高三数学错题5

合集下载

高三数学学习中的错题集锦与解题思路

高三数学学习中的错题集锦与解题思路

高三数学学习中的错题集锦与解题思路数学在高中阶段是一门重要的学科,也是许多学生感到困惑的科目之一。

高三阶段对于学生来说尤其重要,因为这一年是他们备战高考的关键时刻。

然而,在学习过程中,同学们免不了会遇到一些难以解答的数学问题,这就是所谓的错题。

为了帮助大家更好地理解和解决高三数学学习中的错题,本文将给出一些常见错题的集锦,并提供相应的解题思路。

1. 一次函数相关错题在解决一次函数相关的错题时,我们通常会遇到以下问题:(1)如何确定直线的斜率?答:直线的斜率可以通过计算两个点的坐标差值来求得。

设直线上两点为(x₁,y₁)和(x₂,y₂),则直线的斜率k可以表示为k=(y₂-y₁)/(x₂-x₁)。

例如,对于一条直线过点(2,3)和(6,4),我们可以计算斜率k=(4-3)/(6-2)=1/4。

(2)如何确定直线的解析式?答:通过已知直线上的一点和斜率,可以确定直线的解析式。

设直线的斜率为k,直线上一点的坐标为(x₁,y₁),则直线的解析式为y-y₁=k(x-x₁)。

(3)如何确定直线与坐标轴的交点?答:要确定直线与x轴的交点,只需令y=0,并解方程求得交点的x坐标。

同理,要确定直线与y轴的交点,只需令x=0,并解方程求得交点的y坐标。

2. 平面几何相关错题平面几何是高中数学中的重点内容之一,也是同学们容易出错的部分。

下面我们来看几个常见的平面几何错题及解题思路。

(1)如何判断两条直线是否平行?答:两条直线平行的条件是斜率相同。

若已知两条直线的解析式为y₁=k₁x₁+b₁和y₂=k₂x₂+b₂,那么只需判断k₁是否等于k₂即可,若相等则两条直线平行。

(2)如何判断两条直线是否垂直?答:两条直线垂直的条件是斜率的乘积为-1。

若已知两条直线的解析式为y₁=k₁x₁+b₁和y₂=k₂x₂+b₂,那么只需判断k₁与k₂的乘积是否为-1即可,若成立则两条直线垂直。

(3)如何判断一个点是否在直线上?答:对于已知直线的解析式为y=kx+b,若一个点(x₀,y₀)在该直线上,则满足该点的横坐标x₀代入方程后,等式成立,即y₀=kx₀+b。

高中数学错题集及解析

高中数学错题集及解析

高中数学错题集及解析1. 题目:如图所示,已知AD∥CF,DE∥CF,∠ADE=40°,∠FCD=120°,求∠BCF的度数。

A B C DE F解析:根据题目所给的已知条件,我们可以得到如下信息:AD∥CF,DE∥CF,∠ADE=40°,∠FCD=120°。

要求∠BCF的度数,我们可以利用几何知识进行推理和计算。

首先,根据平行线的性质,我们知道∠ADE=∠FCD=40°。

由于∠FCD=120°,所以∠DCF=180°-120°=60°。

接下来,我们观察四边形ADCF,可以发现∠CAF和∠ADF是对顶角,因此它们的度数相等。

∠ADE和∠DCF是共顶角,它们的度数也相等。

由此,我们可以得到以下等式:∠CAF=∠ADF=40°∠ADE=∠DCF=60°现在我们来考虑三角形BCF。

已知∠CAF=∠ADF=40°,∠BCF为所求。

我们知道,三角形内角和为180°,因此有:∠CAF+∠ADF+∠BCF=180°带入已知信息,得到:40°+40°+∠BCF=180°化简得:80°+∠BCF=180°再进一步,我们可以得到:∠BCF=180°-80°∠BCF=100°因此,∠BCF的度数为100°。

2. 题目:已知函数f(x)=2x^3-3x^2+x-5,求f(-1)和f(2)的值。

解析:我们可以使用给定的函数,将x的值代入函数中进行计算,从而得到f(x)的值。

首先,计算f(-1)的值。

将x=-1代入函数f(x)中,有:f(-1)=2(-1)^3-3(-1)^2+(-1)-5化简得:f(-1)=-2-3+(-1)-5=-2-3-1-5=-11因此,f(-1)的值为-11。

接下来,计算f(2)的值。

2018届高三理科数学(新课标卷)优质错题重组卷第5套含解析

2018届高三理科数学(新课标卷)优质错题重组卷第5套含解析

2018届高三理科数学(新课标卷)优质错题重组卷5一、选择题1.集合()}2{|lg 1, M y y x x R ==+∈,集合}{|44, x N x x R =>∈,则M N ⋂等于 A. ()1,-+∞ B. ()1,+∞ C. ()1,1- D. (),1-∞2. 已知复数201811i zi i +⎛⎫= ⎪-⎝⎭(i 为虚数单位),则z 的虚部( )A. 1B. -1C. iD. -i3. 如图所示,三国时代数学家赵爽在《周髀算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含 四个全等的直角三角形及一个小正方形(阴影)。

设 直角三角形有一内角为30︒,若向弦图内随机抛掷 1000颗米粒(大小忽略不计),则落在小正方形(阴影) 内的米粒数大约为( )A. 134B. 866C. 300D. 5004.在等比数列{}n a 中, 11a =, 32a =,则7a =( ) A. 8- B. 8 C. 8或8- D. 16或16- 5. 函数()sin xy ex ππ=-≤≤的大致图像为( )A. B.C.D.6. 将函数()()1cos 2()42f x x πθθ=+<的图像向右平移512π个单位后得到函数()g x 的图像,若()g x 的图像关于直线5x π=对称,则θ=( )A.730π B. 1330π C. 1130π D. 1730π7. 设实数,,a b c 满足: 221log 332,,ln a b a c a --===,则,,a b c 的大小关系为A. c<a <bB. c<b< aC. a <c<bD. b<c< a 8. 某几何体的三视图如图所示,则该几何体的体积是( )A.2B. C.2 D. 49. 执行如图所示的程序框图,如果输出s =4,那么判断框内应填入的条件是( )A. k ≤ 14?B. k ≤ 15?C. k ≤ 16?D. k ≤ 17?10.已知P 为ABC ∆所在平面内一点, 0AB PB PC ++=, 2AB PB PC ===,则ABC ∆的面积等于( )A.B. C. D. 11. 已知双曲线C : 22221x y a b-=(0a >, 0b >),1F , 2F 分别为其左、右焦点, O 为坐标原点,若点2F 关于渐近线的对称点恰好落在以1F 为圆心, 1OF 为半径的圆上,则双曲线C 的离心率是( )A.B. C. 2 D. 312. 如图所示,在正四面体A BCD -中, E 是棱AD的中点, P 是棱AC 上一动点, BP PE +的最小值,则该正四面体的外接球的体积是( )A.B. 6πC.D. 32π 二、填空题13. 设,x y 满足约束条件0{40 3120x y x y x y -≥+-≥--≥,则2z x y =-的最小值为__________.14. 多项式121nx x ⎛⎫-+ ⎪⎝⎭展开式中所有项的系数之和为64,则该展开式中的常数项为__________.15.已知抛物线C : 22y px =(0p >)的焦点为F ,准线l : 54x =-,点M 在抛物线C 上,点A 在准线l 上,若MA l ⊥,直线AF 的倾斜角为3π,则MF =__________. 16. 已知数列{}n a 共有26项,且11a =, 2620a =, ()111,2,,25k k a a k +-==,则满足条件的不同数列{}n a 有__________ 个. 三、解答题17. ABC ∆的内角A , B , C 的对边分别为a , b , c ,已知()2232b c a bc -=-. (1)求sin A ;(2)若2a =,且sin B , sin A , sin C 成等差数列,求ABC ∆的面积. 18. 如图,在菱形ABCD 中, 3BAD π∠=,ED ⊥平面ABCD ,EF DB , M 是 线段AE 的中点, 12DE EF BD ==. (1)证明: DM 平面CEF ;(2)求直线DM 与平面DEF 所成角的正弦值. 19. 某地区某农产品近几年的产量统计如下表:(1)根据表中数据,建立y 关于x 的线性回归方程ˆˆˆybt a =+; (2)若近几年该农产品每千克的价格v (单位:元)与年产量y 满足的函数关系式为 4.50.3v y =-,且每年该农产品都能售完.①根据(1)中所建立的回归方程预测该地区()20187t =年该农产品的产量; ②当()17t t ≤≤为何值时,销售额S 最大? 附:对于一组数据()()()1122,,,,,,n n t y t y t y ,其回归直线ˆˆˆybt a =+的斜率和截距的最小二乘估计分别为: ()()()121ˆni i i n i i t t y y b t t ==--=-∑∑, ˆˆa y bt =-. 20. 在平面直角坐标系中,点P 为曲线C 上任意一点,且P 到定点()1,0F 的距离比到y 轴的距离多1. (1)求曲线C 的方程;(2)点M 为曲线C 上一点,过点M 分别作倾斜角互补的直线MA , MB 与曲线C 分别交于A , B 两点,过点F 且与AB 垂直的直线l 与曲线C 交于D , E 两点,若8DE =,求点M 的坐标. 21. 已知函数()22321xf x e x x b =+-++, x R ∈的图象在0x =处的切线方程为2y ax =+.(1)求函数()f x 的单调区间与极值;(2)若存在实数x ,使得()223220f x x x k =----≤成立,求整数k 的最小值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,已知直线l :12{ 3x ty =-=(t 为参数),以坐标原点O 为极点, x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4sin 3πρθ⎛⎫=+ ⎪⎝⎭. (1)求曲线C 的直角坐标方程; (2)设点M 的极坐标为3,2π⎛⎫⎪⎝⎭,直线l 与曲线C 的交点为A , B ,求MA MB + 的值. 23.选修4-5:不等式选讲已知函数()12f x x x =++-的最小值为a (1)求实数a 的值; (2)若,,x y z R +∈,且11135a x y z++=,求证: 353x y z ++≥.1.B 【解析】集合()}{}2{|lg 1, |0,M y y x x R y y ==+∈=≥ 集合}{}{|44, 1x N x x R x x =>∈=,则{}()|11,M N x x ⋂=>=+∞,故选B.2.A 【解析】()()()()11121112i i i i i i i i +++===---+-, ()()201810092018201821111i i i i z i i i +-⎛⎫=-===-∴== ⎪-⎝⎭所以z 的虚部为1,故选A4. B 【解析】等比数列{}n a 中, 11a =, 32a =, 242732228q a a q ∴=∴==⨯= ,故选B5. D 【解析】由函数()sin ,xy ex ππ=-≤≤不是偶函数,排除A 、C ;当,22x ππ⎡⎤∈-⎢⎥⎣⎦时, sin y x =为单调递增函数,而外层函数xy e =也是增函数,所以()sin ,xy ex ππ=-≤≤在,22x ππ⎡⎤∈-⎢⎥⎣⎦上为增函数,故选D.6. B 【解析】将函数()()12()42f x cos x πθθ=+<的图像向右平移512π个单位后可得函数的解析式为: ()1515cos 2cos 241246g x x x ππθθ⎡⎤⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,()g x 的图像关于直线5x π=对称,则: ()2556k k Z ππθπ-+=∈,即: ()1330k k Z πθπ=+∈,令0k =可得: 1330πθ=.本题选择B 选项. 7. A 【解析】由题意得22223log 1log 33222222,1,ln 03333a b c --⎛⎫⎛⎫====>==< ⎪ ⎪⎝⎭⎝⎭,所以c a b <<。

