二次函数专题训练(三角形周长最值问题)含问题详解

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.如图所示,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.
(1)求抛物线的解析式;
(2)如图所示,直线BC下方的抛物线上有一点P,过点P作PE⊥BC于点E,作PF平行于x轴交直线BC 于点F,求△PEF周长的最大值;
(3)已知点M是抛物线的顶点,点N是y轴上一点,点Q是坐标平面内一点,若点P是抛物线上一点,
且位于抛物线的对称轴右侧,是否存在以P、M、N、Q为顶点且以PM为边的正方形?若存在,直接写出点
P的横坐标;若不存在,说明理由.
2.如图,抛物线y=﹣x2+2x+3与x轴交于A,B两点,与y轴交于点C,点D,C关于抛物线的对称轴对称,
直线AD与y轴相交于点E.
(1)求直线AD的解析式;
(2)如图1,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,作FH平行于x轴交直线AD于点H,求△FGH周长的最大值;
(3)如图2,点M是抛物线的顶点,点P是y轴上一动点,点Q是坐标平面内一点,四边形APQM是以PM 为对角线的平行四边形,点Q′与点Q关于直线AM对称,连接M Q′,P Q′.当△PM Q′与□APQM重合部分的面积是?APQM面积的时,求?APQM面积.
3.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点(点A在点B的左侧),
与y轴交于点C,点A的坐标为(﹣1,0),且OC=OB,tan∠ACO=.
(1)求抛物线的解析式;
(2)若点D和点C关于抛物线的对称轴对称,直线AD下方的抛物线上有一点P,过点P作PH⊥AD于点H,作PM平行于y轴交直线AD于点M,交x轴于点E,求△PHM的周长的最大值;
(3)在(2)的条件下,以点E为端点,在直线EP的右侧作一条射线与抛物线交于点N,使得∠NEP为锐角,在线段EB上是否存在点G,使得以E,N,G为顶点的三角形与△AOC相似?如果存在,请求出点G的坐标;如果不存在,请说明理由.
4.如图(1),抛物线y=ax2+bx+c与x轴交于A(x1,0)、B(x2,0)两点(x1<0<x2),与y轴交于点C
(0,﹣3),若抛物线的对称轴为直线x=1,且tan∠OAC=3.
(1)求抛物线的函数解析式;
(2 若点D是抛物线BC段上的动点,且点D到直线BC距离为,求点D的坐标
(3)如图(2),若直线y=mx+n经过点A,交y轴于点E(0,﹣),点P是直线AE下方抛物线上一点,过点P作x轴的垂线交直线AE于点M,点N在线段AM延长线上,且PM=PN,是否存在点P,使△PMN的周长有最大值?若存在,求出点P的坐标及△PMN的周长的最大值;若不存在,请说明理由.
5.已知:如图,直线y=﹣x+2与x轴交于B点,与y轴交于C点,A点坐标为(﹣1,0).
(1)求过A、B、C三点的抛物线的解析式.
(2)在直线BC上方的抛物线上有一点D,过D作DE⊥BC于E,作DF∥y轴交BC于F,求△DEF周长的最大值.
(3)在满足第②问的条件下,在线段BD上是否存在一点P,使∠DFP=∠DBC.若存在,求出点P的坐标;若不存在,说明理由.
6.如图,抛物线y=﹣x2+(m﹣1)x+m(m>1)与x轴交于A、B两点(点A在点B的左侧),与y轴交于
点C(0,3).
(1)求抛物线的解析式;
(2)点D和点C关于抛物线的对称轴对称,点你F在直线AD上方的抛物线上,FG⊥AD于G,FH∥x轴交直线AD于H,求△FGH的周长的最大值;
(3)点M是抛物线的顶点,直线l垂直于直线AM,与坐标轴交于P、Q两点,点R在抛物线的对称轴上,使得△PQR是以PQ为斜边的等腰直角三角形,求直线l的解析式.
7.如图,已知抛物线y=﹣x2+2x+3与坐标轴交于A,B,C三点,抛物线上的点D与点C关于它的对称轴对
称.
(1)直接写出点D的坐标和直线AD的解析式;
(2)点E是抛物线上位于直线AD上方的动点,过点E分别作EF∥x轴,EG∥y轴并交直线AD于点F、G,求△EFG周长的最大值;
(3)若点P为y轴上的动点,则在抛物线上是否存在点Q,使得以A,D,P,Q为顶点的四边形是平行四
边形?若存在,请求出点Q的坐标,若不存在,请说明理由.
