以﹣1<y<0⋯⋯①.同理得:1<x<2⋯⋯②由①+②得﹣1+1<y+x<0+2,所以x+y的取值范围是0<x+y<2.请按照上述方法,完成下列问题:(1)已知x﹣y=3,且x>2,y<1,则x+y的取值范围是多少.(2)已知关于x,y的方程组的解都为正数.①求a的取值范围;②已知a﹣b=4,求a+b的取值范围.16.已知关于x、y的方程组(实数m是常数).(1)若x+y=1,求实数m的值;(2)若﹣1<x﹣y<5,求m的取值范围;(3)若不等式2x≥a﹣1的解包含第(2)中的m的所有整数解,求a的取值范围.17.已知关于x、y的方程组的解满足x≤0,y<0.(1)用含m的代数式分别表示x和y;(2)求m的取值范围;(3)在m的取值范围内,是否存在一个整数使不等式2mx﹣1<2m﹣x的解集为x>1.若不存在,请说明理由,若存在,请求出这样的整数值m.18.【发现问题】已知,求4x+5y的值.在求解这个题目时发现可以不解方程组,将①×2﹣②,就可以直接求出4x+5y的值.【分析问题】爱思考的小明同学为了得到这种解题方法的通用方式,发现可以将①×m+②×n,可得(3m+2n)x+(2m﹣n)y=4m+6n.令等式左边(3m+2n)x+(2m﹣n)y=4x+5y,比较系数可得,求得.【解决问题】(1)对于方程组,利用上述方法,求3x+6y的值;【迁移应用】(2)已知,求x﹣3y的取值范围.19.自学下面材料后,解答问题.分母中含有未知数的不等式叫分式不等式.如:<0;>0等.那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负.其字母表达式为:(1)若a>0,b>0,则>0;若a<0,b<0,则>0;(2)若a>0,b<0,则<0;若a<0,b>0,则<0.反之:(1)若>0,则或.(2)若<0,则或.(3)根据上述规律,求不等式>0的解集.(4)试求不等式<3的解集.20.阅读以下例题:解不等式:(x+4)(x﹣1)>0,解:①当x+4>0,则x﹣1>0,即可以写成:,解不等式组得:.②当若x+4<0,则x﹣1<0,即可以写成:,解不等式组得:.综合以上两种情况:不等式解集:x>1或x<﹣4.以上解法的依据为:当ab>0,则a>0,b>0或a>0,b>0.(1)若ab<0,则a>0,b0或a<0,b0.(2)请你模仿例题的解法,解不等式:①(x+2)(x﹣3)>0;②(x+1)(x﹣2)<0.参考答案1.解:由3x﹣4>11得:x>5,由5(x+1)>4x得:x>﹣5,∴不等式组的解集为x>5.2.解:,解:解不等式①,得x>﹣2.解不等式②,得x≤3,把不等式①和②的解集在数轴上表示出来:所以原不等式组解集为﹣2<x≤3.3.解:,解不等式①得:x>﹣2,解不等式②得:x≤5,∴不等式组的解集为:﹣2<x≤5,其中正整数解是1,2,3,4,5.4.解:由2+x>7﹣4x,得:x>1,由x<,得:x<4,则不等式组的解集为1<x<4,所有整数解的和为2+3=5.5.解:,解不等式①得,x≤1,解不等式②得,x>﹣3,所以不等式组的解集是﹣3<x≤1,所以不等式组的非负整数解是0、1.故答案为:0、1.6.解:,解不等式①,得x>﹣2;解不等式②,得x≤﹣1;并把不等式①,②解集在数轴上表示出来;原不等式组的解集为﹣2<x≤﹣1.故答案为:x>﹣2;x≤﹣1;﹣2<x≤﹣1.7.解:(1)若M(a+1,2a﹣4)在x轴上,则2a﹣4=0,∴a=2,∴M(3,0),若M(a+1,2a﹣4)在y轴上,则a+1=0,∴a=﹣1,∴M(0,﹣6),∴M在x轴上,M的坐标是(3,0);M在y轴上,M的坐标是(0,﹣6);(2)∵M(a+1,2a﹣4)在第四象限的角平分线上,∴(a+1)+(2a﹣4)=0,解得a=1,∴a的值为1;(3)∵经过点M(a+1,2a﹣4),N(b+1,4)的直线与x轴平行,∴2a﹣4=4,解得a=4,∴M(5,4),∵MN=5,∴|b+1﹣5|=5,解得b=9或b=﹣1,∴N(10,4)或N(0,4).8.解:(1)解不等式①,得:x>﹣4,解不等式②,得:x≤2,则不等式组的解集为﹣4<x≤2,将不等式组的解集表示在数轴上如下:(2)该不等式的最小整数解为﹣3,最大整数解为2,所以最小整数解与最大整数解的和为﹣3+2=﹣1.9.解:(1)由方程组,得,∵x为非正数,y为负数,∴,解得,﹣2<a≤3,即a的取值范围是﹣2<a≤3;(2)由不等式2ax﹣x>2a﹣1,得(2a﹣1)x>2a﹣1,∵不等式2ax﹣x>2a﹣1的解集为x<1,∴2a﹣1<0,得a<0.5,又∵﹣2<a≤3且a为整数,∴a=﹣1,0,即a的值是﹣1或0.10.解:①+②得:4x+4y=k+4∴x+y=,而﹣1<x+y<1∴﹣1<<1,∴﹣8<k<0.11.解:,②×2﹣①得:x=m﹣3③,将③代入②得:y=﹣m+5,∴得,∵x>y且2x<3y,∴,解得,4<m<,∴|3m+2|﹣|m﹣5|=3m+2﹣(5﹣m)=4m﹣3.12.解:,解不等式①得:,解不等式②得:x≤1﹣a,∵不等式组的解集为:1≤x≤5,∴,解得,∴﹣4x+3×2=0,解得.13.解:(1)解方程组得,根据题意知2(3m+2)﹣3(m+1)=7,解得:m=2;(2)由题意知3m+2+2(m+1)<12,解得:m<,解不等式x﹣m<0,得:x<m,解不等式4x+3>2x﹣1,得:x>﹣2,若m≤﹣2,则不等式组无解,若﹣2,则不等式组的解集为﹣2<x<m.14.解:(1),①+②得:2x=﹣6+2a,即x=﹣3+a,①﹣②得:2y=﹣7﹣a﹣1﹣3a,即y=﹣4﹣2a,根据题意得:,解得:﹣2<a≤3;(2)∵﹣2<a≤3,∴a﹣3≤0,a+4>0,则原式=3﹣a+a+4=7;(3)不等式变形得:(2a+1)x>2a+1,由解集为x<1,得到2a+1<0,解得:a<﹣,则满足题意的a为﹣1.15.解:(1)∵x﹣y=3,∴x=y+3,∵x>2,∴y+3>2,∴y>﹣1,又∵y<1,∴﹣1<y<1①,同理可得2<x<4②,由①+②得:﹣1+2<x+y<1+4,∴x+y的取值范围为1<x+y<5(2)解:①解方程组,得,∵该方程组的解都是正数,∴x>0,y>0,∴,解不等式组得:a>1,∴a的取值范围为:a>1;②∵a﹣b=4,∴a=b+4,∵a>1①,∴b+4>1,∴b>﹣3②,∴①+②得a+b>1﹣3,∴a+b的取值范围为a+b>﹣2.16.解:(1),由①+②得:3x+3y=6m+1,即3(x+y)=6m+1,∴,∵x+y=1,∴,解得:;(2),由①﹣②得:x﹣y=2m﹣1,∵﹣1<x﹣y<5,∴﹣1<2m﹣1<5,解得:0<m<3;(3)2x≥a﹣1,解得:,∵不等式2x≥a﹣1的解包含第(2)中的m的所有整数解,∴,解得:a≤3.17.解:(1),①+②得2x=2m﹣6,所以,x=m﹣3;①﹣②得2y=﹣4m﹣8,所以,y=﹣2m﹣4,故含m的代数式分别表示x和y为;(2)∵x≤0,y<0,∴,解得﹣2<m≤3;(3)不等式变形为:(2m+1)x<2m+1,∵原不等式的解集是x>1,∴2m+1<0,∴m<﹣,又∵﹣2<m≤3∴﹣2<m<﹣,∵m为整数,∴m=﹣1.18.解:(1)将①×m+②×n,可得(7m+9n)x+(4m+3n)y=2m+n,令等式左边(7m+9n)x+(4m+3n)y=3x+6y,比较系数可得,解得,∴3x+6y=2m+n=6﹣2=4;(2)令,将①×m+②×n,可得(2m+3n)x+(m+2n)y,令(2m+3n)x+(m+2n)y=x﹣3y,比较系数可得,解得,∴①×11为11<22x+11y<33③,②×(﹣7)为﹣28<﹣21x﹣14y<﹣14④,∴③+④得﹣17<x﹣3y<19.19.解:(2)∵<0,∴或,故答案为:,;(3)∵>0,∴①或②,解不等式组①得:不等式组无解;解不等式组②得:﹣<x<3,∴>0的解集是﹣<x<3;(4)<3,整理得:﹣3<0,即<0,所以①或②,解不等式组①得:x>4,解不等式组②得:x<1,所以不等式<3的解集是x>4或x<1.20.解:(1)若ab<0,则a>0,b<0或a<0,b>0.故答案为:<;>;(2)①∵(x+2)(x﹣3)>0,∴或,解得x>3或x<3;②∵(x+1)(x﹣2)<0,∴或,解得﹣1<x<2.。
北师大版八年级下册数学 2.6 一元一次不等式组 同步习题
2.6 一元一次不等式组 同步习题练习题11、解下列不等式组,并把解集在数轴上表示出来2x -1≥0 (2)4<1-3x <13 3、.-5<6-2x <3.3x +1>0 3x -2<04、、⎪⎩⎪⎨⎧+>-<-.3342,121x x x x 5.14321<--<-x 6.⎪⎩⎪⎨⎧⋅>-<-322,352x x x x7.⎪⎩⎪⎨⎧->---->-.6)2(3)3(2,132x x x x 8、⎪⎩⎪⎨⎧+>-≤+).2(28,142x x x9..234512x x x -≤-≤-10.532(1)314(2)2x xx -≥⎧⎪⎨-<⎪⎩ 11.⎪⎩⎪⎨⎧≥--+.052,1372x x x φ 12.⎪⎩⎪⎨⎧---+.43)1(4,1321x x x xπφ2、已知a=23+x,b=32+x,且a>2>b,那么求x的取值范围。
3、已知方程组 2x+y=5m+6 的解为负数,求m的取值范围。
X-2y=-174、若不等式组 x<a 无解,求a的取值范围。
213-x>15、当x取哪些整数时,不等式 2(x+2)<x+5与不等式3(x-2)+9>2x同时成立?7、某工厂现有A种原料290千克,B种原料220千克,计划利用这两种原料生产甲、乙两种产品共40件,已知生产甲种产品需要A种原料8千克,B种原料4千克,生产乙种产品需要A种原料5千克,B种原料9千克。
问有几种符合题意的生产方案?8、已知有长度为3cm,7cm,xcm的三条线段,问,当x为多长时,这三条线段可以围成一个三角形?9、把一批铅笔分给几个小朋友,每人分5支还余2支;每人分6支,那么最后一个小朋友分得的铅笔小于2支,求小朋友人数和铅笔支数。
一元一次不等式组 练习题2一、填空:1、不等式组()122431223x x x x ⎧--≥⎪⎪⎨-⎪>+⎪⎩的解集为2、若m<n ,则不等式组12x m x n >-⎧⎨<+⎩的解集是3.若不等式组2113x ax <⎧⎪-⎨>⎪⎩无解,则a 的取值范围是 .4.已知方程组2420x ky x y +=⎧⎨-=⎩有正数解,则k 的取值范围是 .5.若关于x 的不等式组61540x xx m +⎧>+⎪⎨⎪+<⎩的解集为4x <,则m 的取值范围是 . 6.不等式723x x +--<的解集为 . 二、选择题:7、若关于x 的不等式组12x x m -≤<⎧⎨>⎩有解,则m 的范围是( )A .2m ≤B .2m <C .1m <-D .12m -≤<8、不等式组2.01x x x >-⎧⎪>⎨⎪<⎩的解集是( ) .1.0.01.21A x B x C x D x >-><<-<<9、如果关于x 、y 的方程组322x y x y a +=⎧⎨-=-⎩的解是负数,则a 的取值范围是( )A.-4<a<5B.a>5C.a<-4D.无解 三、解答题 10、解下列不等式组,并在数轴上表示解集。
最新北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组同步练习试题(含详细解析)
第二章一元一次不等式和一元一次不等式组同步练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若m >n ,则下列不等式不成立的是( )A .m +4>n +4B .﹣4m <﹣4nC .44m n >D .m ﹣4<n ﹣42、下列选项正确的是( )A .a 不是负数,表示为0a >B .a 不大于3,表示为3a <C .x 与4的差是负数,表示为40x -<D .x 不等于34,表示为34x > 3、如图,一次函数y =kx +b (k ,b 为常数,k ≠0)经过点A (-3,2),则关于x 的不等式中k (x -1)+b <2的解集为( )A .x >-2B .x <-2C .x >-3D .x <-34、不等式3+2x ≥1的解在数轴上表示正确的是( )A .B .C .D .5、设m 为整数,若方程组3131x y m x y m +=-⎧⎨-=+⎩的解x 、y 满足175x y +>-,则m 的最大值是() A .4 B .5 C .6 D .76、若m <n ,则下列各式正确的是( )A .﹣2m <﹣2nB .33m n> C .1﹣m >1﹣n D .m 2<n 27、下列变形中,错误的是( )A .若3a +5>2,则3a >2-5B .若213x ->,则23x <-C .若115x -<,则x >﹣5 D .若1115x >,则511x >8、若a >b ,则下列不等式一定成立的是( )A .﹣2a <﹣2bB .am <bmC .a ﹣3<b ﹣3D .3a+1<3b+19、一次函数y =kx +b (k ≠0)的图象如图所示,当x >2时,y 的取值范围是( )A .y <0B .y >0C .y <3D .y >310、已知一次函数y 1=kx +1和y 2=x ﹣2.当x <1时,y 1>y 2,则k 的值可以是( )A .-3B .-1C .2D .4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)14≥-的解集是_________.2、已知关于x 的一元一次不等式20212021x a x +>的解集为2021x <,那么关于y 的一元一次不等式12021(1)2021y y a -<-+的解集为___________. 3、如图直线y =x +b 和y =kx +4与x 轴分别相交于点A (﹣4,0),点B (2,0),则040x b kx +>⎧⎨+>⎩解集为_____________.4、若关于x 的不等式组9210x x a ->-⎧⎨-≥⎩的整数解共有5个,则a 的取值范围_________. 5、不等式组:3561162x x x x <+⎧⎪+-⎨≥⎪⎩,写出其整数解的和_____. 三、解答题(5小题,每小题10分,共计50分)1、解不等式(组)(1)3(1)5x x -≤+(2)4614312163x x x x +>-⎧⎪++⎨-≤⎪⎩2、解不等式3x﹣1≤x+3,并把解在数轴上表示出来.3、某校为了丰富学生的业余生活,组织了一次棋类的比赛,准备购买若干跳棋和军棋作为奖品,若购买2副跳棋和3副军棋共需42元,购买5副跳棋和一副军旗共需40元.(1)求购买一副跳棋和一副军棋各需要多少钱?(2)学校准备购买跳棋与军棋共80副作为奖品,根据规定购买的总费用不能超过600元,则学校最多可以购买多少副军棋?4、下列各式哪些是不等式2(2x+1)>25的解?哪些不是?(1)x=1.(2)x=3.(3)x=10.(4)x=12.5、某公司销售A、B两种型号教学设备,每台的销售成本和售价如表:已知每月销售两种型号设备共20台,设销售A种型号设备x台,A、B两种型号设备全部售完后获得毛利润y万元(毛利润=售价-成本)(1)求y关于x的函数关系式(不要求写自变量的取值范围);(2)若销售两种型号设备的总成本不超过80万元,那么公司如何安排销售A、B两种型号设备,售完后毛利润最大?并求出最大毛利润.-参考答案-一、单选题1、D【分析】根据不等式的基本性质对各选项进行逐一分析即可.【详解】解:A .∵m >n ,∴m +4>n +4,故该选项正确,不符合题意;B .∵m >n ,∴44m n -<-,故该选项正确,不符合题意;C .∵m >n , ∴44m n >,故该选项正确,不符合题意; D .∵m >n ,∴44m n ->-,故该选项错误,符合题意;故选:D .【点睛】本题考查不等式的基本性质.掌握不等式的基本性质“1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;2.不等式两边都乘(或除以)同一个正数,不等号的方向不变;3.不等式两边都乘(或除以)同一个负数,不等号的方向改变.”是解答本题的关键.2、C【分析】由题意先根据非负数、负数及各选项的语言表述列出不等式,再与选项中所表示的进行比较即可得出答案.【详解】解:A .a 不是负数,可表示成0a ,故本选项不符合题意;B .a 不大于3,可表示成3a ,故本选项不符合题意;C .x 与4的差是负数,可表示成40x -<,故本选项符合题意;D .x 不等于34,表示为34x ≠,故本选项不符合题意; 故选:C .【点睛】本题考查不等式的定义,解决本题的关键是理解负数是小于0的数,不大于用数学符号表示是“≤”.3、A【分析】根据一次函数图象平移规律可得函数y =kx +b 图像向右平移1个单位得到平移后的解析式为y =k (x -1)+b ,即可得出点A 平移后的对应点,根据图象找出一次函数y=k (x -1)+b 的值小于2的自变量x 的取值范围,据此即可得答案.【详解】解:∵函数y =kx +b 图像向右平移1个单位得到平移后的解析式为y =k (x -1)+b ,∴A (−3,2)向右平移1个单位得到对应点为(−2,2),由图象可知,y 随x 的增大而减小,∴关于x 的不等式(1)2k x b 的解集为2x >-,故选:A .【点睛】本题考查一次函数的性质、一次函数图象的平移及一次函数与不等式,正确理解函数的性质、会观察图象,熟练掌握平移规律是解题的关键.4、B【分析】不等式移项,合并同类项,把x 系数化为1求出解集,表示在数轴上即可.【详解】解:不等式3+2x ≥1,移项得:2x ≥1﹣3,合并同类项得:2x ≥﹣2,解得:x ≥﹣1,数轴表示如下:.故选:B .【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.不等式的解集在数轴上表示时,空心圈表示不包含该点,实心点表示包含该点.5、B【分析】先把m 当做常数,解一元二次方程,然后根据175x y +>-得到关于m 的不等式,由此求解即可 【详解】解:3131x y m x y m +=-⎧⎨-=+⎩①② 把①×3得:9333x y m +=-③,用③+①得:1042x m =-,解得25m x -=, 把25m x -=代入①得6315m y m -+=-,解得125m y --=, ∵175x y +>-, ∴21217555m m ---+>-,即131755m ->-, 解得6m <,∵m 为整数,∴m 的最大值为5,故选B .【点睛】本题主要考查了解二元一次方程组和解一元一次不等式和求不等式的整数解,解题的关键在于能够熟练掌握解二元一次方程组的方法.6、C【分析】根据不等式的基本性质逐项判断即可.