侯马市第一中学2018-2019学年下学期高二期中数学模拟题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

侯马市第一中学2018-2019学年下学期高二期中数学模拟题
一、选择题
1. 已知函数y=f (x )对任意实数x 都有f (1+x )=f (1﹣x ),且函数f (x )在[1,+∞)上为单调函数.若数列{a n }是公差不为0的等差数列,且f (a 6)=f (a 23),则{a n }的前28项之和S 28=( )
A .7
B .14
C .28
D .56
2. 下列函数中,在区间(0,+∞)上为增函数的是( )
A .y=x ﹣1
B .y=()x
C .y=x+
D .y=ln (x+1)
 3. 设实数
,则a 、b 、c 的大小关系为(

A .a <c <b
B .c <b <a
C .b <a <c
D .a <b <c
4. 设a=sin145°,b=cos52°,c=tan47°,则a ,b ,c 的大小关系是( )
A .a <b <c
B .c <b <a
C .b <a <c
D .a <c <b
5. 在ABC ∆中,内角A ,B ,C 所对的边分别是,,,已知85b c =,2C B =,则cos C =( )
A .
7
25
B .7
25
-
C. 7
25
±
D .
2425
6. 在函数y=中,若f (x )=1,则x 的值是( )
A .1
B .1或
C .±1
D .
7. 与椭圆有公共焦点,且离心率
的双曲线方程为(

A .
B .
C .
D .
8. 已知集合A={x|x ≥0},且A ∩B=B ,则集合B 可能是( )
A .{x|x ≥0}
B .{x|x ≤1}
C .{﹣1,0,1}
D .R
9. 若集合A={x|1<x <3},B={x|x >2},则A ∩B=( )
A .{x|2<x <3}
B .{x|1<x <3}
C .{x|1<x <2}
D .{x|x >1}
10.若直线上存在点满足约束条件
2y x =(,)x y 则实数的最大值为 30,230,,x y x y x m +-≤⎧⎪
--≤⎨⎪≥⎩
m A 、
B 、
C 、
D 、1-32
2
班级_______________ 座号______ 姓名_______________ 分数_______________
_____________________________________________________________________________________________
______
11.下列函数中哪个与函数y=x 相等( )
A .y=(
)2
B .y=
C .y=
D .y=
12.已知函数满足,且,分别是上的偶函数和奇函数,()x
F x e =()()()F x g x h x =+()g x ()h x R 若使得不等式恒成立,则实数的取值范围是( )
(0,2]x ∀∈(2)()0g x ah x -≥
A .
B .
C .
D .(,-∞(,-∞(0,)
+∞二、填空题
13.如图是正方体的平面展开图,则在这个正方体中①与平行;②与是异面直线;BM ED CN BE ③与成角;④与是异面直线.CN BM 60︒DM BN 以上四个命题中,正确命题的序号是
(写出所有你认为正确的命题).
14.如图是一个正方体的展开图,在原正方体中直线AB 与CD 的位置关系是 .
15.设函数,若用表示不超过实数m 的最大整数,则函数的值域为 .
16.如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3中的任何一个,允许重复.若填入A 方格的数字大于B 方格的数字,则不同的填法共有 种(用数字作答).A B C D
17.设不等式组表示的平面区域为M ,若直线l :
y=k (x+2)上存在区域M 内的点,则k 的取值范围是 .
18.若数列{a n}满足:存在正整数T,对于任意的正整数n,都有a n+T=a n成立,则称数列{a n}为周期为T的周
期数列.已知数列{a n}满足:a1>=m (m>a ),a n+1=,现给出以下三个命题:
①若m=,则a5=2;
②若a3=3,则m可以取3个不同的值;
③若m=,则数列{a n}是周期为5的周期数列.
其中正确命题的序号是 .
三、解答题
19.已知函数f(x)=x3+2bx2+cx﹣2的图象在与x轴交点处的切线方程是y=5x﹣10.
(1)求函数f(x)的解析式;
(2)设函数g(x)=f(x)+mx,若g(x)的极值存在,求实数m的取值范围以及函数g(x)取得极值时对应的自变量x的值.
20.已知函数f(x)=lnx﹣a(1﹣),a∈R.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若f(x)的最小值为0.
