偏最小二乘法的应用
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
偏最小二乘法的应用
最小二乘法(Ordinary Least Square,OLS)是统计学和线性代数关于最小化损失函数的一种方法,它的核心在于通过最小化误差的平方来拟合数据。
偏最小二乘法(Partial Least Squares, PLS)是一种比OLS改进的拟合方法,主要用于多变量分析中的回归分析,它比OLS更有效的解决了多变量依赖的问题。
PLS是一种把多个自变量当作综合变量来进行回归分析,它把自变量之间的相关性从模型式中除去,从而得到一种更加有效且能将变量和结果更有效地关联的模型,通过分量回归可以做出更准确更易理解的模型。
应用场景:
1. 利用现有的产品评价调查数据,建立一个有效的模型来判断产品的市场接受度,来分析客户行为;
2. 利用包含有因素和指标的客户账户数据,来构建一个模型来预测客户行为,即客户消费偏好;
3. 利用多自变量的市场数据来研究产品定价策略,以便确定最好的定价;
4. 从市场调查中,从多自变量中挖掘出有用的数据,从而进行新产品的开发研究;
5. 借由偏最小二乘法建立模型,估计新的市场的需求量,以便更好地进行水泥厂的销售计划。