等比数列经典试题(含答案)百度文库

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、等比数列选择题
1.已知公比大于1的等比数列{}n a 满足2420a a +=,38a =.则数列()
{}
1
11n n n a a -+-的
前n 项的和为( )
A .()23
82133n n +--
B .()23
182155n n +---
C .()2382133
n n ++-
D .()23182155
n n +-+-
2.已知公差不为0的等差数列{a n }的前n 项和为S n ,a 1=2,且a 1,a 3,a 4成等比数列,则S n 取最大值时n 的值为( ) A .4
B .5
C .4或5
D .5或6
3.已知正项等比数列{}n a 满足11
2
a =
,2432a a a =+,又n S 为数列{}n a 的前n 项和,则5S =( )
A .
312
或112
B .
31
2
C .15
D .6
4.已知{}n a 是正项等比数列且1a ,312
a ,22a 成等差数列,则
91078a a a a +=+( ) A
1
B
1
C
.3-
D
.3+5.等比数列{}n a 中11a =,且14a ,22a ,3a 成等差数列,则()*n
a n N n
∈的最小值为( ) A .
16
25
B .
49
C .
12
D .1
6.已知数列{}n a 满足:11a =,*1()2
n
n n a a n N a +=∈+.则 10a =( ) A .
11021
B .
11022 C .1
1023
D .1
1024
7.已知等比数列{}n a 的前n 项和为S n ,则下列命题一定正确的是( ) A .若S 2021>0,则a 3+a 1>0 B .若S 2020>0,则a 3+a 1>0 C .若S 2021>0,则a 2+a 4>0
D .若S 2020>0,则a 2+a 4>0
8.在等比数列{}n a 中,132a =,44a =.记12(1,2,)n n T a a a n ==……,则数列{}n T ( )
A .有最大项,有最小项
B .有最大项,无最小项
C .无最大项,有最小项
D .无最大项,无最小项
9.在等比数列{}n a 中,24a =,532a =,则4a =( ) A .8 B .8-
C .16
D .16-
10

12
与1
2的等比中项是( )
A .-1
B .1 C

2
D
.2
±
11.题目文件丢失!
12.已知等比数列{}n a 中,n S 是其前n 项和,且5312a a a +=,则4
2
S S =( ) A .76
B .32
C .
2132
D .
14
13.在数列{}n a 中,12a =,121n n a a +=-,若513n a >,则n 的最小值是( ) A .9
B .10
C .11
D .12
14.正项等比数列{}n a 满足2
2
37610216a a a a a ++=,则28a a +=( ) A .1 B .2 C .4 D .8
15.正项等比数列{}n a 满足:241a a =,313S =,则其公比是( ) A .
1
4
B .1
C .
12
D .
13
16.十九世纪下半叶集合论的创立,奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段12(,)33,记为第一次操作;再将剩下的两个区间1[0,]3,2[,1]3
分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度之和不小于
9
10
,则需要操作的次数n 的最小值为( )(参考数据:lg 20.3010=,lg30.4771=)
A .4
B .5
C .6
D .7
17.已知1,a 1,a 2,9四个实数成等差数列,1,b 1,b 2,b 3,9五个数成等比数列,则b 2(a 2﹣a 1)等于( ) A .8
B .﹣8
C .±8
D .98
18.在等比数列{}n a 中,12345634159,88
a a a a a a a a +++++=
=-,则123456
111111
a a a a a a +++++=( ) A .
35
B .
35
C .
53
D .53
-
19.数列{}n a 满足119211021119n n n n a n --⎧≤≤=⎨≤≤⎩
,,,则该数列从第5项到第15项的和为( )
A .2016
B .1528
C .1504
D .992
20.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三
个单音,从第二个单音起,每一个单音的频率与它前一个单音的频率的比都等于,若第六个单音的频率为f ,则( ) A .第四个单音的频率为1
122f - B .第三个单音的频率为1
42f - C .第五个单音的频率为162f
D .第八个单音的频率为1
122f
二、多选题21.题目文件丢失! 22.题目文件丢失!