(i)求实数a的值;
(ii)已知数列{a n}满足:a1=1,a n+1=f(a n)+2,记[x]表示不大于x的最大整数,求证:n>1时[a n]=2.
21.已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.
(1)求椭圆C的方程;
(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,说明理由.
22.已知f(x)=x2﹣(a+b)x+3a.
(1)若不等式f(x)≤0的解集为[1,3],求实数a,b的值;
(2)若b=3,求不等式f(x)>0的解集.
23.已知椭圆:,离心率为,焦点F1(0,﹣c),F2(0,c)过F1的直线交椭圆
于M,N两点,且△F2MN的周长为4.
(Ⅰ)求椭圆方程;
(Ⅱ)直线l与y轴交于点P(0,m)(m≠0),与椭圆C交于相异两点A,B且.若
,求m的取值范围.
24.如图,点A是单位圆与x轴正半轴的交点,B(﹣,).
(I)若∠AOB=α,求cosα+sinα的值;
(II)设点P为单位圆上的一个动点,点Q满足=+.若∠AOP=2θ,表示||,并求||的最大值.
侯马市第一中学2018-2019学年下学期高二期中数学模拟题(参考答案)
一、选择题
1.【答案】C
【解析】解:∵函数y=f(x)对任意实数x都有f(1+x)=f(1﹣x),且函数f(x)在[1,+∞)上为单调函数.
∴函数f(x)关于直线x=1对称,
∵数列{a n}是公差不为0的等差数列,且f(a6)=f(a23),
∴a6+a23=2.
则{a n}的前28项之和S28==14(a6+a23)=28.
故选:C.
【点评】本题考查了等差数列的通项公式性质及其前n项和公式、函数的对称性,考查了推理能力与计算能力,属于中档题.
2.【答案】D
【解析】解:①y=x﹣1在区间(0,+∞)上为减函数,
②y=()x是减函数,
③y=x+,在(0,1)是减函数,(1,+∞)上为,增函数,
④y=lnx在区间(0,+∞)上为增函数,
∴A,B,C不正确,D正确,
故选:D
【点评】本题考查了基本的函数的单调区间,属于基本题目,关键掌握好常见的函数的单调区间. 
3.【答案】A
【解析】解:∵,b=20.1>20=1,0<<0.90=1.
∴a<c<b.
故选:A.
4.【答案】A
【解析】解:∵a=sin145°=sin35°,b=cos52°=sin38°,c=tan47°>tan45°=1,
∴y=sinx在(0,90°)单调递增,
∴sin35°<sin38°<sin90°=1,
∴a<b<c
故选:A
【点评】本题考查了三角函数的诱导公式的运用,正弦函数的单调性,难度不大,属于基础题. 
5.【答案】A
【解析】

点:正弦定理及二倍角公式.
【思路点晴】本题中用到了正弦定理实现三角形中边与角的互化,同角三角函数间的基本关系及二倍角公式,如θθθθθ2222
sin cos 2cos ,1cos sin -==+,这要求学生对基本公式要熟练掌握解三角形时常借助于正弦定

R C
c
B b A 2sin sin sin a ===,余弦定理A bc c b a cos 2222-+=, 实现边与角的互相转化.6. 【答案】C
【解析】解:∵函数y=
中,f (x )=1,
∴当x ≤﹣1时,x+2=1,解得x=﹣1;
当﹣1<x <2时,x 2=1,解得x=1或x=﹣1(舍);当x ≥2时,2x=1,解得x=(舍).综上得x=±1故选:C . 
7. 【答案】 A
【解析】解:由于椭圆的标准方程为:
则c 2=132﹣122=25则c=5
又∵双曲线的离心率∴a=4,b=3
又因为且椭圆的焦点在x 轴上,
∴双曲线的方程为:故选A
【点评】运用待定系数法求椭圆(双曲线)的标准方程,即设法建立关于a ,b 的方程组,先定型、再定量,若位置不确定时,考虑是否两解,有时为了解题需要,椭圆方程可设为mx 2+ny 2=1(m >0,n >0,m ≠n ),双曲线方程可设为mx 2﹣ny 2=1(m >0,n >0,m ≠n ),由题目所给条件求出m ,n 即可. 
