分子间作用力
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
极性分子与极性分子之间,取向力、诱导力、色散力都存在;极性分子与非极性分子之间,则存在诱导力和 色散力;非极性分子与非极性分子之间,则只存在色散力。这三种类型的力的比例大小,决定于相互作用分子的 极性和变形性。极性越大,取向力的作用越重要;变形性越大,色散力就越重要;诱导力则与这两种因素都有关。 但对大多数分子来说,色散力是主要的。实验证明,对大多数分子来说,色散力是主要的;只有偶极矩很大的分 子(如水),取向力才是主要的;而诱导力通常是很小的。极化率α反映分子中的电子云是否容易变形。虽然范德 华力只有0.4—4.0kJ/mol,但是在大量大分子间的相互作用则会变得十分稳固。比如C—H在苯中范德华力有7 kJ/mol,而在溶菌酶和糖结合底物范德华力却有60kJ/mol,范德华力具有加和性。
分子间作用力只存在于分子(molecule)与分子之间或惰性气体(noble gas)原子(atom)间的作用力,又称范 德华力(van der waals),具有加和性,属于次级键。
氢键(hydrogen bond)、弱范德华力、疏水作用力、芳环堆积作用、卤键都属于次级键(又称分子间弱相互 作用)。
括号里取平方诱导力(induction force)在极性分子和非极性分子之间以及极性分子和极性分子之间都存 在诱导力。由于极性分子偶极所产生的电场对非极性分子发生影响,使非极性分子电子云变形(即电子云被吸向极 性分子偶极的正电的一极),结果使非极性分子的电子云与原子核发生相对位移,本来非极性分子中的正、负电荷 重心是重合的,相对位移后就不再重合,使非极性分子产生了偶极。这种电荷重心的相对位移叫做“变形”,因 变形而产生的偶极,叫做诱导偶极,以区别于极性分子中原有的固有偶极。诱导偶极和固有偶极就相互吸引,这 种由于诱导偶极而产生的作用力,叫做诱导力。在极性分子和极性分子之间,除了取向力外,由于极性分子的相 互影响,每个分子也会发生变形,产生诱导偶极。其结果使分子的偶极距增大,既具有取向力又具有诱导力。在 阳离子和阴离子之间也会出现诱导力。
氢键
氢键属不属于分子间作用力,取决于对“分子间作用力”的定义。按照广义范德华力定义[引力常数项可将各 种极化能(偶极(dipole)、诱导(induced)和氢键能)归并为一项来计算],氢键属于分子间作用力。按照传统 定义:分子间作用力定义为:“分子的永久偶极(permanent dipole)和瞬间偶极(instantaneous dipole)引起 的弱静电相互作用”那么氢键不属于(因为氢键至少包含四种相互作用,只有三种与分子间作用力有交集,但还 存在最高被占用轨道与另一分子最低空余轨道发生轨道重叠)。
相关实验
法国的科学家2013年首次对两个原子之间的范德华力进行了直接的测量,所用实验方法可以用来建立量子逻 辑门,或者用来进行凝聚态系统的量子模拟。
原子偶极:首次直接测量原子间的范德华力
原子偶极:科学家首次直接测量原子间的范德华力
(图片来源:iStockphoto/Nicemonkey)
原子间、分子间和物体表面间的范德华力以各种不同方式出现在日常生活中。例如,蜘蛛和壁虎就是依靠范 德华力才能沿着平滑的墙壁向上爬,我们体内的蛋白质也是因为范德华力的存在才会折叠成复杂的形状。
间接测量
对原子间范德华力的间接测量已有非常多的研究成果,例如分析宏观物体间的净力来获得经验值,或者利用 光谱学来分析双原子分子中两个原子间的长程作用力。但在这之前一直缺乏直接测量范德华力的相关研究。
谢谢观看
词条被修改62次在于,不同对氢键与分子间作用力从属关系的争论。
传统定义,将分子间作用力定义为:“分子的永久偶极和瞬间偶极引起的弱静电相互作用”。随着研究的深 入,发现了许多用现有分子间作用力的作用机理无法说明的现象。比如卤键,有机汞卤化物时观察到分子内卤素 原子与汞原子之间存在长距离强的共价相互作用力,从而引入二级价键力(secondary valence forces)的概念。
若错误的将分子间作用力、氢键、卤键看成等同作用,那么分子识别、DNA结构模拟、蛋白质结构堆积,就 根本不可能研究了。所以在学术上,这些电磁互作用都统称为次级键。
作用力分类
ห้องสมุดไป่ตู้ 1
色散力
2
诱导力
3
取向力
4
三种力的关系
5
相关概念辨析
色散力色散力(dispersion force也称“伦敦力”)所有分子或原子间都存在。是分子的瞬时偶极间的作用 力,即由于电子的运动,瞬间电子的位置对原子核是不对称的,也就是说正电荷重心和负电荷重心发生瞬时的不 重合,从而产生瞬时偶极。色散力和相互作用分子的变形性有关,变形性越大(一般分子量愈大,变形性愈大) 色散力越大。色散力和相互作用分子的电离势(即为电离能)有关,分子的电离势越低(分子内所含的电子数愈 多),色散力越大。色散力的相互作用随着1/r6而变化。其公式为:I1和I2分别是两个相互作用分子的电离能, α1和α2是它们的极化率。
如果”分子作用力“定义指代一切分子的相互作用(这个定义也包括了长程和短程的相互作用),那么氢键 也属于分子间作用力,不仅氢键属于,离子键力也属于分子间作用力。《高分子界面科学》一书,张开教授认为 引力常数项可将各种极化能(偶极、诱导和氢键能)归并为一项来计算从这一角度出发,范德华力偶极矩相互作 用系数可扩大范围写成静电相互作用系数。这样得到了关于静电力的广义范德华力。
分子作用力、盐键(离子键)、共价键都是静电引力为什么差距这么大?