【详解】解:A :∵m <n ,∴﹣2m >﹣2n ,∴不符合题意;B :∵m <n , ∴33m n <, ∴不符合题意;C :∵m <n ,∴﹣m >﹣n ,∴1﹣m >1﹣n ,∴符合题意;D : m <n ,当10m n =-=,时,m 2>n 2, ∴不符合题意;故选:C .【点睛】本题主要考查了不等式的基本性质,熟练掌握不等式的3条基本性质是解题关键.7、B【分析】根据不等式的两边都加(或减)同一个数(或同一个整式),不等号的方向不变;不等式的两边都乘以同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.【详解】解:A 、不等式的两边都减5,不等号的方向不变,故A 不符合题意;B 、不等式的两边都乘以32-,不等号的方向改变得到32x <-,故B 符合题意; C 、不等式的两边都乘以(﹣5),不等号的方向改变,故C 不符合题意;D 、不等式的两边都乘以同一个正数,不等号的方向不变,故D 不符合题意;故选:B .【点睛】本题考查了不等式的性质,熟记不等式的性质并根据不等式的性质计算式解题.8、A【分析】由题意直接依据不等式的基本性质对各个选项进行分析判断即可.【详解】解:A .∵a >b ,∴﹣2a <﹣2b ,故本选项符合题意;B .a >b ,当m >0时,am >bm ,故本选项不符合题意;C .∵a >b ,∴a ﹣3>b ﹣3,故本选项不符合题意;D .∵a >b , ∴33a b >, ∴1133ab +>+,故本选项不符合题意;故选:A .【点睛】本题考查不等式的基本性质,注意掌握不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.9、A【分析】观察图象得到直线与x 轴的交点坐标为(2,0),根据一次函数性质得到y 随x 的增大而减小,所以当x >2时,y <0.【详解】∵一次函数y =kx +b (k ≠0)与x 轴的交点坐标为(2,0),∴y 随x 的增大而减小,∴当x >2时,y <0.故选:A .【点睛】本题考查了一次函数的性质:一次函数y =kx +b (k 、b 为常数,k ≠0)的图象为直线,当k >0,图象经过第一、三象限,y 随x 的增大而增大;当k <0,图象经过第二、四象限,y 随x 的增大而减小;直线与x 轴的交点坐标为(,0)b k-.10、B【分析】先求出不等式的解集,结合x <1,即可得到k 的取值范围,即可得到答案.【详解】解:根据题意,∵y 1>y 2,∴12kx x +>-,解得:(1)3k x ->-,∴10k -<,∴1k <;31x k <--, ∵当x <1时,y 1>y 2, ∴311k -<- ∴2k >-,∴21k -<<;∴k 的值可以是-1;故选:B .【点睛】本题考查了一次函数的图像和性质,解一元一次不等式,解题的关键是掌握一次函数的性质进行计算.二、填空题1、≤x 【分析】根据不等式的性质进行求解,根据二次根式的运算法则进行化简即可.【详解】4≥-4≥-,4x ≥-,x≤x故答案为:≤x【点睛】本题考查了解一元一次不等式,二次根式的混合运算,熟练掌握相关运算法则是解本题的关键. 2、2022y <【分析】设1,x y =-则20212021x a x +>化为:()120211,2021y a y -+->整理可得:12021(1)2021y y a -<-+,从而可得12021(1)2021y y a -<-+的解集是不等式12021y -<的解集,从而可得答案. 【详解】解: 关于x 的一元一次不等式20212021x a x +>的解集为2021x <, 设1,x y =- 则20212021x a x +>化为:()120211,2021y a y -+-> 两边都乘以1-得:()120211,2021y a y ---< 即12021(1)2021y y a -<-+ ∴ 12021(1)2021y y a -<-+的解集为:12021y -<的解集, 2022.y ∴<故答案为:2022.y <【点睛】本题考查的是求解一元一次不等式的解集,掌握“整体法求解不等式的解集”是解本题的关键. 3、42x -<<【分析】观察图象可得:当4x >- 时,y x b =+的图象位于x 轴的上方,从而得到0x b +> 的解集为4x >- ;当2x < 时,4y kx =+的图象位于x 轴的上方,从而得到40kx +> 的解集为2x <,即可求解.【详解】解:观察图象可得:当4x >- 时,y x b =+的图象位于x 轴的上方,∴0x b +> 的解集为4x >- ;当2x < 时,4y kx =+的图象位于x 轴的上方,∴40kx +> 的解集为2x <,∴040x b kx +>⎧⎨+>⎩解集为42x -<<. 故答案为:42x -<<【点睛】本题主要考查了一次函数与不等式的关系,观察图象得到当4x >- 时,y x b =+的图象位于x 轴的上方,当2x < 时,4y kx =+的图象位于x 轴的上方是解题的关键.4、﹣1<a ≤0【分析】先求出不等式组的解集,再根据已知条件得出−1<a ≤0即可.【详解】解:9210x x a --⎧⎨-≥⎩>①②, 解不等式①,得x <5,解不等式②,得x ≥a ,所以不等式组的解集是a ≤x <5,∵关于x 的不等式组9210x x a ->-⎧⎨-≥⎩的整数解共有5个, ∴−1<a ≤0,故答案为:−1<a ≤0.【点睛】本题考查了解一元一次不等式组的整数解和解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的关键.5、0【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可求出整数解,最后相加即可.【详解】解:3561162x x x x <+⎧⎪⎨+-≥⎪⎩①②,解不等式①,得3x >-;解不等式②,得2x ≤.∴不等式组的解集为32x -<≤,∴不等式组的整数解分别为-2、-1、0、1、2,∴不等式组的整数解的和为:210120--+++=.故答案为:0.【点睛】本题考查求不等式组的整数解.正确的求出不等式组中每一个不等式的解集是解答本题的关键.三、解答题1、(1)4x ≤;(2)1x >-【分析】(1)根据解不等式的基本步骤求解即可;(2)先求得每一个不等式的解集,后确定出解集即可.【详解】(1)∵3(1)5x x -≤+ ,∴335x x -≤+,∴28x ≤,∴4x ≤;(2)4614312163x x x x +>-⎧⎪⎨++-≤⎪⎩①②由①:1x >-,由②:4x ≥-,1x ∴>-.【点睛】本题考查了一元一次不等式和一元一次不等式组的解法,熟练掌握解题的基本步骤是解题的关键.2、x ≤2;数轴表示见解析.【分析】按移项、合并同类项、系数化为1的步骤求得不等式的解集,然后在数轴上表示出来即可.【详解】解:313x x -≤+,移项,得331x x -≤+,合并同类项,得24x ≤,系数化为1,得x ≤2,把解集在数轴上表示如图所示:【点睛】本题考查了解一元一次不等式,在数轴上表示不等式的解集,熟练掌握解一元一次不等式的基本步骤以及在数轴上表示解集的方法是解题的关键.3、(1)购买一副跳棋和一副军棋各需要6元、10元;(2)学校最多可以买30副军棋【分析】(1)设购买一副跳棋和一副军棋各需要x 元、y 元,然后根据购买2副跳棋和3副军棋共需42元,购买5副跳棋和一副军旗共需40元,列出方程求解即可;(2)设购买m 副军棋,则购买()80m -副跳棋,然后根据购买的总费用不能超过600元,列出不等式求解即可.【详解】解:(1)设购买一副跳棋和一副军棋各需要x 元、y 元,由题意得:2342540x y x y +=⎧⎨+=⎩, 解得610x y =⎧⎨=⎩, ∴购买一副跳棋和一副军棋各需要6元、10元,答:购买一副跳棋和一副军棋各需要6元、10元;(2)设购买m 副军棋,则购买()80m -副跳棋,由题意得:()68010600m m -+≤,即4480600m +≤,解得30m ≤,∴学校最多可以买30副军棋,答:学校最多可以买30副军棋.【点睛】本题主要考查了二元一次方程组和一元一次不等式的实际应用,解题的关键在于能够准确理解题意,列出式子求解.4、(1)不是(2)不是(3)是(4)是【分析】把未知数的值代入计算,比较后,判断即可(1)把x=1代入不等式2(2x+1)>25,因为:左边=2×(2×1+1)=6<25,所以x=1不是不等式2(2x+1)>25的解.(2)把x=3代入不等式2(2x+1)>25,因为:左边=2×(2×3+1)=14<25,所以x=3不是不等式2(2x+1)>25的解.(3)把x=10代入不等式2(2x+1)>25,因为:左边=2×(2×10+1)=42>25,所以x=10是不等式2(2x+1)>25的解.(4)把x=12代入不等式2(2x+1)>25,因为:左边=2×(2×12+1)=50>25,所以x=12是不等式2(2x+1)>25的解.【点睛】本题考查了不等式的解即使不等式左右两边成立的未知数的值,正确理解不等式的解是解题的关键.5、(1)y=-2x+60;(2)公司生产A,B两种品牌设备各10台,售完后获利最大,最大毛利润为40万元.【分析】(1)设销售A种品牌设备x台,B种品牌设备(20-x)台,算出每台的利润乘对应的台数,再合并在一起即可求出总利润;(2)由“生产两种品牌设备的总成本不超过80万元”,列出不等式,再由(1)中的函数的性质得出答案.【详解】解:(1)设销售A种型号设备x台,则销售B种型号设备(20-x)台,依题意得:y=(4-3)x+(8-5)×(20-x),即y=-2x+60;(2)3x+5×(20-x)≤80,解得x≥10.∵-2<0,∴当x=10时,y最大=40万元.故公司生产A,B两种品牌设备各10台,售完后获利最大,最大毛利润为40万元.【点睛】本题考查了一次函数的应用,一元一次不等式的应用,注意题目蕴含的数量关系,正确列式解决问题.。
2.6 一元一次不等式组 北师大版八年级下册数学作业(含答案)
6一元一次不等式组(打“√”或“×”)1.是一元一次不等式组. (×)2.在平面直角坐标系中,点A(2x-5,6-2x)在第四象限,则x的取值范围是<x<3. (×)3.不等式组的解集是x<-1. (×)4.已知不等式组则x可取的整数是0,1,2. (×)5.根据“x的2倍大于4,且x的三分之一与1的和不大于2”列出的不等式组是(×)·知识点1一元一次不等式组的概念1.下列不等式组是一元一次不等式组的是 (B)A. B.C. D.·知识点2一元一次不等式组的解集2.(2021·泉州丰泽区期末)下列不等式组中,无解的是(D)A. B. C. D.3.关于x的不等式组的解集是x<-3,则m的取值范围是m≥-3.·知识点3解一元一次不等式组4.(2021·厦门集美区模拟)不等式组的解集是(C)A.x>-1B.x>-C.x≥-D.-1<x≤-5.若不等式组无解,则a的取值范围是a≥2.·知识点4一元一次不等式组的特殊解6.若关于x的不等式组恰有3个整数解,则实数a的取值范围是(C)A.7<a<8B.7<a≤8C.7≤a<8D.7≤a≤87.不等式组的最大整数解是x=-4.·知识点5一元一次不等式组的实际应用8.(2021·福州马尾区期中)《西游记》、《三国演义》、《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著,某兴趣小组阅读四大名著的人数,同时满足以下三个条件:(1)阅读过《西游记》的人数多于阅读过《水浒传》的人数;(2)阅读过《水浒传》的人数多于阅读过《三国演义》的人数;(3)阅读过《三国演义》的人数的2倍多于阅读过《西游记》的人数.若阅读过《三国演义》的人数为4,则阅读过《水浒传》的人数的最大值为6.1.(2021·湘潭中考)不等式组的解集在数轴上表示正确的是(D)2.(2021·南平延平区期末)已知且0<x-y<1,则k的取值范围为(B)A.<k<1B.0<k<C.0<k<1D.-1<k<-3.定义:对于实数a,符号[a]表示不大于a的最大整数.例如:[3.2]=3,[2]=2,[-2.3]=-3.如果[]=2,则x的取值范围是(D)A.5≤x≤7B.5<x≤7C.5<x<7D.5≤x<74.如图,是甲、乙、丙三人玩跷跷板的示意图(支点在板的中点处),则甲的体重m的取值范围是.(C)A.0<m<45B.45≤m<60C.45<m<60D.45<m≤605.(2021·三元区质检)先阅读理解下面的例题,再按要求完成后面的问题:例:解不等式(x-2)(x+1)>0.【解析】由有理数的乘法法则“两数相乘,同号得正,异号得负”得: ①,或②解不等式组①,得:x>2.解不等式组②,得:x<-1.所以(x-2)(x+1)>0的解集为x>2或x<-1.根据上述方法解析下列问题:(1)解一元二次不等式x2-4>0;(2)解不等式<0.【解析】见全解全析易错点1:依据不等式组的解集确定不等式组中参数的值时,忽略等号导致漏解1.(2021·菏泽中考)如果不等式组的解集为x>2,那么m 的取值范围是(A)A.m≤2B.m≥2C.m>2D.m<2易错点2:套用解方程组的方法直接把两个不等式相加或相减得出其解集造成错误2.解不等式组【解析】见全解全析6一元一次不等式组必备知识·基础练【易错诊断】1.×2.×3.×4.×5.×【对点达标】1.B A.是二元一次不等式组,故本选项不符合题意;B.是一元一次不等式组,故本选项符合题意;C.是一元二次不等式组,故本选项不符合题意;D.是二元一次不等式组,故本选项不符合题意.2.D A.的解集为x<-3,故本选项不合题意;B.的解集为-3<x<2,故本选项不合题意;C.的解集为x>2,故本选项不合题意;D.无解,故本选项符合题意.3.【解析】解不等式2x-1>3x+2,得:x<-3,∵关于x的不等式组的解集是x<-3,∴m≥-3.答案:m≥-34.C解不等式2x≥-1,得:x≥-,又x>-1,∴不等式组的解集为x≥-.5.【解析】解不等式x+2>2a,得:x>2a-2,∵不等式组无解,∴a≤2a-2,解得a≥2.答案:a≥26.C解不等式①,得x>4.5.解不等式②,得x≤a.所以不等式组的解集是4.5<x≤a,∵关于x的不等式组恰有3个整数解(整数解是5,6,7),∴7≤a<8.7.【解析】由①得:x<-3.由②得:x≤3.∴不等式组的解集为x<-3.则不等式组最大的整数解为x=-4.答案:x=-48.【解析】设阅读过《西游记》的人数是a,阅读过《水浒传》的人数是b(a,b均为整数),依题意,得:∵a,b均为整数.∴4<b<7,∴b最大可以取6.答案:6关键能力·综合练1.D解不等式x+1≥2,得:x≥1.解不等式4x-8<0,得:x<2.则不等式组的解集为1≤x<2.将不等式组的解集表示在数轴上如下:2.B两个方程相减,得:x-y=1-2k,∵0<x-y<1,∴0<1-2k<1,解得0<k<.3.D∵[]=2,∴2≤<3,解得5≤x<7.4.C∵甲的体重>乙的体重,∴m>45,∵甲的体重<丙的体重,∴m<60.∴45<m<60.5.【解析】(1)(x+2)(x-2)>0,原不等式可转化为①,或②解不等式组①,x>2.解不等式组②,x<-2.即一元二次不等式x2-4>0的解集为x>2或x<-2;(2)原不等式可转化为①,或②解不等式组①,-<x<.解不等式组②无解.即分式不等式<0的解集为-<x<.【易错必究】1.A解不等式x+5<4x-1,得:x>2,∵不等式组的解集为x>2,∴m≤2.2.【解析】由①得:x≤3.由②得:x≥-1.即不等式组的解集为-1≤x≤3.。
北师大版初中数学八年级下册《2.6 一元一次不等式组》同步练习卷(含答案解析
北师大新版八年级下学期《2.6 一元一次不等式组》同步练习卷一.选择题(共30小题)1.下列各式不是一元一次不等式组的是()A.B.C.D.2.下列选项中是一元一次不等式组的是()A.B.C.D.3.下列各式中不是一元一次不等式组的是()A.B.C.D.4.下列各式中不是一元一次不等式组的是()A.B.C.D.5.下面给出的不等式组中①②③④⑤,其中是一元一次不等式组的个数是()A.2个B.3个C.4个D.5个6.不等式组的解集在数轴上表示为()A.B.C.D.7.如果不等式组的解集为x>4,m的取值范围为()A.m<4B.m≥4C.m≤4D.无法确定8.已知关于x的不等式组的解集中任意一个x的值都不在﹣1≤x≤2的范围内,则m的取值范围是()A.﹣2≤m≤4B.m≤﹣2 或m≥4C.﹣2<m<4D.m<﹣2 或m>49.若不等式组无解,则k的取值范圈为()A.k≥1B.k≤1C.k<1D.k>110.已知关于x的不等式组无解,则m的取值范围是()A.m>﹣2B.m≥﹣2C.m<2D.m≥211.一元一次不等式组的最大整数解是()A.﹣1B.0C.1D.212.若a使关于x的不等式组有两个整数解,且使关于x的方程2x+a=有负数解,则符合题意的整数a的个数有()A.1个B.2个C.3个D.4个13.已知点M(1﹣a,3a﹣9)在第三象限,且它的坐标都是整数,则a的值是()A.0B.1C.2D.314.若关于x的一元一次不等式组有4个整数解,则m的取值范围为()A.﹣3<m<﹣2B.﹣3≤m<﹣2C.3≤m<D.3<m≤15.若关于x的方程4(2﹣x)+x=ax的解为正整数,且关于x的不等式组有解,则满足条件的所有整数a的值之和是()A.4B.0C.﹣1D.﹣316.若关于x的不等式组的解集中至少有6个整数解,则正数a的最小值是()A.1B.2C.D.17.若关于x的不等式组所有整数解的和是10,则m的取值范围是()A.4<m≤5B.4<m<5C.4≤m<5D.4≤m≤5 18.已知关于x的不等式组只有5个整数解,则实数a的取值范围是()A.﹣3≤x≤﹣2B.﹣3<x≤﹣2C.﹣4<x≤﹣3D.﹣4≤x<﹣3 19.八年级某班级部分同学去植树,若每人平均植树7棵,还剩9棵,若每人平均植树9棵,则有1位同学植树的棵数不到8棵.若设同学人数为x人,植树的棵数为(7x+9)棵,下列各项能准确的求出同学人数与种植的树木的数量的是()A.7x+9≤8+9(x﹣1)B.7x+9≥9(x﹣1)C.D.20.开发区某物流公司计划调用甲、乙两种型号的物流货车共15辆,运送360件A种货物和396件B种货物.已知甲种物流货车每辆最多能载30件A种货物和24件B种货物,乙种物流货车每辆最多能载20件A种货物和30件B 种货物.设安排甲种物流货车x辆,你认为下列符合题意的不等式组是()A.B.C.D.21.