23.设数列{}n a 的前n 项和为*
()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是
( )
A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列
B .若2
n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列
C .若()11n
n S =--,则{}n a 是等比数列
D .若{}n a 是等差数列,则n S ,2n n S S -,*
32()n n S S n N -∈也成等差数列
24.设()f x 是定义在R 上恒不为零的函数,对任意实数x 、y ,都有
()()()f x y f x f y +=,若112
a =
,()()*
n a f n n N =∈,数列{}n a 的前n 项和n S 组成数列{}n S ,则有( ) A .数列{}n S 递增,且1n S < B .数列{}n S 递减,最小值为
12
C .数列{}n S 递增,最小值为
12
D .数列{}n S 递减,最大值为1
25.在等比数列{a n }中,a 5=4,a 7=16,则a 6可以为( ) A .8 B .12 C .-8
D .-12
26.已知等比数列{}n a 的公比0q <,等差数列{}n b 的首项10b >,若99a b >,且
1010a b >,则下列结论一定正确的是( )
A .9100a a <
B .910a a >
C .100b >
D .910b b >
27.已知等比数列{}n a 中,满足11a =,2q ,n S 是{}n a 的前n 项和,则下列说法正
确的是( )
A .数列{}2n a 是等比数列
B .数列1n a ⎧⎫
⎨⎬⎩⎭
是递增数列
C .数列{}2log n a 是等差数列
D .数列{}n a 中,10S ,20S ,30S 仍成等比
数列
28.在公比为q 等比数列{}n a 中,n S 是数列{}n a 的前n 项和,若521127,==a a a ,则下列说法正确的是( ) A .3q = B .数列{}2n S +是等比数列 C .5121S =
D .()222lg lg lg 3n n n a a a n -+=+≥
29.已知数列{a n },11a =,25a =,在平面四边形ABCD 中,对角线AC 与BD 交于点E ,且2AE EC =,当n ≥2时,恒有()()1123n n n n BD a a BA a a BC -+=-+-,则( ) A .数列{a n }为等差数列 B .12
33
BE BA BC =
+ C .数列{a n }为等比数列
D .14n
n n a a +-=
30.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并满足条件
1201920201,1a a a >>,
201920201
01
a a -<-,下列结论正确的是( )
A .S 2019<S 2020
B .2019202010a a -<
C .T 2020是数列{}n T 中的最大值
D .数列{}n T 无最大值
31.已知等比数列{}n a 的公比为q ,前n 项和0n S >,设213
2
n n n b a a ++=-,记{}n b 的前n 项和为n T ,则下列判断正确的是( ) A .若1q =,则n n T S = B .若2q >,则n n T S > C .若1
4q =-
,则n n T S > D .若3
4
q =-
,则n n T S > 32.数列{}n a 是首项为1的正项数列,123n n a a +=+,n S 是数列{}n a 的前n 项和,则下列结论正确的是( ) A .313a = B .数列{}3n a +是等比数列
C .43n a n =-
D .1
22n n S n +=--
33.在递增的等比数列{a n }中,S n 是数列{a n }的前n 项和,若a 1a 4=32,a 2+a 3=12,则下列说法正确的是( ) A .q =1 B .数列{S n +2}是等比数列
C .S 8=510
D .数列{lga n }是公差为2的等差数列
34.已知等差数列{}n a 的首项为1,公差4d =,前n 项和为n S ,则下列结论成立的有( )
A .数列n S n ⎧⎫
⎨⎬⎩⎭
的前10项和为100
B .若1,a 3,a m a 成等比数列,则21m =
C .若
11
16
25n
i i i a a =+>∑,则n 的最小值为6 D .若210m n a a a a +=+,则
116m n
+的最小值为25
12
35.对于数列{}n a ,若存在正整数()2k k ≥,使得1k k a a -<,1k k a a +<,则称k a 是数列
{}n a 的“谷值”,k 是数列{}n a 的“谷值点”,在数列{}n a 中,若9
8n a n n =+-,下面
哪些数不能作为数列{}n a 的“谷值点”?( ) A .3
B .2
C .7
D .5
【参考答案】***试卷处理标记,请不要删除
一、等比数列选择题 1.D 【分析】
根据条件列出方程组可求出等比数列的公比和首项,即可得到数列的通项公式,代入
()
1
11n n n a a -+-可知数列为等比数列,求和即可.