8. 【答案】A
【解析】解:由A={x|x ≥0},且A ∩B=B ,所以B ⊆A .A 、{x|x ≥0}={x|x ≥0}=A ,故本选项正确;
B 、{x|x ≤1,x ∈R}=(﹣∞,1]⊊[0,+∞),故本选项错误;
C 、若B={﹣1,0,1},则A ∩B={0,1}≠B ,故本选项错误;
D 、给出的集合是R ,不合题意,故本选项错误.故选:A .
【点评】本题考查了交集及其运算,考查了基本初等函数值域的求法,是基础题. 
9. 【答案】A
【解析】解:∵A={x|1<x <3},B={x|x >2},∴A ∩B={x|2<x <3},故选:A .
【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键. 
10.【答案】B
【解析】如图,当直线经过函数的图象m x =x y 2=与直线的交点时,
03=-+y x 函数的图像仅有一个点在可行域内,x y 2=P 由,得,∴.
230
y x
x y =⎧⎨
+-=⎩)2,1(P 1≤m 11.【答案】B
【解析】解:A .函数的定义域为{x|x ≥0},两个函数的定义域不同.
B .函数的定义域为R ,两个函数的定义域和对应关系相同,是同一函数.
C .函数的定义域为R ,y=|x|,对应关系不一致.
D .函数的定义域为{x|x ≠0},两个函数的定义域不同.故选B .
【点评】本题主要考查判断两个函数是否为同一函数,判断的标准是判断函数的定义域和对应关系是否一致,否则不是同一函数.
12.【答案】B 【解析】
4
254141
5
4
32
试题分析:因为函数满足,且分别是上的偶函数和奇函数,
()x
F x e =()()()F x g x h x =+()(),g x h x R 使得不等式
()()()()()()(],,,,0,222
x x x x
x
x
e e e e e g x h x e
g x h x g x h x x ---+-∴=+=-∴==∀∈Q 恒成立, 即
恒成立, ()()20g x ah x -≥2202
2
x
x
x x
e e
e e a --+--≥g
()2
222x
x x x
x x
x x
e e e e a e e e e -----++∴≤
=
--, 设,则函数在上单调递增,, 此时不等()2x x x x
e e e e
--=-+
+x x t e e -=-x x t e e -=-(]0,222
0t e e -∴<≤-式,
当且仅当,即时, 取等号,,故选
B.
2
t t +≥2
t t
=t =a ∴≤考点:1、函数奇偶性的性质;2、不等式恒成立问题及函数的最值.
【方法点晴】本题主要考查函数奇偶性的性质、不等式恒成立问题及函数的最值,属于难题.不等式恒成立问题常见方法:①分离参数()a f x ≤恒成立(min ()a f x ≤即可)或()a f x ≥恒成立(max ()a f x ≥即可);②数形结合;③讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④讨论参数 .本题是利用方法①求得的最大值的.
二、填空题
13.【答案】③④【解析】
试题分析:把展开图复原成正方体,如图,由正方体的性质,可知:①与是异面直线,所以是错误BM ED 的;②与是平行直线,所以是错误的
;③从图中连接,由于几何体是正方体,所以三角形DN BE ,AN AC
ANC 为等边三角形,所以所成的角为,所以是正确的;④与是异面直线,所以是正确的.
,AN AC 60︒DM BN 考点:空间中直线与直线的位置关系.14.【答案】 异面 .
【解析】解:把展开图还原原正方体如图,
在原正方体中直线AB 与CD 的位置关系是异面.故答案为:异面.
15.【答案】 {0,1} .
【解析】解:
=[﹣]+[+]
=[﹣]+[+],
∵0<<1,
∴﹣<﹣<,<+<,
①当0<<时,
0<﹣<,<+<1,
故y=0;
②当=时,
﹣=0,+=1,
故y=1;
③<<1时,
﹣<﹣<0,1<+<,
故y=﹣1+1=0;
故函数的值域为{0,1}.
故答案为:{0,1}.
【点评】本题考查了学生的化简运算能力及分类讨论的思想应用. 