某企业次定购买A,B两种型号的污水处理设备共8台,具体情况如下表:经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低1380吨,该企业有哪些购买方案呢?这解决这个问题,高购买A型污水处理设备x台,所列不等式组下确是()A.B.C.D.22.将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有一个小朋友分到苹果但不到8个苹果.求这一箱苹果的个数与小朋友的人数.若设有x人,则可列不等式为()A.8(x﹣1)<5x+12<8B.0<5x+12<8xC.0<5x+12﹣8(x﹣1)<8D.8x<5x+12<823.某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位,要求租用的车辆不留空座,也不能超载.租车方案共有()种.A.2B.3C.4D.524.把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本,则共有学生人数为()A.6人B.5人C.6人或5人D.4人25.若干学生分宿舍,每间4人余20人,每间8人有一间不空也不满,则宿舍有()A.5间B.6间C.7间D.8间26.宁城县城区现行出租车的收费标准:起步价5元(即行驶距离不超过3千米都需付5元车费),超过3千米后,每增加1千米,加收1.5元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费11元,那么甲地到乙地路程的最大值是()A.5千米B.7千米C.8千米D.9千米27.某品牌电脑的成本为2400元,标价为2980元,如果商店要以利润不低于5%的售价打折销售,最低可打()折出售.A.7折B.7.5折C.8折D.8.5折28.如图,用长为40米的铁丝一边靠墙围成两个长方形,墙的长度AC=30米,要使靠墙的一边不小于25米,那么与墙垂直的一边的范围为()A.0≤x≤5B.C.D.29.无论m为何值,点A(m﹣3,5﹣2m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限30.有数颗等重的糖果和数个大、小砝码,其中大砝码皆为5克、小砝码皆为1克,且图是将糖果与砝码放在等臂天平上的两种情形.判断下列哪一种情形是正确的()A.B.C.D.二.填空题(共10小题)31.已知点P(1﹣a,2a+6)在第四象限,则a的取值范围是.32.记R(x)表示正数x四舍五入后的结果,例如R(2.7)=3,R(7.11)=7,R (9)=9,(1)R(π)=,R()=;(2)若R(x﹣1)=3,则x的取值范围是.(3)R()=4,则x的取值范围是.33.不等式组的解集为.34.若不等式组解为﹣3<x<1,则(a+1)(b﹣1)值为.35.若关于x的不等式组,恰有三个整数解,关于x的方程组的解是正数,则m的取值范是.36.不等式组的最小整数解是.37.若关于x的一元一次不等式组有2个负整数解,则a的取值范围是.38.已知不等式组有解但没有整数解,则a的取值范围为.39.不等式组有2个整数解,则实数a的取值范围是.40.不等式组所有整数解的和是.北师大新版八年级下学期《2.6 一元一次不等式组》同步练习卷参考答案与试题解析一.选择题(共30小题)1.下列各式不是一元一次不等式组的是()A.B.C.D.【分析】根据一元一次不等式组的定义进行解答.【解答】解:A、该不等式组符合一元一次不等式组的定义,故本选项错误;B、该不等式组符合一元一次不等式组的定义,故本选项错误;C、该不等式组中含有2给未知数,不是一元一次不等式组,故本选项正确;D、该不等式组符合一元一次不等式组的定义,故本选项错误;故选:C.【点评】本题考查了一元一次不等式组的定义,每个不等式中含有同一个未知数且未知数的次数是1的不等式组是一元一次不等式组.2.下列选项中是一元一次不等式组的是()A.B.C.D.【分析】根据一元一次不等式的定义即用不等号连接的,含有一个未知数,并且未知数的次数都是1,系数不为0,左右两边为整式的式子叫做一元一次不等式解答即可.【解答】解:A、含有两个未知数,错误;B、未知数的次数是2,错误;C、含有两个未知数,错误;D、符合一元一次不等式组的定义,正确;故选:D.【点评】本题比较简单,考查的是一元一次不等式组的定义,只要熟练掌握一元一次不等式的定义即可轻松解答.3.下列各式中不是一元一次不等式组的是()A.B.C.D.【分析】根据一元一次不等式组的定义判定则可.由几个含有相同未知数的一元一次不等式所组成的一组不等式叫做一元一次不等式组.【解答】解:C选项中存在两个未知数,故选:C.【点评】本题考查了一元一次不等式组的识别.属于基础题.4.下列各式中不是一元一次不等式组的是()A.B.C.D.【分析】根据一元一次不等式组的定义判定则可.由几个含有相同未知数的一元一次不等式所组成的一组不等式叫做一元一次不等式组.【解答】解:∵D选项中存在两个未知数,∴它不是一元一次不等式组;其它选项符合一元一次不等式组的定义.故选:D.【点评】本题考查了一元一次不等式组的定义,此题较简单,根据一元一次不等式组的定义进行解答是此题的关键,属于基础题.5.下面给出的不等式组中①②③④⑤,其中是一元一次不等式组的个数是()A.2个B.3个C.4个D.5个【分析】根据两个不等式中含有同一个未知数且未知数的次数是1次的,可得答案.【解答】解:①是一元一次不等式组,故①正确;②是一元一次不等式组,故②正确;③是一元二次不等式组,故③错误;④是一元一次不等式组,故④正确;⑤是二元一次不等式组,故⑤错误;故选:B.【点评】本题考查了一元一次不等式组的定义,每个不等式中含有同一个未知数且未知数的次数是1的不等式组是一元一次不等式组.6.不等式组的解集在数轴上表示为()A.B.C.D.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x≥﹣2,解不等式②得:x<1,∴不等式组的解集为﹣2≤x<1,在数轴上表示为:,故选:A.【点评】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.7.如果不等式组的解集为x>4,m的取值范围为()A.m<4B.m≥4C.m≤4D.无法确定【分析】表示出不等式组中第一个不等式的解集,根据不等式组的解集确定出m 的范围即可.【解答】解:解不等式﹣x+2<x﹣6得:x>4,由不等式组的解集为x>4,得到m≤4,故选:C.【点评】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.8.已知关于x的不等式组的解集中任意一个x的值都不在﹣1≤x≤2的范围内,则m的取值范围是()A.﹣2≤m≤4B.m≤﹣2 或m≥4C.﹣2<m<4D.m<﹣2 或m>4【分析】首先解不等式得到不等式组的解集,然后根据解集中任意一个x的值都不在﹣1≤x≤2的范围内,即可得到关于m的不等式,从而求得m的范围.【解答】解:,解①得:x<m+1,解②得:x>m﹣2,则m﹣2<x<m+1,∵解集中任意一个x的值都不在﹣1≤x≤2的范围内,∴m+1≤﹣1或m﹣2≥2,即m≤﹣2或m≥4.故选:B.【点评】本题考查的是解一元一次不等式组,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数且<较大的数,那么解集为x介于两数之间.9.若不等式组无解,则k的取值范圈为()A.k≥1B.k≤1C.k<1D.k>1【分析】根据已知不等式组无解即可得出选项.【解答】解:解不等式2x+9<6x+1,得:x>2,解不等式x﹣k<1,得:x<k+1,∵不等式组无解,∴k+1≤2,解得:k≤1,故选:B.【点评】本题考查了解一元一次不等式组,能根据已知得出k的范围是解此题的关键.10.已知关于x的不等式组无解,则m的取值范围是()A.m>﹣2B.m≥﹣2C.m<2D.m≥2【分析】根据不等式组无解,可以求出实数m的取值范围.【解答】解:,由②得:x<2,∵关于x的不等式组无解,∴m≥2,故选:D.【点评】本题考查了不等式组的解集,也就是在不等式组有实数解的情况下确定不等式中字母的取值范围,解答本题时,易忽略m=2,当m=2时,不等式组无解.11.一元一次不等式组的最大整数解是()A.﹣1B.0C.1D.2【分析】求出不等式组的解集,即可求出正最大整数解;【解答】解:,由①得到:2x+6﹣4≥0,∴x≥﹣1,由②得到:x+1>3x﹣3,∴x<2,∴﹣1≤x<2,∴最大整数解是1,故选:C.【点评】本题考查一元一次不等式组的整数解,解题的关键是熟练掌握解不等式组的方法,属于中考常考题型.12.若a使关于x的不等式组有两个整数解,且使关于x的方程2x+a=有负数解,则符合题意的整数a的个数有()A.1个B.2个C.3个D.4个【分析】由不等式组有两个整数解,可得a的取值范围,再求方程可得x的表达式,根据方程解为负数,进一步求得a的取值范围,即可得整数a的个数.【解答】解:解不等式3(x+1)>x+a,得:x>,解不等式﹣x+3≥2,得:x≤,∵不等式组有两个整数解,∴1≤a<3,解方程2x+a=得:x=﹣2a﹣1,∵关于x的方程2x+a=有负数解,∴﹣2a﹣1<0,∴a>﹣,∴a=1,2,故选:B.【点评】本题主要考查解不等式组和一元一次方程的综合运用,根据不等式组的解集情况和一元一次方程的解得出关于a的范围是解题的关键.13.已知点M(1﹣a,3a﹣9)在第三象限,且它的坐标都是整数,则a的值是()A.0B.1C.2D.3【分析】在第三象限内,那么横坐标小于0,纵坐标小于0.而后求出整数解即可.【解答】解:∵点M在第三象限.∴,解得1<a<3,因为点M的坐标为整数,所以a=2.故选:C.【点评】主要考查了平面直角坐标系中第三象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).14.若关于x的一元一次不等式组有4个整数解,则m的取值范围为()A.﹣3<m<﹣2B.﹣3≤m<﹣2C.3≤m<D.3<m≤【分析】先求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知得出答案即可.【解答】解:解不等式x﹣2<0,得:x<2,解不等式x+m≥2,得:x≥4﹣2m,∵不等式组有4个整数解,∴﹣3<4﹣2m≤﹣2,解得:3≤m<,故选:C.【点评】本题主要考查的是不等式的解集,由不等式无解判断出2与4﹣2m的大小关系是解题的关键.15.若关于x的方程4(2﹣x)+x=ax的解为正整数,且关于x的不等式组有解,则满足条件的所有整数a的值之和是()A.4B.0C.﹣1D.﹣3【分析】先求出方程的解x=,根据方程的解为正整数求出a的值,再根据不等式组有解得出a<1,得出a的值,即可得出选项.【解答】解:4(2﹣x)+x=ax,8﹣4x+x=ax,ax﹣x+4x=8,(a+3)x=8,x=,∵关于x的方程4(2﹣x)+x=ax的解为正整数,∴a+3=1或a+3=2或a+3=4或a+3=8,解得:a=﹣2或a=﹣1或a=1或a=4;解不等式①得:x<1,解不等式②得:x≥a,∵关于x的不等式组有解,∴a<1,∴a只能为﹣1和﹣2,﹣1+(﹣2)=﹣3,故选:D.【点评】本题考查了解一元一次方程、解一元一次不等式和解一元一次不等式组等知识点,能得出a的取值范围和a的值是解此题的关键.16.若关于x的不等式组的解集中至少有6个整数解,则正数a的最小值是()A.1B.2C.D.【分析】首先解不等式组求得不等式组的解集,然后根据不等式组的整数解的个数从而确定a的范围,进而求得最小值.【解答】解:解不等式x﹣a≤0,得:x≤a,解不等式2x+3a≥0,得:x≥﹣a,则不等式组的解集为﹣a≤x≤a,∵不等式至少有6个整数解,则a+a≥5,解得a≥2.a的最小值是2.故选:B.【点评】本题考查一元一次不等式组的整数解,确定a的范围是本题的关键.17.若关于x的不等式组所有整数解的和是10,则m的取值范围是()A.4<m≤5B.4<m<5C.4≤m<5D.4≤m≤5【分析】首先确定不等式组的解集,先利用含m的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于m的不等式,从而求出m的范围.【解答】解:解不等式x﹣m<0得:x<m,解不等式3﹣2x≤1,得:x≥1,∵不等式组所有整数解的和为10,∴不等式组的整数解有1、2、3、4这4个,则4<m≤5,故选:A.【点评】本题主要考查了一元一次不等式组的整数解,是一道较为抽象的中考题,利用数轴就能直观的理解题意,列出关于m的不等式组,要借助数轴做出正确的取舍.18.已知关于x的不等式组只有5个整数解,则实数a的取值范围是()A.﹣3≤x≤﹣2B.﹣3<x≤﹣2C.﹣4<x≤﹣3D.﹣4≤x<﹣3【分析】先解每一个不等式,再根据不等式组有5个整数解,确定含a的式子的取值范围.【解答】解:解不等式x﹣a≥0,得:x≥a,解不等式5﹣2x>1,得:x<2,则不等式组的解集为a≤x<2,∵不等式组的整数解只有5个,∴不等式组的整数解为﹣3、﹣2、﹣1、0、1,则﹣4<a≤﹣3,故选:C.【点评】本题考查了一元一次不等式组的整数解.关键是先解每一个不等式,再根据整数解的个数,确定含a的代数式的取值范围.19.八年级某班级部分同学去植树,若每人平均植树7棵,还剩9棵,若每人平均植树9棵,则有1位同学植树的棵数不到8棵.若设同学人数为x人,植树的棵数为(7x+9)棵,下列各项能准确的求出同学人数与种植的树木的数量的是()A.7x+9≤8+9(x﹣1)B.7x+9≥9(x﹣1)C.D.【分析】不到8棵意思是植树棵树在0棵和8棵之间,包括0棵,不包括8棵,关系式为:植树的总棵树≥(x﹣1)位同学植树的棵树,植树的总棵树<8+(x﹣1)位同学植树的棵树,把相关数值代入即可.【解答】解:(x﹣1)位同学植树棵树为9×(x﹣1),∵有1位同学植树的棵数不到8棵.植树的棵数为(7x+9)棵,∴可列方程组为:.故选:C.【点评】本题考查了列一元一次不等式组,得到植树总棵树和预计植树棵树之间的关系式是解决本题的关键;理解“有1位同学植树的棵数不到8棵”是解决本题的突破点.20.开发区某物流公司计划调用甲、乙两种型号的物流货车共15辆,运送360件A种货物和396件B种货物.已知甲种物流货车每辆最多能载30件A种货物和24件B种货物,乙种物流货车每辆最多能载20件A种货物和30件B 种货物.设安排甲种物流货车x辆,你认为下列符合题意的不等式组是()A.B.C.D.【分析】货车承载量要不低于(≥)A种货物总件数和B种货物总件数,故可列一元一次不等式组解决.【解答】解:设安排甲种物流货车x辆,则需要乙两物流货车(15﹣x)辆.由题意:,故选:A.【点评】此题主要考查了一元一次不等式组的应用,分别表示出两种货车所载A 种货物总件数和B种货物总件数是解题关键.21.某企业次定购买A,B两种型号的污水处理设备共8台,具体情况如下表:经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低1380吨,该企业有哪些购买方案呢?这解决这个问题,高购买A型污水处理设备x台,所列不等式组下确是()A.B.C.D.【分析】设购买污水处理设备A型号x台,则购买B型号(8﹣x)台,根据企业最多支出89万元购买设备,要求月处理污水能力不低于1380吨,列出不等式组,然后找出最合适的方案即可.【解答】解:设购买污水处理设备A型号x台,则购买B型号(8﹣x)台,根据题意,得,故选:A.【点评】本题考查了一元一次不等式组的应用,解题的关键是通过表格获取相关信息,在实际问题中抽象出不等式组.22.将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有一个小朋友分到苹果但不到8个苹果.求这一箱苹果的个数与小朋友的人数.若设有x人,则可列不等式为()A.8(x﹣1)<5x+12<8B.0<5x+12<8xC.0<5x+12﹣8(x﹣1)<8D.8x<5x+12<8【分析】设有x人,由于每位小朋友分5个苹果,则还剩12个苹果,则苹果有(5x+12)个;若每位小朋友分8个苹果,则有一个小朋友分不到8个苹果,就是苹果数﹣8(x﹣1)大于0,并且小于8,根据不等关系就可以列出不等式【解答】解:设有x人,则苹果有(5x+12)个,由题意得:0<5x+12﹣8(x﹣1)<8,故选:C.【点评】此题主要考查由实际问题抽象出一元一次不等式组,关键是正确理解题意,找出题目中的不等关系.23.某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位,要求租用的车辆不留空座,也不能超载.租车方案共有()种.A.2B.3C.4D.5【分析】设租用每辆8个座位的车x辆,每辆有4个座位的车y辆,根据车座位数等于学生的人数列出二元一次方程,再根据x、y都是正整数求解即可.【解答】解:设租用每辆8个座位的车x辆,每辆有4个座位的车y辆,根据题意得,8x+4y=20,整理得,2x+y=5,∵x、y都是正整数,∴x=1时,y=3,x=2时,y=1,x=3时,y=﹣1(不符合题意,舍去),所以,共有2种租车方案.故选:A.【点评】本题考查了二元一次方程的应用,解题的关键在于车辆数是正整数.24.把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本,则共有学生人数为()A.6人B.5人C.6人或5人D.4人【分析】根据题意可以列出相应的不等式组,从而可以解答本题.【解答】解:设共有学生x人,0≤(3x+8)﹣5(x﹣1)<3,解得,5<x≤6.5,故共有学生6人,故选:A.【点评】本题考查一元一次不等式组的应用,解题的关键是明确题意,列出相应的不等式组.25.若干学生分宿舍,每间4人余20人,每间8人有一间不空也不满,则宿舍有()A.5间B.6间C.7间D.8间【分析】先设宿舍有x间,则总人数是(4x+20)人,最后一间的人数是4x+20﹣8(x﹣1),再根据有一间不空也不满列出不等式组,解出x的取值范围,即可得出答案.【解答】解:设宿舍有x间,根据题意得:,解得:5<x<7,则宿舍有6间.故选:B.【点评】本题考查了一元一次不等式组的应用,关键是根据最后一间不空也不满列出不等式组,注意x只能取整数.26.宁城县城区现行出租车的收费标准:起步价5元(即行驶距离不超过3千米都需付5元车费),超过3千米后,每增加1千米,加收1.5元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费11元,那么甲地到乙地路程的最大值是()A.5千米B.7千米C.8千米D.9千米【分析】本题可先用11减去5得到6,则1.5(x﹣3)≤6,解出x的值,取最大整数即为本题的解.