【详解】
因为公比大于1的等比数列{}n a 满足2420a a +=,38a =,
所以31121
20
8a q a q a q ⎧+=⎨=⎩,
解得2q
,12a =,
所以1222n n
n a -=⨯=,
()
()
()
111
1
1
1222111n n n n n n n n a a ++-+--+=⋅⋅-=∴--,
()
{
}
1
11n n n a a -+∴-是以8为首项,4-为公比的等比数列,
()
23
3
5
7
9
21
11
8[1(4)]8222222
(1)1(4)155
n n n n n n S -++---∴=-+--+
+⋅==+---, 故选:D 【点睛】
关键点点睛:求出等比数列的通项公式后,代入新数列,可得数列的通项公式,由通项公式可知数列为等比数列,根据等比数列的求和公式计算即可. 2.C 【分析】
由等比数列的性质及等差数列的通项公式可得公差1
2
d =-,再由等差数列的前n 项和公式即可得解. 【详解】
设等差数列{}n a 的公差为,0d d ≠,
134,,a a a 成等比数列,2
314a a a ∴=即2(22)2(23)d d +=+,则12
d =-,
()()2
111198122
4
4216
n n n n n S a n d n n --⎛⎫∴=+
=-
=--+ ⎪⎝⎭,
所以当4n =或5时,n S 取得最大值. 故选:C. 3.B 【分析】
由等比中项的性质可求出3a ,即可求出公比,代入等比数列求和公式即可求解. 【详解】
正项等比数列{}n a 中,
2432a a a =+,
2332a a ∴=+,
解得32a =或31a =-(舍去) 又11
2
a =
, 23
1
4a q a ∴=
=, 解得2q

5
151
(132)
(1)312112
a q S q --∴===--,
4.D 【分析】 根据1a ,
312a ,22a 成等差数列可得3121
222
a a a ⨯=+,转化为关于1a 和q 的方程,求出q 的值,将
910
78
a a a a ++化简即可求解.
【详解】
因为{}n a 是正项等比数列且1a ,31
2
a ,22a 成等差数列, 所以
3121
222
a a a ⨯=+,即21112a q a a q =+,所以2210q q --=,
解得:1q =+
1q =
(
22
2
2910787878
13a a a q a q q a a a a ++====+++,
故选:D 5.D 【分析】
首先设等比数列{}n a 的公比为(0)q q ≠,根据14a ,22a ,3a 成等差数列,列出等量关系式,求得2q ,比较
()*n
a n N n
∈相邻两项的大小,求得其最小值. 【详解】
在等比数列{}n a 中,设公比(0)q q ≠, 当11a =时,有14a ,22a ,3a 成等差数列,
所以21344a a a =+,即2
44q q =+,解得2q

所以1
2
n n
a ,所以1
2n n a n n
-=
, 1
2111n n a n n a n n
++=≥+,当且仅当1n =时取等号, 所以当1n =或2n =时,()*
n a n N n
∈取得最小值1,
故选:D. 【点睛】
该题考查的是有关数列的问题,涉及到的知识点有等比数列的通项公式,三个数成等差数列的条件,求数列的最小项,属于简单题目. 6.C
根据数列的递推关系,利用取倒数法进行转化得1121n n a a +=+ ,构造11n a ⎧⎫+⎨⎬⎩⎭
为等比数列,求解出通项,进而求出10a . 【详解】 因为12n n n a a a +=
+,所以两边取倒数得
12121n n n n a a a a ++==+,则111121n n a a +⎛⎫+=+ ⎪⎝⎭
, 所以数列11n a ⎧⎫+⎨⎬⎩⎭为等比数列,则111
11122n n n a a -⎛⎫+=+⋅= ⎪⎝⎭

所以121n n a =-,故10
1011
211023
a ==-. 故选:C 【点睛】
方法点睛:对于形如()11n n a pa q p +=+≠型,通常可构造等比数列{}n a x +(其中
1
q
x p =
-)来进行求解. 7.A 【分析】
根据等比数列的求和公式及通项公式,可分析出答案. 【详解】
等比数列{}n a 的前n 项和为n S ,当1q ≠时,
202112021(1)01a q S q
-=>-,
因为2021
1q
-与1q -同号,
所以10a >,
所以2
131(1)0a a a q +=+>,
当1q =时,
2021120210S a =>,
所以10a >,
所以1311120a a a a a +=+=>, 综上,当20210S >时,130a a +>, 故选:A 【点睛】
易错点点睛:利用等比数列求和公式时,一定要分析公比是否为1,否则容易引起错误,本题需要讨论两种情况.
