人教版初三数学:中心对称与中心对称图形--知识讲解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中心对称与中心对称图形--知识讲解
【学习目标】
1、理解中心对称和中心对称图形的定义和性质,掌握他们之间的区别和联系;
2、掌握关于原点对称的点的坐标特征,以及如何求对称点的坐标;
3、探索图形之间的变化关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移和旋转的组合进行图案设计.
【要点梳理】
要点一、中心对称和中心对称图形
1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.
这两个图形中的对应点叫做关于中心的对称点.
要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;
(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合 (全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) .
2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.
要点诠释:(1)中心对称图形指的是一个图形;
(2)线段,平行四边形,圆等等都是中心对称图形.
3.中心对称与中心对称图形的区别与联系:
中心对称中心对称图形
区别①指两个全等图形之间的相互
位置关系.
②对称中心不定.
①指一个图形本身成中心对称.
②对称中心是图形自身或内部
的点.
联系如果将中心对称的两个图形看
成一个整体(一个图形),那么
这个图形就是中心对称图形.
如果把中心对称图形对称的部
分看成是两个图形,那么它们又
关于中心对称.
要点二、关于原点对称的点的坐标特征
关于原点对称的两个点的横、纵坐标均互为相反数.即点关于原点的对称点坐标为,反之也成立.
要点三、中心对称、轴对称、旋转对称
【高清课堂:高清ID号:388635
关联的位置名称(播放点名称):中心对称与中心对称图形的区别与联系】
1.中心对称图形与旋转对称图形的比较:
2.中心对称图形与轴对称图形比较:
要点诠释:中心对称图形是特殊的旋转对称图形;掌握三种图形的不同点和共同点是灵活运用的前提.
【典型例题】
类型一、中心对称和中心对称图形
【高清课堂:高清ID号:388635
关联的位置名称(播放点名称):例3及练习】
1.(2015春•鄄城县期末)如图,△ABC与△A1B1C1关于点O成中心对称,下列说法:
①∠BAC=∠B1A1C1;②AC=A1C1;③OA=OA1;
④△ABC与△A1B1C1的面积相等,其中正确的有()
A.1个B.2个C.3个D.4个
【答案】D
【解析】中心对称的两个图形全等,则①②④正确;
对称点到对称中心的距离相等,故③正确;
故①②③④都正确.
故选D.
【总结升华】中心对称的关键是:旋转180°之后可以与原来的图形重合.
举一反三
【变式】如图,若正方形EFGH由正方形ABCD绕某点旋转得到,则可以作为旋转中心的是()
A.M或O或N B.E或O或C C.E或O或N D.M或O或C
【答案】A
【高清课堂:高清ID号:388635
关联的位置名称(播放点名称):经典例题2】
2. 我们平时见过的几何图形,如:线段、角、等腰三角形、等边三角形、平行四边形、矩形、
菱形、正方形中,有哪些是中心对称图形?哪些是轴对称图形?中心对称图形指出对称中心,轴对称图形指出对称轴.
【答案与解析】
【总结升华】线段、角、等腰三角形、等边三角形、平行四边形、矩形、菱形、正方形是重要的几种对称几何图形,要了解其性质特点更要熟记.
类型二、作图
3. 已知:如图甲,试用一条直线把图形分成面积相等的两部分(至少三种方法).
【答案与解析】
【总结升华】解决这类问题时,关键是将图形转化成两个中心对称图形(如果原图形本身就是中心对称图形,则直接过对称中心作直线即可),再由两点确定一条直线,过两个对称中心画直线即满足条件. 举一反三
【高清课堂:高清ID 号: 388635 关联的位置名称(播放点名称):例5及练习】
【变式】如图①, 1O ,2O ,3O ,4O 为四个等圆的圆心,A ,B ,C ,D 为切点,请你在图中画出一条直线,将这四个圆分成面积相等的两部分,并说明这条直线经过的两个点是 ;如图②,1O ,2O ,3O ,4O ,5O 为五个等圆的圆心,A ,B ,C ,D ,E 为切点,请你在图中画出一条直线,将这五个圆...分成面积相等的两部分,并说明这条直线经过的两个点是 .