8.如图,抛物线y=﹣x2﹣x+3与x轴相交于A、B两点(点A在点B的左侧),交y轴与点D,已知点
C(0,),连接AC.
(1)求直线AC的解析式;
(2)点P是直线AC上方的抛物线上一动点,过点P作PE∥y轴,交直线AC于点E,过点P作PG⊥AC,垂足为G,当△PEG周长最大时,在x轴上存在一点Q,使|QP﹣QC|的值最大,请求出这个最大值以及点P 的坐标;
(3)当(2)题中|QP﹣QG|取得最大值时,直线PG交y轴于点M,把抛物线沿直线AD平移,平移后的抛物线y′与直线AD相交的一个交点为A′,在平移的过程中,是否存在点A′,使得点A′,P,M三点构成的三角形为等腰三角形,若存在,直接写出点A′的坐标;若不存在,请说明理由.
9.如图,抛物线y=﹣x2+x+3交x轴于A、B两点,点A在点B的左侧,交y轴于点C.
(1)求直线AC与直线BC的解析式;
(2)如图1,P为直线BC上方抛物线上的一点;
①过点P作PD⊥BC于点D,作PM∥y轴交直线BC于点M,当△PDM的周长最大时,求P点坐标及周长最大值;
②在①的条件下,连接AP与y轴交于点E,抛物线的对称轴与x轴交于点K,若S为直线BC上一动点,T 为直线AC上一动点,连接EK,KS,ST,TE,求四边形EKST周长的最小值;
(3)如图2,将△AOC顺时针旋转60°得到△A′OC′,将△A′OC′沿直线OC′平移,记平移中的△A′OC′为△A″O′C″,直线A″O′与x轴交于点F,将△O′C″F沿O′C″翻折得到△O′C″F′,当△CC″F′为等腰三角形时,求此时F点的坐标.
参考答案与试题解析
1.如图所示,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.
(1)求抛物线的解析式;
(2)如图所示,直线BC下方的抛物线上有一点P,过点P作PE⊥BC于点E,作PF平行于x轴交直线BC 于点F,求△PEF周长的最大值;
(3)已知点M是抛物线的顶点,点N是y轴上一点,点Q是坐标平面内一点,若点P是抛物线上一点,
且位于抛物线的对称轴右侧,是否存在以P、M、N、Q为顶点且以PM为边的正方形?若存在,直接写出点
P的横坐标;若不存在,说明理由.
【解答】解:(1)把A(﹣1,0),B(3,0)两点坐标代入抛物线y=ax2+bx﹣3,
得到,
解得,
∴抛物线的解析式为y=x2﹣2x﹣3.
(2)如图1中,连接PB、PC.设P(m,m2﹣2m﹣3),
∵B(3,0),C(0,﹣3),
∴OB=OC,
∴∠OBC=45°,
∵PF∥OB,
∴∠PFE=∠OBC=45°,
∵PE⊥BC,
∴∠PEF=90°,
∴△PEF是等腰直角三角形,
∴PE最大时,△PEF的面积中点,此时△PBC的面积最大,
则有S△PBC=S△POB+S△POC﹣S△BOC=?3?(﹣m2+2m+3)+?3?m﹣=﹣(m﹣)2+,
∴m=时,△PBC的面积最大,此时△PEF的面积也最大,
此时P(,﹣),
∵直线BC的解析式为y=x﹣3,
∴F(﹣,﹣),
∴PF=,
∵△PEF是等腰直角三角形,
∴EF=EP=,
∴C△PEF最大值=+.
(3)①如图2中,
当N与C重合时,点N关于对称轴的对称点P,此时思想MNQP是正方形,易知P(2,﹣3).点P横坐标为2,
②如图3中,当四边形PMQN是正方形时,作PF⊥y轴于N,ME∥x轴,PE∥y轴.
易知△PFN≌△PEM,
∴PF=PE,设P(m,m2﹣2m﹣3),
∵M(1,﹣4),
∴m=m2﹣2m﹣3﹣(﹣4),
∴m=或(舍弃),
∴P点横坐标为
所以满足条件的点P的横坐标为2或.
2.如图,抛物线y=﹣x2+2x+3与x轴交于A,B两点,与y轴交于点C,点D,C关于抛物线的对称轴对称,直线AD与y轴相交于点E.