8.B 【分析】
首先求得数列的通项公式,再运用等差数列的求和公式求得n T ,根据二次函数的性质的指数函数的性质可得选项. 【详解】
设等比数列{}n a 为q ,则等比数列的公比41
4141328a q
a -=
==,所以12
q =, 则其通项公式为:1
16113222n n n n a a q ---⎛⎫=⋅=⨯= ⎪
⎝⎭

所以()
()
561154
2
2
12
62222
2
n n +n n n n n T a a
a ---==⨯==,
令()11t n n =-,所以当5n =或6时,t 有最大值,无最小值,所以n T 有最大项,无最小项. 故选:B. . 9.C 【分析】
根据条件计算出等比数列的公比,再根据等比数列通项公式的变形求解出4a 的值. 【详解】
因为254,32a a ==,所以3
5
2
8a q a ==,所以2q ,
所以2
424
416a a q ==⨯=,
故选:C. 10.D 【分析】
利用等比中项定义得解. 【详解】
23111(
)()
(2222-==±,12∴
与12的等比中项是2
± 故选:D
11.无
12.B 【分析】
由5312a a a +=,解得q ,然后由4142
422
12(1)111(1)11a q S q q q a q S q q
---===+---求解. 【详解】
在等比数列{}n a 中,5312a a a +=, 所以421112a q a q a +=,即42210q q +-=, 解得2
12
q =
所以4142
42212(1)1311(1)12
1a q S q q q a q S q q
---===+=---, 故选:B 【点睛】
本题主要考查等比数列通项公式和前n 项和公式的基本运算,属于基础题, 13.C 【分析】
根据递推关系可得数列{}1n a -是以1为首项,2为公比的等比数列,利用等比数列的通项
公式可得1
21n n a -=+,即求.
【详解】
因为121n n a a +=-,所以()1121n n a a +-=-,即
11
21
n n a a +-=-, 所以数列{}1n a -是以1为首项,2为公比的等比数列.
则112n n a --=,即1
21n n a -=+.
因为513n a >,所以121513n -+>,所以12512n ->,所以10n >. 故选:C 14.C 【分析】
利用等比数列的性质运算求解即可. 【详解】
根据题意,等比数列{}n a 满足2
2
37610216a a a a a ++=, 则有22
2
288216a a a a ++=,即()2
2816a a +=, 又由数列{}n a 为正项等比数列,故284a a +=. 故选:C . 15.D
根据241a a =,由2
243a a a =,解得31a =,再根据313S =求解.
【详解】
因为正项等比数列{}n a 满足241a a =,
由于2
243a a a =,
所以2
31a =,31a =,211a q =.