【解答】解:依题意得:1.5(x﹣3)≤11﹣5,x﹣3≤4,x≤7.因此甲地到乙地路程的最大值是7千米.故选:B.【点评】本题考查的是一元一次不等式组的应用,关键是列出不等式1.5(x﹣3)≤6解题.27.某品牌电脑的成本为2400元,标价为2980元,如果商店要以利润不低于5%的售价打折销售,最低可打()折出售.A.7折B.7.5折C.8折D.8.5折【分析】设最低可打x折,根据商店的利润不低于5%,可列不等式求解.【解答】解:设最低可打x折,则2980×﹣2400≥2400×5%,解得:x≥8.5.最低可打8.5折出售.故选:D.【点评】本题考查考查了一元一次不等式的应用,根据利润=售价﹣进价,可列不等式求解,难度一般.28.如图,用长为40米的铁丝一边靠墙围成两个长方形,墙的长度AC=30米,要使靠墙的一边不小于25米,那么与墙垂直的一边的范围为()A.0≤x≤5B.C.D.【分析】先设与墙垂直的一边的长为x米,根据铁丝长40米,墙的长度AC=30米,靠墙的一边不小于25米,列出不等式组,求出x的取值范围即可.【解答】解:设与墙垂直的一边的长为x米,根据题意得:,解得:≤x≤5;故选:D.【点评】此题考查了一元一次不等式组的应用,解题的关键是读懂题意,找出之间的数量关系,列出不等式组,注意本题要用数形结合思想.29.无论m为何值,点A(m﹣3,5﹣2m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】在那个象限,取决于横纵坐标的取值情况,根据不同可列成不等式组,看看有没有解,从而可判断在那个象限.【解答】解:当时,因为m>3,m<,所以不等式组无解.其他根据不同情况都有解.所以可能在第二,第三,第四象限.故选:A.【点评】本题考查一元一次不等式组,以及点的坐标,不同象限横纵坐标的取值不同.30.有数颗等重的糖果和数个大、小砝码,其中大砝码皆为5克、小砝码皆为1克,且图是将糖果与砝码放在等臂天平上的两种情形.判断下列哪一种情形是正确的()A.B.C.D.【分析】根据图示可知1个糖果的质量>5克,3个糖果的质量<16克,依此求出1个糖果的质量取值范围,再在4个选项中找出情形正确的.【解答】解:设1个糖果的质量为x克.则解得5<x<.则10<2x<;15<3x<16;20<4x<.故只有选项D正确.故选:D.【点评】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.注意本题先分别求出糖果的取值范围,砝码的质量再比较是解题的关键.二.填空题(共10小题)31.已知点P(1﹣a,2a+6)在第四象限,则a的取值范围是a<﹣3.【分析】根据第四象限的点的横坐标是正数,纵坐标是负数列出不等式组求解即可.【解答】解:∵点P(1﹣a,2a+6)在第四象限,∴,解得a<﹣3.故答案为a<﹣3.【点评】本题考查了点的坐标,一元一次不等式组的解法,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).32.记R(x)表示正数x四舍五入后的结果,例如R(2.7)=3,R(7.11)=7,R (9)=9,(1)R(π)=3,R()=2;(2)若R(x﹣1)=3,则x的取值范围是7≤x<9.(3)R()=4,则x的取值范围是8.5≤x<10.5.【分析】(1)根据题意即可得到结论;(2)根据题意列不等式即可得到结论;(3)根据题意列不等式即可得到结果.【解答】解:(1)R(π)=3,R()=2,故答案为:3,2;(2)∵R(x﹣1)=3,∴2.5≤x﹣1<3.5,解得:7≤x<9,故答案为:7≤x<9;(3)∵R()=4,∴3.5≤<4.5,∴7≤R(x+2)<9,∴R(x+2)=7或R(x+2)=8,∴6.5≤x+2<8.5,∴8.5≤x<10.5,故答案为:8.5≤x<10.5.【点评】本题考查了解一元一次不等式组,近似数和有效数字,正确的理解题意是解题的关键.33.不等式组的解集为﹣2<x<3.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:由①得x>﹣2,由②得x<3,故此不等式组的解集为﹣2<x<3.故答案为﹣2<x<3.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.34.若不等式组解为﹣3<x<1,则(a+1)(b﹣1)值为﹣8.【分析】根据不等式的性质求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据不等式组的解集得出3+2b=﹣3,且=1,求出即可.【解答】解:,∵解不等式①得:x<,解不等式②得:x>3+2b,∴不等式组的解集为3+2b<x<,∵若不等式组解为﹣3<x<1,∴3+2b=﹣3,且=1,解得:a=1,b=﹣3,∴(a+1)(b﹣1)=(1+1)×(﹣3﹣1)=﹣8,故答案为:﹣8.【点评】本题考查了不等式的性质,解一元一次不等式(组),解一元一次方程等知识点,解此题的关键是求出关于a和b的方程,题目比较好,综合性比较强.35.若关于x的不等式组,恰有三个整数解,关于x的方程组的解是正数,则m的取值范是﹣2<m≤﹣1.【分析】先解不等式组,根据不等式组有3个整数解,得出﹣3<m≤﹣1,再解方程组,根据方程组有正数解,得到﹣2<m<1,进而得到满足条件的m的。
新版北师大版八年级数学下册第2章《一元一次不等式和一元一次不等式组》同步练习及答案2.6一元一次不等
新版北师大版八年级数学下册第2章《一元一次不等式和一元一次不等式组》同步练习及答案—2.6一元一次不等式组(1)(总分:100分 时间45分钟)一、选择题(每题4分,共32分)1、下列不等式组中,解集是2<x <3的不等式组是( ) A 、⎩⎨⎧>>23x x B 、⎩⎨⎧<>23x x C 、⎩⎨⎧><23x xD 、⎩⎨⎧<<23x x2、在数轴上从左至右的三个数为a,1+a,-a,则a 的取值范围是( ) A 、a <12 B 、a <0 C 、a >0 D 、a <-123、不等式组10235x x +⎧⎨+<⎩≤,的解集在数轴上表示为( )4、不等式组31025x x +>⎧⎨<⎩的整数解的个数是( )A 、1个B 、2个C 、3个D 、4个5、在平面直角坐标系内,P (2x -6,x -5)在第四象限,则x 的取值范围为( ) A 、3<x <5 B 、-3<x <5 C 、-5<x <3 D 、-5<x <-36、已知不等式:①1x >,②4x >,③2x <,④21x ->-,从这四个不等式中取两个,构成正整数解是2的不等式组是( ) A 、①与②B 、②与③C 、③与④D 、①与④7、如果不等式组x ax b >⎧⎨<⎩无解,那么不等式组的解集是( )A.2-b <x <2-aB.b -2<x <a -2C.2-a <x <2-bD.无解 8、方程组43283x m x y m +=⎧⎨-=⎩的解x 、y 满足x >y,则m 的取值范围是( )A.910m >B. 109m >C. 1910m >D. 1019m > 二、填空题(每题4分,共32分)ABCD9、若y 同时满足y +1>0与y -2<0,则y 的取值范围是______________. 10、不等式组3010x x -<⎧⎨+⎩≥的解集是 .11、不等式组20.53 2.52x x x -⎧⎨---⎩≥≥的解集是 .12、若不等式组⎩⎨⎧->+<121m x m x 无解,则m 的取值范围是 .13、不等式组15x x x >-⎧⎪⎨⎪<⎩≥2的解集是_________________14、不等式组2x x a >⎧⎨>⎩的解集为x >2,则a 的取值范围是_____________.15、若不等式组2123x a x b -<⎧⎨->⎩的解集为-1<x <1,那么(a +1)(b -1)的值等于________.16、若不等式组4050a x x a ->⎧⎨+->⎩无解,则a 的取值范围是_______________.三、解答题(每题9分,共36分) 17、解下列不等式组(1)328212x x -<⎧⎨->⎩ (2)572431(1)0.54x x x -≥-⎧⎪⎨--<⎪⎩(3)2x <1-x ≤x +5 (4)3(1)2(9)34140.50.2x x x x -<+⎧⎪-+⎨-≤-⎪⎩18、解不等式组3(21)42132 1.2x xxx⎧--⎪⎪⎨+⎪>-⎪⎩≤,把解集表示在数轴上,并求出不等式组的整数解.19、求同时满足不等式6x-2≥3x-4和2112132x x+--<的整数x的值.20、若关于x、y的二元一次方程组533x y mx y m-=-⎧⎨+=+⎩中,x的值为负数,y的值为正数,求m的取值范围.参考答案1、C2、D3、C4、B5、A6、D7、A8、D9、1<y<2 10、-1≤x<311、-14≤x≤4 12、m>2 13、2≤x<5 14、a<2 15、-6 16、a≤117、(1)31023x<<(2)无解(3)-2<x<13(4)x>-3 18、2,1,0,-119、不等式组的解集是27310x≤<-,所以整数x为020、-2<m<0.5。
八年级数学北师大版下册 第二章 一元一次不等式与一元一次不等式组 同步单元训练卷(含答案)
北师大版八年级数学下册第二章 一元一次不等式与一元一次不等式组同步单元训练卷一、选择题(共10小题,3*10=30)1.若2a +6的值是正数,则a 的取值范围是( ) A .a >0 B .a >3 C .a >-3 D .a <-32.若关于x 的一元一次方程x -m +2=0的解是负数,则m 的取值范围是( ) A .m≥2 B .m >2 C .m <2 D .m≤23.把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能是( )A.⎩⎪⎨⎪⎧x >-1,x≤2B.⎩⎪⎨⎪⎧x≥-1,x <2 C.⎩⎪⎨⎪⎧x≥-1,x≤2 D.⎩⎪⎨⎪⎧x <-1,x≥2 4.在数轴上到原点的距离大于2的点对应的x 满足( ) A .x>2 B .x<2C .x>2或x<-2D .-2<x<25.若函数y =kx +b 的图象如图所示,则关于x 的不等式kx +2b <0的解集为( )A .x <3B .x >3C .x <6D .x >66. 不等式组⎩⎪⎨⎪⎧2-x >1,①x +52≥1②中,不等式①和②的解集在数轴上表示正确的是( )7. 三个连续正整数的和小于39,这样的正整数中,最大一组的和是( ) A .39 B .36 C .35 D .348.关于x 的不等式2x +a ≤1只有2个正整数解,则a 的取值范围为( ) A.-5<a <-3 B.-5≤a <-3 C.-5<a ≤-3 D.-5≤a ≤-39.若不等式2x<4的解都能使关于x 的不等式(a -1)x<a +5成立,则a 的取值范围是( ) A .1<a≤7 B .a≤710.某镇有甲,乙两家液化气站,它们每罐液化气的价格,质地和重量都相同.为了促销,甲站的液化气每罐降价25%销售;每个用户购买乙站的液化气,第1罐按照原价销售,若用户继续购买,则从第2罐开始以7折优惠,促销活动都是一年.若小明家每年需购买8罐液化气,则购买液化气最省钱的方法是( ) A .买甲站的 B .买乙站的 C .买两站的都一样D .先买甲站的1罐,以后买乙站的 二.填空题(共8小题,3*8=24) 11. 不等式 2x -1>3的解集是________.12. 已知“x 的3倍大于5,且x 的一半与1的差不大于2”,则x 的取值范围是__________. 13. 不等式组⎩⎪⎨⎪⎧x -3(x -2)≤8,5-12x >2x 的整数解是________.14.已知关于x 的不等式(a -1)x >4的解集是x <4a -1,则a 的取值范围是____________.15.若|5-10x|=10x -5, 则x 的取值范围是________.16.某商场推出一种购物“金卡”,凭卡在该商场购物可按商品价格的八折优惠,但办理金卡时每张要收100元购卡费,设按标价累计购物金额为x(元),当x___________时,办理金卡购物省钱. 17.某中学举办了“汉字听写大会”,准备为获奖的40名同学颁奖(每人一个书包或一本词典),已知每个书包28元,每本词典20元,学校计划用不超过900元钱购买奖品,则最多可以购买________个书包.18. 已知实数x ,y 满足2x -3y =4,并且x≥-1,y <2,现有k =x -y ,则k 的取值范围是____________.三.解答题(7小题,共66分)19.(8分) 解不等式,并把它们的解集在数轴上表示出来:15-9y <10-4y ;20.(8分) 已知不等式3x -a≤0的正整数解是1,2,3.求a 的取值范围.21.(8分) 根据题意列出不等式:(1)某市化工厂现有甲原料290千克,计划用这种原料与另一种足够多的原料配合生产A,B两种产品共50件.已知生产一件A型产品需甲种原料15千克,生产一件B型产品需甲种原料2.5千克,若该化工厂现有的原料能保证生产,试写出满足生产A型产品x(件)的关系式;(2)某厂生产一种机械零件,固定成本为2万元,每件零件成本为3元,零售价为5元,应纳税款为总销售额的10%.若要使该厂盈利,则该零件至少要生产销售x个,试写出x应满足的不等式.22.(10分) 如图,一次函数y1=kx-2和y2=-3x+b的图象相交于点A(2,-1).(1)求k,b的值;(2)利用图象求出:当x取何值时,y1≥y2?(3)利用图象求出:当x取何值时,y1>0且y2<0?23.(10分) 某校九年级有三个班,其中九(一)班和九(二)班共有105名学生,在期末体育测试中,这两个班级共有79名学生满分,其中九(一)班的满分率为70%,九(二)班的满分率为80%.(1)求九(一)班和九(二)班各有多少名学生;(2)该校九(三)班有45名学生,若九年级体育成绩的总满分率超过75%,求九(三)班至少有多少名学生体育成绩是满分.24.(10分) 如图,一次函数y1=kx-2和y2=-3x+b的图象相交于点A(2,-1).(1)求k,b的值.(2)利用图象求出:当x取何值时,y1≥y2.(3)利用图象求出:当x取何值时,y1>0且y2<0.25.(12分) 某区为绿化行车道,计划购买甲、乙两种树苗共计n棵.设买甲种树苗x棵.有关甲、乙两种树苗的信息如图所示.(1)当n=500时.①根据信息填表(用含x的代数式表示):②如果购买甲、乙两种树苗共用25600元,那么甲、乙两种树苗各买了多少棵?参考答案1-5CCACD 6-10BBCAB11. x>2 12.53<x≤6 13.-1,0,1 14.a <1 15. x≥1216.>500 17. 12 18.1≤k <319.解:移项,得-9y +4y <10-15.合并同类项,得-5y <-5.系数化为1,得y >1.不等式的解集在数轴上表示如图所示.20. 解:3x -a≤0,解得x≤a 3,因为它的正整数解为1,2,3,当a 3=3时,a =9;当a3=4时,a =12.当a =12时,x≤4,有4个正整数,舍去,∴9≤a<1221. 解:(1)生产A 型产品x 件,则生产B 型产品(50-x)件,根据题意, 得15x +2.5(50-x)≤290. (2)5x -3x -5x×10%-20 000>0.22. 解:(1)k =12,b =5.(2)当x≥2时,y 1≥y 2.(3)当x >4时,y 1>0且y 2<0.⎩⎪⎨⎪⎧x =50,y =55.答:九(一)班有50名学生,九(二)班有55名学生 (2)设九(三)班有m 名学生体育成绩满分,根据题意得79+m >(105+45)×75%,解得m >33.5,∵m 为整数,∴m 的最小值为34.答:九(三)班至少有34名学生体育成绩是满分24. 解:(1)将A 点的坐标代入y 1=kx -2,得2k -2=-1,即k =12. 将A 点的坐标代入y 2=-3x +b ,得-6+b =-1,即b =5.(2)从图象可以看出:当x≥2时,y 1≥y 2.(3)直线y 1=12x -2与x 轴的交点坐标为(4,0),直线y 2=-3x +5与x 轴的交点坐标为⎝⎛⎭⎫53,0.从图象可以看出:当x >4时,y 1>0;当x >53时,y 2<0,∴当x >4时,y 1>0且y 2<0.25. 解:(1)①500-x 50x 80(500-x)②由题意得50x +80(500-x)=25600,解得x =480,500-x =20.答:甲种树苗买了480棵,乙种树苗买了20棵(2)由题意得90%x +95%(n -x)≥92%×n ,解得x≤35n ,50x +80(n -x)=26000,解得x =8n -26003.∵8n -26003≤35n ,∴n≤4191131.∵n 为正整数,x 为正整数,当n 为419时,x =7523≈250.7不是整数;当n 为418时,x =248,∴n 的最大值为418。
北师大数学八年级下册2.6一元一次不等式组(包含答案)同步练习