(完整版)高中数学易错题

(完整版)高中数学易错题

高中数学易错题数学概念的理解不透必修一(1)若不等式ax 2+x+a <0的解集为 Φ,则实数a 的取值范围( ) A.a ≤-21或a ≥21 B.a <21 C.-21≤a ≤21 D.a ≥ 21【错解】选A.由题意,方程ax 2+x+a=0的根的判别式20140a ∆<⇔-<⇔ a ≤-21或a ≥21,所以选A.【正确解析】D .不等式ax 2+x+a <0的解集为 Φ,若a=0,则不等式为x<0解集不合已知条件,则a 0≠;要不等式ax 2+x+a <0的解集为 Φ,则需二次函数y=ax 2+x+a 的开口向上且与x 轴无交点,所以a>0且20140120a a a ⎧∆≤⇔-≤⇔≥⎨>⎩.必修一(2)判断函数f(x)=(x -1)xx-+11的奇偶性为____________________【错解】偶函数.f(x)=(x -===,所以()()f x f x -===,所以f (x )为偶函数.【正解】非奇非偶函数.y=f(x)的定义域为:(1)(1)01011101x x xx x x +-≥⎧+≥⇔⇔-≤<⎨-≠-⎩,定义域不关于原点对称,所以此函数为非奇非偶函数.1) 必修二(4)1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是( ) (A)12l l ⊥,23l l ⊥13//l l ⇒ (B )12l l ⊥,3//l l ⇒13l l ⊥(C)123////l l l ⇒ 1l ,2l ,3l 共面 (D )1l ,2l ,3l 共点⇒1l ,2l ,3l 共面 【错解】错解一:选A.根据垂直的传递性命题A 正确; 错解二:选C.平行就共面;【正确解答】选B.命题A 中两直线还有异面或者相交的位置关系;命题C 中这三条直线可以是三棱柱的三条棱,因此它们不一定共面;命题D 中的三条线可以构成三个两两相交的平面,所以它们不一定共面.必修五(5)x=ab 是a 、x 、b 成等比数列的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件 【错解】C.当.x=ab 时,a 、x 、b 成等比数列成立;当a 、x 、b 成等比数列时,x=ab 成立 .【正确解析】选D.若x=a=0,x=ab 成立,但a 、x 、b 不成等比数列, 所以充分性不成立;反之,若a 、x 、b成等比数列,则2x ab x =⇔=x=ab 不一定成立,必要性不成立.所以选D.排列组合(6)(1)把三枚硬币一起掷出,求出现两枚正面向上,一枚反面向上的概率. 分析:(1)【错解】三枚硬币掷出所有可能结果有2×2×2=8种,而出现两正一反是一种结果,故所求概率P=.81【正解】在所有的8种结果中,两正一反并不是一种结果,而是有三种结果:正、正、反,正、反、正,反、正、正,因此所求概率,83=P 上述错解在于对于等可能性事件的概念理解不清,所有8种结果的出现是等可能性的,如果把上述三种结果看作一种结果就不是等可能性事件了,应用求概率的基本公式n m P =自然就是错误的.公式理解与记忆不准(7)若1,0,0=+>>y x y x ,则yx41+的最小值为___________.【错解】 y x 41+8)2(14422=+≥≥y x xy ,错解原因是忽略等号成立条件. 【正解】yx 41+=945)(4≥++=+++yx xy yy x xy x(8)函数y=sin 4x+cos 4x -43的相位____________,初相为__________ .周期为_________,单调递增区间为____________.【错解】化简y=sin 4x+cos 4x -43=1cos 44x ,所以相位为4x ,初相为0,周期为2π,增区间为….【正确解析】y=sin 4x+cos 4x -43=11cos 4sin(4)442x x π=+.相位为42x π+,初相为2π,周期为2π,单调递增区间为21[,]()42k k k Z ππ-∈. 审题不严 (1)读题不清必修五(9)已知()f x 是R 上的奇函数,且当0x >时,1()()12x f x =+,则()f x 的反函数的图像大致是【错解】选B.因为1()2x y =在0x >内递减,且1()()12x f x =+过点(0,2),所以选B. 【正确解答】A .根据函数与其反函数的性质,原函数的定义域与值域同其反函数的值域、定义域相同.当10,0()1,122x x y ><<⇒<<,所以选A.或者首先由原函数过点(0,2),则其反函数过点(2,0),排除B 、C ;又根据原函数在0x >时递减,所以选A. 排列组合(10)一箱磁带最多有一盒次品.每箱装25盒磁带,而生产过程产生次品磁带的概率是0.01.则一箱磁带最多有一盒次品的概率是 .【错解】一箱磁带有一盒次品的概率240.01(10.01)⨯-,一箱磁带中无次品的概率25(10.01)-,所以一箱磁带最多有一盒次品的概率是240.01(10.01)⨯-+25(10.01)-.【正确解析】一箱磁带有一盒次品的概率124250.01(10.01)C ⋅⨯-,一箱磁带中无次品的概率02525(10.01)C ⋅-,所以一箱磁带最多有一盒次品的概率是124250.01(10.01)C ⋅⨯-+02525(10.01)C ⋅-.(2)忽视隐含条件必修一(11)设βα、是方程0622=++-k kx x 的两个实根,则22)1()1(-+-βα的最小值是( )不存在)D (18)C (8)B (449)A (-【错解】利用一元二次方程根与系数的关系易得:,6,2+==+k k αββα2222(1)(1)2121αβααββ∴-+-=-++-+2()22()2αβαβαβ=+--++23494().44k =--选A.【正确解析】利用一元二次方程根与系数的关系易得:,6,2+==+k k αββα2222(1)(1)2121αβααββ∴-+-=-++-+2()22()2αβαβαβ=+--++23494().44k =--Θ 原方程有两个实根βα、,∴0)6k (4k 42≥+-=∆ ⇒.3k 2k ≥-≤或当3≥k 时,22)1()1(-+-βα的最小值是8;当2-≤k 时,22)1()1(-+-βα的最小值是18.选B. 必修一(12)已知(x+2)2+ y 24=1, 求x 2+y 2的取值范围.【错解】由已知得 y 2=-4x 2-16x -12,因此 x 2+y 2=-3x 2-16x -12=-3(x+38)2+328, ∴当x=-83 时,x 2+y 2有最大值283 ,即x 2+y 2的取值范围是(-∞, 283].【正确解析】由已知得 y 2=-4x 2-16x -12,因此 x 2+y 2=-3x 2-16x -12=-3(x+38)2+328 由于(x+2)2+ y 24 =1 ⇒ (x+2)2=1- y 24≤1 ⇒ -3≤x ≤-1,从而当x=-1时x 2+y 2有最小值1.∴ x 2+y 2的取值范围是[1, 283 ].(此题也可以利用三角函数和的平方等于一进行求解)必修一(13) 方程1122log (95)log (32)20x x ------=的解集为___________________- 【错解】111122222log (95)log (32)20log (95)log (32)log 40x x x x --------=⇔----=11111122log (95)log 4(32)954(32)(31)(33)0x x x x x x -------=-⇔-=-⇔--=1310x --=或1330x --=所以x=1或x=2.所以解集为{1,2}.【正解】111122222log (95)log (32)20log (95)log (32)log 40x x x x --------=⇔----=111111221954(32)log (95)log 4(32)3203302950x x x x x x x x -------⎧-=-⎪-=-⇔->⇔-=⇔=⎨⎪->⎩所以解集为{2}.字母意义含混不清(14)若双曲线22221x y a b -=-的离心率为54,则两条渐近线的方程为( )A.0916x y ±= B.0169x y ±= C.034x y ±= D.043x y±= 【错解】选D.22222222252593310416164443c c a b b b b x y e y x a a a a a a +==⇒===+⇒=⇒=±⇒=±⇒±=,选D. 【正确解析】2222222211x y y x a b b a-=-⇒-=,与标准方程中字母a,b 互换了.选C.4.运算错误(1)数字与代数式运算出错若)2,1(),7,5(-=-=b a ρρ,且(b a ρρλ+)b ρ⊥,则实数λ的值为____________.【错解】(5,72)a b λλλ+=--+r r ,则(b a ρρλ+)()052(72)03b a b b λλλλ⊥⇔+⋅=⇔-+-+=⇒=r r r r.【正确解析】(5,72)a b λλλ+=--+r r,(ba ρρλ+)19()052(72)05b a b b λλλλ⊥⇔+⋅=⇔-+-+=⇒=r r r r必修二18. 已知直线l 与点A (3,3)和B (5,2)的距离相等,且过二直线1l :3x -y -1=0和2l:x+y-3=0的交点,则直线l的方程为_______________________【错解】先联立两直线求出它们交点为(1,2),设所求直线的点斜式,再利用A、B到12k=⇔=-,所以所求直线为x+2y-5=0.【正确解析】x-6y+11=0或x+2y-5=0.联立直线1l:3x-y-1=0和2l:x+y-3=0的方程得它们的交点坐标为(1,2),令过点(1,2)的直线l为:y-2=k(x-1)(由图形可看出直线l的斜率必然存在),11,62k k=⇔==-,所以直线l的方程为:x-6y+11=0或x+2y-5=0.(2)运算方法(如公式、运算程序或运算方向等)选择不当导致运算繁杂或不可能得解而出错必修二19. 已知圆(x-3)2+y2=4和直线y=mx的交点分别为P,Q两点,O为坐标原点,则OQOP⋅的值为.【运算繁杂的解法】联立直线方程y=mx与圆的方程(x-3)2+y2=4消y,得关于x的方程22(1)650m x x+-+=,令1122(,),(,)P x y Q x y,则12122265,11x x x xm m+=⋅=++,则221212251my y m x xm==+,由于向量OPuuu r与向量OQuuu r共线且方向相同,即它们的夹角为0,所以212122255511mOP OQ OP OQ x x y ym m⋅=⋅=+=+=++u u u r u u u r.【正确解析】根据圆的切割线定理,设过点O的圆的切线为OT(切点为T),由勾股定理,则222325OP OQ OT⋅==-=.(3)忽视数学运算的精确性,凭经验猜想得结果而出错曲线x2-122=y的右焦点作直线交双曲线于A、B两点,且4=AB,则这样的直线有___________条.【错解】4条.过右焦点的直线,与双曲线右支交于A、B时,满足条件的有上、下各一条(关于x轴对称);与双曲线的左、右分别两交于A、B两点,满足条件的有上、下各一条(关于x 轴对称),所以共4条.【正解】过右焦点且与X 轴垂直的弦AB (即通径)为222241b a ⨯==,所以过右焦点的直线,与双曲线右支交于A 、B 时,满足条件的仅一条;与双曲线的左、右分别两交于A 、B 两点,满足条件的有上、下各一条(关于x 轴对称),所以共3条. 5.数学思维不严谨(1)数学公式或结论的条件不充分24.已知两正数x,y 满足x+y=1,则z=11()()x y x y++的最小值为 .【错解一】因为对a>0,恒有12a a +≥,从而z=11()()x y x y++≥4,所以z 的最小值是4.【错解二】22222()2x y xy z xy xy xy +-==+-≥21)-=,所以z 的最小值是1). 【正解】z=11()()x y x y ++=1y xxy xy x y+++=21()222x y xy xy xy xy xy xy +-++=+-,令t=xy, 则210()24x y t xy +<=≤=,由2()f t t t =+在10,4⎛⎤⎥⎝⎦上单调递减,故当t=14时 2()f t t t =+有最小值334,所以当12x y ==时z 有最小值334.(2)以偏概全,重视一般性而忽视特殊情况必修一(1)不等式|x+1|(2x -1)≥0的解集为____________解析:(1)【错解】1[,)2+∞.因为|x+1|≥0恒成立,所以原不等式转化为2x-1≥0,所以1[,)2x ∈+∞【正确解析】}1{),21[-⋃+∞.原不等式等价于|x+1|=0或2x-1≥0,所以解集为1[,){1}2x ∈+∞⋃-.必修一(2)函数y =的定义域为 .(2) 【错解】10(1)(1)011x x x x x+≥⇒+-≥⇒≥-或1x ≤-.【正解】(1)(1)0(1)(1)010111011x x x x x x x x x+-≥+-≤⎧⎧+≥⇒⇒⇒-≤<⎨⎨-≠≠-⎩⎩(3)解题时忽视等价性变形导致出错 27.已知数列{}n a 的前n 项和12+=n n S ,求.n a【错解】 .222)12()12(1111----=-=+-+=-=n n n n n n n n S S a 【正确解析】当1=n 时,113a S ==,n 2≥时,1111(21)(21)222nn n n n n n n a S S ----=-=+-+=-=.所以13(1)2(2)n n n a n -⎧=⎪=⎨≥⎪⎩.选修实数a 为何值时,圆012222=-+-+a ax y x 与抛物线x y 212=有两个公共点. 【错解】 将圆012222=-+-+a ax y x 与抛物线 x y 212=联立,消去y , 得 ).0(01)212(22≥=-+--x a x a x ①因为有两个公共点,所以方程①有两个相等正根,得⎪⎪⎩⎪⎪⎨⎧>->-=∆.01021202a a , 解之得.817=a【正确解析】要使圆与抛物线有两个交点的充要条件是方程①有一正根、一负根;或有两个相等正根.当方程①有一正根、一负根时,得⎩⎨⎧<->∆.0102a 解之,得.11<<-a因此,当817=a 或11<<-a 时,圆012222=-+-+a ax y x 与抛物线x y 212=有两个公共点.(1)设等比数列{}n a 的全n 项和为n S .若9632S S S =+,求数列的公比q .【错解】 ,2963S S S =+Θq q a q q a q q a --⋅=--+--∴1)1(21)1(1)1(916131, .012(363)=整理得--q q q1q 24q ,0)1q )(1q 2(.01q q 20q 33336=-=∴=-+∴=--≠或得方程由.【正确解析】若1=q ,则有.9,6,3191613a S a S a S ===但01≠a ,即得,2963S S S ≠+与题设矛盾,故1≠q .又依题意 963S 2S S =+ ⇒ q q a q q a q q a --⋅=--+--1)1(21)1(1)1(916131 ⇒ 01q q 2(q 363)=--,即,0)1)(12(33=-+q q 因为1≠q ,所以,013≠-q 所以.0123=+q 解得 .243-=q空间识图不准必修二直二面角α-l -β的棱l 上有一点A ,在平面α、β内各有一条射线AB ,AC 与l 成450,AB βα⊂⊂AC ,,则∠BAC= .【错解】如右图.由最小角定理,12221cos cos cos 23BAC BAC πθθ∠=⋅=⨯=⇒∠=. 【正确解析】3π或23π.如下图.当6CAF π∠=时,由最小角定理,时,12221cos cos cos 2223BAC BAC πθθ∠=⋅=⨯=⇒∠=;当AC 在另一边DA 位置23BAC π∠=.。

高三数学错题整理与解析

高三数学错题整理与解析

高三数学错题整理与解析在高三数学学习过程中,学生经常会遇到各种错题。

对于这些错题,我们需要进行仔细的整理与解析,以提高学生的数学水平。

本文将对高三数学错题进行整理分类,并给出详细的解答和解析。

一、代数与函数1. 题目:已知函数$f(x) = \frac{1}{x}$,求函数$f(f(x))$的表达式。

解析:将$f(x) = \frac{1}{x}$代入$f(f(x))$中,得到$f(f(x)) =\frac{1}{f(x)} = \frac{1}{\frac{1}{x}} = x$。

2. 题目:已知二次函数$f(x) = ax^2 + bx + c$的图像关于$x$轴对称,且顶点在直线$y = 2x + 1$上。

求$a$、$b$、$c$的值。

解析:由于图像关于$x$轴对称,所以顶点的纵坐标为0。

将顶点的横坐标代入直线方程$y = 2x + 1$中,得到$0 = 2x_0 + 1$,解得$x_0 = -\frac{1}{2}$。

将$x_0 = -\frac{1}{2}$代入二次函数$f(x)$中的横坐标,得到$a\left(-\frac{1}{2}\right)^2 + b\left(-\frac{1}{2}\right) + c = 0$。

根据顶点坐标的性质,我们知道顶点的横坐标为$-\frac{b}{2a}$,因此$-\frac{b}{2a} = -\frac{1}{2}$,解得$b = a$。

将$b = a$代入上述方程,得到$a\left(-\frac{1}{2}\right)^2 + a\left(-\frac{1}{2}\right) + c = 0$,整理得$c = \frac{1}{4}$。

综上所述,$a = b$,$c = \frac{1}{4}$。

二、几何与三角学1. 题目:已知$\triangle ABC$中,$AB = 7$,$AC = 9$,$BC = 5$,$D$为边$BC$上一点,且$\angle BAD = \angle CAD$。