【答案】
图①:13O O 或24O O 或AC 或BD;图②:5O M 或4O A
类型三、利用图形变换的性质进行计算或证明
1o 2o
3o 4o
C
B D A 图① 图② 1o 2o 3o 4o 5o A B
C E D
4.(2014春•青神县校级月考)已知:如图,三角形ABM与三角形ACM关于直线AF成轴对称,三角形ABE与三角形DCE关于点E成中心对称,点E、D、M都在线段AF上,BM的延长线交CF于点P.
(1)求证:AC=CD;
(2)若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.
【解题思路】(1)利用中心对称图形的性质以及轴对称图形的性质得出全等三角形进而得出对应线段相等;
(2)利用(1)中所求,进而得出对应角相等,进而得出答案.
【答案与解析】(1)证明:∵△ABM与△ACM关于直线AF成轴对称,
∴△ABM≌△ACM,
∴AB=AC,
又∵△ABE与△DCE关于点E成中心对称,
∴△ABE≌△DCE,
∴AB=CD,
∴AC=CD;
(2)解:∠F=∠MCD.
理由:由(1)可得∠BAE=∠CAE=∠CDE,∠CMA=∠BMA,
∵∠BAC=2∠MPC,∠BMA=∠PMF,
∴设∠MPC=α,则∠BAE=∠CAE=∠CDE=α,
设∠BMA=β,则∠PMF=∠CMA=β,
∴∠F=∠CPM﹣∠PMF=α﹣β,
∠MCD=∠CDE﹣∠DMC=α﹣β,
∴∠F=∠MCD.
【总结升华】此题主要考查了中心对称图形的性质以及全等三角形的性质等知识,根据题意得出对
应角相等进而得出是解题关键.
举一反三
【高清课堂:高清ID号:388635
关联的位置名称(播放点名称):例4及练习】
【变式】如图,三个圆是同心圆,则图中阴影部分的面积为.
【答案】4
.
附录资料:
弧长和扇形面积、圆锥的侧面展开图—知识讲解(基础)
【学习目标】
1.通过复习圆的周长、圆的面积公式,探索n °的圆心角所对的弧长
和扇形面积
的计算公式,并应用这些公式解决问题;
2.了解圆锥母线的概念,理解圆锥侧面积计算公式,理解圆锥全面积的计算方法,会应用公式解决问题;
3. 能准确计算组合图形的面积.
【要点梳理】
要点一、弧长公式 半径为R 的圆中
360°的圆心角所对的弧长(圆的周长)公式: n °的圆心角所对的圆的弧长公式:(弧是圆的一部分)
要点诠释:
(1)对于弧长公式,关键是要理解1°的圆心角所对的弧长是圆周长的
,即
;
(2)公式中的n表示1°圆心角的倍数,故n和180都不带单位,R 为弧所在圆的半径;
(3)弧长公式所涉及的三个量:弧长、圆心角度数、弧所在圆的半径,知道其中的两个量就可以求出第三个量.
要点二、扇形面积公式 1.扇形的定义
由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形. 2.扇形面积公式 半径为R 的圆中
360°的圆心角所对的扇形面积(圆面积)公式: n °的圆心角所对的扇形面积公式:
要点诠释:
(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的
,
即;
(2)在扇形面积公式中,涉及三个量:扇形面积S 、扇形半径R 、扇形的圆心角,知道其中的两个量就可以求出第三个量. (3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式
有点
类似,可类比记忆;
(4)扇形两个面积公式之间的联系:.
要点三、圆锥的侧面积和全面积
连接圆锥顶点和底面圆上任意一点的线段叫做圆锥的母线.
圆锥的母线长为,底面半径为r ,侧面展开图中的扇形圆心角为n °,则
圆锥的侧面积2
360
l S rl ππ=扇n =, 圆锥的全面积
.
要点诠释:
扇形的半径就是圆锥的母线,扇形的弧长就是圆锥底面圆的周长.因此,要求圆锥的侧面积就是求展开图扇形面积,全面积是由侧面积和底面圆的面积组成的.