2.6 一元一次不等式组一、选择题1.以下不等式组中,解集是2<x <3 的不等式组是 ( ) A .x 3B .x3 C .x3 D .x3 x 2 x2x 2x22.在数轴上从左至右的三个数为 a ,1+a ,-a ,则 a 的取值范围是()A .a <1B.a <0C .a >0D .a <- 1223.不等式组 x 1≤ ,)30 的解集在数轴上表示为(2x 5A B C D4.不等式组3x1 0的整数解的个数是()2x 5A .1 个B .2 个C .3 个D .4 个5.在平面直角坐标系内, P (2x -6,x -5)在第四象限, 则 x 的取值范围为()A .3<x <5 B.-3<x <5C .-5<x <3D .-5<x <- 36.已知不等式:① x 1 ,② x 4 ,③ 个不等式中取两个,组成正整数解是A .①与②B .②与③ x 2 ,④ 2 x1 ,从这四2 的不等式组是( )C .③与④D .①与④7.方程组()4x3m2的解 x 、y 知足 x >y ,则 m的取值范围是8x 3y mA .m >9B.m >10C .m >19D .m10910> 1019二、填空题8.若 y 同时知足 y +1>0与 y - 2<0,则 y 的取值范围是 ______________.9.不等式组x 3 0的解集是.x ≥1≥的解集是.10.不等式组 2x≥0.523x2.5x11.若不等式组x m1x 2m 1无解,则 m 的取值范围是 .x112.不等式组 x ≥2x 5的解集是 _________________.13 . 不等式组x2的解 集为 x > 2 ,则 a 的取值 范围是x a_____________.14.若不等式组 2x a1的解集为- 1<x <1,那么( a +1)(bx 2b 3-1)的值等于 ________.15 . 若 不 等 式 组4ax 0 无 解 , 则 a 的 取 值 范 围 是x a 5 0_______________.三、能力提高16.解以下不等式组:(1)3x2857 x 2x4(2)30.5 2x121( x 1)4(3) 2x<1- x≤ x +5(4)3(1 x) 2(x9)x 3 x4140.50.2x 3(2 x 1) ≤ 4,17.解不等式组2把解集表示在数轴上,并求出不3x12 x 1.2等式组的整数解.18.求同时知足不等式 6x-2≥3x-4 和2x 11 2x1的整数x32的值.7x 34x419.求不等式组25的非负整数解.5 x5(4x) 2(4x)3四、聚沙成塔若对于 x、y 的二元一次方程组x y m 5中, x 的值为负x y3m 3数, y 的值为正数,求 m的取值范围.一元一次不等式组1.C;2.D;3.C;4.C;5.A;6.D;7.D;8.- 1<y <2;9.-1≤x<3;10.-1≤x≤4;11.M≥2;12.2≤x<5;13.a≤2;14.-6;15.A 4≤1;16.(1)3x10;( 2)无解;(3)- 2≤x<1;(4)x>- 3.233 17.解集为5x< 3 ,整数解为2,1,0,- 1.418.不等式组的解集是-2x7,因此整数 x 为 0.31019.不等式组的解集为x 69,因此不等式组的非负整数解为:0,13l,2,3,4,5.聚沙成塔-4<m<0.5 .。
新北师大版八年级数学下册第2章《一元一次不等式与一元一次不等式组 》综合练习题含答案解析 (24)
(共25题)一、选择题(共10题)1. 若关于 x 的不等式组 {2x −6+m <0,4x −m >0 有解,则在其解集中,整数的个数不可能是 ( )A . 1B . 2C . 3D . 42. 如图表示下列四个不等式组中其中一个的解集,这个不等式组是 ( )A . {x ≥2,x >−3B . {x ≤2,x <−3C . {x ≥2,x <−3D . {x ≤2,x >−33. 把不等式组 {2x +3>1,3x +4≥5x的解集表示在数轴上如图,正确的是 ( )A .B .C .D .4. 若 a >b ,则下列不等式成立的是 ( ) A . a −1<b −1 B . −8a <−8b C . 4a <4bD . ac >bc5. 若 x <y 成立,则下列不等式成立的是 ( ) A . x −2<y −2 B . −x <−y C . x +1>y +1D . −3x <−3y6. 不等式 x −1>0 的解集是 ( ) A . x >1B . x <1C . x >−1D . x <−17. 不等式组{5x +2>3(x −1)12x −1≤7−32x的所有非负整数解的和是( ) A .10 B .7 C .6 D .08. 已知 a >b ,则下列不等关系中正确的是 ( ) A . ac >bcB . a +c >b +cC . a −1>b +1D . ac 2>bc 29. 不等式组 {x +9<5x +1,x ≥2x −3 的解集是 ( )A .x >2B .x ≤3C .2<x ≤3D .x ≥310. 不等式 2x ≥x −1 的解集在数轴上表示正确的是 ( )A .B .C .D .二、填空题(共7题)11. 在平面直角坐标系中,点 P (m,m −2) 在第一象限内,则 m 的取值范围是12. 已知关于 x 的不等式组 {x −a <0,9−2x ≤3 有且只有 2 个整数解,且 a 为整数,则 a 的值为 .13. 定义新运算:对于任意实数 a ,b 都有:a ⊕b =a (a −b )+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2−5)+1=2×(−3)+1=−5,那么不等式 3⊕x <13 的解集为 .14. 当 x 满足条件 时,代数式 6−3x 5的值不大于零.15. 对于有理数 m ,我们规定 [m ] 表示不大于 m 的最大整数,例如 [1.2]=1,[3]=3,[−2.5]=−3,若 [x+23]=−5,则整数 x 的取值是 .16. 一元一次不等式需满足的三个条件是:① ,② ,③ ,这样的不等式叫做一元一次不等式.17. 如图,周长为 a 的圆上仅有一点 A 在数轴上,点 A 所表示的数为 1.该圆沿着数轴向右滚动一周后点 A 对应的点为点 B ,且滚动中恰好经过 3 个整数点(不包括 A ,B 两点),则 a 的取值范围为 .三、解答题(共8题)18. 已知不等式 18x −2>x 与 ax −3>2x 的解集相同,求 a 的值.19. 解不等式组 {2x−13−5x+12≤1,5x −1<3(x +1), 并写出该不等式组的整数解.20. 列方程解应用题.(1) 某车间 32 名工人生产螺母和螺钉,每人每天平均生产螺钉 1500 个或螺母 5000 个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉?(2) 一家游泳馆每年 6∼8 月份出售夏季会员证,每张会员证 80 元,只限本人使用凭证购入场券每张 1 元,不凭证购入场卷每张 3 元,请用所学数学知识分析,什么情况下购会员证更合算?21. 解不等式组 {3x ≥4x −4, ⋯⋯①5x −11≥−1. ⋯⋯②请结合题意填空,完成本题的解答. (1) 解不等式 ①,得 . (2) 解不等式 ②,得 .(3) 把不等式 ① 和 ② 的解集在数轴上表示出来:(4) 原不等式组的解集为 .22. 已知两个语句:①式子 2x −1 的值比 1 大; ②式子 2x −1 的值不小于 1. 请回答下列问题:(1) 两个语句表达的意思是否一样?(不用说明理由)(2) 把两个语句分别用数学式子表示出来,并选择一个求其解集.23. 解方程组:{x +3>5 ⋯⋯①2x −3<x +2 ⋯⋯②24. 解不等式组:{4x >2x −6,x−13≤x+19, 并把解集在数轴上表示出来.25. 解不等式:x−52+1>x −3.答案一、选择题(共10题)1. 【答案】C【解析】解不等式2x−6+m<0,得x<6−m2,解不等式4x−m>0,得x>m4,∵不等式组有解,∴m4<6−m2,解得m<4,如果m=2,则不等式组的解集为12<x<2,整数解为x=1,有1个;如果m=0,则不等式组的解集为0<x<3,整数解为x=1,2,有2个;如果m=−1,则不等式组的解集为−14<x<72,整数解为x=0,1,2,3,有4个.故选C.【知识点】含参一元一次不等式组2. 【答案】D【知识点】常规一元一次不等式组的解法3. 【答案】B【解析】解不等式2x+3>1,得:x>−1,解不等式3x+4≥5x,得:x≤2,则不等式组的解集为−1<x≤2,故选:B.【知识点】常规一元一次不等式组的解法4. 【答案】B【知识点】不等式的性质5. 【答案】A【解析】A、不等式的两边都减去2,不等号的方向不变,故本选项正确;B、不等式的两边都乘以−1,不等号的方向改变,故本选项错误;C、不等式的两边都加上1,不等号的方向不变,故本选项错误;D、不等式的两边都乘以−3,不等号的方向改变,故本选项错误.【知识点】不等式的性质6. 【答案】A【知识点】常规一元一次不等式的解法7. 【答案】A【解析】【分析】分别求出每一个不等式的解集,即可确定不等式组的解集,继而可得知不等式组的非负整数解.【解析】解:{5x +2>3(x −1)①12x −1≤7−32x②, 解不等式①得:x >−2.5, 解不等式②得:x ≤4,∴不等式组的解集为:−2.5<x ≤4,∴不等式组的所有非负整数解是:0,1,2,3,4,∴不等式组的所有非负整数解的和是0+1+2+3+4=10, 故选:A .【点评】本题主要考查解一元一次不等式组的基本技能,准确求出每个不等式的解集是解题的根本,确定不等式组得解集及其非负整数解是关键. 【知识点】常规一元一次不等式组的解法8. 【答案】B【解析】A .不等式两边都乘以 c ,当 c <0 时,不等号的方向改变,原变形错误,故此选项不符合题意;B .不等式两边都加上 c ,不等号的方向不变,原变形正确,故此选项符合题意;C .不等式的两边一边加 1 一边减 1,不等号的方向不确定,原变形错误,故此选项不符合题意;D .不等式的两边都乘以 c 2,当 c =0 时,变为等式,原变形错误,故此选项不符合题意. 【知识点】不等式的性质9. 【答案】C【解析】{x +9<5x +1, ⋯⋯①x ≥2x −3, ⋯⋯②解不等式 ①,得 x >2, 解不等式 ②,得 x ≤3, ∴ 不等式组的解集为 2<x ≤3. 【知识点】常规一元一次不等式组的解法10. 【答案】C【知识点】常规一元一次不等式的解法二、填空题(共7题) 11. 【答案】 m >2【知识点】常规一元一次不等式组的解法12. 【答案】 5【解析】 {x −a <0,9−2x ≤3解得:{x <a,x ≥3,∴3≤x <a ,∵ 有且只有 2 个整数解, ∴4<a ≤5, ∵a 为整数, ∴a =5.【知识点】含参一元一次不等式组13. 【答案】 x >−1【解析】 ∵a ⊕b =a (a −b )+1,∴3⊕x =3(3−x )+1<13,解得 x >−1. 【知识点】常规一元一次不等式的解法14. 【答案】 x ≥2【知识点】常规一元一次不等式的解法15. 【答案】 −17 或 −16 或 −15【解析】 ∵[x+23]=−5,∴−5≤x+23<−4,∴−15≤x +2<−12, ∴−17≤x <−14,∴ 整数 x 的取值为 −17 或 −16 或 −15. 【知识点】常规一元一次不等式组的解法16. 【答案】只含有一个未知数;未知数的最高次数是 1 ;系数不等于 0【知识点】一元一次不等式的概念17. 【答案】 3<a ≤4【解析】根据题意可知,三个整数点表示的数为 2,3,4,所以 4<a +1≤5,所以 a 的取值范围为3<a≤4.【知识点】不等式的概念三、解答题(共8题)18. 【答案】解不等式18x−2>x得,x<−167;由不等式ax−3>2x得,(a−2)x>3,∵两不等式的解集相同,∴a−2<0,∴x<3a−2,∴3a−2=−167,解得:a=1116.故a的值为:1116.【知识点】含参一元一次方程的解法、常规一元一次不等式的解法19. 【答案】{2x−13−5x+12≤1, ⋯⋯①5x−1<3(x+1), ⋯⋯②解不等式①,得x≥−1,解不等式②,得x<2,∴不等式组的解集为−1≤x<2,∴不等式组的整数解为−1,0,1.【知识点】常规一元一次不等式组的解法20. 【答案】(1) 设为了使每天的产品刚好配套,应该分配x名工人生产螺钉,则(32−x)名工人生产螺母,根据题意得:1500x×2=5000(32−x),解得:x=20.则为了使每天的产品刚好配套,应该分配20名工人生产螺钉.(2) 假设游泳x次,则购证后花费为(80+x)元,不购证花费3x元,根据题意得:80+x<3x,解得:x>40.答:6∼8月游泳次数大于40的话,购证更划算.【知识点】和差倍分、一元一次不等式的应用21. 【答案】(1) x≤4(2) x≥2(3) 如图所示:(4) 2≤x≤4【解析】(1) 解不等式 ① 得 x ≤4. (2) 解不等式 ② 得 x ≥2.【知识点】常规一元一次不等式组的解法、常规一元一次不等式的解法、数轴的概念22. 【答案】(1) 两个语句表达的意思不一样.(2) ① 2x −1>1; 两边同加上 1,得 2x >2, 两边再同除以 2,得 x >1. ② 2x −1≥1;两边同加上 1,得 2x ≥2, 两边再同除以 2,得 x ≥1.【知识点】常规一元一次不等式的解法、一元一次不等式的概念、不等式的概念23. 【答案】解不等式①,得 x >2.解不等式②,得 x <5.所以,这个不等式组的解集是 2<x <5. 【知识点】常规一元一次不等式组的解法24. 【答案】{4x >2x −6, ⋯⋯①x−13≤x+19. ⋯⋯②解不等式①得:x >−3,解不等式②得:x ≤2.∴ 不等式组的解集为−3<x ≤2.在数轴上表示不等式组的解集为:【知识点】常规一元一次不等式组的解法25. 【答案】(x −5)+2>2(x −3),x −5+2>2x −6,x −2x >5−2−6,−x >−3,x <3.【知识点】常规一元一次不等式的解法。
2020-2021学年 北师大版八年级数学下册 2.6一元一次不等式组的应用 专题提升训练
2020-2021学年度北师大版八年级数学下册《2.6一元一次不等式组的应用》专题提升训练(附答案)1.把一些笔分给几名学生,如果每人分5支,那么余7支;如果前面的学生每人分6支,那么最后一名学生能分到笔但分到的少于3支,则共有学生()A.11人B.12人C.11或12人D.13人2.某工厂试制新产品2000只,工本费共700元,每只售价2元,则保证盈利1000元以上的情况下,售出的产品数量x的范围是()A.850<x≤2000B.850≤x<2000C.850<x<2000D.850≤x≤2000 3.某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂A,B两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排A,B两种货厢的节数,有几种运输方案()A.1种B.2种C.3种D.4种4.某商店计划用不超过2000元的资金,购进甲、乙两种单价分别为30元、60元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利5元、15元,两种商品均售完.若所获利润大于380元,则该店进货方案有()A.3种B.4种C.5种D.6种5.一个矩形苗圃园,其中一边靠墙,墙长20m,另外三边由篱笆围成,篱笆长度为30m,则垂直于墙的一边的长度x取值范围为()A.5≤x<15B.0<x≤20C.5≤x≤20D.0<x<156.如图,一个运算程序,若需要经过两次运算才能输出结果,则x的取值范围为()A.x>1B.1<x≤5C.1≤x≤5D.1≤x<57.八年级师生组织捐款,共捐得2100元,这个年级有教师3名,14个教学班.各班学生人数都相同且多于30人,不超过40人.若平均每人捐款的金额恰好是整数元,则平均每人捐款元.8.把一批书分给小朋友,每人3本,则余8本;每人5本,则最后一个小朋友得到书且不足3本,这批书有本.9.在“新冠肺炎”这场没有硝烟的战争中,各行各业都涌现出了一批“最美逆行者”,其中抗疫最前沿的就是护士.某医院安排护士若干名负责护理新冠病人,每名护士护理4名新冠病人,有20名新冠病人没人护理,如果每名护士护理8名新冠病人,有一名护士护理的新冠病人多于1人不足8人,这个医院安排了名护士护理新冠病人.10.如图,天平左盘中物体A的质量为a克,天平右盘中每个砝码的质量都是5克,那么a 的取值范围为.11.某公司组织旅游活动,如果租用50座的客车m辆恰好坐满,如果租用70座客车可少租1辆,并且有一辆有剩余座位,且剩余座位不足20个,则m的值为.12.如果不等式组的解集为x>4,则a的取值范围为.13.按如图的程序进行操作,规定:程序运行从“输入一个值x”到“结果是否>487?”为一次操作.如果操作进行四次才停止,那么x的取值范围是.14.菜市场内某摊位上售卖A、B、C、D四种蔬菜,其中A、B两种蔬菜的单价相同,D种蔬菜的单价是C种蔬菜单价的7倍,上午时段,A、C两种蔬菜的销量相同,B种蔬菜的销量是D种蔬菜销量的7倍,结果上午时段A、B两种蔬菜的总销售额比C、D两种蔬菜的总销售额多126元,且四种蔬菜上午时段的单价与销量均为正整数,到了下午的时候,由于D种蔬菜新鲜度下降,摊主便将D种蔬菜打八折售卖,其他三种蔬菜单价不变,结果下午时段除了B种蔬菜销量下降了20%,其他几种蔬菜的销量跟上午一样,若A种蔬菜与C种蔬菜的单价之差超过6元但不超过13元,B种蔬菜和D种蔬菜上午时段的单价之和不超过35元,则下午时段四种蔬菜总销售额最多为元.15.2021年元旦班级活动中,西大附中初2023级(1)班决定到晨光文具店采购一批本子和笔对本学年各方面表现优异的学生作为奖励.已知购买3个本子,4支笔需要花费29元;购买2个本子,5支笔需要花费24元.(1)试问本子和笔的单价分别是多少钱?(2)根据班级商量,决定购进本子和笔共150件,要求购买本子的数量不低于购买笔的,且购买本子和笔所用班费不超过525元,请通过计算设计出所有可能的购买方案.16.某校计划安排初三年级全体师生参观黄石矿博园,现有36座和48座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用48座客车,则能少租一辆,且有一辆车没有坐满,但超过了30人;已知36座客车每辆租金400元,48座客车每辆租金480元.(1)该校初三年级共有师生多少人参观黄石矿博园?(2)请你帮该校设计一种最省钱的租车方案.17.某电器经销商计划同时购进一批甲、乙两种型号的微波炉,若购进1台甲型微波炉和2台乙型微波炉,共需要资金2600元;若购进2台甲型微波炉和3台乙型微波炉,共需要资金4400元.(1)求甲、乙型号的微波炉每台进价为多少元?(2)该店计划购进甲、乙两种型号的微波炉销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两种型号的微波炉共20台,请问有几种进货方案?请写出进货方案;(3)甲型微波炉的售价为1400元,售出一台乙型微波炉的利润率为45%.为了促销,公司决定甲型微波炉九折出售,而每售出一台乙型微波炉,返还顾客现金m元,要使(2)中所有方案获利相同,则m的值应为多少?18.2020年5月,全国“两会”召开以后,应势复苏的“地摊经济”带来了市场新活力,小丹准备购进A、B两种类型的便携式风扇到地摊一条街出售.已知2台A型风扇和5台B型风扇进价共100元,3台A型风扇和2台B型风扇进价共62元.(1)求A型风扇、B型风扇进货的单价各是多少元?(2)小丹准备购进这两种风扇共100台,根据市场调查发现,A型风扇销售情况比B型风扇好,小丹准备多购进A型风扇,但数量不超过B型风扇数量的3倍,购进A、B两种风扇的总金额不超过1170元.根据以上信息,小丹共有哪些进货方案?哪种进货方案的费用最低?最低费用为多少元?19.新冠病毒疫情牵动全国人心,“疫情无情人有情”.