16.【答案】 27 
【解析】解:若A方格填3,则排法有2×32=18种,
若A方格填2,则排法有1×32=9种,
根据分类计数原理,所以不同的填法有18+9=27种.
故答案为:27.
【点评】本题考查了分类计数原理,如何分类是关键,属于基础题. 
17.【答案】 .
【解析】解:作出不等式组对应的平面区域,
直线y=k(x+2)过定点D(﹣2,0),
由图象可知当直线l经过点A时,直线斜率最大,当经过点B时,直线斜率最小,
由,解得,即A(1,3),此时k==,
由,解得,即B(1,1),此时k==,
故k的取值范围是,
故答案为:
【点评】本题主要考查线性规划的应用以及直线斜率的公式的计算,利用数形结合是解决此类问题的基本方法.
18.【答案】 ①② .
【解析】解:对于①由a n+1=,且a1=m=<1,
所以,>1,,,∴a5=2 故①正确;
对于②由a3=3,若a3=a2﹣1=3,则a2=4,若a1﹣1=4,则a1=5=m.
若,则.
若a1>1a1=,若0<a1≤1则a1=3,不合题意.
所以,a3=2时,m即a1的不同取值由3个.
故②正确;
若a1=m=>1,则a2=,所a3=>1,a4=
故在a1=时,数列{a n}是周期为3的周期数列,③错;
故答案为:①②
【点评】本题主要考查新定义题目,属于创新性题目,但又让学生能有较大的数列的知识应用空间,是较好的题目
三、解答题
19.【答案】
【解析】解:(1)由已知,切点为(2,0),故有f(2)=0,
即4b+c+3=0.①
f′(x)=3x2+4bx+c,由已知,f′(2)=12+8b+c=5.
得8b+c+7=0.②
联立①、②,解得c=1,b=﹣1,
于是函数解析式为f(x)=x3﹣2x2+x﹣2.
(2)g(x)=x3﹣2x2+x﹣2+mx,
g′(x)=3x2﹣4x+1+,令g′(x)=0.
当函数有极值时,△≥0,方程3x2﹣4x+1+=0有实根,
由△=4(1﹣m)≥0,得m≤1.
①当m=1时,g′(x)=0有实根x=,在x=左右两侧均有g′(x)>0,故函数g(x)无极值.
②当m<1时,g′(x)=0有两个实根,
x1=(2﹣),x2=(2+),
当x变化时,g′(x)、g(x)的变化情况如下表:
x(﹣∞,x
)x1(x1,x2)x2(x2,+∞)
1
g′(x)+0﹣0 +
g(x)极大值极小值
故在m∈(﹣∞,1)时,函数g(x)有极值;
当x=(2﹣)时g(x)有极大值;
当x=(2+)时g(x)有极小值.
【点评】本题考查利用导函数来研究函数的极值.在利用导函数来研究函数的极值时,分三步①求导函数,②求导函数为0的根,③判断根左右两侧的符号,若左正右负,原函数取极大值;若左负右正,原函数取极小值.
20.【答案】
【解析】解:(Ⅰ)函数f(x)的定义域为(0,+∞),且f′(x)=﹣=.
当a≤0时,f′(x)>0,所以f(x)在区间(0,+∞)内单调递增;
当a>0时,由f′(x)>0,解得x>a;由f′(x)<0,解得0<x<a.
所以f(x)的单调递增区间为(a,+∞),单调递减区间为(0,a).
综上述:a≤0时,f(x)的单调递增区间是(0,+∞);
a>0时,f(x)的单调递减区间是(0,a),单调递增区间是(a,+∞).
(Ⅱ)(ⅰ)由(Ⅰ)知,当a≤0时,f(x)无最小值,不合题意;
当a>0时,[f(x)]min=f(a)=1﹣a+lna=0,
令g(x)=1﹣x+lnx(x>0),则g′(x)=﹣1+=,
由g′(x)>0,解得0<x<1;由g′(x)<0,解得x>1.
所以g(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).
故[g(x)]max=g(1)=0,即当且仅当x=1时,g(x)=0.
因此,a=1.
(ⅱ)因为f(x)=lnx﹣1+,所以a n+1=f(a n)+2=1++lna n.