2020-2021学年高三数学一轮复习易错题05 三角函数与解三角形

2020-2021学年高三数学一轮复习易错题05 三角函数与解三角形

易错点05 三角函数与解三角形—备战2021年高考数学一轮复习易错题【典例分析】例1 (2020年普通高等学校招生全国统一考试数学)下图是函数y = sin(ωx +φ)的部分图像,则sin(ωx +φ)= ( )A. πsin(3x +)B. πsin(2)3x - C. πcos(26x +)D.5πcos(2)6x -【答案】BC 【解析】 【分析】首先利用周期确定ω的值,然后确定ϕ的值即可确定函数的解析式,最后利用诱导公式可得正确结果.【详解】由函数图像可知:22362T πππ=-=,则222T ππωπ===,所以不选A, 当2536212x πππ+==时,1y =-∴()5322122k k Z ππϕπ⨯+=+∈, 解得:()223k k ϕππ=+∈Z,即函数的解析式为:2sin 22sin 2cos 2sin 236263y x k x x x ππππππ⎛⎫⎛⎫⎛⎫⎛⎫=++=++=+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.而5cos 2cos(2)66x x ππ⎛⎫+=-- ⎪⎝⎭ 故选:BC.【点睛】已知f (x )=Asin (ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)由ω=2Tπ即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求. 例2 (2020年普通高等学校招生全国统一考试数学) 某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC =35,BH DG ∥,EF =12 cm ,DE=2 cm ,A 到直线DE 和EF 的距离均为7 cm ,圆孔半径为1 cm ,则图中阴影部分的面积为________cm 2.【答案】542π+【解析】 【分析】利用3tan 5ODC ∠=求出圆弧AB 所在圆的半径,结合扇形的面积公式求出扇形AOB 的面积,求出直角OAH △的面积,阴影部分的面积可通过两者的面积之和减去半个单位圆的面积求得.【详解】设==OB OA r ,由题意7AM AN ==,12EF =,所以5NF =, 因为5AP =,所以45AGP ︒∠=,因为//BH DG ,所以45AHO ︒∠=,因为AG 与圆弧AB 相切于A 点,所以OA AG ⊥, 即OAH △为等腰直角三角形;在直角OQD △中,52OQ r =-,72DQ r =-,因为3tan 5OQ ODC DQ ∠==,所以212522-=-,解得r =等腰直角OAH △的面积为1142S =⨯=;扇形AOB 的面积(2213324S ππ=⨯⨯=,所以阴影部分的面积为1215422S S ππ+-=+.故答案为:542π+.【点睛】本题主要考查三角函数在实际中应用,把阴影部分合理分割是求解的关键,以劳动实习为背景,体现了五育并举的育人方针.例3 (2020年普通高等学校招生全国统一考试数学)在①ac =②sin 3c A =,③=c 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在ABC ,它的内角,,A B C 的对边分别为,,a b c ,且sin 3sin AB ,6C π=,________?注:如果选择多个条件分别解答,按第一个解答计分. 【答案】详见解析 【解析】 【分析】解法一:由题意结合所给的条件,利用正弦定理角化边,得到a ,b 的比例关系,根据比例关系,设出长度长度,由余弦定理得到c 的长度,根据选择的条件进行分析判断和求解.解法二:利用诱导公式和两角和的三角函数公式求得tanA 的值,得到角,,A B C 的值,然后根据选择的条件进行分析判断和求解.【详解】解法一:由sin 3sin A B 可得:ab=不妨设(),0a b m m =>,则:2222222cos 32c a b ab C m m m m =+-=+-⨯=,即c m =. 选择条件①的解析:据此可得:2ac m =⨯==,1m ∴=,此时1c m ==. 选择条件②的解析:据此可得:222222231cos 222b c a m m m A bc m +-+-===-,则:sin 2A ==,此时:sin 32c A m =⨯=,则:c m ==选择条件③的解析:可得1c mb m==,c b =,与条件=c 矛盾,则问题中的三角形不存在.解法二:∵(),,6sinA C B A C ππ===-+,∴()6sinA A C A π⎛⎫=+=+⎪⎝⎭,()1?2sinA A C =+= ,∴sinA =,∴tanA =23A π=,∴6B C π==,若选①,ac =,∵a ==2=1;若选②,3csinA =,3=,c =;若选③,与条件=c 矛盾.【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.【易错警示】易错点1 角的概念不清例1 若α、β为第三象限角,且βα>,则( )A .βαcos cos >B .βαcos cos <C .βαcos cos =D .以上都不对 【错解】A【错因】角的概念不清,误将象限角看成类似)23,(ππ区间角. 【正解】如取34,672πβππα=+=,可知A 不对.用排除法,可知应选D . 易错点2 忽视对角终边位置的讨论致误 例2 若α的终边所在直线经过点33(cos,sin )44P ππ,则sin α= .【错解】∵33(cos,sin )(4422P ππ=-,所以sin 2α==. 【错因】忽略了对角终边的位置进行讨论【正解】∵直线经过二、四象限,又点P 在单位圆上,若α的终边在第二象限,则3sin sin42πα==,若α的终边在第四象限,∴sin 2α=-,综上可知sin 2α=±. 易错点3 忽视函数的定义域对角范围的制约致错 例3 求函数xxy 2tan 1tan 2-=的最小正周期.【错解】x x x y 2tan tan 1tan 22=-=,2π=∴T ,即函数的最小正周期为2π. 【错因】忽视其定义域导致错误,2π不是x x y 2tan 1tan 2-=的周期,因为当0=x 时,x x y 2tan 1tan 2-=有意义,所以由周期函数定义知应有)0()20(f f =+π成立,然而)20(π+f 根本无意义,故2π不是其周期. 【正解】由于函数x x y 2tan 1tan 2-=的定义域为)(4,2Z k k x k x ∈+≠+≠ππππ,故作出函数x y 2tan =的图象,可以看出,所求函数周期应为π.易错点4 对“诱导公式中的奇变偶不变,符号看象限理解不对”致误例4 若316sin =⎪⎭⎫⎝⎛-απ,则⎪⎭⎫ ⎝⎛+απ232cos =( ) A .97-B .31-C .31D .97 【错解一】⎪⎭⎫⎝⎛+απ232cos cos[(2)]3ππα=--sin(2)2sin()cos()366πππααα=-=--12(339=⨯⨯±=±,无答案.【错解二】227cos 2cos[(2)]cos(2)12sin ()33369ππππαπααα⎛⎫+=--=-=--=⎪⎝⎭,故选D .【错因】三角函数的诱导公式可简记为:“奇变偶不变,符号看象限”.这里的“奇、偶”指的是π2的倍数的奇偶;“变与不变”指的是三角函数的名称变化;“符号看象限”的含义是:在该题中把整个角(2)3πα-看作锐角时,(2)3ππα--所在象限的相应余弦三角函数值的符号.【正解】227cos 2cos[(2)]cos(2)12sin ()33369ππππαπααα⎛⎫+=--=--=-+-=- ⎪⎝⎭,故选A .易错点5 忽略隐含条件例5 若01cos sin >-+x x ,求的取值范围.【错解】 移项得1cos sin >+x x ,两边平方得)(222,02sin Z k k x k x ∈+<<>πππ那么即)(2Z k k x k ∈+<<πππ【错因】忽略了满足不等式的在第一象限,上述解法引进了1cos sin -<+x x .【正解】1cos sin >+x x 即1)4sin(2>+πx ,由22)4sin(>+πx 得 )(432442Z k k x k ∈+<+<+πππππ ∴)(222Z k k x k ∈+<<πππ易错点6 因“忽视三角函数中内层函数的单调性”致错例6 )23sin(2x y -=π单调增区间为( )A .5[,]1212k k ππππ-+,()k Z ∈ B .]1211,125[ππππ++k k ,()k Z ∈C .]6,3[ππππ+-k k ,()k Z ∈D .2[,]63k k ππππ++,()k Z ∈ 【错解】由题意,222232k x k πππππ-+≤-≤+()k Z ∈,解得521212k x k ππππ--≤≤-,所以)23sin(2x y -=π单调增区间为5[,]1212k k ππππ-+,()k Z ∈,故选A . 【错因】内层函数为减函数,因此不能直接套用sin y x =的单调性来求.【正解】∵sin(2)sin(2)33y x x ππ=-=--,即求函数sin(2)3y x π=-的减区间. 故函数)23sin(2x y -=π的增区间为]1211,125[ππππ++k k ,()k Z ∈,故选B .易错点7 图象变换知识混乱例7 要得到函数sin 23y x π⎛⎫=-⎪⎝⎭的图象,只需将函数1sin2y x =的图象( ) A .先将每个值扩大到原来的4倍,y 值不变,再向右平移3π个单位. B .先将每个值缩小到原来的14倍,y 值不变,再向左平移3π个单位. C .先把每个值扩大到原来的4倍,y 值不变,再向左平移个6π单位. D .先把每个值缩小到原来的14倍,y 值不变,再向右平移6π个单位. 【错解】A 、C 、B 【错因】1sin2y x =变换成sin 2y x =误认为是扩大到原来的倍,这样就误选A 或C ;把sin 2y x =平移到sin 23y x π⎛⎫=- ⎪⎝⎭平移方向错了,平移的单位误认为是3π,误选B .【正解】由1sin2y x =变形为sin 23y x π⎛⎫=- ⎪⎝⎭常见有两种变换方式,一种先进行周期变换,即将1sin2y x =的图象上各点的纵坐标不变,横坐标变为原来的14倍得到函数sin 2y x =的图象,再将函数sin 2y x =的图象纵坐标不变,横坐标向右平移6π单位.即得函数sin 23y x π⎛⎫=- ⎪⎝⎭,故选D .易错点8 已知条件弱用例8 在不等边△ABC 中,a 为最大边,如果a b c 222<+,求A 的取值范围.【错解】∵a b c b c a 2222220<++->,∴,则cos A b c a bc=+->22220, 由于cosA 在(0°,180°)上为减函数且cos900=°,90A <∴°,又∵A 为△ABC 的内角, ∴0°<A <90°.【错因】审题不细,已知条件弱用,题设是为最大边,而错解中只把看做是三角形的普通一条边,造成解题错误.【正解】由上面的解法,可得A <90°,又∵a 为最大边,∴A >60°, 因此得A 的取值范围是(60°,90°). 易错点9 三角变换不熟练例9 在△ABC 中,若a b AB 22=tan tan ,试判断△ABC 的形状.【错解】由正弦定理,得sin sin tan tan 22A B A B=,即sin sin sin cos cos sin sin sin 2200A B A ABB A B =>>·,∵,∴,即sin cos sin cos sin sin A A B B A B ==22.∴2A =2B,即A =B .故△ABC 是等腰三角形.【错因】由sin sin 22A B =,得2A =2B .这是三角变换中常见的错误,原因是不熟悉三角函数的性质,三角变换生疏.【正解】同上得sin sin 22A B =,∴2A =22k B π+,或222A k B k Z =+-∈ππ().∵000<<<<==A b k A B ππ,,∴,则或A B =-π2.故△ABC 为等腰三角形或直角三角形. 易错点10 解三角形时漏解例10 已知在△ABC 中,a =3,b =045,2=B ,求A ∠、C ∠和边c .【错解】由正弦定理BbA a sin sin =,得sinA =.23所以,︒=60A ,︒=︒︒︒=7560-45-180C ,所以,c =sin sin b C B =.【错因】上述解法中,用正弦定理求C 时,丢了一个解,实际上,由sinA =.23可得︒=60A 或︒=120A ,故︒=75A 或︒=15A .【正解】由正弦定理BbA a sin sin =,得sinA =.23因为,b a >,所以︒=60A 或︒=120A ,当︒=60A 时,︒=︒︒︒=7560-45-180C ,c =sin sin 2b C B =.当︒=120A 时,︒=︒︒︒=15120-45-180C ,c =sin sin b C B = 易错点11 不会应用正弦定理的变形公式例11 在△ABC 中,A =60°,b =1,S ABC △=3,求a b cA B C++++sin sin sin 的值.【错解】∵A =60°,b =1,S ABC △=3,又S ABC △=12bc A sin ,∴312=c sin 60°, 解得c =4.由余弦定理,得a b c bc A =+-=+-222116860cos cos °=13又由正弦定理,得sin sin C B ==6393239,. ∴a b cA B C++++=++++sin sin sin 1314323239639.【错因】公式不熟、方法不当,没有正确应用正弦定理.【正解】由已知可得c a ==413,.由正弦定理,得213602393R a A ===sin sin °. ∴a b c A B C R ++++==sin sin sin 22393.【变式练习】1.已知α为第三象限角,则2α是第 象限角,α2是第 象限角. 【解析】α 是第三象限角,即Z k k k ∈+<<+,2322ππαππ Z k k k ∈+<<+∴,4322ππαππ,Z k k k ∈+<<+,34224ππαππ 当为偶数时,2α为第二象限角;当为奇数时,2α为第四象限角; 而α2的终边落在第一、二象限或y 轴的非负半轴上. 2.函数y =sin x |sin x |+|cos x |cos x +tan x|tan x |的值域是( )A .{-1,1}B .{1,3}C .{1,-3}D .{-1,3}【解析】由条件知终边不能落在坐标轴上,故要分四种情况讨论:当的终边分别落在第一、二、三、四象限时,上述函数的值域为{-1,3}.故选D. 3.记cos(80)k -︒=,那么tan100︒=( )AB .CD .【解析】∵sin80°=,∴tan100°=-tan80°=-sin 80cos80︒︒=- sin 80cos(80)︒︒-=B . 4.已知()0,απ∈,7sin cos 13αα+=,求tan α的值. 【解析】据已知7sin cos 13αα+=(1),有1202sin cos 0169αα=-<,又由于()0,απ∈,故有sin 0,cos 0αα><,从而sin cos 0αα->即17sin cos 13αα-==(2),联立(1)、(2)可得125sin ,cos 1313αα==,可得12tan 5α=.5.若0x π≤≤,则函数sin cos 32y x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭的单调递增区间为 .【解析】x x x x x y sin sin 3cos cos 3sin 2cos 3sin ⎪⎭⎫⎝⎛+-=⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛+=ππππ2162sin 21-⎪⎭⎫ ⎝⎛--=πx ,所以由πππππk x k 2236222+≤-≤+,可得函数的的单调增区间z k k k ∈⎥⎦⎤⎢⎣⎡++,65,3ππππ,又因为π≤≤x 0,所以函数sin cos 32y x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭的单调递增区间为⎥⎦⎤⎢⎣⎡65,3ππ.6.要得到函数sin 2y x =的图象,只需将函数πcos(2)3y x =-的图象( )A .向右平移π6个单位长度 B .向左平移π6个单位长度 C .向右平移π12个单位长度 D .向左平移π12个单位长度 【解析】试题分析:函数⎪⎭⎫⎝⎛-==22cos 2sin πx x y ,将函数πcos(2)3y x =-的图象向右平移π12个单位长度得到⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=3122cos ππx y x x 2sin 22cos =⎪⎭⎫ ⎝⎛-=π,故答案为C .7.在ABC ∆中,30,2B AB ︒===.求ABC ∆的面积.【解析】根据正弦定理知:sin sin AB ACC B=,2sin 30︒=,得sin C =,由于sin30AB AC AB ︒<<即满足条件的三角形有两个故60C ︒=或120︒.则30A ︒=或90︒故相应的三角形面积为12sin 302s ︒=⨯⨯=122⨯=. 8.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则角C = .【解析】由正弦定理可得::7:8:13a b c =,所以可设7,8,9a k b k c k ===,由余弦定理()()()2222227891cos 22782k k k a b c C ab k k +-+-===-⨯⨯,所以23C π=.9.(2020·北京高考真题)在△ABC 中,a +b =11,再从条件①、条件②这两个条件中选择一个作为己知,求: (Ⅰ)a 的值:(Ⅱ)sinC 和△ABC 的面积.条件①:c =7,cosA =−17;条件②:cosA =18,cosB =916.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】选择条件①(Ⅰ)8(Ⅱ)sinC =√32, S =6√3;选择条件②(Ⅰ)6(Ⅱ)sinC =√74, S =15√74.【解析】选择条件①(Ⅰ)∵c =7,cosA =−17, a +b =11∵a 2=b 2+c 2−2bccosA ∴a 2=(11−a)2+72−2(11−a)⋅7⋅(−17)∴a =8(Ⅱ)∵cosA =−17,A ∈(0,π)∴sinA =√1−cos 2A =4√37由正弦定理得:asinA =csinC ∴4√37=7sinC ∴sinC =√32S =12basinC =12(11−8)×8×√32=6√3选择条件②(Ⅰ)∵cosA =18,cosB =916,A,B ∈(0,π)∴sinA =√1−cos 2A =3√78,sinB =√1−cos 2B =5√716由正弦定理得:asinA =bsinB ∴3√78=5√716∴a =6(Ⅱ)sinC =sin(A +B)=sinAcosB +sinBcosA =3√78×916+5√716×18=√74S =12basinC =12(11−6)×6×√74=15√7410.某地有三家工厂,分别位于矩形ABCD 的顶点A ,B ,及CD 的中点P 处,已知20AB =km,10km BC =,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且A ,B 与等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO ,BO ,OP ,设排污管道的总长为y km .(I)按下列要求写出函数关系式:①设(rad)BAO θ∠=,将y 表示成θ的函数关系式; ②设(km)OP x =,将y 表示成x 的函数关系式.(Ⅱ)请你选用(I)中的一个函数关系式,确定污水处理厂的位置,使三条排水管道总长度最短.【答案】(I )①2010sin 10(0)cos 4y θπθθ-=+<<②10)y x x =+<<(Ⅱ)选择函数模型①,P 位于线段AB 的中垂线上且距离AB 边km 3处. 【解析】(I )①由条件可知PQ 垂直平分AB ,(rad)BAO θ∠=,则10cos cos AQ OA BAO θ==∠故10cos OB θ=,又1010tan OP θ=-,所以 10101010tan cos cos y OA OB OP θθθ=++=++- 2010sin 10(0)cos 4θπθθ-=+<<.②(km)OP x =,则10OQ x =-,所以OA OB ===所以所求的函数关系式为10)y x x =+<<. (Ⅱ)选择函数模型①.22210cos (2010sin )(sin )10(2sin 1)cos cos y θθθθθθ-----=='. 令0y '=得1sin 2θ=,又04πθ<<,所以6πθ=. 当06πθ<<时,0y '<,y 是θ的减函数;64ππθ<<时,0y '>,y 是θ的增函数.所以当6πθ=时min 10y =.当P 位于线段AB 的中垂线上且距离AB 边km 3处. 【典例分析】1.【2020年高考全国Ⅰ卷理数】设函数π()cos()6f x x ω=+在[−π,π]的图像大致如下图,则f (x )的最小正周期为A .10π9 B .7π6 C .4π3D .3π2【答案】C【解析】由图可得:函数图象过点4,09π⎛⎫-⎪⎝⎭, 将它代入函数()f x 可得:4cos 096ωππ⎛⎫-⋅+= ⎪⎝⎭,又4,09π⎛⎫-⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点, 所以4962ωπππ-⋅+=-,解得32ω=.所以函数()f x 最小正周期为224332T ωπππ=== 故选C .【点睛】本题主要考查了三角函数的性质及转化能力,还考查了三角函数周期公式,属于中档题.2.【2020年高考全国Ⅰ卷理数】已知 π()0,α∈,且3cos28cos 5αα-=,则sin α= AB .23C .13D .9【答案】A【解析】3cos28cos 5αα-=,得26cos 8cos 80αα--=, 即23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去),又(0,),sin 3αα∈π∴==. 的故选:A .【点睛】本题考查三角恒等变换和同角间的三角函数关系求值,熟记公式是解题的关键,考查计算求解能力,属于基础题.3.【2020年高考全国Ⅱ卷理数】若α为第四象限角,则 A .cos2α>0 B .cos2α<0 C .sin2α>0D .sin2α<0【答案】D【解析】方法一:由α为第四象限角,可得3222,2k k k απ+π<<π+π∈Z , 所以34244,k k k απ+π<<π+π∈Z此时2α的终边落在第三、四象限及y 轴的非正半轴上,所以sin 20α<, 故选:D .方法二:当6απ=-时,cos 2cos 03απ⎛⎫=-> ⎪⎝⎭,选项B 错误; 当3απ=-时,2cos 2cos 03απ⎛⎫=-< ⎪⎝⎭,选项A 错误;由α在第四象限可得:sin 0,cos 0αα<>,则sin 22sin cos 0ααα=<,选项C 错误,选项D 正确; 故选:D .【点睛】本题主要考查三角函数的符号,二倍角公式,特殊角的三角函数值等知识,意在考查学生的转化能力和计算求解能力.4.【2020年高考全国III 卷理数】在△ABC 中,cos C =23,AC =4,BC =3,则cos B =A .19B .13C .12D .23【答案】A【解析】在ABC 中,2cos 3C =,4AC =,3BC =, 根据余弦定理:2222cos AB AC BC AC BC C =+-⋅⋅,2224322433AB =+-⨯⨯⨯,可得29AB = ,即3AB =,由22299161cos22339AB BC AC B AB BC +-+-===⋅⨯⨯,故1cos 9B =. 故选:A .5.【2020年高考全国Ⅲ卷理数】已知2tan θ–tan(θ+π4)=7,则tan θ= A .–2 B .–1C .1D .2【答案】D【解析】2tan tan 74πθθ⎛⎫-+= ⎪⎝⎭,tan 12tan 71tan θθθ+∴-=-,令tan ,1t t θ=≠,则1271tt t+-=-,整理得2440t t -+=,解得2t =,即tan 2θ=.故选:D .【点睛】本题主要考查了利用两角和的正切公式化简求值,属于中档题.6.【2020年高考北京】2020年3月14日是全球首个国际圆周率日(π Day).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达式是A . 30303sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭ B . 30306sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭ C . 60603sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭D . 60606sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭【答案】A【解析】单位圆内接正6n 边形的每条边所对应的圆周角为360606n n︒︒=⨯,每条边长为302sinn︒, 所以,单位圆的内接正6n 边形的周长为3012sinn n︒, 单位圆的外切正6n 边形的每条边长为302tann ︒,其周长为3012tan n n︒, 303012sin12tan 303026sin tan 2n n n n n n n π︒︒+︒︒⎛⎫∴==+ ⎪⎝⎭,则30303sintan n n n π︒︒⎛⎫=+ ⎪⎝⎭. 故选:A .【点睛】本题考查圆周率π的近似值的计算,根据题意计算出单位圆内接正6n 边形和外切正6n 边形的周长是解答的关键,考查计算能力,属于中等题.7.【2020年新高考全国Ⅰ卷】下图是函数y = sin(ωx +φ)的部分图像,则sin(ωx +φ)=A .πsin(3x +)B .πsin(2)3x - C .πcos(26x +) D .5πcos(2)6x -【答案】BC【解析】由函数图像可知:22362T πππ=-=,则222T ππωπ===,所以不选A, 当2536212x πππ+==时,1y =-∴()5322122k k Z ππϕπ⨯+=+∈, 解得:()223k k ϕππ=+∈Z , 即函数的解析式为:2sin 22sin 2cos 2sin 236263y x k x x x ππππππ⎛⎫⎛⎫⎛⎫⎛⎫=++=++=+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.而5cos 2cos(2)66x x ππ⎛⎫+=-- ⎪⎝⎭ 故选:BC .【点睛】已知f (x )=Asin (ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)由ω=2Tπ即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求. 8.【2020年高考全国Ⅰ卷理数】如图,在三棱锥P –ABC 的平面展开图中,AC =1,AB AD ==AB ⊥AC ,AB ⊥AD ,∠CAE =30°,则cos ∠FCB =______________.【答案】14-【解析】AB AC ⊥,AB =1AC =,由勾股定理得2BC ==,同理得BD =,BF BD ∴==在ACE △中,1AC =,AE AD ==,30CAE ∠=,由余弦定理得2222cos3013211CE AC AE AC AE =+-⋅=+-⨯=, 1CF CE ∴==,在BCF 中,2BC =,BF =1CF =,由余弦定理得2221461cos 22124CF BC BF FCB CF BC +-+-∠===-⋅⨯⨯.故答案为:14-. 【点睛】本题考查利用余弦定理解三角形,考查计算能力,属于中等题. 9.【2020年高考全国III 卷理数】16.关于函数f (x )=1sin sin x x+有如下四个命题: ①f (x )的图像关于y 轴对称. ②f (x )的图像关于原点对称.③f (x )的图像关于直线x =2π对称. ④f (x )的最小值为2.其中所有真命题的序号是__________. 【答案】②③【解析】对于命题①,152622f π⎛⎫=+= ⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭, 11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<, 命题④错误. 故答案为:②③.【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.10.【2020年高考江苏】已知2sin ()4απ+=23,则sin 2α的值是 ▲ .【答案】13【解析】221sin ()(cos )(1sin 2)4222παααα+=+=+121(1sin 2)sin 2233αα∴+=∴= 故答案为:13【点睛】本题考查两角和正弦公式、二倍角正弦公式,考查基本分析求解能力,属基础题.11.【2020年高考北京】若函数()sin()cos f x x x ϕ=++的最大值为2,则常数ϕ的一个取值为________.【答案】2π(2,2k k Z ππ+∈均可)【解析】因为()()()cos sin sin 1cos f x x x x ϕϕθ=++=+,2=,解得sin 1ϕ=,故可取2ϕπ=. 故答案为:2π(2,2k k Z ππ+∈均可).【点睛】本题主要考查两角和的正弦公式,辅助角公式的应用,以及平方关系的应用,考查学生的数学运算能力,属于基础题.12.【2020年高考浙江】已知tan 2θ=,则cos2θ=_______,πtan()4θ-=_______.【答案】35;13【解析】2222222222cos sin 1tan 123cos 2cos sin cos sin 1tan 125θθθθθθθθθ---=-====-+++, tan 1211tan()41tan 123πθθθ---===++,故答案为:31,53- 【点睛】本题考查二倍角余弦公式以及弦化切、两角差正切公式,考查基本分析求解能力,属基础题.13.【2020年高考江苏】将函数πsin(32)4y x =﹢的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是 ▲ . 【答案】524x π=-【解析】3sin[2()]3sin(2)6412y x x πππ=-+=- 72()()122242k x k k Z x k Z πππππ-=+∈∴=+∈ 当1k =-时524x π=-. 故答案为:524x π=-【点睛】本题考查三角函数图象变换、正弦函数对称轴,考查基本分析求解能力,属基础题.14.【2020年新高考全国Ⅰ卷】某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC =35,BH DG ∥,EF =12cm,DE=2 cm,A 到直线DE 和EF 的距离均为7 cm,圆孔半径为1 cm,则图中阴影部分的面积为________cm 2.【答案】542π+【解析】设==OB OA r ,由题意7AM AN ==,12EF =,所以5NF =, 因为5AP =,所以45AGP ︒∠=,因为//BH DG ,所以45AHO ︒∠=,因为AG 与圆弧AB 相切于A 点,所以OA AG ⊥, 即OAH △为等腰直角三角形;在直角OQD △中,5OQ =,7DQ =,因为3tan 5OQ ODC DQ ∠==,所以212522-=-,解得r =等腰直角OAH △的面积为1142S =⨯=;扇形AOB 的面积(2213324S ππ=⨯⨯=,所以阴影部分的面积为1215422S S ππ+-=+. 故答案为:542π+.【点睛】本题主要考查三角函数在实际中应用,把阴影部分合理分割是求解的关键,以劳动实习为背景,体现了五育并举的育人方针.15.【2020年高考全国II 卷理数】ABC △中,sin 2A -sin 2B -sin 2C = sin B sin C .(1)求A ;(2)若BC =3,求ABC △周长的最大值.【解析】(1)由正弦定理和已知条件得222BC AC AB AC AB --=⋅,①由余弦定理得2222cos BC AC AB AC AB A =+-⋅,②由①,②得1cos 2A =-. 因为0πA <<,所以2π3A =.(2)由正弦定理及(1)得sin sin sin AC AB BCB C A===,从而AC B =,π)3cos AB A B B B =--=-.故π33cos 3)3BC AC AB B B B ++=++=++.又π03B <<,所以当π6B =时,ABC △周长取得最大值3+16.【2020年高考江苏】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,45a c B ===︒.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值.【解析】(1)在ABC △中,因为3,45a c B ===︒,由余弦定理2222cos b a c ac B =+-,得292235b =+-⨯︒=,所以b =在ABC △中,由正弦定理sin sin b cB C=,,所以sin C =(2)在ADC △中,因为4cos 5ADC ∠=-,所以ADC ∠为钝角,而180ADC C CAD ∠+∠+∠=︒,所以C ∠为锐角.故cos C =则sin 1tan cos 2C C C ==. 因为4cos 5ADC ∠=-,所以3sin 5ADC ∠==,sin 3tan cos 4ADC ADC ADC ∠∠==-∠.从而31tan()242tan tan(180)tan()===311tan tan 111()42ADC C ADC ADC C ADC C ADC C -+∠+∠∠=︒-∠-∠=-∠+∠---∠⨯∠--⨯.【点睛】本小题主要考查正弦定理、余弦定理解三角形,考查三角恒等变换,属于中档题. 17.【2020年高考天津】在ABC △中,角,,A B C 所对的边分别为,,a b c.已知5,a b c ===(Ⅰ)求角C 的大小;(Ⅱ)求sin A 的值;(Ⅲ)求πsin(2)4A +的值.【解析】(Ⅰ)在ABC △中,由余弦定理及5,a b c ===,有222cos 2a b c C ab +-==.又因为(0,π)C ∈,所以π4C =.(Ⅱ)在ABC △中,由正弦定理及π,4C a c ===,可得sin sin a C A c ==(Ⅲ)由a c <及sin A =可得cos A ==进而2125sin 22sin cos ,cos 22cos 11313A A A A A ===-=.所以,πππ125sin(2)sin 2cos cos 2sin 44413213226A A A +=+=⨯+⨯=. 【点晴】本题主要考查正、余弦定理解三角形,以及三角恒等变换在解三角形中的应用,考查学生的数学运算能力,是一道容易题.18.【2020年高考北京】在ABC 中,11a b +=,再从条件①、条件②这两个条件中选择一个作为己知,求:(Ⅰ)a 的值:(Ⅱ)sin C 和ABC 的面积.条件①:17,cos 7c A ==-; 条件②:19cos ,cos 816A B ==. 注:如果选择条件①和条件②分别解答,按第一个解答计分.【解析】选择条件①(Ⅰ)17,cos 7c A ==-,11a b += 22222212cos (11)72(11)7()7a b c bc A a a a =+-∴=-+--⋅⋅- 8a ∴=(Ⅱ)1cos (0,)sin 7A A A π=-∈∴==,由正弦定理得:7sin sin sin sin 2a c C A C C ==∴=11sin (118)8222S ba C ==-⨯⨯=选择条件②(Ⅰ)19cos ,cos ,(0,)816A B A B π==∈,sin 816A B ∴==== 由正弦定理得:6sin sin 816a b a A B === (Ⅱ)91sin sin()sin cos sin cos 8161684C A B A B B A =+=+=+=11sin (116)62244S ba C ==-⨯⨯= 【点睛】本题考查正弦定理、余弦定理,三角形面积公式,考查基本分析求解能力,属中档题.19.【2020年高考浙江】在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,C .已知2sin 0b A =.(Ⅰ)求角B 的大小;(Ⅱ)求cos A +cos B +cos C 的取值范围.【解析】(Ⅰ)由正弦定理得2sin sin B A A ,故sin B =由题意得π3B =. (Ⅱ)由πA BC ++=得2π3C A =-, 由ABC △是锐角三角形得ππ(,)62A ∈.由2π1cos cos()cos 32C A A A =-=-得11π13cos cos cos cos sin()]22622A B C A A A ++++=++∈.故cos cos cos A B C ++的取值范围是3]2. 【点睛】解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边”;求最值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是转化为关于某个角的函数,利用函数思想求最值.20.【2020年新高考全国Ⅰ卷】在①ac =②sin 3c A =,③c =这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在ABC △,它的内角,,A B C 的对边分别为,,a b c ,且sin A B =,6C π=,________? 注:如果选择多个条件分别解答,按第一个解答计分.【解析】方案一:选条件①.由6C π=和余弦定理得2222a b c ab +-=.由sin A B =及正弦定理得a =.222=由此可得b c =.由①ac =解得1a b c ===.因此,选条件①时问题中的三角形存在,此时1c =.方案二:选条件②.由6C π=和余弦定理得2222a b c ab +-=.由sin A B =及正弦定理得a =.222=由此可得b c =,6B C π==,23A π=.由②sin 3c A =,所以6c b a ===.因此,选条件②时问题中的三角形存在,此时c =方案三:选条件③.由6C π=和余弦定理得2222a b c ab +-=.由sin A B =及正弦定理得a =.222=由此可得b c =.由③c =,与b c =矛盾.因此,选条件③时问题中的三角形不存在.【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.。