“红十字会”将人们为武汉市捐赠的物资打包成件,其中口罩和防护服共320件,口罩比防护服多80件.(1)求打包成件的口罩和防护服各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批口罩和防护服全部运往受灾地区.已知甲种货车最多可装口罩40件和防护服10件,乙种货车最多可装口罩和防护服各20件.红十字会安排甲、乙两种货车时有几种方案?请你帮助设计出来.(3)在第(2)问的条件下,如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元.红十字会应选择哪种方案可使运输费最少?最少运输费是多少元?20.某公司计划购买A,B两种型号的打印机共20台,通过市场调研发现,购买3台A型打印机和4台B型打印机需6180元;购买4台A型打印机和6台B型打印机需8840元.(1)求购买A,B两种型号打印机每台的价格分别是多少元?(2)根据公司实际情况,要求购买A型打印机的数量不低于B型打印机数量的,不超过B型打印机数量的一半,且购买这两种型号打印机的总费用不能超过17800元,求该公司按计划购买A,B两种型号打印机共有几种购买方案,哪种方案费用最低?并求出最低费用.21.入汛以来,我国南方地区发生多轮降雨,造成的多地发生较重洪涝灾害.某爱心机构将为一受灾严重地区捐赠的物资打包成件,其中帐篷和食品共320件,帐篷比食品多80件.(1)求打包成件的帐篷和食品各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批帐篷和食品全部运往受灾地区.已知甲种货车最多可装帐篷40件和食品10件,乙种货车最多可装帐篷和食品各20件.安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在第(2)问的条件下,如果甲种货车每辆需付运输费2000元,乙种货车每辆需付运输费1800元,应选择哪种方案可使运输费最少?最少运输费是多少元?22.某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克m元,售价每千克16元;乙种蔬菜进价每千克n元,售价每千克18元.(1)该超市购进甲种蔬菜10千克和乙种蔬菜5千克需要170元;购进甲种蔬菜6千克和乙种蔬菜10千克需要200元.求m,n的值.(2)该超市决定每天购进甲、乙两种蔬菜共100千克,且投入资金不少于1160元又不多于1168元,设购买甲种蔬菜x千克(x为整数),求有哪几种购买方案.(3)在(2)的条件下,求超市在获得的利润的最大值.参考答案1.解:假设共有学生x人,根据题意得出:,解得:10<x≤12.因为x是正整数,所以符合条件的x的值是11或12.观察选项,选项C符合题意.故选:C.2.解:依题意,得:,解得:850<x≤2000.故选:A.3.解:当这列货车挂50节货箱时,设应安排x节A型货厢,则安排(50﹣x)节B型货厢,依题意,得:,解得:28≤x≤30.∵x为正整数,∴x可以取28,29,30,∴此种情况下有3种运输方案;当这列货车挂49节货箱时,设应安排y节A型货厢,则安排(49﹣y)节B型货厢,依题意得:,∵该不等式组无解,∴总共只有3种运输方案.故选:C.4.解:设该店购进甲种商品x件,则购进乙种商品(50﹣x)件,根据题意,得:,解得:≤x<37,∵x为整数,∴x=34、35、36,∴该店进货方案有3种,故选:A.5.解:∵垂直于墙的一边的长度为xm,∴平行于墙的一边的长度为(30﹣2x)m.又∵墙长20m,∴,∴5≤x<15.故选:A.6.解:根据题意得:,解得:1≤x<5.则x的取值范围为:1≤x<5.故选:D.7.解:设平均每人捐款x元,依题意得:,解得:3≤x<4.又∵x为整数,∴x=4.故答案为:4.8.解:设共有x名小朋友,则共有(3x+8)本书,依题意得:,解得:5<x<6,又∵x为正整数,∴x=6,∴3x+8=26.故答案为:26.9.解:设医院安排了x名护士,由题意得,1<4x+20﹣8(x﹣1)<8,解得,5<x<6,∵x为整数,∴x=6.故答案为:6.10.解:根据题意得,解得:5<a<10.故答案为:5<a<10.11.解:依题意,得:,解得:<m<.又∵m为正整数,∴m=4.故答案为:4.12.解:由题意x>3,x≥a,∵不等式组的解集为x>4,∴a≤4.故答案是:a≤4.13.解:前四次操作的结果分别为3x﹣2;3(3x﹣2)﹣2=9x﹣8;3(9x﹣8)﹣2=27x﹣26;3(27x﹣26)﹣2=81x﹣80;由已知得:,解得:7<x≤19.容易验证,当7<x≤19时,3x﹣2≤487 9x﹣8≤487,故x的取值范围是:7<x≤19.故答案为:7<x≤19.14.解:设A、B的单价为y元,C的单价为x元,A的销量为a,D的销量为b,则D的单价为7x元,C的销量为a,B的销量为7b;根据题意可得,由上午时段A、B两种蔬菜的总销售额比C、D两种蔬菜的总销售额多126元,得到(a+7b)y﹣(a+7b)x=126,∴(a+7b)(y﹣x)=126,∵单价与销量均为正整数,∴y﹣x=7或y﹣x=9;a+7b=18或a+7b=14;再由,可得x的取值为3或2或1;当y﹣x=7时,a+7b=18,此时x+y的取值可以为13,11,9;a=11,b=1或a=4,b =2;当y﹣x=9时,a+7b=14,此时x+y的取值可以为15,13,11;a=7,b=1;下午四种蔬菜的总销售额为a(x+y)+5.6b(x+y)=(x+y)(a+5.6b),若总销售额最多,则a=11,b=1,x+y=13,∴销售额=13×16.6=215.8元,故答案为215.8.15.解:(1)设本子单价是x元,笔的单价是y元,由题意得,,解得,答:本子单价是7元,笔的单价是2元.(2)设购进本子a件,则笔购进(150﹣a)件,由题意得,,解得4245,∵a为整数,∴a=43,44,45.∴有三种购买方案:购进本子43件,笔购进107件;购进本子44件,笔购进106件;购进本子45件,笔购进105件.16.解:(1)设租用36座客车x辆,根据题意,得:,解得:4<x<,∵x为整数,∴x=5,36x=180,答:该校初三年级共有师生180人参观黄石矿博园;(2)方案①:租36座车5辆的费用:5×400=2000(元).方案②:租48座车4辆的费用:4×480=1920(元);方案③∵=3…36,余下人数正好36座,可以得出:租48座车3辆和36座车1辆的总费用:3×480+1×400=1840(元).∵1840<1920<2000,∴方案③:租48座车3辆和36座车1辆最省钱.17.解:(1)设每台甲型微波炉的进价为x元,每台乙型微波炉的进价为y元,依题意得:,解得:.答:每台甲型微波炉的进价为1000元,每台乙型微波炉的进价为800元.(2)设购进甲型微波炉a台,则购进乙型微波炉(20﹣a)台,依题意得:,解得:7≤a≤10,又∵a为正整数,∴a可以为7,8,9,10,∴共有4种进货方案,方案1:购进甲型微波炉7台,乙型微波炉13台;方案2:购进甲型微波炉8台,乙型微波炉12台;方案3:购进甲型微波炉9台,乙型微波炉11台;方案4:购进甲型微波炉10台,乙型微波炉10台.(3)设获得的总利润为w元,则w=(1400×0.9﹣1000)a+(800×45%﹣m)(20﹣a)=(m﹣100)a+7200﹣20m,∵获得的利润与a值无关,∴m﹣100=0,∴m=100.答:m的值应为100.18.解:(1)设A型风扇进货的单价是x元,B型风扇进货的单价是y元,依题意,得:,解得:.答:A型风扇进货的单价是10元,B型风扇进货的单价是16元;(2)设购进A型风扇m台,则购进B型风扇(100﹣m)台,依题意,得:,解得:71≤m≤75,又∵m为正整数,∴m可以取72、73、74、75,∴小丹共有4种进货方案,方案1:购进A型风扇72台,B型风扇28台;方案2:购进A型风扇73台,B型风扇27台;方案3:购进A型风扇74台,B型风扇26台;方案4:购进A型风扇75台,B型风扇25台.∵B型风扇进货的单价大于A型风扇进货的单价,∴方案4:购进A型风扇75台,B型风扇25台的费用最低,最低费用为75×10+25×16=1150元.19.解:(1)设打包成件的口罩有x件,防护服有y件,依题意得:,解得:.答:打包成件的口罩有200件,防护服有120件.(2)设租用甲种货车m辆,则租用乙种货车(8﹣m)辆,依题意得:,解得:2≤m≤4,又∵m为正整数,∴m可以为2,3,4,∴共有3种安排方案,方案1:安排甲种货车2辆,乙种货车6辆;方案2:安排甲种货车3辆,乙种货车5辆;方案3:安排甲种货车4辆,乙种货车4辆.(3)方案1的运费为2×4000+6×3600=29600(元);方案2的运费为3×4000+5×3600=30000(元);方案3的运费为4×4000+4×3600=30400(元).∵29600<30000<30400,∴选择方案1可使运费最少,最少运费是29600元.20.解:(1)设购买A种型号打印机每台的价格是x元,购买B种型号打印机每台的价格是y元,依题意有,解得.故购买A种型号打印机每台的价格是860元,购买B种型号打印机每台的价格是900元;(2)设购买A种型号打印机m台,则购买B种型号打印机(20﹣m)台,依题意有,解得:5≤m≤.故共有两种购买方案:购买A种型号打印机5台,购买B种型号打印机15台,费用为860×5+900×15=17800(元);购买A种型号打印机6台,购买B种型号打印机14台,费用为860×6+900×14=17760(元);∵17800>17760,∴购买A种型号打印机6台,购买B种型号打印机14台,费用最低,最低费用为17760元.21.解:(1)设食品x件,则帐篷(x+80)件,由题意得:x+(x+80)=320,解得:x=120.∴帐篷有120+80=200件.答:食品120件,则帐篷200件;(2)设租用甲种货车a辆,则乙种货车(8﹣a)辆,由题意得:,解得:2≤a≤4.又∵a为整数,∴a=2或3或4.∴乙种货车为:6或5或4.∴方案共有3种:方案一:甲车2辆,乙车6辆;方案二:甲车3辆,乙车5辆;方案三:甲车4辆,乙车4辆;(3)3种方案的运费分别为:方案一:2×2000+6×1800=14800(元);方案二:3×2000+5×1800=15000(元);方案三:4×2000+4×1800=15200(元).∵14800<15000<15200∴方案一运费最少,最少运费是14800元.22.解:(1)依题意,得:,解得:.答:m的值为10,n的值为14.(2)设购买甲种蔬菜x千克,则购买乙种蔬菜(100﹣x)千克,依题意,得:,解得:58≤x≤60.∵x为正整数,∴x=58,59,60,∴有3种购买方案,方案1:购买甲种蔬菜58千克,乙种蔬菜42千克;方案2:购买甲种蔬菜59千克,乙种蔬菜41千克;方案3:购买甲种蔬菜60千克,乙种蔬菜40千克.(3)设超市获得的利润为y元,则y=(16﹣10)x+(18﹣14)(100﹣x)=2x+400.∵k=2>0,∴y随x的增大而增大,∴当x=60时,y取得最大值,最大值为2×60+400=520。
北师版数学八年级下册2.6 一元一次不等式组及其解集同步训练(含答案)
北师版数学八年级下册2.6 一元一次不等式组及其解集同步训练(含答案)一、选择题(共10小题,3*10=30)1.下列是一元一次不等式组的是( )A .⎩⎪⎨⎪⎧a>0,b>0B .⎩⎪⎨⎪⎧x 2>x ,x +3<0C .⎩⎪⎨⎪⎧x>5,2x +3>10D .⎩⎪⎨⎪⎧ x 4>4x ,x +1<0 2.某数的2倍大于-5,它的3倍不大于1,若设某数为x ,则可列不等式组为( )A.⎩⎪⎨⎪⎧2x≥-53x≤1B.⎩⎪⎨⎪⎧2x >-53x≤1C.⎩⎪⎨⎪⎧2x <-53x≤1D.⎩⎪⎨⎪⎧2x >-53x >13.不等式组的解集在数轴上表示如图,则该不等式组可能为( )A .⎩⎪⎨⎪⎧x>-1,x≤2B .⎩⎪⎨⎪⎧x≥-1,x<2C .⎩⎪⎨⎪⎧x≥1,x≤2D .⎩⎪⎨⎪⎧x<-1,x≥24.已知不等式组⎩⎪⎨⎪⎧x -2<0,x +1≥0,其解集在数轴上表示正确的是( )5.不等式组⎩⎪⎨⎪⎧-2x<6,x -2>0的解集是( ) A .x >-3 B .x <-3 C .x >2 D .无解6.若点A(m -3,1-3m)在第三象限,则m 的取值范围是( )A .m <3B .13<m <3C .m >3D .m >137.关于x 的不等式组⎩⎪⎨⎪⎧2(x -1)>4,a -x <0的解集为x >3,那么a 的取值范围为( ) A .a >3 B .a <3 C .a≥3 D .a≤38. 不等式组⎩⎪⎨⎪⎧3(x +1)>x -1,x +72≥2x -1的非负整数解的个数是( ) A .3 B .4 C .5 D .69.在平面直角坐标系中,点P(m +1,2-m)在第二象限,则m 的取值范围为( )A .m <-1B .m <2C .m >2D .-1<m <210.如果关于x 的不等式组⎩⎪⎨⎪⎧x -m<0,3x -1>2(x -1)无解,那么m 的取值范围为( ) A .m≤-1 B .m <-1 C .-1<m≤0 D .-1≤m <0二.填空题(共8小题,3*8=24)11. 下面给出的不等式组:①⎩⎪⎨⎪⎧x>-2,x<3;②⎩⎪⎨⎪⎧x>0,x +2>0;③⎩⎪⎨⎪⎧x>x 2+1,x 2+2>4;④⎩⎪⎨⎪⎧x +3>0,x<-7;⑤⎩⎪⎨⎪⎧x +1>0,y -1<x. 其中是一元一次不等式组的是____________(填序号)12.写出下列不等式组的解集: (1)⎩⎪⎨⎪⎧x<6,x>1的解集是________;(2)⎩⎪⎨⎪⎧x>5,x<-1的解集是________. 13. 一个不等式的解集如图所示,则写出该不等式的解集是______________.14. 不等式组⎩⎪⎨⎪⎧2x<0,2+x≥1的解集在数轴上表示为_________________________________. 15.不等式组⎩⎪⎨⎪⎧2x <8,4x -1>x +2的解集是________. 16. 不等式组⎩⎪⎨⎪⎧3(x +1)>x -1,x +72≥2x -1的正整数解是_____________. 17.若不等式组⎩⎪⎨⎪⎧x +a -2>0,2x -b -1<0的解集为0<x <1,则a ,b 的值为__________________. 18. 若关于x 的不等式组⎩⎪⎨⎪⎧x 2+x +13>0,3x +5a +4>4(x +1)+3a恰有三个整数解,则a 的取值范围是____________.三.解答题(共7小题, 46分)19.(6分) 通过下列数轴写出不等式的解集:(1)(2) (3) (4)20.(6分) 解不等式组⎩⎪⎨⎪⎧x +3≥1,①4x≤1+3x.②,请结合题意填空,完成本题的解答. (1)解不等式①,得_________;(2)解不等式②,得______;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为_______________.21.(6分) 解不等式组,并将它的解集在数轴上表示出来:)⎩⎪⎨⎪⎧3x -2<4,①2(x -1)≤3x +1;②22.(6分) 若关于x 的一元一次不等式组⎩⎪⎨⎪⎧6-3(x +1)<x -9,x -m >-1的解集是x >3,求m 的取值范围.23.(6分) 若点P 的坐标为⎝⎛⎭⎫x -13,2x -9,其中x 满足不等式组⎩⎪⎨⎪⎧5x -10≥2(x +1),12x -1≤7-32x ,求点P 所在的象限.24.(8分) 求不等式组⎩⎪⎨⎪⎧5x +2>3(x -1),12x -1≤7-32x 的所有非负整数解的和.25.(8分) )“绿水青山就是金山银山”,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?参考答案1-5CBADC 6-10 BDBAA11. ①②④12. 1<x<6,无解13. -3<x≤2.14.15. 1<x≤416. 1,2,317.a =2,b =118.1<a≤3219. 解:(1)-1<x≤5 (2)无解 (3)x >5 (4)-1<x <520. 解:(1)x≥-2;(2)x≤1;(3)如图所示:(4)-2≤x≤121. 解:解不等式①,得x <2,解不等式②,得x≥-3,不等式①,不等式②的解集在数轴上表示,如图:所以原不等式组的解集为-3≤x <2.22. 解:⎩⎪⎨⎪⎧6-3(x +1)<x -9 ①x -m >-1 ②, 解不等式①,得x >3,解不等式②,得x >m -1.因为该不等式组的解集为x >3,所以m -1≤3, 所以m≤4.23. 解:⎩⎪⎨⎪⎧5x -10≥2(x +1),①12x -1≤7-32x ,② 解①得x≥4,解②得x≤4,则x =4,∴x -13=1,2x -9=-1,∴点P 的坐标为(1,-1), ∴点P 在第四象限.24. 解:⎩⎪⎨⎪⎧5x +2>3(x -1),①12x -1≤7-32x.② 解不等式①得x >-2.5,解不等式②得x≤4,∴不等式组的解集为-2.5<x≤4,∴不等式组的所有非负整数解是0,1,2,3,4,∴不等式组的所有非负整数解的和是0+1+2+3+4=10.25. 解:(1)设清理养鱼网箱的人均费用为x 元,清理捕鱼网箱的人均费用为y 元,根据题意得⎩⎪⎨⎪⎧15x +9y =57000,10x +16y =68000, 解得⎩⎪⎨⎪⎧x =2000,y =3000, 答:清理养鱼网箱的人均费用为2000元,清理捕鱼网箱的人均费用为3000元(2)设m 人清理养鱼网箱,则(40-m)人清理捕鱼网箱,根据题意得⎩⎪⎨⎪⎧2000m +3000(40-m )≤102000,m <40-m , 解得18≤m <20,∵m 为整数,∴m =18或m =19, 则分配清理人员方案有两种:方案一:18人清理养鱼网箱,22人清理捕鱼网箱; 方案二:19人清理养鱼网箱,21人清理捕鱼网箱。
2022-2023学年北师大版八年级数学下册《2-6一元一次不等式组》同步自主提升练习题(附答案)