由a1=1得a2=2于是a3=+ln2.因为<ln2<1,所以2<a3<.
猜想当n≥3,n∈N时,2<a n<.
下面用数学归纳法进行证明.
①当n=3时,a3=+ln2,故2<a3<.成立.
②假设当n=k(k≥3,k∈N)时,不等式2<a k<成立.
则当n=k+1时,a k+1=1++lna k,
由(Ⅰ)知函数h(x)=f(x)+2=1++lnx在区间(2,)单调递增,
所以h(2)<h(a k)<h(),又因为h(2)=1++ln2>2,
h()=1++ln<1++1<.
故2<a k+1<成立,即当n=k+1时,不等式成立.
根据①②可知,当n≥3,n∈N时,不等式2<a n<成立.
综上可得,n>1时[a n]=2.
【点评】本题主要考查函数的导数、导数的应用等基础知识,考查推理论证能力、运算求解能力、创新意识等,
考查函数与方程思想、化归与转化思想、分类与整合思想、有限与无限思想等,属难题.
21.【答案】
【解析】解:(1)依题意,可设椭圆C的方程为(a>0,b>0),且可知左焦点为
F(﹣2,0),从而有,解得c=2,a=4,
又a2=b2+c2,所以b2=12,故椭圆C的方程为.
(2)假设存在符合题意的直线l,其方程为y=x+t,
由得3x2+3tx+t2﹣12=0,
因为直线l与椭圆有公共点,所以有△=(3t)2﹣4×3(t2﹣12)≥0,解得﹣4≤t≤4,
另一方面,由直线OA与l的距离4=,从而t=±2,
由于±2∉[﹣4,4],所以符合题意的直线l不存在.
【点评】本小题主要考查直线、椭圆等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想.
22.【答案】
【解析】解:(1)∵函数f(x)=x2﹣(a+b)x+3a,
当不等式f(x)≤0的解集为[1,3]时,
方程x2﹣(a+b)x+3a=0的两根为1和3,
由根与系数的关系得

解得a=1,b=3;
(2)当b=3时,不等式f(x)>0可化为
x2﹣(a+3)x+3a>0,
即(x﹣a)(x﹣3)>0;
∴当a>3时,原不等式的解集为:{x|x<3或x>a};
当a<3时,原不等式的解集为:{x|x<a或x>3};
当a=3时,原不等式的解集为:{x|x≠3,x∈R}.
【点评】本题考查了含有字母系数的一元二次不等式的解法和应用问题,是基础题目.
23.【答案】
【解析】解:(Ⅰ)由题意,4a=4,=,
∴a=1,c=,
∴=,
∴椭圆方程方程为;
(Ⅱ)设l与椭圆C交点为A(x1,y1),B(x2,y2)
由得(k2+2)x2+2kmx+(m2﹣1)=0
△=(2km)2﹣4(k2+2)(m2﹣1)=4(k2﹣2m2+2)>0(*)
∴x1+x2=﹣,x1x2=,
∵,,
∴λ=3
∴﹣x1=3x2
∴x1+x2=﹣2x2,x1x2=﹣3x22,
∴3(x1+x2)2+4x1x2=0,
∴3(﹣)2+4•=0,
整理得4k2m2+2m2﹣k2﹣2=0
m2=时,上式不成立;m2≠时,,
由(*)式得k2>2m2﹣2
∵k≠0,
∴>0,
∴﹣1<m<﹣或<m<1
即所求m的取值范围为(﹣1,﹣)∪(,1).
【点评】本题主要考查椭圆的标准方程、基本性质和直线与椭圆的综合问题.直线和圆锥曲线的综合题是高考的重点题目,要强化学习.
24.【答案】
【解析】
解:(Ⅰ)点A是单位圆与x轴正半轴的交点,B(﹣,).
可得sinα=,cosα=,∴cosα+sinα=.
(Ⅱ)因为P(cos2θ,sin2θ),A(1,0)所以==(1+cos2θ,sin2θ),
所以===2|cosθ|,因为,
所以=2|cosθ|∈,
||的最大值.
【点评】本题考查三角函数的定义的应用,三角函数最值的求法,考查计算能力. 。

相关文档
最新文档