所以真正关键词是“距离”,我们可以把分子作用力、离子键放在一起考虑。
在中学里学过离子键,以及NaCl、CsCl、CaF2、立方ZnS、六方ZnS、金红石TiO2这六种典型化合物的晶体 构型,是强作用力。
ATP和镁离子相互作用在生物学中重点是了解有机分子的离子相互作用。有机分子形成的离子,电负性差异 没有那么大,相互作用不像这些典型的离子化合物离子键这样大,所以就称为离子相互作用;但他们的共同点都 是靠静电引力做形成的。
分子间作用力
又称范德华力
01 氢键
03 相关实验
目录
02 作用力分类
分子间作用力,又称范德瓦尔斯力(van der Waals force)。分子间作用力(范德瓦尔斯力)有三个来源: ①极性分子的永久偶极矩之间的相互作用。②一个极性分子使另一个分子极化,产生诱导偶极矩并相互吸引。③ 分子中电子的运动产生瞬时偶极矩,它使邻近分子瞬时极化,后者又反过来增强原来分子的瞬时偶极矩;这种相 互耦合产生静电吸引作用,这三种力的贡献不同,通常第三种作用的贡献最大。
范德华力是以荷兰科学家约翰尼斯·迪德里克·范·德·瓦耳斯的名字命名的,他在1873年第一次提出了范 德华力这个概念用以解释气体的行为。这种力非常微弱,只有当原子或者分子十分靠近的时候才有意义。原子电 子云的涨落使得原子具有瞬时电偶极矩,从而诱导附近的原子产生电偶极矩,结果会产生相互吸引的偶极间相互 作用。
现在学术上,已经不再用“分子间作用力”来涵盖全部的弱相互作用,而是用更准确术语“次级键”。氢键、 范德华力、盐键、疏水作用力、芳环堆积作用、卤键都统称为“次级键”。
氢键是否属于分子间作用力取决于对”分子间作用力“的定义。如果“分子间作用力”继续被狭义指代“分 子的永久偶极和瞬间偶极引起的弱静电相互作用”。这样氢键与分子间作用力性质也不完全相同,量子力学计算 方法也不完全同……,更像并列关系,氢键就不属于分子间作用力。而我们目前国内普通化学教材、百科大辞典 等,就是这个定义,就是狭义指代范德华力。
氢键既可以存在于分子内也可以存在于分子间。其次,氢键与分子间作用力的量子力学计算方法也是不一样 的。另外,氢键具有较高的选择性,不严格的饱和性和方向性;而分子间作用力不具有。在“折叠体化学”中, 多氢键具有协同作用,诱导线性分子螺旋,而分子间作用力不具有协同效应。超强氢键具有类似共价键 (covalent bond)本质,在学术上有争议,必须和分子间作用力加以区分。
诱导力与极性分子偶极矩的平方成正比。诱导力与被诱导分子的变形性成正比,通常分子中各原子核的外层 电子壳越大(含重原子越多)它在外来静电力作用下越容易变形。相互作用随着1/r6而变化,诱导力与温度无关。 其公式:α为极化率。
取向力(orientation force也称dipole-dipole force)取向力发生在极性分子与极性分子之间。由于极 性分子的电性分布不均匀,一端带正电,一端带负电,形成偶极。因此,当两个极性分子相互接近时,由于它们 偶极的同极相斥,异极相吸,两个分子必将发生相对转动。这种偶极子的互相转动,就使偶极子的相反的极相对, 叫做“取向”。这时由于相反的极相距较近,同极相距较远,结果引力大于斥力,两个分子靠近,当接近到一定 距离之后,斥力与引力达到相对平衡。这种由于极性分子的取向而产生的分子间的作用力,叫做取向力。取向力 与分子的偶极矩平方成正比,即分子的极性越大,取向力越大。取向力与绝对温度成反比,温度越高,取向力就 越弱关相互作用随着1/r6而变化。其公式为:μ1,μ2为两个分子的偶极矩;r为分子质心间的距离,k为 Boltzmann常数,T为热力学温度,负值表示能量降低。