2022-2023学年北师大版八年级数学下册《2.6一元一次不等式组》同步自主提升练习题(附答案)一.选择题2.下列选项中是一元一次不等式组的是()A.B.C.D.1.关于x,y的方程组,若2<k<4,则x﹣y的取值范围是()A.﹣1<x﹣y<0B.0<x﹣y<1C.﹣3<x﹣y<﹣1D.﹣1<x﹣y<1 2.不等式组的解集是()A.无解B.x<﹣1C.x≥D.﹣1<x≤3.已知点P(1﹣a,2a+6)在第四象限,则a的取值范围是()A.a<﹣3B.﹣3<a<1C.a>﹣3D.a>15.已知关于x的不等式组的整数解共有5个,则a的取值范围是()A.﹣4<a<﹣3B.﹣4≤a<﹣3C.a<﹣3D.﹣4<a<6.关于x的不等式组的所有整数解的积为2,则m的取值范围为()A.m>﹣3B.m<﹣2C.﹣3≤m<﹣2D.﹣3<m≤﹣2 7.八年级某班级部分同学去植树,若每人平均植树7棵,还剩9棵,若每人平均植树9棵,则有1名同学植树的棵数不到8棵.若设同学人数为x人,下列各项能准确的求出同学人数与种植的树木的数量的是()A.7x+9﹣9(x﹣1)>0B.7x+9﹣9(x﹣1)<8C.D.8.“a与5的和是正数且a的一半不大于3”用不等式组表示,正确的是()A.B.C.D.9.某企业决定购买A,B两种型号的污水处理设备共8台,具体情况如下表:A型B型价格(万元/台)1210月污水处理能力(吨/月)200160经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低1380吨,该企业有哪些购买方案呢?为解决这个问题,设购买A型污水处理设备x台,所列不等式组正确的是()A.B.C.D.10.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了两次才停止,那么x的取值范围是()A.x>23B.23<x≤47C.11≤x<23D.x≤47二.填空题11.写出一个无解的一元一次不等式组为.12.不等式组的解集为.13.不等式组有3个整数解,则a的取值范围是.14.某种植物生长的适宜温度不能低于18℃.也不能高于22℃.如果该植物生长的适宜温度为x℃.则有不等式.15.一个矩形,两边长分别为xcm和10cm,如果它的周长小于80cm,面积大于100cm2,则x的取值范围是.三.解答题16.解不等式组,并把解集表示在数轴上.17.解不等式组,并把解集在数轴上表示出来.18.已知关于x、y的方程组的解满足,求整数k的值.19.求不等式组的正整数解.20.已知两个语句:①式子2x﹣1的值在1(含1)与3(含3)之间;②式子2x﹣1的值不小于1且不大于3.请回答以下问题:(1)两个语句表达的意思是否一样(不用说明理由)?(2)把两个语句分别用数学式子表示出来.参考答案一.选择题1.解:A、含有三个未知数,不符合题意;B、未知数的最高次数是2,不符合题意;C、含有两个未知数,不符合题意;D、符合一元一次不等式组的定义,符合题意;故选:D.2.解:,解得:,x﹣y=,∵2<k<4,∴0<x﹣y<1,故选:B.3.解:解不等式3﹣2x<5,得:x>﹣1,解不等式2(x﹣2)≤1,得:x≤,则不等式组的解集为﹣1<x≤,故选:D.4.解:∵点P(1﹣a,2a+6)在第四象限,∴,解得a<﹣3.故选:A.5.解:解不等式x﹣a>0,得:x>a,解不等式3﹣2x>0,得:x<1.5,∵不等式组的整数解有5个,∴﹣4≤a<﹣3.故选:B.6.解:由x≤﹣且不等式组的所有整数解的积为2知整数解为﹣1、﹣2这2个,所以﹣3≤m<﹣2,故选:C.7.解:(x﹣1)位同学植树棵树为9×(x﹣1),∵有1位同学植树的棵数不到8棵.植树的棵数为(7x+9)棵,∴可列不等式组为:,即.故选:C.8.解:由题意可得:.故选:A.9.解:设购买污水处理设备A型号x台,则购买B型号(8﹣x)台,根据题意,得,故选:A.10.解:由题意得,,解不等式①得,x≤47,解不等式②得,x>23,∴23<x≤47,故选:B.二.填空题11.解:根据不等式组解集的口诀:大大小小找不到(无解),可写x≤2,x≥3,即.12.解:解不等式x﹣1≤2,得:x≤3,解不等式3﹣4x<﹣5,得:x>2,则不等式组的解集为2<x≤3,故答案为:2<x≤3.13.解:不等式组,由﹣x<﹣1,解得:x>4,由4(x﹣1)≤2(x﹣a),解得:x≤2﹣a,故不等式组的解集为:4<x≤2﹣a,由关于x的不等式组有3个整数解,解得:7≤2﹣a<8,解得:﹣6<a≤﹣5.故答案为:﹣6<a≤﹣514.解:根据题意温度不能低于18℃可得x≥18,根据不能高于22℃可得x≤22,故18≤x≤22.故答案为:18≤x≤22.15.解:矩形的周长是2(x+10)cm,面积是10xcm2,根据题意,得,解不等式:2(x+10)<80,解得:x<30,解不等式:10x>100,解得:x>10,所以x的取值范围是:10<x<30.故答案为:10<x<30.三.解答题16.解:.解不等式①,得:x≥﹣3;解不等式②,得:x<2.∴不等式组的解集为:﹣3≤x<2.将其表示在数轴上,如图所示.17.解:解不等式x﹣3(x﹣2)≥4,得:x≤1,解不等式>x﹣1,得:x<4,则不等式组的解集为x≤1,将不等式组的解集表示在数轴上如下:18.解:两方程分别相加和相减可得,∴,解得,∴整数k的值为1、2.19.解:解不等式5x﹣12≤2(4x﹣3),得:x≥﹣2,解不等式<5,得:x<3,则不等式组的解集为﹣2≤x<3,所以不等式组的正整数解为1、2.20.解:(1)一样;(2)①式子2x﹣1的值在1(含1)与3(含3)之间可得1≤2x﹣1≤3;②式子2x﹣1的值不小于1且不大于3可得.。
最新北师大版八年级数学下册2.6一元一次不等式组同步练习习题
《一元一次不等式组》1、解下列不等式组.(1)328212x x -<⎧⎨->⎩ (2)572431(1)0.54x x x -≥-⎧⎪⎨--<⎪⎩(3)2x <1-x ≤x +5 (4)3(1)2(9)34140.50.2x x x x -<+⎧⎪-+⎨-≤-⎪⎩ 2、解不等式组3(21)42132 1.2x x x x ⎧--⎪⎪⎨+⎪>-⎪⎩≤,把解集表示在数轴上,并求出不等式组地整数解.3、求同时满足不等式6x -2≥3x -4和2112132xx +--<地整数x 地值.4、若关于x 、y 地二元一次方程组533x y m x y m -=-⎧⎨+=+⎩中,x 地值为负数,y 地值为正数,求m 地取值范围.5、若解方程组212x y x y m +=⎧⎨-=⎩得到地x ,y 地值都不大于1,求m 地取值范围.6、已知方程组31331x y m x y m +=+⎧⎨+=-⎩地解满足0x y +>,求m 地取值范围.- 2 - 7、在223x y t x y t =-⎧⎨+=-⎩中,已知9y >,试求x 地取值范围. 1、有一批货物成本a 万元,如果在本年年初出售,可获利10万元,然后将本、利都存入银行,年利率2%;如果在下一年年初出售,可获利12万元,但要付0.8万元货物保管费.试问,这批货物在本年年初出售合算,还是在下一年年初出售合算(本题计算不考虑利息税).2、某校为了奖励在数学竞赛中获奖地学生,买了若干本课外读物准备送给他们.如果每人送3本,则还余8本;如果前面每人送5本,则最后一人得到地课外读物不足3本.设该校买了m 本课外读物,有x 名学生获奖.请解答下列问题:(1)用含x 地代数式表示m ;(2)求出该校地获奖人数及所买课外读物地本数.3、某球迷协会组织36名球迷拟租乘汽车去比赛场地.可租用地汽车有两种:一种每辆可乘8人,另一种每辆可乘7人,若租用地车子不留空座,也不超载.(1)请你给出不同地租车方案(至少3种)(2)若8个座位地车子地租金是300元/天,4个座位地车子地租金是200元/天,请你设计出费用最少地租车方案,并说明理由.4、某水库地水位已超过警戒水量P立方米,由于连续暴雨,河水仍以每小时Q立方米地流量流入水库,为了保护大坝安全,需打开泄洪闸.已知每孔泄洪闸每小时泻水量为R立方米,经测算,若打开2孔泄洪闸,30小时可将水位降到警戒线;若打开3孔泄洪闸,12小时可将水位降到警戒线.(1)试用R 地代数式分别表示P、Q;(2)现在要求4小时内将水位降到警戒线以下,问至少需打开几孔泄洪闸.5、烟台大樱桃闻名全国,今年又喜获丰收,某大型超市从大樱桃生产基地购进一批大樱桃,运输过程中质量损失5%.(超市不负责其它费用)(1)如果超市把售价在进价地基础上提高5%,超市是否亏本?通过计算说明.(2)如果超市要获得至少20%地利润,那么大樱桃售价最低应提高百分之几?(结果精确到0.1)6、现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂有A、B两种不同规格地货车车厢共40节,使用A型车厢每节费用为6000元,使用B型车厢每节费用为8000元.(1)设运送这批货物地总费用为y万元,这列货车挂A 型车厢x节,试写出y与x之间地函数关系式.(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节B型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢地节数,那么共有哪几种安排车厢地方案?(3)在上述方案中,哪个方案运费最省?最少运费为多少元.- 4 -。
北师版八年级下数学2.6一元一次不等式组习题精选1(含答案)
数学习题精选1(含答案)一.选择题(共2小题)1.下列不等式组中,是一元一次不等式组的是()A .B.C.D.2.下列不等式组:①,②,③,④,⑤.其中一元一次不等组的个数是()A .2个B.3个C.4个D.5个二.填空题(共11小题)3.(2004•无为县)试写出一个由两个一元一次不等式组成的一元一次不等式组,使它的解集是﹣1<x≤2,这个不等式组是_________ .4.试构造一个解为x<﹣1的一元一次不等式组_________ .5.(2013•衢州)不等式组的解集是_________ .6.(2013•曲靖)不等式和x+3(x﹣1)<1的解集的公共部分是_________ .7.(2013•宁夏)点 P(a,a﹣3)在第四象限,则a的取值范围是_________ .8.(2013•来宾)不等式组的解集是_________ .9.(2013•鄂州)若不等式组的解集为3≤x≤4,则不等式ax+b<0的解集为_________ .10.(2011•包头)不等式组的解集是_________ .11.(2010•沈阳)不等式组的解集是_________ .12.(2009•烟台)如果不等式组的解集是0≤x<1,那么a+b的值为_________ .13.(2008•天门)已知不等式组的解集为﹣1<x<2,则(m+n)2008= _________ .三.解答题(共17小题)14.(2013•玉溪)解不等式组.15.(2013•新疆)解不等式组.16.(2013•遂宁)解不等式组:并把它的解集在数轴上表示出来.17.(2013•南平)解不等式组:.18.(2012•威海)解不等式组,并把解集表示在数轴上:.19.(2012•聊城)解不等式组.20.(2012•黄冈)解不等式组.21.(2012•衡阳)解不等式组,并把解集在数轴上表示出来.22.(2012•甘孜州)解不等式组并把解集在数轴上表示出来.23.(2012•佛山)解不等式组,注:不等式(1)要给出详细的解答过程.24.(2011•新疆)解不等式组,并将解集在数轴上表示出来.25.(2011•龙岩)解不等式组:,并把解集在数轴上表示出来.26.(2011•莱芜)解不等式组:.27.(2011•衡阳)解不等式组,并把解集在数轴上表示出来.28.(2011•南平)解不等式组:,并把它的解集在数轴上表示出来.29.(2010•扬州)解不等式组:,并把它的解集在数轴上表示出来.30.(2010•威海)解不等式组:数学习题精选1(含答案)参考答案与试题解析一.选择题(共2小题)1.下列不等式组中,是一元一次不等式组的是()A .B.C.D.考点:一元一次不等式组的定义.分析:根据一元一次不等式组的定义判定则可.解答:解:A选项是一元一次不等式组;B选项中有2个未知数;C选项中最高次项是2;D选项中含有分式,不属于一元一次不等式的范围.故选A点评:本题考查了一元一次不等式的定义.定义:不等式的两边是整式,只含有1个未知数,并且未知数最高次是1次的不等式叫做一元一次不等式,由几个一元一次不等式组成的不等式组叫做一元一次不等式组.2.下列不等式组:①,②,③,④,⑤.其中一元一次不等组的个数是()A .2个B.3个C.4个D.5个考点:一元一次不等式组的定义.分析:根据一元一次不等式组的定义,含有两个或两个以上的不等式,不等式中的未知数相同,并且未知数的最高次数是一次,对各选项判断后再计算个数即可.解答:解:根据一元一次不等式组的定义,①②④都只含有一个未知数,并且未知数的最高次数是1,所以都是一元一次不等式组;③含有一个未知数,但未知数的最高次数是2,⑤含有两个未知数,所以②⑤都不是一元一次不等式组.故有①②④三个一元一次不等式组.故选B.点评:本题主要考查一元一次不等式组的定义,熟练掌握定义并灵活运用是解题的关键.二.填空题(共11小题)3.(2004•无为县)试写出一个由两个一元一次不等式组成的一元一次不等式组,使它的解集是﹣1<x≤2,这个不等式组是等.考点:一元一次不等式组的定义.专题:开放型.分析:本题为开放性题,按照口诀大小小大中间找列不等式组即可.如:根据“大小小大中间找”可知只要写2个一元一次不等式x≤a,x>b,其中a>b即可.解答:解:根据解集﹣1<x≤2,构造的不等式为.答案不唯一.点评:本题考查了一元一次不等式解集与不等式组之间的关系.本题为开放性题,按照口诀列不等式组即可.解不等式组的简便求法就是用口诀求解,构造已知解集的不等式是它的逆向运用.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).4.试构造一个解为x<﹣1的一元一次不等式组.考点:一元一次不等式组的定义.专题:开放型.分析:本题为开放性题,根据同小取小列不等式组即可.解答:解:.答案不唯一点评:本题考查了一元一次不等式解集与不等式组之间的关系,本题为开放性题,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).5.(2013•衢州)不等式组的解集是x≥2.考点:解一元一次不等式组.专题:计算题.分析:分别计算出每个不等式的解集,再求其公共部分.解答:解:,由①得,x≥2;由②得,x≥﹣;则不等式组的解集为x≥2.故答案为x≥2.点评:本题考查了解一元一次不等式组,找到公共解是解题的关键,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.6.(2013•曲靖)不等式和x+3(x﹣1)<1的解集的公共部分是x<1 .考点:解一元一次不等式组.分析:先解两个不等式,再用口诀法求解集.解答:解:解不等式,得x<4,解不等式x+3(x﹣1)<1,得x<1,所以它们解集的公共部分是x<1.故答案为x<1.点评:本题考查一元一次不等式组的解法,求一元一次不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).7.(2013•宁夏)点 P(a,a﹣3)在第四象限,则a的取值范围是0<a<3 .考点:点的坐标;解一元一次不等式组.分析:根据第四象限的点的横坐标是正数,纵坐标是负数列出不等式组求解即可.解答:解:∵点P(a,a﹣3)在第四象限,∴,解得0<a<3.故答案为:0<a<3.点评:本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).8.(2013•来宾)不等式组的解集是x>4 .考点:解一元一次不等式组.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x≥3;由②得,x>4,故此不等式组的解集为:x>4.故答案为:x>4.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.(2013•鄂州)若不等式组的解集为3≤x≤4,则不等式ax+b<0的解集为x>.考点:解一元一次不等式组;不等式的解集;解一元一次不等式.分析:求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,即可求出a b的值,代入求出不等式的解集即可.解答:解:∵解不等式①得:x≥,解不等式②得:x≤﹣a,∴不等式组的解集为:≤x≤﹣a,∵不等式组的解集为3≤x≤4,∴=3,﹣a=4,b=6,a=﹣4,∴﹣4x+6<0,x>,故答案为:x>点评:本题考查了解一元一次不等式(组),一元一次不等式组的整数解的应用,关键是能根据不等式组的解集求出a b的值.10.(2011•包头)不等式组的解集是5≤x<8 .考点:解一元一次不等式组;不等式的性质;解一元一次不等式.专题:计算题.分析:根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可.解答:解:,由①得:x≥5,由②得:x<8.∴不等式组的解集是5≤x<8,故答案为:5≤x<8.点评:本题主要考查对不等式的性质,解一元一次不等式,解一元一次不等式组等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.11.(2010•沈阳)不等式组的解集是﹣1≤x≤1.考点:解一元一次不等式组.分析:先求出各不等式的解集,再求出其公共解集即可.解答:解:由(1)去括号得,4≥2﹣2x,移项、合并同类项得,﹣2x≤2,系数化为1得,x≥﹣1.由(2)移项、合并同类项得,﹣3x≥﹣3,系数化为1得,x≤1.故原不等式组的解集为:﹣1≤x≤1.点评:主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).12.(2009•烟台)如果不等式组的解集是0≤x<1,那么a+b的值为 1 .考点:解一元一次不等式组.专题:计算题;压轴题.分析:先用含有a、b的代数式把每个不等式的解集表示出来,然后根据已告知的解集,进行比对,得到两个方程,解方程求出a、b.解答:解:由得:x≥4﹣2a由2x﹣b<3得:故原不等式组的解集为:4﹣2a≤又因为0≤x<1所以有:4﹣2a=0,解得:a=2,b=﹣1于是a+b=1.点评:本题既考查不等式的解法,又考查学生如何逆用不等式组的解集构造关于a、b的方程,从而求得a、b.13.(2008•天门)已知不等式组的解集为﹣1<x<2,则(m+n)2008= 1 .考点:解一元一次不等式组.专题:计算题.分析:先解不等式,求出解集,然后根据题中已告知的解集,进行比对,从而得出两个方程,解答即可求出m、n.解答:解:解不等式组得,,因为解集为﹣1<x<2,所以m+n﹣2=﹣1,m=2,解得,m=2,n=﹣1,即(m+n)2008=(2﹣1)2008=1.