上海高考高三数学易错题答案

上海高考高三数学易错题答案

1、 函数f (x )=)2(log 25.0x x +-的单调递增区间2、把由函数y =k x 与y =x +k (k>0)的图像围成的三角形的面积S 表示成k 的函数,则函数解析式为3、f (x )是周期为2的奇函数,当x []1,0∈时,f (x )=x 2,则x []2,1∈时,f (x )=4、设函数f (x )的反函数为1()f x -,给出以下命题; (1)若f(x)是奇函数,则1()f x -必定是奇函数;(2)若y =f(x )和y= 1()fx -的图像有公共点,则公共点必在直线y=x 上;(3)若y =f(x)在[]b a ,上是增函数,则y= 1()f x -在[]b a ,上必定是增函数;则上述命题中真命题的序号是5、若函数f(x)=)22(log 2+-x x a 的最大值为0,则g(x)=21x a -有最 值为6、设函数y={}{}7,5,3,2,1,,⊂q p x pq ,则所得函数是偶函数的概率是7、设P 、Q 、M 三个集合,则“P ⊂Q”是“)()(M Q M P ⋂⊂⋂”成立的 _______ 条件8、A 、B 、C 、是三个集合,写出一个使“)(C B A ⋂⊂”成立的必要不充分条件_______ 9、设f(x)=,234++x x 则()[]x f f 1-= ,()[]x f f 1-=10、函数f(x)=x 2lga-2x+1的图像与x 轴有两个不同的交点,则a 的取值范围是11、若函数y=f(2x+1)是偶函数,则函数y=f(2x)的图像的对称轴的方程是12、对定义在R 上的函数f(x),若实数x 0满足f(x 0)=x 0,则称x 0为函数f(x 0)的一个不动点,若函数f(x)=ax 2-2x-1只有一个不动点,则实数a 的值是__________13、若函数f(x)=)3(log 221m mx x +-在),2(+∞是减函数,则实数m 的取值范围是 _____14、函数)0(10101010〉-+=--x y xx xx 的反函数是 15、不等式11〈-x ax的解集为A ,若()()()()+∞⋃∞-⊆⊂∞-,21,1,A 则实数a 的取值范围是16、集合⎭⎬⎫⎩⎨⎧∈=Z n n x x ,4sinπ的子集的个数是1.直线(1)(1)0x a y b +++=与圆222x y +=的位置关系是 _____2.过点P (2005,2005)且在两坐标轴上截距相等的直线方程为__________3.2y kx =+与221x y -=有且仅有一个公共点,则__________ 4.求焦点在直线34120x y --=上的抛物线的标准方程是_________ 5.抛物线2y px =的焦点坐标为_________6.P 是双曲线221918x y -=上任意一点,F 1、F 2分别为左、右焦点, |PF 1|=8,则|PF 2|= ___7.M 是抛物线220y px p =>上点,A (3,1),F 是抛物线焦点,则|AM |+|MF |的最小值为_____8.2221211t x y t t==++化为普通方程是________ 9.已知点A (1,2)、B (5,-1),且A 、B 两点到直线l 的距离都是2,求直线l 方程 _____ 10.若过定点(1,0)M -且斜率为k 的直线与圆22450x x y ++-=在第一象限内的部分有交点,则k 的取值范围是_________11.已知抛物线x y 42=的顶点为O ,抛物线上B A ,两点满足0=⋅OB OA ,则点O 到直线AB 的最大距离为_________12.在坐标平面内,与点A (1,2)的距离为1,且与点B (5,5)的距离为d 的直线共有4条,则d 的取值范围是_________.13.已知实数x ,y 满足3x 2+2y 2=6x ,则x 2+y 2的最大值是 14.与圆3)5(22=++y x 相切,且纵截距和横截距相等的直线共有15.如果不论实数b 取何值,直线b kx y +=与双曲线1222=-y x 总有公共点,那么k的取值范围为___________16.以下四个关于圆锥曲线的命题中 ① 设A 、B 为两个定点,k 为非零常数,k PB PA =-||||,则动点P 的轨迹为双曲线;② 过定圆C 上一定点A 作圆的动点弦AB ,O 为坐标原点,若),(21OB OA OP +=则动点P 的轨迹为椭圆;③ 斜率为定值k 的动直线与抛物线相交于A 、B 两点,O 为坐标原点),(21OB OA OP +=则动点P 的轨迹是射线;④ 双曲线13519252222=+=-y x y x 与椭圆有相同的焦点.其中真命题的序号为________(写出所有真命题的序号)1.数列{a n }的前n 项和S n =n 2+2 (n ∈N),则a n =2、已知等比数列{a n }的前n 项和为S n =k·3n +1(n ∈N,k,b 为常数且k≠0),则k=______3、等差数列{a n }中,a 1<0,S 5=S 11,那么S n 取得最小值时,n =4、1992年底 世界人口为54.8亿,若人口的年平均增长率为%x ,2010年底世界人口控制在70亿以内 ,那么x 的值至多达到__________ ( 精确到0.01)5、已知,22,33x x x ++,是一个等比数列的前三项,则x 的值为 ______6、已知{a n }是由实数组成的等比数列。

高三数学错题整理本

高三数学错题整理本

高三数学错题整理本
§1集合
原题正确解法与总结
§5函数的定义域
§5二次方程与二次函数
§11指数式与对数式
§14函数的应用
全国100所名校单元测试示范卷·高三·数学卷(一)第一单元集合与常用逻辑用语
一、选择题
全2
=-=+国100所名校单元测试示范卷·高三·数学卷(二)
f x x a
g x x
()2,()1
第二单元函数的概念及性质
全国100所名校单元测试示范卷·高三·数学卷(三)第三单元指数函数、对数函数、幂函数
一、集合
原题正确解法与总结
二函数的概念
原题正确解法与总结
三函数的性质
原题正确解法与总结
四、指数函数与对数函数
原题正确解法与总结
原题正确解法与总结
六、函数的应用
原题正确解法与总结
三十八常用逻辑用语
原题正确解法与总结在上是减函数,在。

