第14讲 几何初步、相交线、平行线 (跟踪训练一领三通)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第14讲几何初步、相交线、平行线
二、考点分析
【考点1 线段与直线】
【解题技巧】直线可以看作是线段向两个方向无限延伸的,而射线可以看作是线段向一个方向无限延伸的;线段的中点是解决有“边”的图形的度量问题、大小问题、长短问题等的基础。
【例1】(2019 吉林中考)曲桥是我国古代经典建筑之一,它的修建增加了游人在桥上行走的路程,有利于游人更好地观赏风光.如图,A、B两地间修建曲桥与修建直的桥相比,增加了桥的长度,其中蕴含的数学道理是()
A.两点之间,线段最短
B.平行于同一条直线的两条直线平行
C.垂线段最短
D.两点确定一条直线
【一领三通1-1】(2019•广州)如图,点A,B,C在直线l上,PB⊥l,PA=6cm,PB=5cm,PC=7cm,则点P到直线l的距离是cm.
【一领三通1-2】(2019•日照)如图,已知AB=8cm,BD=3cm,C为AB的中点,则线段CD的长为cm.
【一领三通1-3】(2019 河南开封中考模拟)如图,点C在线段AB上,AC:BC=3:2,点M是AB的中点,点N是BC的中点,若MN=3cm,求线段AB的长.
【考点2 角及角平分线】
【解题技巧】1.度、分、秒的加减运算:在进行度分秒的加减时,要将度与度,分与分,秒与秒相加减,分秒相加,逢60要进位,相减时,要借1化60.
2.度、分、秒的乘除运算.①乘法:度、分、秒分别相乘,结果逢60要进位.②除法:度、分、秒分别去除,把每一次的余数化作下一级单位进一步去除.
3.余角和补角计算的应用,常常与等式的性质、等量代换相关联.
注意:余角(补角)与这两个角的位置没有关系.不论这两个角在哪儿,只要度数之和满足了定义,则它们就具备相应的关系.
【例2】(2019浙江宁波中考模拟)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为( )
A.20°B.30°C.45°D.50°
【一领三通2-1】(2019 河北石家庄中考模拟)(改成选择题)如图所示,把三角板的直角顶点放在直尺的一边上,若∠1=30°,求∠2的度数.
【一领三通2-2】(2019 河北沧州中考模拟)一个角的余角的3倍比这个角的补角少24°,那么这个角是多少度?
【一领三通2-3】(2019 山东青岛中考模拟)如图,BD是∠ABC的平分线,ED∥BC,∠FED=∠BDE,试说明:EF是∠AED的平分线.
【考点3 相交、垂线及其性质】
【解题技巧】1.垂线段的性质:垂线段最短.
正确理解此性质,垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.
2.实际问题中涉及线路最短问题时,其理论依据应从“两点之间,线段最短”和“垂线段最短”这两个中去选择.
3.点到直线的距离是一个长度,而不是一个图形,也就是垂线段的长度,而不是垂线段.它只能量出或求出,而不能说画出,画出的是垂线段这个图形.
【例3】(2019 河北唐山中考模拟)如图所示,把三角板的直角顶点放在直尺的一边上,若∠1=30°,则∠2的度数().
A.45°B.60°C.50°D.30°
【一领三通3-1】(2019 山东淄博中考模拟)(填空题)如图,将两块直角三角板的直角顶点C叠放在一起.(1)若∠DCB=35°,求∠ACB的度数;
(2)若∠ACB=140°,求∠DCE的度数.
【一领三通3-2】(2019 河北沧州中考模拟)(1)如图1,AB∥CD,点E是在AB、CD之间,且在BD的左侧平面区域内一点,连结BE、DE.求证:∠E=∠ABE+∠CDE.
(2)如图2,在(1)的条件下,作出∠EBD和∠EDB的平分线,两线交于点F,猜想∠F、∠ABE、∠CDE之
间的关系,并证明你的猜想.
(3)如图3,在(1)的条件下,作出∠EBD的平分线和△EDB的外角平分线,两线交于点G,猜想∠G、∠ABE、∠CDE之间的关系,并证明你的猜想.
【一领三通3-3】(2019河南郑州中考模拟)如图,直线a∥b,直线AB与a,b分别相交于点A,B,AC⊥AB,AC交直线b于点C.
(1)若∠1=60°,求∠2的度数;
(2)若AC=3,AB=4,BC=5,求a与b的距离.
【考点4 平行线的判定及性质】
【解题技巧】利用平行线性质和判定求角度:先观察要求角与已知角的位置关系,再选择合理的角度进行等量代换,因此需要熟练掌握平行线的性质和判定.另外在解题中要注意平角、直角及三角形内角和、三角形内外角关系等知识的运用.
【例4】(2019 海南中考)如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长度为半径画弧,分别交直线l1、l2于B、C两点,连结AC、BC.若∠ABC=70°,则∠1的大小为()
A.20°B.35°C.40°D.70°
【一领三通4-1】(2019 河南中考)如图,AB∥CD,∠B=75°,∠E=27°,则∠D的度数为()
A.45°B.48°C.50°D.58°
【一领三通4-2】(2019 广东中考)如图,已知a∥b,∠1=75°,则∠2=.
【一领三通4-3】(2019 湖北孝感中考)如图,直线l1∥l2,直线l3与l1,l2分别交于点A,C,BC⊥l3交l1于点B,若∠1=70°,则∠2的度数为()
A.10°B.20°C.30°D.40°
【一领三通4-4】(2019 河北中考)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容
则回答正确的是()
A.◎代表∠FEC B.@代表同位角
C.▲代表∠EFC D.※代表AB