因为313S =, 所以1q ≠. 由()()31231111a q S a q q q
-=
=++-
得2
2
131q q q =++, 即2
1210q q --=, 解得13q =,或1
4
q =-(舍去). 故选:D 16.C 【分析】
依次求出第次去掉的区间长度之和,这个和构成一个等比数列,再求其前n 项和,列出不等式解之可得. 【详解】
第一次操作去掉的区间长度为13;第二次操作去掉两个长度为19
的区间,长度和为2
9;第
三次操作去掉四个长度为
127的区间,长度和为427;…第n 次操作去掉12n -个长度为1
3
n 的区间,长度和为1
23
n n -,
于是进行了n 次操作后,所有去掉的区间长度之和为1
122213933n
n n n S -⎛⎫=++⋅⋅⋅+=- ⎪⎝⎭
, 由题意,90
2131n
⎛⎫-≥ ⎪⎝⎭,即21lg lg
1031n ≤=-,即()lg3lg21n -≥,解得:11
5.679lg3lg 20.47710.3010
n ≥
=≈--,
又n 为整数,所以n 的最小值为6. 故选:C . 【点睛】
本题以数学文化为背景,考查等比数列通项、前n 项和等知识及估算能力,属于中档题.
【分析】
由已知条件求出公差和公比,即可由此求出结果. 【详解】
设等差数列的公差为d ,等比数列的公比为q , 则有139d +=,4
19q ⋅=,
解之可得83
d =,23q =,
()22218
183
b a a q ∴-=⨯⨯=.
故选:A. 18.D 【分析】
利用等比数列下标和相等的性质有162534a a a a a a ==,而目标式可化为
162534
162534
a a a a a a a a a a a a +++++结合已知条件即可求值. 【详解】
162534123456162534
111111a a a a a a a a a a a a a a a a a a ++++++++=++, ∵等比数列{}n a 中349
8
a a =-,而162534a a a a a a ==, ∴123456111111a a a a a a +
++++=12345685()93
a a a a a a -+++++=-, 故选:D 19.C 【分析】
利用等比数列的求和公式进行分项求和,最后再求总和即可 【详解】
因为119211021119n n n n a n --⎧≤≤=⎨≤≤⎩
,,,
所以,410
4
9104561022222212
a a a -++
+=+
+==--,
49
8
4
4
8
941112152222222212
a a a -+++=+
+=+
+==--,
该数列从第5项到第15项的和为
10494465422222(2121)2(64322)16941504-+-=⨯-+-=⨯+-=⨯=
故选:C
解题关键在于利用等比数列的求和公式进行求解,属于基础题20.B
【分析】
根据题意得该单音构成公比为
四、五、八项即可得答案.
【详解】
解:根据题意得该单音构成公比为
因为第六个单音的频率为f,
1
4
1
4
2
2
f
f
-
==.
6
6
1
1
2
2
f
f
-
==.
所以第五个单音的频率为112
2f
=.
所以第八个单音的频率为
1
2
6
2
f f
=
故选:B.
二、多选题
21.无
22.无
23.BCD
【分析】
利用等差等比数列的定义及性质对选项判断得解.