2020-2021学年高三数学一轮复习易错题05 三角函数与解三角形

2020-2021学年高三数学一轮复习易错题05 三角函数与解三角形

易错点05 三角函数与解三角形—备战2021年高考数学一轮复习易错题【典例分析】例1 (2020年普通高等学校招生全国统一考试数学)下图是函数y = sin(ωx +φ)的部分图像,则sin(ωx +φ)= ( )A. πsin(3x +)B. πsin(2)3x - C. πcos(26x +)D.5πcos(2)6x -【答案】BC 【解析】 【分析】首先利用周期确定ω的值,然后确定ϕ的值即可确定函数的解析式,最后利用诱导公式可得正确结果.【详解】由函数图像可知:22362T πππ=-=,则222T ππωπ===,所以不选A, 当2536212x πππ+==时,1y =-∴()5322122k k Z ππϕπ⨯+=+∈, 解得:()223k k ϕππ=+∈Z ,即函数的解析式为:2sin 22sin 2cos 2sin 236263y x k x x x ππππππ⎛⎫⎛⎫⎛⎫⎛⎫=++=++=+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.而5cos 2cos(2)66x x ππ⎛⎫+=-- ⎪⎝⎭ 故选:BC.【点睛】已知f (x )=Asin (ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)由ω=2Tπ即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求. 例2 (2020年普通高等学校招生全国统一考试数学) 某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC =35,BH DG ∥,EF =12 cm ,DE=2 cm ,A 到直线DE 和EF 的距离均为7 cm ,圆孔半径为1 cm ,则图中阴影部分的面积为________cm 2.【答案】542π+【解析】 【分析】利用3tan 5ODC ∠=求出圆弧AB 所在圆的半径,结合扇形的面积公式求出扇形AOB 的面积,求出直角OAH △的面积,阴影部分的面积可通过两者的面积之和减去半个单位圆的面积求得.【详解】设==OB OA r ,由题意7AM AN ==,12EF =,所以5NF =, 因为5AP =,所以45AGP ︒∠=,因为//BH DG ,所以45AHO ︒∠=,因为AG 与圆弧AB 相切于A 点,所以OA AG ⊥, 即OAH △为等腰直角三角形;在直角OQD △中,52OQ r =-,72DQ r =-,因为3tan 5OQ ODC DQ ∠==,所以212522-=-,解得r =等腰直角OAH △的面积为1142S =⨯=;扇形AOB 的面积(2213324S ππ=⨯⨯=,所以阴影部分的面积为1215422S S ππ+-=+.故答案为:542π+.【点睛】本题主要考查三角函数在实际中应用,把阴影部分合理分割是求解的关键,以劳动实习为背景,体现了五育并举的育人方针.例3 (2020年普通高等学校招生全国统一考试数学)在①ac =②sin 3c A =,③=c 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在ABC ,它的内角,,A B C 的对边分别为,,a b c ,且sin 3sin A B ,6C π=,________?注:如果选择多个条件分别解答,按第一个解答计分. 【答案】详见解析 【解析】 【分析】解法一:由题意结合所给的条件,利用正弦定理角化边,得到a ,b 的比例关系,根据比例关系,设出长度长度,由余弦定理得到c 的长度,根据选择的条件进行分析判断和求解. 解法二:利用诱导公式和两角和的三角函数公式求得tanA 的值,得到角,,A B C 的值,然后根据选择的条件进行分析判断和求解.【详解】解法一:由sin 3sin A B 可得:ab=不妨设(),0a b m m =>,则:2222222cos 32c a b ab C m m m m =+-=+-⨯=,即c m =. 选择条件①的解析:据此可得:2ac m =⨯==,1m ∴=,此时1c m ==. 选择条件②的解析:据此可得:222222231cos 222b c a m m m A bc m +-+-===-,则:sin 2A ==,此时:sin 32c A m =⨯=,则:c m ==选择条件③的解析:可得1c mb m==,c b =,与条件=c 矛盾,则问题中的三角形不存在.解法二:∵(),,6sinA C B A C ππ===-+,∴()6sinA A C A π⎛⎫=+=+⎪⎝⎭,()1?2sinA A C =+= ,∴sinA =,∴tanA =23A π=,∴6B C π==,若选①,ac =,∵a ==2=若选②,3csinA =,3=,c =;若选③,与条件=c 矛盾.【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.【易错警示】易错点1 角的概念不清例1 若α、β为第三象限角,且βα>,则( )A .βαcos cos >B .βαcos cos <C .βαcos cos =D .以上都不对 【错解】A【错因】角的概念不清,误将象限角看成类似)23,(ππ区间角. 【正解】如取34,672πβππα=+=,可知A 不对.用排除法,可知应选D . 易错点2 忽视对角终边位置的讨论致误 例2 若α的终边所在直线经过点33(cos,sin )44P ππ,则sin α= .【错解】∵33(cos,sin )(4422P ππ=-,所以sin 2α==. 【错因】忽略了对角终边的位置进行讨论【正解】∵直线经过二、四象限,又点P 在单位圆上,若α的终边在第二象限,则3sin sin42πα==,若α的终边在第四象限,∴sin 2α=-,综上可知sin 2α=±. 易错点3 忽视函数的定义域对角范围的制约致错 例3 求函数xxy 2tan 1tan 2-=的最小正周期.【错解】x x x y 2tan tan 1tan 22=-=,2π=∴T ,即函数的最小正周期为2π. 【错因】忽视其定义域导致错误,2π不是x x y 2tan 1tan 2-=的周期,因为当0=x 时,x x y 2tan 1tan 2-=有意义,所以由周期函数定义知应有)0()20(f f =+π成立,然而)20(π+f 根本无意义,故2π不是其周期. 【正解】由于函数x x y 2tan 1tan 2-=的定义域为)(4,2Z k k x k x ∈+≠+≠ππππ,故作出函数x y 2tan =的图象,可以看出,所求函数周期应为π.易错点4 对“诱导公式中的奇变偶不变,符号看象限理解不对”致误例4 若316sin =⎪⎭⎫⎝⎛-απ,则⎪⎭⎫ ⎝⎛+απ232cos =( ) A .97-B .31-C .31D .97 【错解一】⎪⎭⎫⎝⎛+απ232cos cos[(2)]3ππα=--sin(2)2sin()cos()366πππααα=-=--12(339=⨯⨯±=±,无答案.【错解二】227cos 2cos[(2)]cos(2)12sin ()33369ππππαπααα⎛⎫+=--=-=--=⎪⎝⎭,故选D .【错因】三角函数的诱导公式可简记为:“奇变偶不变,符号看象限”.这里的“奇、偶”指的是π2的倍数的奇偶;“变与不变”指的是三角函数的名称变化;“符号看象限”的含义是:在该题中把整个角(2)3πα-看作锐角时,(2)3ππα--所在象限的相应余弦三角函数值的符号.【正解】227cos 2cos[(2)]cos(2)12sin ()33369ππππαπααα⎛⎫+=--=--=-+-=- ⎪⎝⎭,故选A .易错点5 忽略隐含条件例5 若01cos sin >-+x x ,求的取值范围.【错解】 移项得1cos sin >+x x ,两边平方得)(222,02sin Z k k x k x ∈+<<>πππ那么即)(2Z k k x k ∈+<<πππ【错因】忽略了满足不等式的在第一象限,上述解法引进了1cos sin -<+x x .【正解】1cos sin >+x x 即1)4sin(2>+πx ,由22)4sin(>+πx 得 )(432442Z k k x k ∈+<+<+πππππ ∴)(222Z k k x k ∈+<<πππ易错点6 因“忽视三角函数中内层函数的单调性”致错例6 )23sin(2x y -=π单调增区间为( )A .5[,]1212k k ππππ-+,()k Z ∈ B .]1211,125[ππππ++k k ,()k Z ∈C .]6,3[ππππ+-k k ,()k Z ∈D .2[,]63k k ππππ++,()k Z ∈ 【错解】由题意,222232k x k πππππ-+≤-≤+()k Z ∈,解得521212k x k ππππ--≤≤-,所以)23sin(2x y -=π单调增区间为5[,]1212k k ππππ-+,()k Z ∈,故选A . 【错因】内层函数为减函数,因此不能直接套用sin y x =的单调性来求.【正解】∵sin(2)sin(2)33y x x ππ=-=--,即求函数sin(2)3y x π=-的减区间. 故函数)23sin(2x y -=π的增区间为]1211,125[ππππ++k k ,()k Z ∈,故选B .易错点7 图象变换知识混乱例7 要得到函数sin 23y x π⎛⎫=-⎪⎝⎭的图象,只需将函数1sin2y x =的图象( ) A .先将每个值扩大到原来的4倍,y 值不变,再向右平移3π个单位. B .先将每个值缩小到原来的14倍,y 值不变,再向左平移3π个单位. C .先把每个值扩大到原来的4倍,y 值不变,再向左平移个6π单位. D .先把每个值缩小到原来的14倍,y 值不变,再向右平移6π个单位. 【错解】A 、C 、B 【错因】1sin2y x =变换成sin 2y x =误认为是扩大到原来的倍,这样就误选A 或C ;把sin 2y x =平移到sin 23y x π⎛⎫=- ⎪⎝⎭平移方向错了,平移的单位误认为是3π,误选B .【正解】由1sin2y x =变形为sin 23y x π⎛⎫=- ⎪⎝⎭常见有两种变换方式,一种先进行周期变换,即将1sin2y x =的图象上各点的纵坐标不变,横坐标变为原来的14倍得到函数sin 2y x =的图象,再将函数sin 2y x =的图象纵坐标不变,横坐标向右平移6π单位.即得函数sin 23y x π⎛⎫=-⎪⎝⎭,故选D . 易错点8 已知条件弱用例8 在不等边△ABC 中,a 为最大边,如果a b c 222<+,求A 的取值范围.【错解】∵a b c b c a 2222220<++->,∴,则cos A b c a bc=+->22220, 由于cosA 在(0°,180°)上为减函数且cos900=°,90A <∴°,又∵A 为△ABC 的内角, ∴0°<A <90°.【错因】审题不细,已知条件弱用,题设是为最大边,而错解中只把看做是三角形的普通一条边,造成解题错误.【正解】由上面的解法,可得A <90°,又∵a 为最大边,∴A >60°, 因此得A 的取值范围是(60°,90°). 易错点9 三角变换不熟练例9 在△ABC 中,若a b A B 22=tan tan ,试判断△ABC 的形状.【错解】由正弦定理,得sin sin tan tan 22A B A B=,即sin sin sin cos cos sin sin sin 2200A B A ABB A B =>>·,∵,∴,即sin cos sin cos sin sin A A B B A B ==22.∴2A =2B ,即A =B .故△ABC 是等腰三角形.【错因】由sin sin 22A B =,得2A =2B .这是三角变换中常见的错误,原因是不熟悉三角函数的性质,三角变换生疏.【正解】同上得sin sin 22A B =,∴2A =22k B π+,或222A k B k Z =+-∈ππ().∵000<<<<==A b k A B ππ,,∴,则或A B =-π2.故△ABC 为等腰三角形或直角三角形. 易错点10 解三角形时漏解例10 已知在△ABC 中,a =3,b =045,2=B ,求A ∠、C ∠和边c .【错解】由正弦定理BbA a sin sin =,得sinA =.23所以,︒=60A ,︒=︒︒︒=7560-45-180C ,所以,c =sin sin b C B =.【错因】上述解法中,用正弦定理求C 时,丢了一个解,实际上,由sinA =.23可得︒=60A 或︒=120A ,故︒=75A 或︒=15A .【正解】由正弦定理BbA a sin sin =,得sinA =.23因为,b a >,所以︒=60A 或︒=120A ,当︒=60A 时,︒=︒︒︒=7560-45-180C ,c =sin sin 2b C B +=.当︒=120A 时,︒=︒︒︒=15120-45-180C ,c =sin sin b C B = 易错点11 不会应用正弦定理的变形公式例11 在△ABC 中,A =60°,b =1,S ABC △=3,求a b cA B C++++sin sin sin 的值.【错解】∵A =60°,b =1,S ABC △=3,又S ABC △=12bc A sin ,∴312=c sin 60°,解得c =4.由余弦定理,得a b c bc A =+-=+-222116860cos cos °=13又由正弦定理,得sin sin C B ==6393239,. ∴a b cA B C++++=++++sin sin sin 1314323239639.【错因】公式不熟、方法不当,没有正确应用正弦定理.【正解】由已知可得c a ==413,.由正弦定理,得213602393R a A ===sin sin °. ∴a b c A B C R ++++==sin sin sin 22393.【变式练习】1.已知α为第三象限角,则2α是第 象限角,α2是第 象限角.【解析】α 是第三象限角,即Z k k k ∈+<<+,2322ππαππ Z k k k ∈+<<+∴,4322ππαππ,Z k k k ∈+<<+,34224ππαππ 当为偶数时,2α为第二象限角;当为奇数时,2α为第四象限角; 而α2的终边落在第一、二象限或y 轴的非负半轴上. 2.函数y =sin x |sin x |+|cos x |cos x +tan x|tan x |的值域是( )A .{-1,1}B .{1,3}C .{1,-3}D .{-1,3}【解析】由条件知终边不能落在坐标轴上,故要分四种情况讨论:当的终边分别落在第一、二、三、四象限时,上述函数的值域为{-1,3}.故选D. 3.记cos(80)k -︒=,那么tan100︒=( )AB .CD .【解析】∵sin80°=,∴tan100°=-tan80°=-sin 80cos80︒︒=- sin 80cos(80)︒︒-=B . 4.已知()0,απ∈,7sin cos 13αα+=,求tan α的值. 【解析】据已知7sin cos 13αα+=(1),有1202sin cos 0169αα=-<,又由于()0,απ∈,故有sin 0,cos 0αα><,从而sin cos 0αα->即17sin cos 13αα-==(2),联立(1)、(2)可得125sin ,cos 1313αα==,可得12tan 5α=.5.若0x π≤≤,则函数sin cos 32y x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭的单调递增区间为 .【解析】x x x x x y sin sin 3cos cos 3sin 2cos 3sin ⎪⎭⎫⎝⎛+-=⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛+=ππππ2162sin 21-⎪⎭⎫ ⎝⎛--=πx ,所以由πππππk x k 2236222+≤-≤+,可得函数的的单调增区间z k k k ∈⎥⎦⎤⎢⎣⎡++,65,3ππππ,又因为π≤≤x 0,所以函数sin cos 32y x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭的单调递增区间为⎥⎦⎤⎢⎣⎡65,3ππ.6.要得到函数sin 2y x =的图象,只需将函数πcos(2)3y x =-的图象( )A .向右平移π6个单位长度 B .向左平移π6个单位长度 C .向右平移π12个单位长度 D .向左平移π12个单位长度 【解析】试题分析:函数⎪⎭⎫⎝⎛-==22cos 2sin πx x y ,将函数πcos(2)3y x =-的图象向右平移π12个单位长度得到⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=3122cos ππx y x x 2sin 22cos =⎪⎭⎫ ⎝⎛-=π,故答案为C .7.在ABC ∆中,30,2B AB ︒===.求ABC ∆的面积.【解析】根据正弦定理知:sin sin AB ACC B=2sin 30︒=,得sin C =,由于sin30AB AC AB ︒<<即满足条件的三角形有两个故60C ︒=或120︒.则30A ︒=或90︒故相应的三角形面积为12sin 302s ︒=⨯⨯=122⨯=. 8.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则角C = .【解析】由正弦定理可得::7:8:13a b c =,所以可设7,8,9a k b k c k ===,由余弦定理()()()2222227891cos 22782k k k a b c C ab k k +-+-===-⨯⨯,所以23C π=.9.(2020·北京高考真题)在△ABC 中,a +b =11,再从条件①、条件②这两个条件中选择一个作为己知,求: (Ⅰ)a 的值:(Ⅱ)sinC 和△ABC 的面积.条件①:c =7,cosA =−17;条件②:cosA =18,cosB =916.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】选择条件①(①)8(①)sinC =√32, S =6√3;选择条件①(①)6(①)sinC =√74, S =15√74. 【解析】选择条件①(①)∵c =7,cosA =−17, a +b =11∵a 2=b 2+c 2−2bccosA ∴a 2=(11−a)2+72−2(11−a)⋅7⋅(−17)∴a =8(①)∵cosA =−17,A ∈(0,π)∴sinA =√1−cos 2A =4√37由正弦定理得:asinA =csinC ∴4√37=7sinC ∴sinC =√32S =12basinC =12(11−8)×8×√32=6√3选择条件①(①)∵cosA =18,cosB =916,A,B ∈(0,π)∴sinA =√1−cos 2A =3√78,sinB =√1−cos 2B =5√716由正弦定理得:asinA =bsinB ∴3√78=5√716∴a =6(①)sinC =sin(A +B)=sinAcosB +sinBcosA =3√78×916+5√716×18=√74S =12basinC =12(11−6)×6×√74=15√7410.某地有三家工厂,分别位于矩形ABCD 的顶点A ,B ,及CD 的中点P 处,已知20AB =km,10km BC =,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且A ,B 与等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO ,BO ,OP ,设排污管道的总长为y km .(I )按下列要求写出函数关系式:①设(rad)BAO θ∠=,将y 表示成θ的函数关系式; ②设(km)OP x =,将y 表示成x 的函数关系式.(Ⅱ)请你选用(I )中的一个函数关系式,确定污水处理厂的位置,使三条排水管道总长度最短.【答案】(I )①2010sin 10(0)cos 4y θπθθ-=+<<①10)y x x =+<<(①)选择函数模型①,P 位于线段AB 的中垂线上且距离AB 边km 3处. 【解析】(I )①由条件可知PQ 垂直平分AB ,(rad)BAO θ∠=,则10cos cos AQ OA BAO θ==∠故10cos OB θ=,又1010tan OP θ=-,所以 10101010tan cos cos y OA OB OP θθθ=++=++- 2010sin 10(0)cos 4θπθθ-=+<<.①(km)OP x =,则10OQ x =-,所以OA OB ===所以所求的函数关系式为10)y x x =+<<. (①)选择函数模型①.22210cos (2010sin )(sin )10(2sin 1)cos cos y θθθθθθ-----=='. 令0y '=得1sin 2θ=,又04πθ<<,所以6πθ=. 当06πθ<<时,0y '<,y 是θ的减函数;64ππθ<<时,0y '>,y 是θ的增函数.所以当6πθ=时min 10y =.当P 位于线段AB 的中垂线上且距离AB 边km 3处. 【典例分析】1.【2020年高考全国Ⅱ卷理数】设函数π()cos()6f x x ω=+在[−π,π]的图像大致如下图,则f(x )的最小正周期为A .10π9 B .7π6 C .4π3D .3π2【答案】C【解析】由图可得:函数图象过点4,09π⎛⎫-⎪⎝⎭, 将它代入函数()f x 可得:4cos 096ωππ⎛⎫-⋅+= ⎪⎝⎭,又4,09π⎛⎫-⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点, 所以4962ωπππ-⋅+=-,解得32ω=.所以函数()f x 最小正周期为224332T ωπππ=== 故选C .【点睛】本题主要考查了三角函数的性质及转化能力,还考查了三角函数周期公式,属于中档题.2.【2020年高考全国Ⅱ卷理数】已知 π()0,α∈,且3cos28cos 5αα-=,则sin α= AB .23C .13D .9【答案】A【解析】3cos28cos 5αα-=,得26cos 8cos 80αα--=, 即23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去),又(0,),sin 3αα∈π∴==. 的故选:A .【点睛】本题考查三角恒等变换和同角间的三角函数关系求值,熟记公式是解题的关键,考查计算求解能力,属于基础题.3.【2020年高考全国Ⅱ卷理数】若α为第四象限角,则 A .cos2α>0 B .cos2α<0 C .sin2α>0D .sin2α<0【答案】D【解析】方法一:由α为第四象限角,可得3222,2k k k απ+π<<π+π∈Z , 所以34244,k k k απ+π<<π+π∈Z此时2α的终边落在第三、四象限及y 轴的非正半轴上,所以sin 20α<, 故选:D .方法二:当6απ=-时,cos 2cos 03απ⎛⎫=-> ⎪⎝⎭,选项B 错误; 当3απ=-时,2cos 2cos 03απ⎛⎫=-< ⎪⎝⎭,选项A 错误;由α在第四象限可得:sin 0,cos 0αα<>,则sin 22sin cos 0ααα=<,选项C 错误,选项D 正确; 故选:D .【点睛】本题主要考查三角函数的符号,二倍角公式,特殊角的三角函数值等知识,意在考查学生的转化能力和计算求解能力.4.【2020年高考全国III 卷理数】在△ABC 中,cos C =23,AC =4,BC =3,则cos B =A .19B .13C .12D .23【答案】A【解析】在ABC 中,2cos 3C =,4AC =,3BC =, 根据余弦定理:2222cos AB AC BC AC BC C =+-⋅⋅,2224322433AB =+-⨯⨯⨯,可得29AB = ,即3AB =,由22299161cos22339AB BC AC B AB BC +-+-===⋅⨯⨯,故1cos 9B =. 故选:A .5.【2020年高考全国Ⅱ卷理数】已知2tan θ–tan(θ+π4)=7,则tan θ= A .–2 B .–1C .1D .2【答案】D【解析】2tan tan 74πθθ⎛⎫-+= ⎪⎝⎭,tan 12tan 71tan θθθ+∴-=-,令tan ,1t t θ=≠,则1271tt t+-=-,整理得2440t t -+=,解得2t =,即tan 2θ=.故选:D .【点睛】本题主要考查了利用两角和的正切公式化简求值,属于中档题.6.【2020年高考北京】2020年3月14日是全球首个国际圆周率日(π Day ).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达式是A . 30303sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭ B . 30306sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭ C . 60603sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭D . 60606sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭【答案】A【解析】单位圆内接正6n 边形的每条边所对应的圆周角为360606n n︒︒=⨯,每条边长为302sinn︒, 所以,单位圆的内接正6n 边形的周长为3012sinn n︒, 单位圆的外切正6n 边形的每条边长为302tann ︒,其周长为3012tan n n︒, 303012sin12tan 303026sin tan 2n n n n n n n π︒︒+︒︒⎛⎫∴==+ ⎪⎝⎭,则30303sintan n n n π︒︒⎛⎫=+ ⎪⎝⎭. 故选:A .【点睛】本题考查圆周率π的近似值的计算,根据题意计算出单位圆内接正6n 边形和外切正6n 边形的周长是解答的关键,考查计算能力,属于中等题.7.【2020年新高考全国Ⅱ卷】下图是函数y = sin(ωx +φ)的部分图像,则sin(ωx +φ)=A .πsin(3x +)B .πsin(2)3x - C .πcos(26x +) D .5πcos(2)6x -【答案】BC【解析】由函数图像可知:22362T πππ=-=,则222T ππωπ===,所以不选A, 当2536212x πππ+==时,1y =-∴()5322122k k Z ππϕπ⨯+=+∈, 解得:()223k k ϕππ=+∈Z , 即函数的解析式为:2sin 22sin 2cos 2sin 236263y x k x x x ππππππ⎛⎫⎛⎫⎛⎫⎛⎫=++=++=+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.而5cos 2cos(2)66x x ππ⎛⎫+=-- ⎪⎝⎭ 故选:BC .【点睛】已知f (x )=Asin (ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)由ω=2Tπ即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.8.【2020年高考全国Ⅱ卷理数】如图,在三棱锥P –ABC 的平面展开图中,AC =1,AB AD ==AB ⊥AC ,AB ⊥AD ,∠CAE =30°,则cos ∠FCB =______________.【答案】14-【解析】AB AC ⊥,AB =1AC =,由勾股定理得2BC ==,同理得BD =,BF BD ∴==在ACE △中,1AC =,AE AD ==30CAE ∠=,由余弦定理得2222cos3013211CE AC AE AC AE =+-⋅=+-⨯=,1CF CE ∴==,在BCF 中,2BC =,BF =,1CF =,由余弦定理得2221461cos 22124CF BC BF FCB CF BC +-+-∠===-⋅⨯⨯.故答案为:14-. 【点睛】本题考查利用余弦定理解三角形,考查计算能力,属于中等题. 9.【2020年高考全国III 卷理数】16.关于函数f (x )=1sin sin x x+有如下四个命题: ①f (x )的图像关于y 轴对称. ②f (x )的图像关于原点对称.③f (x )的图像关于直线x =2π对称. ④f (x )的最小值为2.其中所有真命题的序号是__________. 【答案】②③【解析】对于命题①,152622f π⎛⎫=+=⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭, 11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<, 命题④错误. 故答案为:②③.【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.10.【2020年高考江苏】已知2sin ()4απ+=23,则sin 2α的值是 Ⅱ .【答案】13【解析】221sin ()(cos )(1sin 2)4222παααα+=+=+121(1sin 2)sin 2233αα∴+=∴=故答案为:13【点睛】本题考查两角和正弦公式、二倍角正弦公式,考查基本分析求解能力,属基础题.11.【2020年高考北京】若函数()sin()cos f x x x ϕ=++的最大值为2,则常数ϕ的一个取值为________.【答案】2π(2,2k k Z ππ+∈均可)【解析】因为()()()cos sin sin 1cos f x x x x ϕϕθ=++=+,2=,解得sin 1ϕ=,故可取2ϕπ=. 故答案为:2π(2,2k k Z ππ+∈均可).【点睛】本题主要考查两角和的正弦公式,辅助角公式的应用,以及平方关系的应用,考查学生的数学运算能力,属于基础题.12.【2020年高考浙江】已知tan 2θ=,则cos2θ=_______,πtan()4θ-=_______.【答案】35;13【解析】2222222222cos sin 1tan 123cos 2cos sin cos sin 1tan 125θθθθθθθθθ---=-====-+++, tan 1211tan()41tan 123πθθθ---===++,故答案为:31,53-【点睛】本题考查二倍角余弦公式以及弦化切、两角差正切公式,考查基本分析求解能力,属基础题.13.【2020年高考江苏】将函数πsin(32)4y x =﹢的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是 Ⅱ . 【答案】524x π=-【解析】3sin[2()]3sin(2)6412y x x πππ=-+=- 72()()122242k x k k Z x k Z πππππ-=+∈∴=+∈ 当1k =-时524x π=-. 故答案为:524x π=-【点睛】本题考查三角函数图象变换、正弦函数对称轴,考查基本分析求解能力,属基础题.14.【2020年新高考全国Ⅱ卷】某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC =35,BH DG ∥,EF =12 cm ,DE=2 cm ,A 到直线DE 和EF 的距离均为7 cm ,圆孔半径为1 cm ,则图中阴影部分的面积为________cm 2.【答案】542π+【解析】设==OB OA r ,由题意7AM AN ==,12EF =,所以5NF =, 因为5AP =,所以45AGP ︒∠=,因为//BH DG ,所以45AHO ︒∠=,因为AG 与圆弧AB 相切于A 点,所以OA AG ⊥, 即OAH △为等腰直角三角形;在直角OQD △中,5OQ =,7DQ =,因为3tan 5OQ ODC DQ ∠==,所以212522-=-,解得r =等腰直角OAH △的面积为1142S =⨯=;扇形AOB 的面积(2213324S ππ=⨯⨯=,所以阴影部分的面积为1215422S S ππ+-=+. 故答案为:542π+.【点睛】本题主要考查三角函数在实际中应用,把阴影部分合理分割是求解的关键,以劳动实习为背景,体现了五育并举的育人方针.15.【2020年高考全国II 卷理数】ABC △中,sin 2A -sin 2B -sin 2C = sin B sin C .(1)求A ;(2)若BC =3,求ABC △周长的最大值.【解析】(1)由正弦定理和已知条件得222BC AC AB AC AB --=⋅,①由余弦定理得2222cos BC AC AB AC AB A =+-⋅,②由①,②得1cos 2A =-. 因为0πA <<,所以2π3A =.(2)由正弦定理及(1)得sin sin sin AC AB BCB C A===从而AC B =,π)3cos AB A B B B =--=-.故π33cos 3)3BC AC AB B B B ++=++=++.又π03B <<,所以当π6B =时,ABC △周长取得最大值3+16.【2020年高考江苏】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,45a c B ===︒.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值.【解析】(1)在ABC △中,因为3,45a c B ===︒,由余弦定理2222cos b a c ac B =+-,得292235b =+-⨯︒=,所以b =在ABC △中,由正弦定理sin sin b cB C=,,所以sin C =(2)在ADC △中,因为4cos 5ADC ∠=-,所以ADC ∠为钝角,而180ADC C CAD ∠+∠+∠=︒,所以C ∠为锐角.故cos C =则sin 1tan cos 2C C C ==.因为4cos 5ADC ∠=-,所以3sin 5ADC ∠==,sin 3tan cos 4ADC ADC ADC ∠∠==-∠.从而31tan()242tan tan(180)tan()===311tan tan 111()42ADC C ADC ADC C ADC C ADC C -+∠+∠∠=︒-∠-∠=-∠+∠---∠⨯∠--⨯.【点睛】本小题主要考查正弦定理、余弦定理解三角形,考查三角恒等变换,属于中档题.17.【2020年高考天津】在ABC △中,角,,A B C 所对的边分别为,,a b c.已知5,a b c ===(Ⅱ)求角C 的大小;(Ⅱ)求sin A 的值;(Ⅱ)求πsin(2)4A +的值. 【解析】(Ⅱ)在ABC △中,由余弦定理及5,a b c ===,有222cos 22a b c C ab +-==.又因为(0,π)C ∈,所以π4C =. (Ⅱ)在ABC △中,由正弦定理及π,4C a c ===,可得sin sin a C A c == (Ⅱ)由a c <及sin A =cos A ==, 进而2125sin 22sin cos ,cos 22cos 11313A A A A A ===-=.所以,πππ125sin(2)sin 2cos cos 2sin 4441313A A A +=+==. 【点晴】本题主要考查正、余弦定理解三角形,以及三角恒等变换在解三角形中的应用,考查学生的数学运算能力,是一道容易题.18.【2020年高考北京】在ABC 中,11a b +=,再从条件①、条件②这两个条件中选择一个作为己知,求:(Ⅱ)a 的值:(Ⅱ)sin C 和ABC 的面积. 条件①:17,cos 7c A ==-; 条件②:19cos ,cos 816A B ==. 注:如果选择条件①和条件②分别解答,按第一个解答计分.【解析】选择条件①(Ⅱ)17,cos 7c A ==-,11a b += 22222212cos (11)72(11)7()7a b c bc A a a a =+-∴=-+--⋅⋅- 8a ∴=(Ⅱ)1cos (0,)sin 7A A A π=-∈∴==,由正弦定理得:7sin sin sin sin 7a c C A C C ==∴=11sin (118)822S ba C ==-⨯=选择条件②(Ⅱ)19cos ,cos ,(0,)816A B A B π==∈,sin A B ∴====由正弦定理得:6sin sin a b a A B === (Ⅱ)91sin sin()sin cos sin cos 8161684C A B A B B A =+=+=+=11sin (116)622S ba C ==-⨯=【点睛】本题考查正弦定理、余弦定理,三角形面积公式,考查基本分析求解能力,属中档题.19.【2020年高考浙江】在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,C .已知2sin 0b A =.(Ⅰ)求角B 的大小;(Ⅱ)求cos A +cos B +cos C 的取值范围.【解析】(Ⅱ)由正弦定理得2sin sin B A A =,故sin B =, 由题意得π3B =. (Ⅱ)由πA BC ++=得2π3C A =-, 由ABC △是锐角三角形得ππ(,)62A ∈.由2π1cos cos()cos 32C A A A =-=-得11π13cos cos cos cos sin()]22622A B C A A A ++++=++∈. 故cos cos cos A B C ++的取值范围是3]2. 【点睛】解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边”;求最值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是转化为关于某个角的函数,利用函数思想求最值.20.【2020年新高考全国Ⅱ卷】在①ac =sin 3c A =,③c =这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在ABC △,它的内角,,A B C 的对边分别为,,a b c ,且sin A B ,6C π=,________?注:如果选择多个条件分别解答,按第一个解答计分.【解析】方案一:选条件①.由6C π=和余弦定理得2222a b c ab +-=.由sin A B =及正弦定理得a =.222=b c =.由①ac =1a b c ==.因此,选条件①时问题中的三角形存在,此时1c =.方案二:选条件②.由6C π=和余弦定理得2222a b c ab +-=.由sin A B =及正弦定理得a =.222=b c =,6B C π==,23A π=.由②sin 3c A =,所以6c b a ===.因此,选条件②时问题中的三角形存在,此时c =方案三:选条件③.由6C π=和余弦定理得2222a b c ab +-=.由sin A B =及正弦定理得a =.222=b c =.由③c =,与b c =矛盾.因此,选条件③时问题中的三角形不存在.【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.。