【典型例题】
类型一、弧长和扇形的有关计算
1.如图(1),AB 切⊙O 于点B ,OA=23,AB=3,弦BC∥OA,则劣弧BC 的弧长为( ). A .
33π B .3
2
π
C .π
D .3
2
π
图(1) 【答案】A.
【解析】连结OB 、OC ,如图(2)
则0OBA ∠︒=9,OB=3,0A ∠︒=3,0AOB ∠︒=6, 由弦BC ∥OA 得60OBC AOB ∠∠=︒=, 所以△OBC 为等边三角形,0BOC ∠︒=6. 则劣弧BC 的弧长为
6033
=1803
ππ,故选A. 图(2) 【总结升华】主要考查弧长公式:.
举一反三:
【变式】制作弯形管道时,需要先按中心线计算“展直长度”再下料,•试计算如图所示的管道的展直长度,即
的长(结果精确到0.1mm)
C
B
A
O
【答案】R=40mm ,n=110
∴的长==≈76.8(mm)
因此,管道的展直长度约为76.8mm .
【高清ID 号:359387 高清课程名称: 弧长 扇形 圆柱 圆锥 关联的位置名称(播放点名称):经典例题1-2】
2.如图,⊙O 的半径等于1,弦AB 和半径OC 互相平分于点M.求扇形OACB 的面积(结果保留π)
【答案与解析】∵弦AB 和半径OC 互相平分,
∴OC ⊥AB ,
OM=MC=OC=OA .
∴∠B=∠A=30°,
∴∠AOB=120° ∴S 扇形=
.
【总结升华】运用了垂径定理的推论,考查扇形面积计算公式.
举一反三:
【高清ID 号:359387 高清课程名称:弧长 扇形 圆柱 圆锥 关联的位置名称(播放点名称):经典例题1-2】 【变式】如图(1),在△ABC 中,BC=4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交
AC 于F ,点P 是⊙A 上的一点,且∠EPF=40°,则图中阴影部分的面积是( ).
A .449-
π B .849
-π
C .489-π
D .8
89-π
图(1)
A E
B C F P
【答案】连结AD,则AD⊥BC,
△ABC的面积是:BC•AD=×4×2=4,∠A=2∠EPF=80°.则扇
形EAF的面积是:
2
8028
=.
3609
π
π
⨯
故阴
影部分的面积=△ABC的面积-扇形EAF的面积=
8
4-
9
π.图(2)
故选B.
类型二、圆锥面积的计算
3.(2014秋•广东期末)如图,一个圆锥的高为cm,侧面展开图是半圆,求:
(1)圆锥的底面半径r与母线R之比;
(2)圆锥的全面积.
【思路点拨】(1)设出圆锥的底面半径及圆锥的母线长,利用底面周长等于圆锥的弧长得到圆锥的母线与底面的半径之比即可;
(2)首先求得圆锥的底面半径和圆锥的母线长,然后利用圆锥的侧面积的计算方法求得其侧面积即可.【答案与解析】
解:(1)由题意可知
∴,R=2r(3分)r:R=r:2r=1:2;
(2)在Rt△AOC中,
∵R2=r2+h2
∴,
4r2=r2+27r2=9,
r=±3
∵r>0
∴r=3,R=6.
∴S侧=πRr=18π(cm2)(cm2)
∴S全=S侧+S底=18π+9π=27π(cm2).
【总结升华】本题考查了圆锥的计算,解题的关键是牢记有关的公式.
类型三、组合图形面积的计算
4.(2015•槐荫区三模)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,∠CDB=30°,CD=2,求图中阴影部分的面积.
【答案与解析】
解:∵AB是⊙O的直径,弦CD⊥AB,
∴CE=.
∵∠CDB=30°,
∴∠COE=60°,
在Rt△OEC中,OC==2,
∵CE=DE,
∠COE=∠DBE=60°
∴Rt△COE≌Rt△DBE,
∴S阴影=S扇形OBC=π×OC2=π×4=π.
【总结升华】本题考查了垂径定理,扇形的面积等,解此题的关键是求出扇形和三角形的面积.。