(1)求直线AD的解析式;
(2)如图1,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,作FH平行于x轴交直线AD于点H,求△FGH周长的最大值;
(3)如图2,点M是抛物线的顶点,点P是y轴上一动点,点Q是坐标平面内一点,四边形APQM是以PM 为对角线的平行四边形,点Q′与点Q关于直线AM对称,连接M Q′,P Q′.当△PM Q′与□APQM重合部分的面积是?APQM面积的时,求?APQM面积.
【解答】解:(1)令﹣x2+2x+3=0,
解得x1=﹣1,x2=3,
∴A(﹣1,0),C(0,3),
∵点D,C关于抛物线的对称轴对称,
∴D(2,3),
∴直线AD的解析式为:y=x+1;
(2)设点F(x,﹣x2+2x+3),
∵FH∥x轴,
∴H(﹣x2+2x+2,﹣x2+2x+3),
∴FH=﹣x2+2x+2﹣x=﹣(x﹣)2+,
∴FH的最大值为,
由直线AD的解析式为:y=x+1可知∠DAB=45°,
∵FH∥AB,
∴∠FHG=∠DAB=45°,
∴FG=GH=×=
故△FGH周长的最大值为×2+=;
(3)①当P点在AM下方时,如图1,
设P(0,p),易知M(1,4),从而Q(2,4+p),
∵△PM Q′与?APQM重合部分的面积是?APQM面积的,∴PQ′必过AM中点N(0,2),
∴可知Q′在y轴上,
易知QQ′的中点T的横坐标为1,而点T必在直线AM上,故T(1,4),从而T、M重合,
∴?APQM是矩形,
∵易得直线AM解析式为:y=2x+2,
∵MQ⊥AM,
∴直线QQ′:y=﹣x+,
∴4+p=﹣×2+,
解得:p=﹣,
∴PN=,
∴S□APQM=2S△AMP=4S△ANP=4××PN×AO=4×××1=5;
②当P点在AM上方时,如图2,
设P(0,p),易知M(1,4),从而Q(2,4+p),
∵△PM Q′与?APQM重合部分的面积是?APQM面积的,
∴PQ′必过QM中点R(,4+),易得直线QQ′:y=﹣x+p+5,
联立,解得:x=,y=,
∴H(,),∵H为QQ′中点,
故易得Q′(,),
由P(0,p)、R(,4+)易得直线PR解析式为:y=(﹣)x+p,
将Q′(,)代入到y=(﹣)x+p得:=(﹣)×+p,整理得:p2﹣9p+14=0,
解得p1=7,p2=2(与AM中点N重合,舍去),
∴P(0,7),
∴PN=5,
∴S□APQM=2S△AMP=2××PN×|x M﹣x A|=2××5×2=10.
综上所述,?APQM面积为5或10.
3.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点A的坐标为(﹣1,0),且OC=OB,tan∠ACO=.
(1)求抛物线的解析式;
(2)若点D和点C关于抛物线的对称轴对称,直线AD下方的抛物线上有一点P,过点P作PH⊥AD于点H,作PM平行于y轴交直线AD于点M,交x轴于点E,求△PHM的周长的最大值;
(3)在(2)的条件下,以点E为端点,在直线EP的右侧作一条射线与抛物线交于点N,使得∠NEP为锐角,在线段EB上是否存在点G,使得以E,N,G为顶点的三角形与△AOC相似?如果存在,请求出点G的坐标;如果不存在,请说明理由.
【解答】解:(1)∵点A的坐标为(﹣1,0),
∴OA=1.
又∵tan∠ACO=,
∴OC=4.
∴C(0,﹣4).
∵OC=OB,
∴OB=4
∴B(4,0).
设抛物线的解析式为y=a(x+1)(x﹣4).
∵将x=0,y=﹣4代入得:﹣4a=﹣4,解得a=1,
∴抛物线的解析式为y=x2﹣3x﹣4.
(2)∵抛物线的对称轴为x=﹣=,C(0,﹣4),点D和点C关于抛物线的对称轴对称,
∴D(3,﹣4).
设直线AD的解析式为y=kx+b.
∵将A(﹣1,0)、D(3,﹣4)代入得:,解得k=﹣1,b=﹣1,
∴直线AD的解析式y=﹣x﹣1.
∵直线AD的一次项系数k=﹣1,
∴∠BAD=45°.
∵PM平行于y轴,
∴∠AEP=90°.