【详解】
选项A:
1
*
()
n n
a a n N
+

=,10
n n
a a
+
∴-=得{}
n
a是等差数列,当0
n
a=时不是等比数列,故错;
选项B: 2
n
S An Bn
=+,
1
2
n n
a a A
-
∴-=,得{}n a是等差数列,故对;
选项C: ()
11n
n
S=--,1
1
2(1)(2)
n
n n n
S S a n
-
-
∴-==⨯-≥,当1
n=时也成立,
1
2(1)n
n
a-
∴=⨯-是等比数列,故对;
选项D: {}n a是等差数列,由等差数列性质得n S,2n n
S S
-,*
32
()
n n
S S n N
-∈是等差数列,故对;
故选:BCD
【点睛】
熟练运用等差数列的定义、性质、前n 项和公式是解题关键. 24.AC 【分析】
计算()f n 的值,得出数列{}n a 的通项公式,从而可得数列{}n S 的通项公式,根据其通项公式进行判断即可 【详解】 解:因为112a =
,所以1(1)2
f =, 所以2
21
(2)(1)4
a f f ===
, 31
(3)(1)(2)8
a f f f ===,
……
所以1
()2
n n a n N +=∈,
所以11(1)
122111212
n n n S -==-<-, 所以数列{}n S 递增,当1n =时,n S 有最小值1112
S a ==, 故选:AC 【点睛】
关键点点睛:此题考查函数与数列的综合应用,解题的关键是由已知条件赋值归纳出数列
{}n a 的通项公式,进而可得数列{}n S 的通项公式,考查计算能力和转化思想,属于中档
题 25.AC 【分析】
求出等比数列的公比2q =±,再利用通项公式即可得答案; 【详解】
57216
24
a q q a ==⇒=±, 当2q
时,65428a a q ==⨯=,
当2q =-时,654(2)8a a q ==⨯-=-, 故选:AC. 【点睛】
本题考查等比数列通项公式的运算,考查运算求解能力,属于基础题. 26.AD
【分析】
根据等差、等比数列的性质依次判断选项即可. 【详解】
对选项A ,因为0q <,所以2
9109990a a a a q a q =⋅=<,故A 正确;
对选项B ,因为9100a a <,所以91000a a >⎧⎨<⎩或910
0a a <⎧⎨>⎩,即910a a >或910a a <,故B 错误;
对选项C ,D ,因为910,a a 异号,99a b >,且1010a b >,所以910,b b 中至少有一个负数, 又因为10b >,所以0d <,910b b >,故C 错误,D 正确. 故选:AD 【点睛】
本题主要考查等差、等比数列的综合应用,考查学生分析问题的能力,属于中档题. 27.AC 【分析】 由已知得1
2
n n
a 可得以21
22
n n a -=,可判断A ;又1
111122n n n a --⎛⎫== ⎪
⎝⎭
,可判断B ;由
122log log 21n n a n -==-,可判断C ;求得10S ,20S ,30S ,可判断D.
【详解】
等比数列{}n a 中,满足11a =,2q
,所以12n n a ,所以2122n n a -=,所以数列
{}2n a 是等比数列,故A 正确;
又1
111122n n n a --⎛⎫
== ⎪⎝⎭
,所以数列1n a ⎧⎫

⎬⎩⎭
是递减数列,故B 不正确; 因为1
22log log 2
1n n a n -==-,所以{}2log n a 是等差数列,故C 正确;
数列{}n a 中,101010111222
S -==--,202021S =-,30
3021S =-,10S ,20S ,30S 不成
等比数列,故D 不正确; 故选:AC . 【点睛】
本题综合考查等差、等比数列的定义、通项公式、前n 项和公式,以及数列的单调性的判定,属于中档题. 28.ACD 【分析】
根据等比数列的通项公式,结合等比数列的定义和对数的运算性质进行逐一判断即可. 【详解】
因为521127,==a a a ,所以有431127273q a q q q a ⋅=⋅⇒=⇒=,因此选项A 正确;
因为
131(31)
132
n
n
n
S-
==-
-
,所以
131
+2+2(3+3)
132
n
n
n
S
-
==
-

因为
+
1
+1
1
1
(3+3)
+22
2=1+
1
+21+3
(3+3)
2
n
n
n
n
n
S
S-
=≠常数,
所以数列{}2
n
S+不是等比数列,故选项B不正确;
因为5
5
1
(31)=121
2
S=-,所以选项C正确;
11
1
30
n
n
n
a a q--
=⋅=>,
因为当3
n≥时,2
2222
lg lg=lg()=lg2lg
n n n n n n
a a a a a a
-+-+
+⋅=,所以选项D正确.
故选:ACD
【点睛】
本题考查了等比数列的通项公式的应用,考查了等比数列前n项和公式的应用,考查了等比数列定义的应用,考查了等比数列的性质应用,考查了对数的运算性质,考查了数学运算能力.