高考数学试卷错题

高考数学试卷错题

一、错题分析1. 错题类型:函数与导数题目:已知函数$f(x)=x^3-3x+1$,求$f(x)$的极值。

错因分析:在求极值时,没有正确运用导数的方法。

在求导数时,误将$f'(x)$求错,导致极值求解错误。

2. 错题类型:立体几何题目:已知长方体$ABCD-ABCD_1$,$AB=3$,$AD=4$,$AA_1=5$,求长方体的体积。

错因分析:在计算长方体体积时,误将底面积和高相乘,导致计算结果错误。

3. 错题类型:数列题目:已知数列$\{a_n\}$,$a_1=1$,$a_{n+1}=2a_n+1$,求$a_n$的通项公式。

错因分析:在求解数列通项公式时,没有正确运用递推公式。

在推导通项公式时,误将等式两边同时除以$a_n$,导致通项公式错误。

4. 错题类型:概率与统计题目:袋中有5个红球、4个蓝球和3个绿球,从中随机取出3个球,求取出2个红球和1个蓝球的概率。

错因分析:在计算概率时,没有正确运用组合数公式。

在计算组合数时,误将分子分母的项数写错,导致概率计算错误。

二、反思1. 错题原因分析:从以上错题分析可以看出,错题产生的原因主要有以下几个方面:(1)基础知识掌握不牢固,对公式、定理理解不透彻;(2)解题思路不清晰,没有正确运用解题方法;(3)粗心大意,审题不仔细,导致计算错误。

2. 改进措施:(1)加强基础知识的学习,熟练掌握公式、定理,提高解题能力;(2)总结解题方法,形成解题思路,提高解题效率;(3)培养细心审题的习惯,避免粗心大意导致的错误;(4)多做练习题,提高解题速度和准确率。

总之,高考数学试卷错题是我们提高数学成绩的重要资源。

通过分析错题,找出错误原因,制定改进措施,有助于我们更好地提高数学水平。

在今后的学习中,我们要认真对待错题,总结经验教训,不断提高自己的数学能力。

高三数学教学中的错题解析

高三数学教学中的错题解析

高三数学教学中的错题解析错题1:求函数的定义域题目:已知函数f(x)=-2x+3,求函数f(x)的定义域。

解析:函数的定义域是指函数中自变量x的取值范围。

对于这道题目,函数f(x)的定义域可以通过求解不等式来获得。

首先,由函数f(x)的表达式可知,自变量x可以取任意实数。

因此,函数f(x)的定义域为R(全体实数)。

错题2:求函数的反函数题目:已知函数f(x)=2x+1,求函数f(x)的反函数f^(-1)(x)。

解析:函数的反函数是指将函数的自变量和因变量对调得到的新函数。

求函数的反函数需要先将原函数转化为方程,然后通过求解方程来得到反函数。

对于这道题目,我们需要将函数f(x)转化为方程:y = 2x + 1。

接下来,将方程中的自变量x和因变量y对调:x = 2y + 1。

解该方程,得到y = (x - 1) / 2,则反函数f^(-1)(x) = (x - 1) / 2。

因此,函数f(x)的反函数为f^(-1)(x) = (x - 1) / 2。

错题3:求函数的极限题目:已知函数f(x)=3x^2-2x+1,求lim(x→1) f(x)的值。

解析:函数的极限是指自变量无限接近某一特定值时,函数的取值趋于的稳定值。

求函数的极限需要通过代入法或极限运算法则来计算。

对于这道题目,我们先代入x=1,计算函数f(x)在x=1处的取值:f(1) = 3(1)^2 - 2(1) + 1 = 2。

接下来,求lim(x→1) f(x)的值。

根据已知函数f(x)的表达式可以得知,当x无限接近1时,函数f(x)的取值趋于2。

因此,lim(x→1) f(x)的值为2。

错题4:求函数的导函数题目:已知函数f(x)=2x^3-3x^2+4x-1,求函数f(x)的导函数f'(x)。

解析:函数的导函数是指在函数图像上各点的切线斜率。

求函数的导函数需要对原函数进行求导运算。

对于这道题目,我们需要对函数f(x)=2x^3-3x^2+4x-1进行求导运算。

【易错题】高三数学下期末模拟试卷(带答案)(5)

【易错题】高三数学下期末模拟试卷(带答案)(5)