∴∠PMH=∠AME=45°.
∴△MPH的周长=PM+MH+PH=PM+MP+PM=(1+)PM.
设P(a,a2﹣3a﹣4),M(﹣a﹣1),则PM=﹣a﹣1﹣(a2﹣3a﹣4)=﹣a2+2a+3,∵PM=﹣a2+2a+3=﹣(a﹣1)2+4,
∴当a=1时,PM有最大值,最大值为4.
∴△MPH的周长的最大值=4×(1+)=4+4.
(3)如图1所示;当∠EGN=90°.
设点G的坐标为(a,0),则N(a,a2﹣3a﹣4).
∵∠EGN=∠AOC=90°,
∴时,△AOC∽△EGN.
∴=,整理得:a2+a﹣8=0.
解得:a=(负值已舍去).
∴点G的坐标为(,0).
如图2所示:当∠EGN=90°.
设点G的坐标为(a,0),则N(a,a2﹣3a﹣4).
∵∠EGN=∠AOC=90°,
∴时,△AOC∽△NGE.
∴=4,整理得:4a2﹣11a﹣17=0.
解得:a=(负值已舍去).
∴点G的坐标为(,0).
∵EN在EP的右面,
∴∠NEG<90°.
如图3所示:当∠ENG′=90°时,
EG′=EG××=(﹣1)×=.
∴点G′的横坐标=.
∵≈4.03>4,
∴点G′不在EG上.
故此种情况不成立.
综上所述,点G的坐标为(,0)或(,0).
4.如图(1),抛物线y=ax2+bx+c与x轴交于A(x1,0)、B(x2,0)两点(x1<0<x2),与y轴交于点C
(0,﹣3),若抛物线的对称轴为直线x=1,且tan∠OAC=3.
(1)求抛物线的函数解析式;
(2 若点D是抛物线BC段上的动点,且点D到直线BC距离为,求点D的坐标
(3)如图(2),若直线y=mx+n经过点A,交y轴于点E(0,﹣),点P是直线AE下方抛物线上一点,过点P作x轴的垂线交直线AE于点M,点N在线段AM延长线上,且PM=PN,是否存在点P,使△PMN的周长有最大值?若存在,求出点P的坐标及△PMN的周长的最大值;若不存在,请说明理由.
【解答】解:(1)在Rt△AOC中,tan∠AOC==3,且OC=3,
∴OA=1,则A(﹣1,0),
∵抛物线的对称轴为直线x=1,
则点A(﹣1,0)关于直线x=1的对称点B的坐标为(3,0),
设抛物线的表达式为y=a(x﹣3)(x+1),
将点C(0,﹣3)代入上式得﹣3a=﹣3,
解得:a=1,
∴抛物线的解析式为y=(x﹣3)(x+1)=x2﹣2x﹣3;
(2)∵点B(3,0)、C(0,﹣3),
则BC=3,
∴S△BCD=×3×=3,
设D(x,x2﹣2x﹣3),连接OD,
∴S△BCD=S△OCD+S△BOD﹣S△BOC
=?3?x+?3?(﹣x2+2x+3)﹣×3×3
==3,
解得x=1或x=2,
则点D的坐标为(1,﹣4)或(2,﹣3);
(3)设直线AE解析式为y=kx+b,
将点A(﹣1,0)、E(0,﹣)代入得:,解得:,
则直线AE 解析式为y=﹣x﹣,
AE==,
设P(t,t2﹣2t﹣3),则M(t,﹣t﹣),
∴PM=﹣t﹣﹣(t2﹣2t﹣3)=﹣t2+t+,
作PG⊥MN于G,由PM=PN得MG=NG=MN,
由△PMG∽△AEO得=,即=,
∴MG=PM=NG,
∴C△PMN=PM+PN+MN=PM=(﹣t2+t+)=﹣t2++6=﹣(t﹣)2+,
∴当t=时,C△PMN取得最大值,此时P(,﹣).
5.已知:如图,直线y=﹣x+2与x轴交于B点,与y轴交于C点,A点坐标为(﹣1,0).
(1)求过A、B、C三点的抛物线的解析式.
(2)在直线BC上方的抛物线上有一点D,过D作DE⊥BC于E,作DF∥y轴交BC于F,求△DEF周长的最大值.
(3)在满足第②问的条件下,在线段BD上是否存在一点P,使∠DFP=∠DBC.若存在,求出点P的坐标;若不存在,说明理由.