29.BD
【分析】
证明
12
33
BE BA BC
=+,所以选项B正确;设BD tBE
=(0
t>),易得
()
11
4
n n n n
a a a a
+-
-=-,显然
1
n n
a a
-
-不是同一常数,所以选项A错误;数列{
1
n n
a a
-
-}
是以4为首项,4为公比的等比数列,所以
1
4n
n n
a a
+
-=,所以选项D正确,易得3
21
a=,选项C不正确.
【详解】
因为2
AE EC
=,所以
2
3
AE AC
=,
所以
2
()
3
AB BE AB BC
+=+,
所以
12
33
BE BA BC
=+,所以选项B正确;
设BD tBE =(0t >),
则当n ≥2时,由()()1123n n n n BD tBE a a BA a a BC -+==-+-,所以
()()1111
23n n n n BE a a BA a a BC t t
-+=
-+-, 所以
()11123n n a a t --=,()11233
n n a a t +-=, 所以()11322n n n n a a a a +--=-, 易得()114n n n n a a a a +--=-,
显然1n n a a --不是同一常数,所以选项A 错误; 因为2a -1a =4,
11
4n n
n n a a a a +--=-,
所以数列{1n n a a --}是以4为首项,4为公比的等比数列,
所以14n
n n a a +-=,所以选项D 正确,
易得321a =,显然选项C 不正确. 故选:BD 【点睛】
本题主要考查平面向量的线性运算,考查等比数列等差数列的判定,考查等比数列通项的求法,意在考查学生对这些知识的理解掌握水平. 30.AB 【分析】
由已知确定0q <和1q ≥均不符合题意,只有01q <<,数列{}n a 递减,从而确定
20191a >,202001a <<,从可判断各选项.
【详解】
当0q <时,2
2019202020190a a a q =<,不成立;
当1q ≥时,201920201,1a a >>,
201920201
01
a a -<-不成立;
故01q <<,且20191a >,202001a <<,故20202019S S >,A 正确;
2201920212020110a a a -=-<,故B 正确;
因为20191a >,202001a <<,所以2019T 是数列{}n T 中的最大值,C ,D 错误; 故选:AB 【点睛】
本题考查等比数列的单调性,解题关键是确定20191a >,202001a <<. 31.BD 【分析】
先求得q 的取值范围,根据q 的取值范围进行分类讨论,利用差比较法比较出n T 和n S 的大小关系. 【详解】
由于{}n a 是等比数列,0n S >,所以110,0a S q =>≠, 当1q =时,10n S na =>,符合题意; 当1q ≠时,()1101n n a q S q
-=
>-,即
101n
q q ->-,上式等价于1010
n q q ⎧->⎨->⎩①或10
10
n q q ⎧-<⎨
-<⎩②.解②得1q >.解①,由于n 可能是奇数,也可能是偶数,所以()()1,00,1q ∈-.
综上所述,q 的取值范围是()
()1,00,-+∞.
2213322n n n n b a a a q q ++⎛⎫=-=- ⎪⎝⎭,所以232n n T q q S ⎛
⎫=- ⎪⎝
⎭,所以
()2311222n n n n T S S q q S q q ⎛⎫⎛
⎫-=⋅--=⋅+⋅- ⎪ ⎪⎝⎭⎝
⎭,而0n S >,且()()1,00,q ∈-⋃+∞.
所以,当1
12
q -<<-,或2q >时,0n n T S ->,即n n T S >,故BD 选项正确,C 选项错误. 当1
2(0)2
q q -
<<≠时,0n n T S -<,即n n T S <. 当12
q =-
或2q 时,0,n n n n T S T S -==,A 选项错误.
综上所述,正确的选项为BD. 故选:BD 【点睛】
本小题主要考查等比数列的前n 项和公式,考查差比较法比较大小,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于中档题. 32.AB 【分析】
由已知构造出数列{}3n a +是等比数列,可求出数列{}n a 的通项公式以及前n 项和,结合选项逐一判断即可. 【详解】
123n n a a +=+,∴()1323n n a a ++=+,∴数列{}3n a +是等比数列
又∵11a =,∴()11332n n a a -+=+,∴1
23n n a +=-,∴313a =,
∴()
2412323412n n n
S n n +-=-=---.