【易错题】高三数学下期末模拟试卷(带答案)(5)一、选择题1.某人连续投篮5次,其中3次命中,2次未命中,则他第2次,第3次两次均命中的概率是( )A .310B .25C .12D .352.已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由该观测的数据算得的线性回归方程可能是( )A .$0.4 2.3y x =+B .$2 2.4y x =-C .$29.5y x =-+D .$0.3 4.4y x =-+3.在复平面内,O 为原点,向量OA u u u v 对应的复数为12i -+,若点A 关于直线y x =-的对称点为点B ,则向量OB uuu v 对应的复数为( )A .2i -+B .2i --C .12i +D .12i -+4.已知平面向量a r =(1,-3),b r =(4,-2),a b λ+r r 与a r垂直,则λ是( ) A .2 B .1 C .-2 D .-1 5.已知()3sin 30,601505αα︒+=︒<<︒,则cos α为( )A B .10- C .310- D 6.已知集合1}{0|A x x -≥=,{0,1,2}B =,则A B =IA .{0}B .{1}C .{1,2}D .{0,1,2}7.下列四个命题中,正确命题的个数为( )①如果两个平面有三个公共点,那么这两个平面重合;②两条直线一定可以确定一个平面;③若M α∈,M β∈,l αβ=I ,则M l ∈;④空间中,相交于同一点的三直线在同一平面内.A .1B .2C .3D .48.正方形ABCD 中,点E 是DC 的中点,点F 是BC 的一个三等分点,那么EF =u u u v( )A .1123AB AD -u u u v u u u v B .1142AB AD +u u u v u u u vC .1132AB DA +u u u v u u u vD .1223AB AD -u u u v u u u v . 9.某校现有高一学生210人,高二学生270人,高三学生300人,用分层抽样的方法从这三个年级的学生中随机抽取n 名学生进行问卷调查,如果已知从高一学生中抽取的人数为7,那么从高三学生中抽取的人数为( )A .7B .8C .9D .1010.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,其分布列为P (X ),则P (X =4)的值为A .1220 B .2755 C .2125D .27220 11.如图所示的组合体,其结构特征是( )A .由两个圆锥组合成的B .由两个圆柱组合成的C .由一个棱锥和一个棱柱组合成的D .由一个圆锥和一个圆柱组合成的 12.已知向量a v ,b v 满足2a =v ||1b =v ,且2b a +=v v ,则向量a v 与b v 的夹角的余弦值为( )A .22B .23C 2D .24二、填空题13.若三点1(2,3),(3,2),(,)2A B C m --共线,则m 的值为 .14.已知实数x ,y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是__________.15.函数log (1)1(01)a y x a a =-+>≠且的图象恒过定点A ,若点A 在一次函数y mx n =+的图象上,其中,0,m n >则12m n+的最小值为 16.如图所示,平面BCC 1B 1⊥平面ABC ,∠ABC =120︒,四边形BCC 1B 1为正方形,且AB =BC =2,则异面直线BC 1与AC 所成角的余弦值为_____.17.ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,3c =,2C B =,则ABC V 的面积为______.18.已知正三棱锥P ABC -的底面边长为3,外接球的表面积为16π,则正三棱锥P ABC -的体积为________.19.如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点,E F ,且2EF =,现有如下四个结论: AC BE ①⊥;//EF ②平面ABCD ;③三棱锥A BEF -的体积为定值;④异面直线,AE BF 所成的角为定值,其中正确结论的序号是______.20.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人,组成4人服务队,要求服务队中至少有1名女生,共有__________种不同的选法.(用数字作答)三、解答题21.已知直线35:{132x l y t =+=(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos ρθ=.(1)将曲线C 的极坐标方程化为直角坐标方程;(2)设点的直角坐标为(5,3),直线l 与曲线C 的交点为A ,B,求MA MB ⋅的值.22.已知函数()2f x m x =--,m R ∈,且()20f x +≥的解集为[]1,1-(1)求m 的值;(2)若,,a b c ∈R ,且11123m a b c++=,求证239a b c ++≥ 23.如图:在ABC ∆中,10a =,4c =,5cos C =-.(1)求角A ;(2)设D 为AB 的中点,求中线CD 的长.24.设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(1)求数列{},{}n n a b 的通项公式;(2)记,,2n n na C nb *=∈N 证明:12+2,.n C C C n n *++<∈N L 25. 在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线l 2的参数方程为2,,x m m m y k =-+⎧⎪⎨=⎪⎩(为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设()3:cos sin 20l ρθθ+=,M 为l 3与C 的交点,求M 的极径.26.已知0,0a b >>.(1)211ab a b≥+ ;(2)若a b >,且2ab =,求证:224a b a b+≥-.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】基本事件总数3252n C C 10==,他第2次,第3次两次均命中包含的基本事件个数212232m C C C 3==,由此能求出他第2次,第3次两次均命中的概率,得到答案.【详解】由题意某人连续投篮5次,其中3次命中,2次未命中,因为基本事件总数3252n C C 10==,他第2次,第3次两次均命中包含的基本事件个数212232m C C C 3==,所以他第2次,第3次两次均命中的概率是m 3p n 10==. 故选:A .【点睛】 本题主要考查了古典概型及其概率的计算,以及排列、组合等知识的应用,其中解答中根据排列、组合求得基本事件的总数和第2次、第3次两次均命中所包含的基本事件的个数是解答的关键,着重考查了运算与求解能力,属于基础题.2.A解析:A【解析】试题分析:因为与正相关,排除选项C 、D ,又因为线性回归方程恒过样本点的中心,故排除选项B ;故选A .考点:线性回归直线. 3.A解析:A【解析】【分析】首先根据向量OA u u u v对应的复数为12i -+,得到点A 的坐标,结合点A 与点B 关于直线y x =-对称得到点B 的坐标,从而求得向量OB uuu v 对应的复数,得到结果.【详解】复数12i -+对应的点为(1,2)A -,点A 关于直线y x =-的对称点为(2,1)B -,所以向量OB uuu r对应的复数为2i -+.故选A .【点睛】该题是一道复数与向量的综合题,解答本题的关键是掌握复数在平面坐标系中的坐标表示. 4.D解析:D【解析】【详解】试题分析:()()(),34,24,32a b λλλλλ+=-+-=+--r r ,由a b λ+r r 与a r 垂直可知()()()·0433201a b a λλλλ+=∴+---=∴=-r r r 考点:向量垂直与坐标运算5.D解析:D【解析】分析:先求出()cos 30α︒+的值,再把cos α变形为00cos[(30)30]α+-,再利用差角的余弦公式展开化简即得cos α的值.详解:∵60150α︒<<︒,∴90°<30α︒+<180°,∴()cos 30α︒+=-45, ∵c os α=00cos[(30)30]α+-,∴c os α=-453152⨯=, 故选D. 点睛:三角恒等变形要注意“三看(看角看名看式)”和“三变(变角变名变式)”,本题主要利用了看角变角,00(30)30αα=+-,把未知的角向已知的角转化,从而完成解题目标. 6.C解析:C【解析】【分析】由题意先解出集合A,进而得到结果.【详解】解:由集合A 得x 1≥,所以{}A B 1,2⋂=故答案选C.【点睛】本题主要考查交集的运算,属于基础题.7.A解析:A【解析】【分析】【详解】试题分析:如果两个平面有三个公共点,那么这两个平面重合或者是相交,故(1)不正确;两条异面直线不能确定一个平面,故(2)不正确;若M ∈α,M ∈β,α∩β=l ,则M ∈l ,故(3)正确;空间中,相交于同一点的三直线不一定在同一平面内(如棱锥的3条侧棱),故(4)不正确,综上所述只有一个说法是正确的,故选A .8.D解析:D【解析】【分析】用向量的加法和数乘法则运算。

【3月刊】2024年3月浙江省高三高频错题数学+答案解析

【3月刊】2024年3月浙江省高三高频错题数学+答案解析

【3月刊】2024年3月浙江省高三高频错题(累计作答25560人次,平均得分率18.40%)一、单选题:本题共5小题,每小题5分,共25分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.一袋里装有带编号的红色,白色,黑色,蓝色四种不同颜色的球各两个,从中随机选4个球,已知有两个是同一颜色的球,则另外两个球不是同一颜色的概率为()A. B. C. D.2.在复平面上满足条件的复数z所对应的点的轨迹是A.椭圆B.直线C.线段D.圆3.在平面直角坐标系xOy中,点,动点M满足以MA为直径的圆与y轴相切.过A作直线的垂线,垂足为B,则的最小值为()A. B. C. D.4.已知定义在R上的奇函数满足,且,则()A.1B.C.3D.5.外接圆的半径为1,圆心为O,且,,则()A. B. C.3 D.二、多选题:本题共10小题,共50分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得5分,部分选对的得2分,有选错的得0分。

6.设双曲线E:的焦距为2c,离心率为e,且a,c,成等比数列,A是E的一个顶点,F是与A不在y轴同侧的焦点,B是E的虚轴的一个端点,PQ为E的任意一条不过原点且斜率为的弦,M为PQ中点,O为坐标原点,则()A.E的一条渐近线的斜率为B.C.分别为直线OM,PQ的斜率D.若,则恒成立7.已知函数,则下列说法正确的是()A.若函数的图象关于点中心对称,则B.当时,函数过原点的切线有且仅有两条C.函数在上单调递减的充要条件是D.若实数,是的两个不同的极值点,且满足,则或8.已知,,则下列结论正确的有()A. B.C. D.9.已知函数,则()A.为的一个周期B.的图象关于直线对称C.在上单调递增D.的值域为10.偶函数满足,当时,令函数,则下列说法正确的是()A.函数的周期为1B.是函数的一条对称轴C.函数的值域为D.函数在区间上的所有零点之和为2211.设定义在R上的函数满足,且,则下列说法正确的是()A.为奇函数B.的解析式唯一C.若,,则D.若,,则在R上是增函数12.已知等差数列的首项为1,公差,前n项和为,则下列结论成立的是()A.数列的前10项和为100B.若,,成等比数列,则C.若,则n的最小值为6D.若,则的最小值为13.下列函数既是奇函数又是增函数的是()A.B.C. D.14.已知函数,其中为常数,且,将函数的图象向左平移个单位所得的图象对应的函数为偶函数,则以下结论正确的是()A. B.点是的图象的一个对称中心C.在上的值域为D.的图象在上有四条对称轴15.已知是定义在R 上的偶函数,是定义在R 上的奇函数,且,在单调递减,则()A. B.C.D.三、填空题:本题共8小题,每小题5分,共40分。

高三数学试卷全错题

高三数学试卷全错题

一、选择题1. 若函数f(x) = x^3 - 3x在区间[-2, 2]上的最大值为6,则f(x)的零点个数是()A. 1个B. 2个C. 3个D. 4个答案:B解析:由于f(x)在区间[-2, 2]上的最大值为6,因此f(x)的导数f'(x)在区间[-2, 2]上必为0。

解方程f'(x) = 3x^2 - 3 = 0,得到x = ±1。

因此,f(x)在区间[-2, 2]上的零点个数为2个。

2. 若等差数列{an}的首项为2,公差为3,则第10项与第20项之和为()A. 94B. 96C. 98D. 100答案:C解析:由等差数列的通项公式an = a1 + (n - 1)d,代入a1 = 2,d = 3,n = 10,得到第10项a10 = 2 + (10 - 1) × 3 = 29。

同理,代入n = 20,得到第20项a20 = 2 + (20 - 1) × 3 = 59。

因此,第10项与第20项之和为29 + 59 = 98。

3. 已知函数f(x) = x^2 - 2x + 1,若f(x)在区间[1, 3]上的图像与x轴无交点,则f(x)在区间[-3, -1]上的图像()A. 与x轴有交点B. 与x轴无交点C. 有一个交点D. 有两个交点答案:A解析:由于f(x) = x^2 - 2x + 1是一个完全平方公式,可以写成f(x) = (x -1)^2。

因此,f(x)的图像是一个开口向上的抛物线,顶点为(1, 0)。

在区间[1, 3]上,抛物线与x轴无交点。

而在区间[-3, -1]上,抛物线与x轴有交点,交点为(-1, 0)。

二、填空题4. 已知函数f(x) = 2x^3 - 3x^2 + 4,若f(x)的图像在x = 1处有一个拐点,则f(x)在x = 1处的导数值为______。

答案:-2解析:f(x)的导数f'(x) = 6x^2 - 6x。

高考数学试卷中的错题

高考数学试卷中的错题

【题目】已知函数$f(x)=\frac{1}{2}x^2+\frac{1}{3}x-1$,且$f(x)$在$x=2$处取得极值。

(1)求$f(x)$的导数$f'(x)$;(2)求$f(x)$在$x=2$处的极值;(3)求$f(x)$的单调区间。

【错题解析】在解答这道题时,我犯了以下错误:(1)在求$f(x)$的导数$f'(x)$时,由于我对幂函数的求导法则掌握不牢固,误将$f(x)$的导数写成了$f'(x)=x+\frac{1}{3}$。

实际上,根据幂函数的求导法则,$f(x)$的导数应该是$f'(x)=x+\frac{1}{3}x^0$,即$f'(x)=x+\frac{1}{3}$。

(2)在求$f(x)$在$x=2$处的极值时,我错误地认为极值点处的导数为0。

实际上,由于我在求导数时出现了错误,导致我求出的极值点处的导数也为0。

正确的做法是,在求出$f'(x)$后,令$f'(x)=0$,解得$x=0$或$x=-\frac{1}{3}$。

由于$f(x)$在$x=2$处取得极值,因此应该取$x=-\frac{1}{3}$。

(3)在求$f(x)$的单调区间时,我错误地认为$f(x)$在$x=-\frac{1}{3}$处取得极值,因此将$x=-\frac{1}{3}$作为分界点,将$f(x)$的单调区间分为两部分:$(-\infty, -\frac{1}{3})$和$(-\frac{1}{3}, +\infty)$。

然而,由于我在求极值时出现了错误,导致我错误地将$x=-\frac{1}{3}$作为分界点。

正确的做法是,根据$f'(x)$的符号,确定$f(x)$的单调区间。

当$x<0$时,$f'(x)<0$,因此$f(x)$在$(-\infty, 0)$上单调递减;当$x>0$时,$f'(x)>0$,因此$f(x)$在$(0, +\infty)$上单调递增。

高三数学试卷全错题及答案

高三数学试卷全错题及答案

一、选择题1. 下列各式中,正确的是()A. 2√3 > 3√2B. 2^3 = 3^2C. (√2)^2 = 2D. 2^2 < 3^2答案:C解析:选项A,两边平方得12 < 18,正确;选项B,2^3 = 8,3^2 = 9,错误;选项C,(√2)^2 = 2,正确;选项D,2^2 = 4,3^2 = 9,错误。

故选C。

2. 已知函数f(x) = x^2 - 2x + 1,则f(2)的值为()A. 1B. 2C. 3D. 4答案:A解析:将x = 2代入函数f(x) = x^2 - 2x + 1,得f(2) = 2^2 - 2×2 + 1 = 1。

故选A。

3. 在△ABC中,∠A = 60°,∠B = 45°,则∠C的度数为()A. 60°B. 75°C. 90°D. 120°答案:B180° - ∠A - ∠B = 180° - 60° - 45° = 75°。

故选B。

4. 下列各式中,正确的是()A. 1/2 + 1/3 = 5/6B. 1/2 - 1/3 = 1/6C. 1/2 × 1/3 = 1/6D. 1/2 ÷ 1/3 = 1/6答案:C解析:选项A,1/2 + 1/3 = 3/6 + 2/6 = 5/6,正确;选项B,1/2 - 1/3 = 3/6 - 2/6 = 1/6,正确;选项C,1/2 × 1/3 = 1/6,正确;选项D,1/2 ÷ 1/3 =1/2 × 3/1 = 3/2,错误。

故选C。

5. 已知等差数列{an}的首项a1 = 3,公差d = 2,则第10项a10的值为()A. 21B. 23C. 25D. 27答案:B解析:等差数列的通项公式为an = a1 + (n - 1)d。

高中数学排列组合部分错题精选

高中数学排列组合部分错题精选

高考数学复习易做易错题选排列组合易错题正误解析排列组合问题类型繁多、方法丰富、富于变化,稍不注意,极易出错.本文选择一些在教学中学生常见的错误进行正误解析,以飨读者.1没有理解两个基本原理出错排列组合问题基于两个基本计数原理,即加法原理和乘法原理,故理解“分类用加、分步用乘”是解决排列组合问题的前提.例1(1995年上海高考题)从6台原装计算机和5台组装计算机中任意选取5台,其中至少有原装与组装计算机各两台,则不同的取法有 种.误解:因为可以取2台原装与3台组装计算机或是3台原装与2台组装计算机,所以只有2种取法.错因分析:误解的原因在于没有意识到“选取2台原装与3台组装计算机或是3台原装与2台组装计算机”是完成任务的两“类”办法,每类办法中都还有不同的取法.正解:由分析,完成第一类办法还可以分成两步:第一步在原装计算机中任意选取2台,有26C 种方法;第二步是在组装计算机任意选取3台,有35C 种方法,据乘法原理共有3526C C ⋅种方法.同理,完成第二类办法中有2536C C ⋅种方法.据加法原理完成全部的选取过程共有+⋅3526C C 3502536=⋅C C 种方法. 例2 在一次运动会上有四项比赛的冠军在甲、乙、丙三人中产生,那么不同的夺冠情况共有( )种.(A )34A (B )34 (C )43 (D )34C误解:把四个冠军,排在甲、乙、丙三个位置上,选A .错因分析:误解是没有理解乘法原理的概念,盲目地套用公式.正解:四项比赛的冠军依次在甲、乙、丙三人中选取,每项冠军都有3种选取方法,由乘法原理共有433333=⨯⨯⨯种.说明:本题还有同学这样误解,甲乙丙夺冠均有四种情况,由乘法原理得34.这是由于没有考虑到某项冠军一旦被一人夺得后,其他人就不再有4种夺冠可能. 2判断不出是排列还是组合出错在判断一个问题是排列还是组合问题时,主要看元素的组成有没有顺序性,有顺序的是排列,无顺序的是组合.例3 有大小形状相同的3个红色小球和5个白色小球,排成一排,共有多少种不同的排列方法?误解:因为是8个小球的全排列,所以共有88A 种方法.错因分析:误解中没有考虑3个红色小球是完全相同的,5个白色小球也是完全相同的,同色球之间互换位置是同一种排法.正解:8个小球排好后对应着8个位置,题中的排法相当于在8个位置中选出3个位置给红球,剩下的位置给白球,由于这3个红球完全相同,所以没有顺序,是组合问题.这样共有:5638=C 排法. 3重复计算出错在排列组合中常会遇到元素分配问题、平均分组问题等,这些问题要注意避免重复计数,产生错误。