【解答】解:(1)直线y=﹣x+2与x轴交于B(2,0),与y轴交于C点(0,2),
设过A、B、C的抛物线的解析式为y=ax2+bx+c,
把A(﹣1,0)、B(2,0)、C(0,2)的坐标代入,
∴a=﹣1,b=1,c=2,
∴抛物线的解析式为:y=﹣x2+x+2,
(2)设D(x,﹣x2+x+2),F(x,﹣x+2),
∴DF=(﹣x2+x+2)﹣(﹣x+2)=﹣x2+2x,
所以x=1时,DF最大=1,
∵OB=OC,
∴△OBC为等腰直角三角形,
∵DE⊥BC,DF∥y轴,
∴△DEF为等腰直角三角形,
∴△DEF周长的最大值为1+
(3)如图,
当△DEF周长最大时,D(1,2),F(1,1).延长DF交x轴于H,作PM⊥DF于M,
则DB=,DH=2,OH=1
当∠DFP=∠DBC时,△DFP∽△DBF,
∴,
∴DP=,
∴=,
∴PM=,DM=,
∴P点的横坐标为OH+PM=1+=,
P点的纵坐标为DH﹣DM=2﹣=,
∴P(,).
6.如图,抛物线y=﹣x2+(m﹣1)x+m(m>1)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C(0,3).
(1)求抛物线的解析式;
(2)点D和点C关于抛物线的对称轴对称,点你F在直线AD上方的抛物线上,FG⊥AD于G,FH∥x轴交
直线AD于H,求△FGH的周长的最大值;
(3)点M是抛物线的顶点,直线l垂直于直线AM,与坐标轴交于P、Q两点,点R在抛物线的对称轴上,使得△PQR是以PQ为斜边的等腰直角三角形,求直线l的解析式.
【解答】解:(1)把C(0,3)代入y=﹣x2+(m﹣1)x+m得m=3,
∴抛物线的解析式为:y=﹣x2+2x+3,
(2)令y=﹣x2+2x+3=0,解得:x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),C(0,3),
∵点D和点C关于抛物线的对称轴对称,
∴D(1,2),AD的解析式y=x+1,设AD与y轴交于E,
∴OA=OE=1,
∴∠EAO=45°,
∵FH∥AB,
∴∠FHA=∠EAO=45°,
∵FG⊥AH,
∴△FGH是等腰直角三角形,
设点F坐标(m,﹣m2+2m+3),
∴点H坐标(﹣m2+2m+2,﹣m2+2m+3),
∴FH=﹣m2+m+2,
∴△FGH的周长=(﹣m2+m+2)+2×(﹣m2+m+2)=﹣(1+)(m﹣)2+
∴△FGH的周长最大值为;
(3)∵抛物线y=﹣x2+2x+3的定点坐标为(1,4),
∴直线AM的解析式为y=2x+2,
∵直线l垂直于直线AM,
∴设直线l的解析式为y=﹣x+b,
∵与坐标轴交于P、Q两点,
∴直线l的解析式为y=﹣x+b与y轴的交点P(0,b),与x轴的交点Q(2b,0),
设R(1,a),
∴PR2=(﹣1)2+(a﹣b)2,QR2=(2b﹣1)2+a2,PQ2=b2+(2b)2=5b2,
∵△PQR是以PQ为斜边的等腰直角三角形,
∴PR2=QR2,即(﹣1)2+(a﹣b)2=QR2=(2b﹣1)2+a2,
∴﹣2a=3b﹣4,①
∴PR2+QR2=PQ2,
即(﹣1)2+(a﹣b)2+(2b﹣1)2+a2=5b2,
∴2a2﹣2ab﹣4b+2=0,②
联立①②解得:,,
∴直线l的解析式为y=﹣x+或y=﹣x+2.
7.如图,已知抛物线y=﹣x2+2x+3与坐标轴交于A,B,C三点,抛物线上的点D与点C关于它的对称轴对
称.
(1)直接写出点D的坐标和直线AD的解析式;
(2)点E是抛物线上位于直线AD上方的动点,过点E分别作EF∥x轴,EG∥y轴并交直线AD于点F、G,求△EFG周长的最大值;
(3)若点P为y轴上的动点,则在抛物线上是否存在点Q,使得以A,D,P,Q为顶点的四边形是平行四
边形?若存在,请求出点Q的坐标,若不存在,请说明理由.