点评:主要考查了一元一次不等式组的解定义,解此类题是要先用字母m,n表示出不等式组的解集,然后再根据已知解集,对应得到相等关系,解关于字母m,n的一元一次方程求出字母m,n的值,再代入所求代数式中即可求解.三.解答题(共17小题)14.(2013•玉溪)解不等式组.考点:解一元一次不等式组.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:∵由①得x<3,由②得x>﹣2.∴此不等式组的解集为:﹣2<x<3.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.(2013•新疆)解不等式组.考点:解一元一次不等式组.专题:计算题.分析:先求出两个不等式的解集,再求其公共解.解答:解:,解不等式①得,x≥1,解不等式②得,x<,所以,不等式组的解集是1≤x<.点评:本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).16.(2013•遂宁)解不等式组:并把它的解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:计算题;压轴题.分析:分别解两个不等式得到x<1和x≥﹣4,然后根据大于小的小于大的取中间确定不等式组的解集,最后用数轴表示解集.解答:解:,由①得:x>1由②得:x≤4所以这个不等式的解集是1<x≤4,用数轴表示为.点评:本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.也考查了用数轴表示不等式的解集.17.(2013•南平)解不等式组:.考点:解一元一次不等式组.分析:求出每个不等式的解集,根据找不等式组解集的规律找出即可.解答:解:∵由①得:2x<5,,由②得:,,x>﹣3,∴不等式组的解集为.点评:本题考查了解一元一次不等式(组)的应用,关键是能根据不等式的解集找出不等式组的解集.18.(2012•威海)解不等式组,并把解集表示在数轴上:.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:探究型.分析:分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.解答:解:解不等式①,得x≤﹣2,解不等式②,得x>﹣3,故原不等式组的解集为﹣3<x≤﹣2,在数轴上表示为(如图)点评:本题考查的是解一元一次不等式组及在数轴上表示不等式组的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.19.(2012•聊城)解不等式组.考点:解一元一次不等式组.专题:探究型.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:解不等式①,得x<3,解不等式②,得x≥﹣1.所以原不等式的解集为﹣1≤x<3.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.(2012•黄冈)解不等式组.考点:解一元一次不等式组.分析:首先分别解出两个不等式的解集,再根据解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到确定不等式组的解集.解答:解:,由①得:x<,由②得:x≥﹣2,故不等式组的解集为:﹣2≤x<.点评:此题主要考查了解一元一次不等式组,一般是求出其中各不等式的解集,再求出这些解集的公共部分.21.(2012•衡阳)解不等式组,并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:探究型.分析:分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.解答:解:∵由①得,x>﹣1;由②得,x≤4,∴此不等式组的解集为:﹣1<x≤4,在数轴上表示为:点评:本题考查的是在数轴上表示一元一次不等式组的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.22.(2012•甘孜州)解不等式组并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.解答:解:,由①得,x<4,由②得,x≥2,故此不等式组的解集为:2≤x<4,在数轴上表示为:.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23.(2012•佛山)解不等式组,注:不等式(1)要给出详细的解答过程.考点:解一元一次不等式组;不等式的性质;解一元一次不等式.专题:计算题.分析:根据不等式的性质求出每个不等式的解集,根据找不等式组解集的规律找出即可.解答:解:,解不等式(1)得:3﹣2x+1≥5x+4,﹣2x﹣5x≥4﹣3﹣1,﹣7x≥0,x≤0,解不等式(2)得:x﹣6<4x,x﹣4x<6,﹣3x<6,x>﹣2,∴不等式组的解集是﹣2<x≤0.点评:本题考查了不等式的性质,解一元一次不等式(组)的应用,关键是根据不等式的解集能找出不等式组的解集,题目比较好,难度适中.24.(2011•新疆)解不等式组,并将解集在数轴上表示出来.考点:解一元一次不等式组;不等式的性质;在数轴上表示不等式的解集;解一元一次不等式.专题:计算题;压轴题.分析:根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可.解答:解:,解不等式①得:x<3,解不等式②得:x≥1,∴不等式组的解集是1≤x<3,把不等式组的解集在数轴上表示为:.点评:本题主要考查对不等式的性质,解一元一次不等式(组),在数轴上表示不等式组的解集等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.25.(2011•龙岩)解不等式组:,并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:计算题.分析:分别求出各不等式的解集,再求出其公共解集即可.解解:∵由①得,x≤3,由②得x>0,答:∴此不等式组的解集为:0<x≤3,在数轴上表示为:故答案为:0<x≤3.点评:本题考查的是解一元一次不等式组及在数轴上表示一元一次不等式组的解集,解答此类题目时一定要注意实心圆点与空心圆点的区别.26.(2011•莱芜)解不等式组:.考点:解一元一次不等式组.专题:计算题.分析:由不等式组中第一个不等式两边同时乘以3,去分母后利用去括号法则:括号前面是负号,去掉负号和括号,括号里各项都变号,合并后在不等式两边同时除以﹣1即可求出第一个不等式的解集;把第二个不等式去括号后,合并即可求出解集,把求出的两解集表示在数轴上,根据图形即可求出不等式组的解集.解答:解:,由①去分母得:3﹣(x﹣1)≥0,化简得:﹣x≥﹣4,解得:x≤4;由②去括号得:3﹣(2x﹣2)<3x,即3﹣2x+2<3x,解得:x>1,把两解集表示在数轴上,如图所示:∴不等式组的解集为 1<x≤4.点评:此题考查了一元一次不等式组的解法,解不等式组是以解一元一次不等式为基础,一般步骤是:去分母,去括号,移项,合并同类项,系数化为“1”,特别注意不等式的两边同时乘以或除以同一个负数时要改变不等号的方向,然后取解集的方法是:同大取大,同小取小,大小小大取中间,大大小小无解.27.(2011•衡阳)解不等式组,并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:计算题;数形结合.分析:首先解每个不等式,确定两个不等式的解集的公共部分即可确定不等式组的解集.解解:解第一个不等式得:x≤3;答:解第二个不等式得:x>﹣2.故不等式组的解集是:﹣2<x≤3.点评:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.28.(2011•南平)解不等式组:,并把它的解集在数轴上表示出来.考点:解一元一次不等式组;不等式的性质;在数轴上表示不等式的解集;解一元一次不等式.专题:计算题.分析:根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出即可.解答:解:由①得,x≤3,由②得,x>﹣2,∴不等式组的解集是﹣2<x≤3,把不等式组的解集在数轴上表示为:.点评:本题主要考查对不等式的性质,解一元一次不等式(组),在数轴上表示不等式组的解集等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.29.(2010•扬州)解不等式组:,并把它的解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:本题可根据不等式组分别求出x的取值,然后画出数轴,数轴上相交的点的集合就是该不等式的解集.若没有交点,则不等式无解.解答:解:不等式可化为:,即;在数轴上表示为:故不等式组的解集为:﹣2≤x<1.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x大于较小的数、小于较大的数,那么解集为x介于两数之间.30.(2010•威海)解不等式组:考点:解一元一次不等式组.分析:先求出各不等式的解集,再求出其公共解集即可.解答:解:,解不等式(1),得x<5,(3分)解不等式(2),得x≥﹣2,(6分)因此,原不等式组的解集为﹣2≤x<5.(7分)点评:求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.。
八年级下册数学北师大版同步课时作业 2.6一元一次不等式组(有答案)
八年级下册数学北师大版同步课时作业2.6一元一次不等式组一、单选题1.下列不等式组:20324x xx x>->⎧⎧⎨⎨<+>⎩⎩①②22130724x x xxx⎧+<+>⎧⎪⎨⎨<-+>⎪⎩⎩③④1010xy+>⎧⎨-<⎩⑤其中一元一次不等式组的个数是()A.2 B.3 C.4 D.52.不等式组2030xx-⎧⎨+>⎩的解集是( )A.32x-<≤ B.32x-≤< C.2x≥ D.3x<-3.不等式组2(1)3112x xxx+>⎧⎪⎨+-⎪⎩的解集在数轴上表示正确的是( )A. B.C. D.4.小明去商店购买A B,两种玩具,共用了10元钱,A种玩具每件1元,B种玩具每件2元若每种玩具至少买一件,且A种玩具的数量多于B种玩具的数量,则小明的购买方案有( )A.5种B.4种C.3种D.2种5.已知关于x的不等式组321123x xx a--⎧-⎪⎨⎪-<⎩恰有3个整数解,则a的取值范围为( )A.12a<≤ B.12a<< C.12a≤< D.12a≤≤6.不等式组2342x xx>⎧⎨+>⎩的整数解是( )A.0B.1-C.2-D.17.若关于x的不等式组2(1)2xa x->⎧⎨-<⎩的解集是x a>,则a的取值范围是( )A.2a< B.2a≤ C.2a> D.2a≥8.已知关于x的不等式组2323(2)5x ax x>-⎧⎨≥-+⎩仅有三个整数解,则a的取值范围是( )A.112a< B.112a C.112a< D.1a<9.一宾馆有二人间,三人间,四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有()A.4种B.3种C.2种D.1种二、填空题10.某班级从文化用品市场购买了签字笔和圆珠笔共15支,所付金额大于26元,但小于27元.已知签字笔每支2元,圆珠笔每支1.5元,则签字笔购买了_________支.11.若关于x的不等式组10,2420x ax⎧->⎪⎨⎪-⎩无解,则a的取值范围为_______.12.关于x的不等式组240,1xa x->⎧⎨->-⎩的解集是24x<<,则a的值为__________.三、解答题13.2020年6月,国务院总理李克强表示:“地摊经济、小店经济是就业岗位的重要来源,是人间的烟火,是中国的生机”一时间,地摊兴起.小邱决定采购甲、乙两种文具到学校附近的地摊经营,采购甲种文具8件,乙种文具3件,需要95元;采购甲种文具5件,乙种文具6件,需要80元.(1)求甲、乙两种文具每件各多少元;(2)小邱想采购两种文具共100件,考虑到市场需求和资金周转,用于采购这100件文具的资金多于750元,但不超过765元,那么小邱共有哪几种进货方案?请列举出来.参考答案1.答案:B解析:根据一元一次不等式组的定义,①②④是一元一次不等式组;③中未知数的最高次数是2,⑤含有两个未知数,所以③⑤都不是一元一次不等式组.故有①②④三个一元一次不等式组.故选B.2.答案:A解析:求出每个不等式的解集分别为23x x≤>-,,所以不等式组的解集为32x-<≤.3.答案:A解析:2(1)3112x xxx+>⎧⎪⎨+-⎪⎩①②解不等式①得2x<,解不等式②得1x≥-,则不等式组的解集为12x-≤<,在数轴上表示如下故选A4.答案:C解析:设小明购买了A 种玩具x 件,则购买的B 种玩具为102x -件, 根据题意得1012102x x x -⎧⎪⎪⎨-⎪<⎪⎩解得1383x < x 为整数,102x -也为整数,4x ∴=或6或8 ∴有3种购买方案5.答案:A 解析:解321123x x ---得12x ≥- 解0x a -<得x a <,不等式组的整数解有3个,∴不等式组的整数解为1-、0、1,则12a <≤6.答案:B解析:2342x x x >⎧⎨+>⎩①② 解不等式①得0x <,解不等式②得2x >-不等式组的解集为20x -<<,不等式组2342x x x >⎧⎨+>⎩的整数解是1-,故选B 7.答案:D解析:解()212x ->得2x >,解0a x -<得x a >,关于x 的不等式组2(1)20x a x ->⎧⎨-<⎩的解集是x a >,2a ∴≥ 8.答案:A解析:解不等式()2325x x ≥-+得1x ≤,因为不等式组仅有三个整数解,所以这三个整数解为1,0,1-,所以2231a -≤-<-,解得112a ≤<,故选A. 9.答案:C解析:设租二人间x 间,租三人间y 间,则四人间客房7x y --.依题意得:234(7)70x y x y x y ++--⎧⎨-->⎩,解得:1x >.28070x y y x y +=>-->,,,2,4,71;x y x y ∴==--=3,2,72x y x y ==--=.故有2种租房方案.故选:C .10.答案:8解析:设签字笔购买了x 支,则圆珠笔购买了()15x -支,根据题意2 1.5(15)272 1.5(15)26x x x x +-<⎧⎨+->⎩解不等式组得79x << x 是整数,8x ∴=11.答案:1a解析:本题考查解不等式组.解不等式102x a ->得2x a >,解不等式420x -得 2.x 不等式组无解,22a ∴,解得1a .12.答案:3 解析:解不等式240x ->,得2x >.解不等式1a x ->,得1x a <+.不等式组的解集为2414x a <<∴+=,,即3a =.故答案为3.13.答案:(1)设甲种文具每件x 元,乙种文具每件y 元,则83955680x y x y +=⎧⎨+=⎩解得105x y =⎧⎨=⎩答:甲种文具每件10元,乙种文具每件5元.(2)设小邱采购甲种文具t 件,则采购乙种文具()100t -件,则()750105100765t t <+-≤,解得5053t <≤. t 为正整数,515253∴=,,,即有三种方案第一种方案:采购甲种文具51件,乙种文具49件;第二种方案:采购甲种文具52件,乙种文具48件;第三种方案:采购甲种文具53件,乙种文具47件.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
xx学校xx 学年xx学期xx试卷
姓名:_____________ 年级:____________ 学号:______________
题型选择题填空题简答题xx题xx题xx题总分得分
一、xx题
(每空xx 分,共xx分)
试题1:
下列不等式组中,解集是2<x<3的不等式组是( )
A. B.C. D.
试题2:
在数轴上从左至右的三个数为a,1+a,-a,则a的取值范围是()A.a< B.a<0 C.a>0 D.a<-试题3:
不等式组的解集在数轴上表示为()
试题4:
评卷人得分
不等式组的整数解的个数是()
A.1个B.2个 C.3个 D.4个
试题5:
在平面直角坐标系内,P(2x-6,x-5)在第四象限,则x的取值范围为()
A.3<x<5 B.-3<x<5 C.-5<x<3 D.-5<x<-3
试题6:
已知不等式:①,②,③,④,从这四个不等式中取两个,构成正整数解是2的不等式组是()
A.①与② B.②与③ C.③与④ D.①与④
试题7:
方程组的解x、y满足x>y,则m的取值范围是()
A.m> B.m> C.m> D.m>
试题8:
若y同时满足y+1>0与y-2<0,则y的取值范围是______________.
试题9:
不等式组的解集是.
试题10:
不等式组的解集是.
试题11:
若不等式组无解,则m的取值范围是.
试题12:
不等式组的解集是_________________.
试题13:
不等式组的解集为x>2,则a的取值范围是_____________.
试题14:
若不等式组的解集为-1<x<1,那么(a+1)(b-1)的值等于________.试题15:
若不等式组无解,则a的取值范围是_______________.
试题16:
试题17:
试题18:
2x<1-x≤x+5
试题19:
试题20:
解不等式组把解集表示在数轴上,并求出不等式组的整数解.
试题21:
求同时满足不等式6x-2≥3x-4和的整数x的值.
试题22:
求不等式组的非负整数解.
试题23:
若关于x、y的二元一次方程组中,x的值为负数,y的值为正数,求m的取值范围.试题1答案:
C;
试题2答案:
D
试题3答案:
C;
试题4答案:
C;
试题5答案: A;
试题6答案: D;
试题7答案: D;
试题8答案: - 1<y<2;试题9答案: -1≤x<3;
试题10答案: -≤x≤4;试题11答案: M≥2;
试题12答案: 2≤x<5;
试题13答案: a≤2;
试题14答案: -6;
试题15答案: A≤1;
试题16答案:
;
试题17答案:
无解;
试题18答案:
-2≤x<;
试题19答案:
x>-3.
试题20答案:
解集为,整数解为2,1,0,-1.
试题21答案:
不等式组的解集是,所以整数x为0.
试题22答案:
不等式组的解集为,所以不等式组的非负整数解为:0,l,2,3,4,5.试题23答案:
-4<m<0.5.。