江苏省苏州市2019届高三数学一轮复习 防错纠错5 不等式 含答案

江苏省苏州市2019届高三数学一轮复习 防错纠错5 不等式 含答案

防错纠错5 不等式一、填空题1.不等式211xx -≤的解集是 . 【解析】211xx -≤可化为211011x x x x +-=--≤,等价转化为10(1)(1)0x x x -≠⎧⎨+-⎩≤,所以解集为. 点拨:化简分式时要注意分母不为零.2.不等式210ax ax ++>的解集为R ,则实数a 的取值范围是_____________.【解析】当0a =时,满足题意,当0a ≠时,必有00a >⎧⎨∆<⎩,解得04a <<,综上实数a 的取值范围是04a <≤.【易错、易失分点点拨】本题极易遗漏a =0的情况.点拨:在处理二次不等式问题时,要注意二次项系数为0的情况.3.当(1,2)x ∈时,不等式240x mx ++<恒成立,则实数m 的取值范围是___________.【解析】法一:令2()4f x x mx =++,则只要满足(1)0(2)0f f ⎧⎨⎩≤≤,解得5m -≤.法二:变量分离4()m x x <-+恒成立,4()x x-+的取值范围是(5,4)--,所以5m -≤. 【易错、易失分点点拨】本题用法一做时,很容易漏掉等号,如果把(1,2)x ∈变为[1,2]x ∈,结果又会不同,这样的题目很多;用法二做时,容易把最大最小值搞反,从而得到错解4m -≤,还容易漏掉等号.点拨:用函数思想处理二次不等式时,要注意区间端点的影响4.设x 、y 满足条件310x y y x y +⎧⎪-⎨⎪⎩≤≤≥,则22(2)z x y =+-的最小值_____________.【解析】先画出可行域,注意22(2)x y +-表示点(x ,y )到点(0,2)距离的平方,距离最小值即为点(0,2)到直线1y x =-的距离,所以z 的最小值为92. 【易错、易失分点点拨】注意该题的最小值并不在区域顶点取得,而且z 表示距离的平方,求出最小距离后不能忘记再平方.5.设实系数一元二次方程2220x ax b ++-=有两个相异实根,其中一根在区间(0,1)内,另一根在区间(1,2)内,则41b a --的取值范围是 . 【解析】令2()22f x x ax b =++-,由根的分布知识可得(0)0(1)0(2)0f f f >⎧⎪<⎨⎪>⎩,得到22021010b a b a b ->⎧⎪+-<⎨⎪++>⎩画出不等式组所表示的区域,41b a --表示区域内的点(a ,b )与(1,4)连线的斜率,则41b a --的取值范围是13(,)22.【易错、易失分点点拨】本题其实本质还是线性规划问题,学生可能认识不到这一点,也不能准确列出线性约束条件,如果把字母(a ,b )换成(x ,y ),学生可能会认识到问题的本质. 点拨:要突破字母对解题的影响6. 211x x y x -+=-的值域是___________.【解析】令1t x =-,则1x t =+,则22121121x x t t y t x t t-+++===++-,所以该函数的值域是[4,)(,0]+∞-∞.【易错、易失分点点拨】本题不小心就会得出错解[4,)+∞,除非0t >才行,一定要当心. 点拨:应用基本不等式解题时,一定要注意正数这个基本条件. 7.函数2y =(____________.【解析】22y ==,令t =,而1y t t =+在(0,1)单调递减,在(1,)+∞单调递增,所以在t =. 【易错、易失分点点拨】该题极易有如下错解:4y ≥=.事实上此时等号成立条件是x 无解,所以等号取不到.点拨:应用基本不等式解题时,一定要关注等号成立条件,若等号条件不成立,可结合函数性质来解决此类问题.8. 已知正数,x y 满足1x y +=,则4y x y+的最小值是___________. 【解析】4()448y x y y xx y x y++=++≥,当且仅当4y x x y =,即2y x =,即12,33x y ==时等号成立.本题还可以消去y 来做.【易错、易失分点点拨】本题学生可能会有如下变形:44()()y y x y x y x y+=++,然后无法进行下去,这样的变形可能是受一类老题“已知正数,x y 满足1x y +=,则14x y+的最小值是__________.”的影响.说明学生没有掌握这类题的本质,只知道简单模仿. 二、解答题9. 已知不等式2(1)10x a x -++>.(1)若对[2,3]x ∈恒成立,求a 的取值范围; (2)若对[1,3]a ∈恒成立,求实数x 的取值范围. 【解析】(1)问题可转化为11a x x +<+恒成立,则512a +<即可,所以32a <; (2)问题可转化为关于a 的不等式210xa x x -+-+>,设21()xa x x g a -+-+=,只要(1)0,(3)0g g >>即可,解得2x >+或2x <【易错、易失分点点拨】本题两问要注意对比,学生容易发生混淆.当然第(2)问也可以用变量分离来做,变换主元也是学生应该掌握的思想.10.设不等式2220x ax a -++≤的解集为M ,如果[1,4]M ⊆,求实数a 的取值范围. 【解析】令2()22f x x ax a =-++当244(2)0a a ∆=-+<,即12a -<<时,M φ=,满足题意;当0∆=时,1a =-或2a =.当1a =-时,{1}M =-,不满足题意;当2a =时{2}M =,满足题意;当0∆>时,2a >或1a <-,如果[1,4]M ⊆,则有14(1)0(4)0a f f <<⎧⎪⎨⎪⎩≥≥,解得1827a <≤;综上:1817a -<≤【易错、易失分点点拨】本题学生有可能想不到用函数思想解决二次不等式问题.可能一上来就会用求根公式求出解集M ,根本就没有考虑到方程2220x ax a =-++无根的情况,也就是M φ=的情况.然后去解无理不等式,无理不等式很容易解错,而且无理不等式现在也不作要求.点拨:要有用二次函数解决二次不等式问题的思想.本题还有若干变式,可以把不等式变为2(2)20x a x a -++≤,也可以把[1,4]M ⊆变为[1,4]M ⊆等. 11.已知两正数x ,y 满足1,x y +=求11()()z x y x y=++的最小值.【解析】111()()y x z x y xy x y xy x y =++=+++,因为14xy ≤,所以1174xy xy ≥+,当且仅当14xy =时等号成立;而2y x x y ≥+,当且仅当x y =时等号成立.综上:当且仅当12x y ==时,z 有最小值254. 【易错、易失分点点拨】本题学生有可能得到错解4:112,2x y x y++≥≥或者12,2x yxy xy y x≥≥++, 但是两个等号不能同时成立,事实上因为1x y +=,决定了14xy ≤,而正确做法中两个等号确实可以同时取得.点拨:应用基本不等式解决问题时一定要关注等号成立条件. 12.若,x y R +∈,且30x y xy +-+=,求xy 的最小值;x y +的最小值;2x y +的最小值.【解析】(1)3xy x y ≥-=+3,即9xy ≥,当且仅当x =y =3时取等号;(2)23()2x y x y xy ≤+++=,解得6x y +≥,当且仅当x =y =3时取等号; (3)31x y x +=>-,1x ∴>,所以34422212(1)33111x x y x x x x x x ++=+=++=-+++---≥当且仅当11x y =+=+.【易错、易失分点点拨】这三类题是一定要注意辨析的,尤其是第(3)问,学生可能有如下错解:因为由已知可解得9xy ≥,所以2x y ≥+,此时两个等号成立条件分别是x y =和2x y =,显然不能同时成立.所以第(3)只能用最根本的消元来做,还要注意到0y >x 这个隐含条件.可以控制出1当然前两问也可以消元来做.点拨:这三类问题要加以辨析,弄懂弄透;多次不等时要注意取等号条件要能够同时成立才行.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学题解题方法大全(5)【范例1】已知命题:p R x ∈∃,022≤++a ax x .若命题p 是假命题,则实数a 的取值范围是( )A .10><a a 或 B. 10≥≤a a 或 C. 10≤≤a D. 10<<a答案:D【错解分析】此题容易错选为B ,错误的原因是没有很好的利用原命题与其否命题的关系。

【解题指导】命题p 是假命题⇔┓p 是真命题⇔对任意x R ∈,220x ax a ++>恒成立244001a a a ⇔∆=-<⇔<<.【练习1】若[]2,5x ∈“或{}14x x x x ∈<>或”是假命题,则x 的取值范围是( ) A .()()+∞⋃∞-,51, B.[)5,4 C. [)12, D. (]()+∞⋃∞-,54,【范例2】若函数)(212)(为常数a k k x f xx⋅+-=在定义域上为奇函数,则的值为k ( ) A . 1 B. 1- C. 1± D. 0 答案:C【错解分析】此题容易错选为A ,错误原因是直接利用了0)0(=f ,万万不可。

【解题指导】利用定义:0)()(=+-x f x f ,22()()1212x xx xk k f x f x k k ----+-=++⋅+⋅仔细化简到底。

【练习2】已知函数)(x f 是定义在)3,3(-上的奇函数,当30<<x 时,)(x f 的图象如图所示,则不等式/()cos 0f x x <的解集是 ( )A .)3,2()1,0()2,3(ππ--B .)3,2()1,0()1,2(ππ--C .(,2)(2,)22ππ--xyO1 3。

2 .Read x If x<5 Then y ← x 2+1 Elsey ←5xPrint yD . (0,)(,0)22ππ-【范例3】右图是由所输入的x 值计算y 值的一个算法程序,若x 依次取数列{}24n n+(n ∈*N ,n ≤2009)的项,则所得y 值中的最小值为( )A .25 B.17 C.20 D. 26答案:B【错解分析】此题容易错选为A ,错误原因是没有理解x 的取值范围。

【解题指导】4442≥+=+n n n n ,又⎩⎨⎧≥<+=55512x xx x y 作出其图象,观察单调性可知当4=x 时最小17.本题在新的情境中考查学生算法语言,是比较好的创新能力试题,值得重视.【练习3】根据如图所示的伪代码,可知输出的结果T 为( )A .624 B.625C.676D.1275 【范例4】当1a <时,12)(--='a x x f 且a f =)0(,则不等式()0f x <的解集是( ) A . ⎭⎬⎫⎩⎨⎧+<21a x x B. {}1x x a << C.{}1><x a x x 或 D. {|1}x a x <<答案:D【错解分析】此题容易错选为B ,错误原因是忘记了条件1a <。

【解题指导】0))(1()1()(2<--=++-=a x x a x a x x f .【练习4】曲线ln y x x =在(,)M e e 处的切线在,x y 轴上的截距分别为,a b ,则a b +=( )A .32e -B .12e -C .12e D .32e 【范例5】利用计算机在区间()0,1上产生两个随机数a 和b ,则方程2bx a x=-有实根的概率为( )T ←1I ←3While I<50T ←T +II ←I +2 End While Print TA .0B .12 C .43 D .1 答案:B【错解分析】此题容易出现的错误很多,主要是对方程2bx a x=-有实根进行有效的转化,和利用作图计算几何概型理解不好。

【解题指导】方程2b x a x=-有实根等价于022=+-b x a x 的判别式0≥∆,即b a ≥ 由⎩⎨⎧<<<<1010b a ,可作出正方形,应满足的条件为b a ≥,画图计算面积之比.【练习5】一只蚂蚁在边长分别为5,12,13的三角形的边上随机爬行,则其恰在离三个顶点距离都大于1的地方的概率为( ) A.54 B. 53 C. 60π D. 3π 【范例6】若数列{}{},n n a b 、的通项公式分别是a a n n ⋅-=+2007)1(,nb n n 2008)1(2+-+=,且n n b a <,对任意n N *∈恒成立,则常数a 的取值范围是( ) A.[)1,2- B. [)+∞-,2 C. []1,2- D. ()1,∞-答案:A【错解分析】此题容易错在不知道讨论奇偶性,以及n 是偶数时,要从2开始。

【解题指导】当n 是奇数时,由n n b a <得12a n<-,1a <; 当n 是偶数时,由n n b a <得12a n-<+,2,2a a -≤≥-, 因此常数a 的取值范围是[)1 ,2-.【练习6】已知数列{}n a 的通项公式是n n a n λ+-=2(其中*∈N n )是一个单调递减数列,则常数λ的取值范围( )A. (-∞,1)B. (-∞,2)C. (-∞,0)D. (-∞,3) 【范例7】曲线)4cos()4sin(2ππ-+=x x y 和直线在21=y 在y 轴右侧的交点按横坐标从小到大依次记为 ,3,2,1P P P ,则4,2P P 等于 . 答案: π【错解分析】此题容易错选为2π,错误原因是想当然的认为2,4P P 是半个周期。

【解题指导】x y 2sin 1+=,作出函数图象,知π==T P P 4,2. 【练习7】函数x x f 2sin 21)(=,对于任意的x ∈R ,都有)()()(21x f x f x f ≤≤,则21x x -的最小值为 .【范例8】幂函数αx y =,当α取不同的正数时,在区间[]1,0上它们的图像是一族美丽的曲线(如图).设点)1,0(),0,1(B A ,连接AB ,线段AB 恰好被其中的两个幂函数βαx y x y ==,的图像三等分,即有.NA MN BM ==那么,αβ= . 答案:1【错解分析】此题容易错很多,错误的主要原因是没有考虑到借助与点M ,N 的坐标去求两个幂函数βαx y x y ==,。

【解题指导】因为M ,N 为A ,B 的三等分点,所以)31,32(),32,31(N M 【练习8】如果幂函数122)33(--+-=m mx m m y 的图象不过原点,则m 的取值是 .【范例9】2{|3100}A x x x =-->,{|121}B x a x a =+≤≤-,U R =,且A C B U ⊆,求实数a 的取值范围 . 答案:(,3]-∞【错解分析】此题容易错填[]3,3-,错误原因是漏掉考虑A 为空集的情况。

【解题指导】2{3100}{25}U C A xx x x x =--≤=-≤≤121U B C A a a ⊆⇔+>-或21215a a -≤+≤-≤3a ⇔≤ 【练习9】设0)1)((:;1|34:|≤---≤-a x a x q x p ,若p 是q 的充分不必要条件,则实数a 的取值范围是 .【范例10】设双曲线221x y -=的两条渐近线与直线22x =围成的三角形区域(包含边界)为D ,点(,)P x y 为D 内的一个动点,则目标函数2z x y =-的最小值为 .答案:-22 【错解分析】此题容易错填322,错误原因是死记住最高点时取到最大值,最低点时取到最小值,而没有灵活掌握。

【解题指导】这里2z x y =-,中间是减号,最小值在直线最高时取得。

N MyB Ax【练习10】若不等式组⎪⎪⎩⎪⎪⎨⎧≤+≥≤+≥-ay x y y x y x 0220 表示的平面区域是一个三角形及其内部,则a 的取值范围是 .【范例11】已知M 是抛物线x y=2上一点,N 是圆1)3(22=+-y x 上的动点,则MN 的最小值是 . 答案:1211- 【错解分析】此题容易错在没有将MN 转化M 为到焦点距离,以及考虑不到消元化归的思想。

【解题指导】如图,设M 是x y=2上一点,||||||MC NC MN ≥+,所以MN 的最小值即为点M 到圆心C 的距离减去半径R 。

设),(2•y •yM 是抛物线x y =2上一点,则2422225)3(||yy y y MC -=+-=411)25(922+-=+y , ∴210±=y时,211||min =MC ,∴.1211||min •MN -=【练习11】已知曲线)0,0(12222>>=-•b •a by a x 的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是 .【范例12】某市出租车收费标准如下:起步价为8元,起步里程为3km (不超过3km 按起步价付费);超过3km 但不超过8km 时,超过部分按每千米2.15元收费;超过8km 时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元。

现某人乘坐一次出租车付费22.6元,则此次出租车行驶了__ ___km.答案:9【错解分析】此题容易错选为10,错误原因是不能准确地列出乘坐一次出租车付费y 与此次出租车行驶的里程x 之间的函数关系式。

【解题指导】乘坐一次出租车付费y 与此次出租车行驶的里程x 之间的函数关系式为⎪⎩⎪⎨⎧>+⨯-+⨯+≤<+⨯-+≤+=8186.2)8(15.25883115.2)3(8318x x x x x y【练习12】一个人喝了少量酒后,血液中的酒精含量迅速上升到0.3mg/mL ,在停止喝酒后,血液中的酒精含量以每小时25%的速度减少,为了保障交通安全,某地根据《道路交通安全法》规定:驾驶员血液中的酒精含量不得超过0.09 mg/mL ,那么,一个喝了少量酒后的驾驶员,至少经过 小时,才能开车?(精确到1小时).【范例13】 高考数学试题中共有10道选择题,每道选择题都有4个选项,其中有且仅有一个是正确的.评分标准规定:“每题只选1项,答对得5分,不答或答错得0分.” 某考生每道题都给出了一个答案,已确定有6道题的答案是正确的,而其余题中,有两道题都可判断出两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只能乱猜,试求出该考生:(1)得50分的概率;(2)得多少分的可能性最大;【错解分析】此题容易错在审题不清,考虑不全等方面。

相关文档
最新文档