【解答】解:(1)将x=0代入得y=3,
∴C(0,3).
∵抛物线的对称轴为x=﹣=1,C(0,3),
∴D(2,3).
把y=0代入抛物线的解析式得:0=﹣x2+2x+3,解得x=3或x=﹣1,
∴A(﹣1,0).
设直线AD的解析式为y=kx+b,将点A和点D的坐标代入得:,解得:k=1,b=1,∴直线AD的解析式为y=x+1.
(2)如图1所示:
∵直线AD的解析式为y=x+1,
∴∠DAB=45°.
∵EF∥x轴,EG∥y轴,
∴∠GEF=90°,∠GFE=∠DAB=45°
∴△EFG是等腰直角三角形.
∴△EFG的周长=EF+FG+EG=(2+)EG.
依题意,设E(t,﹣t2+2t+3),则G(t,t+1).
∴EG=﹣t2+2t+3﹣(t+1)=﹣(t﹣)2+.
∴EG的最大值为.
∴△EFG的周长的最大值为+.
(3)存在.
①以AD为平行四边形的边时,PQ∥AD,PQ=AD.
∵A,D两点间的水平距离为3,
∴P,Q两点间的水平距离也为3.
∴点Q的横坐标为3或﹣3.
将x=3和x=﹣3分别代入y=﹣x2+2x+3得y=0或y=﹣12.
∴Q(3,0)或(﹣3,﹣12).
②当AD为平行四边形的对角线时,设AD的中点为M,
∵A(﹣1,0),D(2,3),M为AD的中点,
∴M(,).
设点Q的横坐标为x,则=,解得x=1,
∴点Q的横坐标为1.
将x=1代入y=﹣x2+2x+3得y=4.
∴这时点Q的坐标为(1,4).
综上所述,当点Q的坐标为Q(3,0)或(﹣3,﹣12)或(1,4)时,以A,D,P,Q为顶点的四边形是平行四边形.
8.如图,抛物线y=﹣x2﹣x+3与x轴相交于A、B两点(点A在点B的左侧),交y轴与点D,已知点C(0,),连接AC.
(1)求直线AC的解析式;
(2)点P是直线AC上方的抛物线上一动点,过点P作PE∥y轴,交直线AC于点E,过点P作PG⊥AC,垂足为G,当△PEG周长最大时,在x轴上存在一点Q,使|QP﹣QC|的值最大,请求出这个最大值以及点P 的坐标;
(3)当(2)题中|QP﹣QG|取得最大值时,直线PG交y轴于点M,把抛物线沿直线AD平移,平移后的抛物线y′与直线AD相交的一个交点为A′,在平移的过程中,是否存在点A′,使得点A′,P,M三点构成的三角形为等腰三角形,若存在,直接写出点A′的坐标;若不存在,请说明理由.
【解答】解:(1)令y=0则,﹣x2﹣x+3=0,解得x=﹣3或x=2,
∴A(﹣3,0),B(2,0).
设直线AC的解析式为y=kx+b,将点A和点C的坐标代入得:,解得:k=,b=,
∴直线AC的解析式为y=x+.
(2)延长PE交OA与点F,则PF⊥OA.
∵PF⊥OA,PG⊥AC,
∴∠EFA=∠PGE.
又∵∠PEG=∠FEA,
∴∠EAF=∠EPG.
∵OC=,AO=3,
∴tan∠GPE=tan∠EAF=.
∴sin∠GPE=,cos∠GPE=.
∴PG=PE,EG=EP.
∴△PEG的周长=PE+PG+EG=(1+)PE.
∴当PE取得最大值时,△PEC的周长最大.
设点P的坐标为(t,﹣t2﹣t+3),则点E的坐标为(t,t+).
∵点P在点E的上方,
∴PE=﹣t2﹣t+3﹣(t+)=﹣t2﹣t+=﹣(t+1)2+2.
当t=﹣1时,PE取得最大值,此时△PGE的周长取得最大值.
∴点P(﹣1,3),点E的坐标为(﹣1,﹣1).
∴PE=3﹣1=2.
∴PG=PE=.
根据三角形的两边之差小于第三边可知:当点P、G、Q三点共线时,|QP﹣QG|的值最大,此时|QP﹣QG|=PG=
(3)如图所示:
∵∠PGE=∠PFN,∠P=∠P,
∴△PEG∽△PNF,
∴=,即=2,解得FN=1.5.