故选:AB. 33.BC 【分析】
先根据题干条件判断并计算得到q 和a 1的值,可得到等比数列{a n }的通项公式和前n 项和公式,对选项进行逐个判断即可得到正确选项. 【详解】
由题意,根据等比中项的性质,可得 a 2a 3=a 1a 4=32>0,a 2+a 3=12>0, 故a 2>0,a 3>0. 根据根与系数的关系,可知
a 2,a 3是一元二次方程x 2﹣12x +32=0的两个根. 解得a 2=4,a 3=8,或a 2=8,a 3=4. 故必有公比q >0, ∴a 12
a q
=
>0. ∵等比数列{a n }是递增数列,∴q >1. ∴a 2=4,a 3=8满足题意. ∴q =2,a 12
a q
=
=2.故选项A 不正确. a n =a 1•q n ﹣1=2n . ∵S n (
)21212
n -=
=-2
n +1
﹣2.
∴S n +2=2n +1=4•2n ﹣1.
∴数列{S n +2}是以4为首项,2为公比的等比数列.故选项B 正确. S 8=28+1﹣2=512﹣2=510.故选项C 正确. ∵lga n =lg 2n =n .
∴数列{lga n }是公差为1的等差数列.故选项D 不正确. 故选:BC 【点睛】
本题考查了等比数列的通项公式、求和公式和性质,考查了学生概念理解,转化划归,数学运算的能力,属于中档题. 34.AB 【分析】
由已知可得:43n a n =-,2
2n S n n =-,
=21n S n n -,则数列n S n ⎧⎫
⎨⎬⎩⎭
为等差数列通过公式即可
求得前10项和;通过等比中项可验证B 选项;因为
11111=44341i i a a n n +⎛⎫
- ⎪-+⎝⎭
,通过裂项求和可求得
11
1
n
i i i a a =+∑;由等差的性质可知12m n +=利用基本不等式可验证选项D 错误. 【详解】
由已知可得:43n a n =-,2
2n S n n =-,
=21n S n n -,则数列n S n ⎧⎫
⎨⎬⎩⎭为等差数列,则前10项和为()10119=1002
+.所以A 正确; 1,a 3,a m a 成等比数列,则231=,m a a a ⋅81m a =,即=4381m a m =-=,解得21m =故B 正确;
因为
11111=44341i i a a n n +⎛⎫
- ⎪-+⎝⎭
所以11
11111116
=1=45549413245
1n
i i i n n n a a n =+⎛⎫-+-++
-> ⎪
++⎝⎭-∑,解得6n >,故n 的最小值为7,故选项C 错误;等差的性质可知12m n +=,所以
()()11611161161
25=116172412121212n m m n m n m n m n ⎛⎫⎛⎫+++=+++≥+⨯= ⎪ ⎪⎝⎭⎝⎭
,当且仅当16=n m m n 时,即48=45n m =时取等号,因为*,m n ∈N ,所以48=45n m =不成立,故选项D 错误.
故选:AB. 【点睛】
本题考查等差数列的性质,考查裂项求和,等比中项,和基本不等式求最值,难度一般. 35.AD 【分析】
计算到12a =,232
a =
,32a =,474a =,565a =,612a =,727a =,89
8a =,根据
“谷值点”的定义依次判断每个选项得到答案. 【详解】
98n a n n =+
-,故12a =,232
a =,32a =,474a =,565a =,612a =,727a =,898
a =
. 故23a a <,3不是“谷值点”;12a a >,32a a >,故2是“谷值点”;
67a a >,87a a >,故7是“谷值点”;65a a <,5不是“谷值点”.
故选:AD . 【点睛】
本题考查了数列的新定义问题,意在考查学生的计算能力和应用能力.。

相关文档
最新文档