∴点N的坐标为(,0).
设PN的解析式为y=kx+b,将点P和点N的坐标代入得:,解得:k=﹣2,b=1.
∴M(0,1).
设直线AD的解析式为y=mx+3,将点A的坐标代入得:﹣3m+3=0,解得m=1,
∴直线AD的解析式为y=x+3.
设点A′的坐标为(x,x+3).
当PM=PA′时,=,整理得:x2+x﹣2=0,解得x=1或x=﹣2,
∴点A′的坐标为(1,4)或(﹣2,1).
当PM=MA′时,=,整理得:2x2+4x﹣1=0,解得:x=或x=,
∴点A′的坐标为(,)或(,).
当A′P=A′M时,=,整理得:﹣2x=3,解得:x=﹣,
∴A′(﹣,).
综上所述,点A′的坐标为(1,4)或(﹣2,1)或(,)或(,)或(﹣,).
9.如图,抛物线y=﹣x2+x+3交x轴于A、B两点,点A在点B的左侧,交y轴于点C.
(1)求直线AC与直线BC的解析式;
(2)如图1,P为直线BC上方抛物线上的一点;
①过点P作PD⊥BC于点D,作PM∥y轴交直线BC于点M,当△PDM的周长最大时,求P点坐标及周长最大值;
②在①的条件下,连接AP与y轴交于点E,抛物线的对称轴与x轴交于点K,若S为直线BC上一动点,T 为直线AC上一动点,连接EK,KS,ST,TE,求四边形EKST周长的最小值;
(3)如图2,将△AOC顺时针旋转60°得到△A′OC′,将△A′OC′沿直线OC′平移,记平移中的△A′OC′为△A″O′C″,直线A″O′与x轴交于点F,将△O′C″F沿O′C″翻折得到△O′C″F′,当△CC″F′为等腰三角形时,求此时F点的坐标.
【解答】解:(1)对于抛物线y=﹣x2+x+3,令x=0,得到y=3,可得C(0,3),
令y=0,可得y=﹣x2+x+3=0,解得x=﹣1或3,
∴A(﹣1,0),B(4,0),
∴直线AC的解析式为y=3x+3,直线BC的解析式为y=﹣x+3;
(2)①如图在1中,设P(m,﹣m2+m+3),则M(m,﹣m+3).
∵点P运动时,△PDM的形状是相似的,
∴PM的值最大时,△PDM的周长的值最大,
∵PM=﹣m2+m+3﹣(﹣m+3)=﹣m2+3m=﹣(m2﹣4m+4﹣4)=﹣(m﹣2)2+3,
∵﹣<0,
∴m=2时,PM的值最大,此时P(2,),PM的最大值为,
∵OC=3,OB=4,
∴BC==5,
由△PDM∽△BOC,可得==,
∴==,
∴PD=,DM=,
∴△PDM的周长的最大值为++=.
②如图2中,作K关于BC的对称点K′,E关于AC的对称点E′,连接E′K′交AC于T,交BC于S,此时四边形EKST的周长最小.
四边形EKST的周长的最小值=EK+SK+ST+TE=EK+K′S+ST+TE′=EK+E′K′,∵P(2,),
∴直线AP的解析式为y=x+,
∴E(0,),∵K(,0),
∴OE=OK=,EK=,
∵K与K′关于直线BC对称,
∴K′(,),
∵E,E′关于直线AC对称,
∴E′(﹣,),
∴E′K′==3,
∴四边形EKST周长的最小值为3+=.
(3)如图3中,设OF=2m,则FO′=O′F′=m,OO′=m,OC″=m+3.
实用标准文案
可得F′(m,m),C″(m+,m+),
①当C″C=C″F′时,(m+)2+(m﹣)2=(﹣m)2+(﹣m)2,整理得m2+3m=0,
解得m=0或﹣3(舍弃),
∴F(0,0).
②当CF′=C″F′时,(﹣m)2+(﹣m)2=m2+(m﹣3)2,
整理得m2﹣m=0,
解得m=0或,
∴F(0,0)或(,3);
③当CF′=CC″时,m2+(m﹣3)2=(m+)2+(m﹣)2,
整理得m2﹣9m=0,
解得m=0或9,
∴F(0,0)或(9,27),
综上所述,满足条件的点F坐标为(0,0)或(,3)或(9,27);
精彩文档。

相关文档
最新文档